xref: /openbmc/linux/net/sctp/socket.c (revision 047f2d94)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  * Copyright (c) 2001-2002 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions interface with the sockets layer to implement the
12  * SCTP Extensions for the Sockets API.
13  *
14  * Note that the descriptions from the specification are USER level
15  * functions--this file is the functions which populate the struct proto
16  * for SCTP which is the BOTTOM of the sockets interface.
17  *
18  * This SCTP implementation is free software;
19  * you can redistribute it and/or modify it under the terms of
20  * the GNU General Public License as published by
21  * the Free Software Foundation; either version 2, or (at your option)
22  * any later version.
23  *
24  * This SCTP implementation is distributed in the hope that it
25  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26  *                 ************************
27  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28  * See the GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with GNU CC; see the file COPYING.  If not, see
32  * <http://www.gnu.org/licenses/>.
33  *
34  * Please send any bug reports or fixes you make to the
35  * email address(es):
36  *    lksctp developers <linux-sctp@vger.kernel.org>
37  *
38  * Written or modified by:
39  *    La Monte H.P. Yarroll <piggy@acm.org>
40  *    Narasimha Budihal     <narsi@refcode.org>
41  *    Karl Knutson          <karl@athena.chicago.il.us>
42  *    Jon Grimm             <jgrimm@us.ibm.com>
43  *    Xingang Guo           <xingang.guo@intel.com>
44  *    Daisy Chang           <daisyc@us.ibm.com>
45  *    Sridhar Samudrala     <samudrala@us.ibm.com>
46  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
47  *    Ardelle Fan	    <ardelle.fan@intel.com>
48  *    Ryan Layer	    <rmlayer@us.ibm.com>
49  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
50  *    Kevin Gao             <kevin.gao@intel.com>
51  */
52 
53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
54 
55 #include <crypto/hash.h>
56 #include <linux/types.h>
57 #include <linux/kernel.h>
58 #include <linux/wait.h>
59 #include <linux/time.h>
60 #include <linux/sched/signal.h>
61 #include <linux/ip.h>
62 #include <linux/capability.h>
63 #include <linux/fcntl.h>
64 #include <linux/poll.h>
65 #include <linux/init.h>
66 #include <linux/slab.h>
67 #include <linux/file.h>
68 #include <linux/compat.h>
69 #include <linux/rhashtable.h>
70 
71 #include <net/ip.h>
72 #include <net/icmp.h>
73 #include <net/route.h>
74 #include <net/ipv6.h>
75 #include <net/inet_common.h>
76 #include <net/busy_poll.h>
77 
78 #include <linux/socket.h> /* for sa_family_t */
79 #include <linux/export.h>
80 #include <net/sock.h>
81 #include <net/sctp/sctp.h>
82 #include <net/sctp/sm.h>
83 #include <net/sctp/stream_sched.h>
84 
85 /* Forward declarations for internal helper functions. */
86 static bool sctp_writeable(struct sock *sk);
87 static void sctp_wfree(struct sk_buff *skb);
88 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
89 				size_t msg_len);
90 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
91 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
92 static int sctp_wait_for_accept(struct sock *sk, long timeo);
93 static void sctp_wait_for_close(struct sock *sk, long timeo);
94 static void sctp_destruct_sock(struct sock *sk);
95 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
96 					union sctp_addr *addr, int len);
97 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
98 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
99 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
100 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
101 static int sctp_send_asconf(struct sctp_association *asoc,
102 			    struct sctp_chunk *chunk);
103 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
104 static int sctp_autobind(struct sock *sk);
105 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
106 			      struct sctp_association *assoc,
107 			      enum sctp_socket_type type);
108 
109 static unsigned long sctp_memory_pressure;
110 static atomic_long_t sctp_memory_allocated;
111 struct percpu_counter sctp_sockets_allocated;
112 
113 static void sctp_enter_memory_pressure(struct sock *sk)
114 {
115 	sctp_memory_pressure = 1;
116 }
117 
118 
119 /* Get the sndbuf space available at the time on the association.  */
120 static inline int sctp_wspace(struct sctp_association *asoc)
121 {
122 	struct sock *sk = asoc->base.sk;
123 
124 	return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used
125 				       : sk_stream_wspace(sk);
126 }
127 
128 /* Increment the used sndbuf space count of the corresponding association by
129  * the size of the outgoing data chunk.
130  * Also, set the skb destructor for sndbuf accounting later.
131  *
132  * Since it is always 1-1 between chunk and skb, and also a new skb is always
133  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
134  * destructor in the data chunk skb for the purpose of the sndbuf space
135  * tracking.
136  */
137 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
138 {
139 	struct sctp_association *asoc = chunk->asoc;
140 	struct sock *sk = asoc->base.sk;
141 
142 	/* The sndbuf space is tracked per association.  */
143 	sctp_association_hold(asoc);
144 
145 	if (chunk->shkey)
146 		sctp_auth_shkey_hold(chunk->shkey);
147 
148 	skb_set_owner_w(chunk->skb, sk);
149 
150 	chunk->skb->destructor = sctp_wfree;
151 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
152 	skb_shinfo(chunk->skb)->destructor_arg = chunk;
153 
154 	refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
155 	asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk);
156 	sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk);
157 	sk_mem_charge(sk, chunk->skb->truesize);
158 }
159 
160 static void sctp_clear_owner_w(struct sctp_chunk *chunk)
161 {
162 	skb_orphan(chunk->skb);
163 }
164 
165 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc,
166 				       void (*cb)(struct sctp_chunk *))
167 
168 {
169 	struct sctp_outq *q = &asoc->outqueue;
170 	struct sctp_transport *t;
171 	struct sctp_chunk *chunk;
172 
173 	list_for_each_entry(t, &asoc->peer.transport_addr_list, transports)
174 		list_for_each_entry(chunk, &t->transmitted, transmitted_list)
175 			cb(chunk);
176 
177 	list_for_each_entry(chunk, &q->retransmit, transmitted_list)
178 		cb(chunk);
179 
180 	list_for_each_entry(chunk, &q->sacked, transmitted_list)
181 		cb(chunk);
182 
183 	list_for_each_entry(chunk, &q->abandoned, transmitted_list)
184 		cb(chunk);
185 
186 	list_for_each_entry(chunk, &q->out_chunk_list, list)
187 		cb(chunk);
188 }
189 
190 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk,
191 				 void (*cb)(struct sk_buff *, struct sock *))
192 
193 {
194 	struct sk_buff *skb, *tmp;
195 
196 	sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp)
197 		cb(skb, sk);
198 
199 	sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp)
200 		cb(skb, sk);
201 
202 	sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp)
203 		cb(skb, sk);
204 }
205 
206 /* Verify that this is a valid address. */
207 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
208 				   int len)
209 {
210 	struct sctp_af *af;
211 
212 	/* Verify basic sockaddr. */
213 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
214 	if (!af)
215 		return -EINVAL;
216 
217 	/* Is this a valid SCTP address?  */
218 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
219 		return -EINVAL;
220 
221 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
222 		return -EINVAL;
223 
224 	return 0;
225 }
226 
227 /* Look up the association by its id.  If this is not a UDP-style
228  * socket, the ID field is always ignored.
229  */
230 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
231 {
232 	struct sctp_association *asoc = NULL;
233 
234 	/* If this is not a UDP-style socket, assoc id should be ignored. */
235 	if (!sctp_style(sk, UDP)) {
236 		/* Return NULL if the socket state is not ESTABLISHED. It
237 		 * could be a TCP-style listening socket or a socket which
238 		 * hasn't yet called connect() to establish an association.
239 		 */
240 		if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING))
241 			return NULL;
242 
243 		/* Get the first and the only association from the list. */
244 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
245 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
246 					  struct sctp_association, asocs);
247 		return asoc;
248 	}
249 
250 	/* Otherwise this is a UDP-style socket. */
251 	if (!id || (id == (sctp_assoc_t)-1))
252 		return NULL;
253 
254 	spin_lock_bh(&sctp_assocs_id_lock);
255 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
256 	if (asoc && (asoc->base.sk != sk || asoc->base.dead))
257 		asoc = NULL;
258 	spin_unlock_bh(&sctp_assocs_id_lock);
259 
260 	return asoc;
261 }
262 
263 /* Look up the transport from an address and an assoc id. If both address and
264  * id are specified, the associations matching the address and the id should be
265  * the same.
266  */
267 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
268 					      struct sockaddr_storage *addr,
269 					      sctp_assoc_t id)
270 {
271 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
272 	struct sctp_af *af = sctp_get_af_specific(addr->ss_family);
273 	union sctp_addr *laddr = (union sctp_addr *)addr;
274 	struct sctp_transport *transport;
275 
276 	if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len))
277 		return NULL;
278 
279 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
280 					       laddr,
281 					       &transport);
282 
283 	if (!addr_asoc)
284 		return NULL;
285 
286 	id_asoc = sctp_id2assoc(sk, id);
287 	if (id_asoc && (id_asoc != addr_asoc))
288 		return NULL;
289 
290 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
291 						(union sctp_addr *)addr);
292 
293 	return transport;
294 }
295 
296 /* API 3.1.2 bind() - UDP Style Syntax
297  * The syntax of bind() is,
298  *
299  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
300  *
301  *   sd      - the socket descriptor returned by socket().
302  *   addr    - the address structure (struct sockaddr_in or struct
303  *             sockaddr_in6 [RFC 2553]),
304  *   addr_len - the size of the address structure.
305  */
306 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
307 {
308 	int retval = 0;
309 
310 	lock_sock(sk);
311 
312 	pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
313 		 addr, addr_len);
314 
315 	/* Disallow binding twice. */
316 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
317 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
318 				      addr_len);
319 	else
320 		retval = -EINVAL;
321 
322 	release_sock(sk);
323 
324 	return retval;
325 }
326 
327 static long sctp_get_port_local(struct sock *, union sctp_addr *);
328 
329 /* Verify this is a valid sockaddr. */
330 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
331 					union sctp_addr *addr, int len)
332 {
333 	struct sctp_af *af;
334 
335 	/* Check minimum size.  */
336 	if (len < sizeof (struct sockaddr))
337 		return NULL;
338 
339 	if (!opt->pf->af_supported(addr->sa.sa_family, opt))
340 		return NULL;
341 
342 	if (addr->sa.sa_family == AF_INET6) {
343 		if (len < SIN6_LEN_RFC2133)
344 			return NULL;
345 		/* V4 mapped address are really of AF_INET family */
346 		if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) &&
347 		    !opt->pf->af_supported(AF_INET, opt))
348 			return NULL;
349 	}
350 
351 	/* If we get this far, af is valid. */
352 	af = sctp_get_af_specific(addr->sa.sa_family);
353 
354 	if (len < af->sockaddr_len)
355 		return NULL;
356 
357 	return af;
358 }
359 
360 /* Bind a local address either to an endpoint or to an association.  */
361 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
362 {
363 	struct net *net = sock_net(sk);
364 	struct sctp_sock *sp = sctp_sk(sk);
365 	struct sctp_endpoint *ep = sp->ep;
366 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
367 	struct sctp_af *af;
368 	unsigned short snum;
369 	int ret = 0;
370 
371 	/* Common sockaddr verification. */
372 	af = sctp_sockaddr_af(sp, addr, len);
373 	if (!af) {
374 		pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
375 			 __func__, sk, addr, len);
376 		return -EINVAL;
377 	}
378 
379 	snum = ntohs(addr->v4.sin_port);
380 
381 	pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
382 		 __func__, sk, &addr->sa, bp->port, snum, len);
383 
384 	/* PF specific bind() address verification. */
385 	if (!sp->pf->bind_verify(sp, addr))
386 		return -EADDRNOTAVAIL;
387 
388 	/* We must either be unbound, or bind to the same port.
389 	 * It's OK to allow 0 ports if we are already bound.
390 	 * We'll just inhert an already bound port in this case
391 	 */
392 	if (bp->port) {
393 		if (!snum)
394 			snum = bp->port;
395 		else if (snum != bp->port) {
396 			pr_debug("%s: new port %d doesn't match existing port "
397 				 "%d\n", __func__, snum, bp->port);
398 			return -EINVAL;
399 		}
400 	}
401 
402 	if (snum && snum < inet_prot_sock(net) &&
403 	    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
404 		return -EACCES;
405 
406 	/* See if the address matches any of the addresses we may have
407 	 * already bound before checking against other endpoints.
408 	 */
409 	if (sctp_bind_addr_match(bp, addr, sp))
410 		return -EINVAL;
411 
412 	/* Make sure we are allowed to bind here.
413 	 * The function sctp_get_port_local() does duplicate address
414 	 * detection.
415 	 */
416 	addr->v4.sin_port = htons(snum);
417 	if ((ret = sctp_get_port_local(sk, addr))) {
418 		return -EADDRINUSE;
419 	}
420 
421 	/* Refresh ephemeral port.  */
422 	if (!bp->port)
423 		bp->port = inet_sk(sk)->inet_num;
424 
425 	/* Add the address to the bind address list.
426 	 * Use GFP_ATOMIC since BHs will be disabled.
427 	 */
428 	ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len,
429 				 SCTP_ADDR_SRC, GFP_ATOMIC);
430 
431 	/* Copy back into socket for getsockname() use. */
432 	if (!ret) {
433 		inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
434 		sp->pf->to_sk_saddr(addr, sk);
435 	}
436 
437 	return ret;
438 }
439 
440  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
441  *
442  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
443  * at any one time.  If a sender, after sending an ASCONF chunk, decides
444  * it needs to transfer another ASCONF Chunk, it MUST wait until the
445  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
446  * subsequent ASCONF. Note this restriction binds each side, so at any
447  * time two ASCONF may be in-transit on any given association (one sent
448  * from each endpoint).
449  */
450 static int sctp_send_asconf(struct sctp_association *asoc,
451 			    struct sctp_chunk *chunk)
452 {
453 	struct net 	*net = sock_net(asoc->base.sk);
454 	int		retval = 0;
455 
456 	/* If there is an outstanding ASCONF chunk, queue it for later
457 	 * transmission.
458 	 */
459 	if (asoc->addip_last_asconf) {
460 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
461 		goto out;
462 	}
463 
464 	/* Hold the chunk until an ASCONF_ACK is received. */
465 	sctp_chunk_hold(chunk);
466 	retval = sctp_primitive_ASCONF(net, asoc, chunk);
467 	if (retval)
468 		sctp_chunk_free(chunk);
469 	else
470 		asoc->addip_last_asconf = chunk;
471 
472 out:
473 	return retval;
474 }
475 
476 /* Add a list of addresses as bind addresses to local endpoint or
477  * association.
478  *
479  * Basically run through each address specified in the addrs/addrcnt
480  * array/length pair, determine if it is IPv6 or IPv4 and call
481  * sctp_do_bind() on it.
482  *
483  * If any of them fails, then the operation will be reversed and the
484  * ones that were added will be removed.
485  *
486  * Only sctp_setsockopt_bindx() is supposed to call this function.
487  */
488 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
489 {
490 	int cnt;
491 	int retval = 0;
492 	void *addr_buf;
493 	struct sockaddr *sa_addr;
494 	struct sctp_af *af;
495 
496 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
497 		 addrs, addrcnt);
498 
499 	addr_buf = addrs;
500 	for (cnt = 0; cnt < addrcnt; cnt++) {
501 		/* The list may contain either IPv4 or IPv6 address;
502 		 * determine the address length for walking thru the list.
503 		 */
504 		sa_addr = addr_buf;
505 		af = sctp_get_af_specific(sa_addr->sa_family);
506 		if (!af) {
507 			retval = -EINVAL;
508 			goto err_bindx_add;
509 		}
510 
511 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
512 				      af->sockaddr_len);
513 
514 		addr_buf += af->sockaddr_len;
515 
516 err_bindx_add:
517 		if (retval < 0) {
518 			/* Failed. Cleanup the ones that have been added */
519 			if (cnt > 0)
520 				sctp_bindx_rem(sk, addrs, cnt);
521 			return retval;
522 		}
523 	}
524 
525 	return retval;
526 }
527 
528 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
529  * associations that are part of the endpoint indicating that a list of local
530  * addresses are added to the endpoint.
531  *
532  * If any of the addresses is already in the bind address list of the
533  * association, we do not send the chunk for that association.  But it will not
534  * affect other associations.
535  *
536  * Only sctp_setsockopt_bindx() is supposed to call this function.
537  */
538 static int sctp_send_asconf_add_ip(struct sock		*sk,
539 				   struct sockaddr	*addrs,
540 				   int 			addrcnt)
541 {
542 	struct net *net = sock_net(sk);
543 	struct sctp_sock		*sp;
544 	struct sctp_endpoint		*ep;
545 	struct sctp_association		*asoc;
546 	struct sctp_bind_addr		*bp;
547 	struct sctp_chunk		*chunk;
548 	struct sctp_sockaddr_entry	*laddr;
549 	union sctp_addr			*addr;
550 	union sctp_addr			saveaddr;
551 	void				*addr_buf;
552 	struct sctp_af			*af;
553 	struct list_head		*p;
554 	int 				i;
555 	int 				retval = 0;
556 
557 	if (!net->sctp.addip_enable)
558 		return retval;
559 
560 	sp = sctp_sk(sk);
561 	ep = sp->ep;
562 
563 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
564 		 __func__, sk, addrs, addrcnt);
565 
566 	list_for_each_entry(asoc, &ep->asocs, asocs) {
567 		if (!asoc->peer.asconf_capable)
568 			continue;
569 
570 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
571 			continue;
572 
573 		if (!sctp_state(asoc, ESTABLISHED))
574 			continue;
575 
576 		/* Check if any address in the packed array of addresses is
577 		 * in the bind address list of the association. If so,
578 		 * do not send the asconf chunk to its peer, but continue with
579 		 * other associations.
580 		 */
581 		addr_buf = addrs;
582 		for (i = 0; i < addrcnt; i++) {
583 			addr = addr_buf;
584 			af = sctp_get_af_specific(addr->v4.sin_family);
585 			if (!af) {
586 				retval = -EINVAL;
587 				goto out;
588 			}
589 
590 			if (sctp_assoc_lookup_laddr(asoc, addr))
591 				break;
592 
593 			addr_buf += af->sockaddr_len;
594 		}
595 		if (i < addrcnt)
596 			continue;
597 
598 		/* Use the first valid address in bind addr list of
599 		 * association as Address Parameter of ASCONF CHUNK.
600 		 */
601 		bp = &asoc->base.bind_addr;
602 		p = bp->address_list.next;
603 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
604 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
605 						   addrcnt, SCTP_PARAM_ADD_IP);
606 		if (!chunk) {
607 			retval = -ENOMEM;
608 			goto out;
609 		}
610 
611 		/* Add the new addresses to the bind address list with
612 		 * use_as_src set to 0.
613 		 */
614 		addr_buf = addrs;
615 		for (i = 0; i < addrcnt; i++) {
616 			addr = addr_buf;
617 			af = sctp_get_af_specific(addr->v4.sin_family);
618 			memcpy(&saveaddr, addr, af->sockaddr_len);
619 			retval = sctp_add_bind_addr(bp, &saveaddr,
620 						    sizeof(saveaddr),
621 						    SCTP_ADDR_NEW, GFP_ATOMIC);
622 			addr_buf += af->sockaddr_len;
623 		}
624 		if (asoc->src_out_of_asoc_ok) {
625 			struct sctp_transport *trans;
626 
627 			list_for_each_entry(trans,
628 			    &asoc->peer.transport_addr_list, transports) {
629 				trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
630 				    2*asoc->pathmtu, 4380));
631 				trans->ssthresh = asoc->peer.i.a_rwnd;
632 				trans->rto = asoc->rto_initial;
633 				sctp_max_rto(asoc, trans);
634 				trans->rtt = trans->srtt = trans->rttvar = 0;
635 				/* Clear the source and route cache */
636 				sctp_transport_route(trans, NULL,
637 						     sctp_sk(asoc->base.sk));
638 			}
639 		}
640 		retval = sctp_send_asconf(asoc, chunk);
641 	}
642 
643 out:
644 	return retval;
645 }
646 
647 /* Remove a list of addresses from bind addresses list.  Do not remove the
648  * last address.
649  *
650  * Basically run through each address specified in the addrs/addrcnt
651  * array/length pair, determine if it is IPv6 or IPv4 and call
652  * sctp_del_bind() on it.
653  *
654  * If any of them fails, then the operation will be reversed and the
655  * ones that were removed will be added back.
656  *
657  * At least one address has to be left; if only one address is
658  * available, the operation will return -EBUSY.
659  *
660  * Only sctp_setsockopt_bindx() is supposed to call this function.
661  */
662 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
663 {
664 	struct sctp_sock *sp = sctp_sk(sk);
665 	struct sctp_endpoint *ep = sp->ep;
666 	int cnt;
667 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
668 	int retval = 0;
669 	void *addr_buf;
670 	union sctp_addr *sa_addr;
671 	struct sctp_af *af;
672 
673 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
674 		 __func__, sk, addrs, addrcnt);
675 
676 	addr_buf = addrs;
677 	for (cnt = 0; cnt < addrcnt; cnt++) {
678 		/* If the bind address list is empty or if there is only one
679 		 * bind address, there is nothing more to be removed (we need
680 		 * at least one address here).
681 		 */
682 		if (list_empty(&bp->address_list) ||
683 		    (sctp_list_single_entry(&bp->address_list))) {
684 			retval = -EBUSY;
685 			goto err_bindx_rem;
686 		}
687 
688 		sa_addr = addr_buf;
689 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
690 		if (!af) {
691 			retval = -EINVAL;
692 			goto err_bindx_rem;
693 		}
694 
695 		if (!af->addr_valid(sa_addr, sp, NULL)) {
696 			retval = -EADDRNOTAVAIL;
697 			goto err_bindx_rem;
698 		}
699 
700 		if (sa_addr->v4.sin_port &&
701 		    sa_addr->v4.sin_port != htons(bp->port)) {
702 			retval = -EINVAL;
703 			goto err_bindx_rem;
704 		}
705 
706 		if (!sa_addr->v4.sin_port)
707 			sa_addr->v4.sin_port = htons(bp->port);
708 
709 		/* FIXME - There is probably a need to check if sk->sk_saddr and
710 		 * sk->sk_rcv_addr are currently set to one of the addresses to
711 		 * be removed. This is something which needs to be looked into
712 		 * when we are fixing the outstanding issues with multi-homing
713 		 * socket routing and failover schemes. Refer to comments in
714 		 * sctp_do_bind(). -daisy
715 		 */
716 		retval = sctp_del_bind_addr(bp, sa_addr);
717 
718 		addr_buf += af->sockaddr_len;
719 err_bindx_rem:
720 		if (retval < 0) {
721 			/* Failed. Add the ones that has been removed back */
722 			if (cnt > 0)
723 				sctp_bindx_add(sk, addrs, cnt);
724 			return retval;
725 		}
726 	}
727 
728 	return retval;
729 }
730 
731 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
732  * the associations that are part of the endpoint indicating that a list of
733  * local addresses are removed from the endpoint.
734  *
735  * If any of the addresses is already in the bind address list of the
736  * association, we do not send the chunk for that association.  But it will not
737  * affect other associations.
738  *
739  * Only sctp_setsockopt_bindx() is supposed to call this function.
740  */
741 static int sctp_send_asconf_del_ip(struct sock		*sk,
742 				   struct sockaddr	*addrs,
743 				   int			addrcnt)
744 {
745 	struct net *net = sock_net(sk);
746 	struct sctp_sock	*sp;
747 	struct sctp_endpoint	*ep;
748 	struct sctp_association	*asoc;
749 	struct sctp_transport	*transport;
750 	struct sctp_bind_addr	*bp;
751 	struct sctp_chunk	*chunk;
752 	union sctp_addr		*laddr;
753 	void			*addr_buf;
754 	struct sctp_af		*af;
755 	struct sctp_sockaddr_entry *saddr;
756 	int 			i;
757 	int 			retval = 0;
758 	int			stored = 0;
759 
760 	chunk = NULL;
761 	if (!net->sctp.addip_enable)
762 		return retval;
763 
764 	sp = sctp_sk(sk);
765 	ep = sp->ep;
766 
767 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
768 		 __func__, sk, addrs, addrcnt);
769 
770 	list_for_each_entry(asoc, &ep->asocs, asocs) {
771 
772 		if (!asoc->peer.asconf_capable)
773 			continue;
774 
775 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
776 			continue;
777 
778 		if (!sctp_state(asoc, ESTABLISHED))
779 			continue;
780 
781 		/* Check if any address in the packed array of addresses is
782 		 * not present in the bind address list of the association.
783 		 * If so, do not send the asconf chunk to its peer, but
784 		 * continue with other associations.
785 		 */
786 		addr_buf = addrs;
787 		for (i = 0; i < addrcnt; i++) {
788 			laddr = addr_buf;
789 			af = sctp_get_af_specific(laddr->v4.sin_family);
790 			if (!af) {
791 				retval = -EINVAL;
792 				goto out;
793 			}
794 
795 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
796 				break;
797 
798 			addr_buf += af->sockaddr_len;
799 		}
800 		if (i < addrcnt)
801 			continue;
802 
803 		/* Find one address in the association's bind address list
804 		 * that is not in the packed array of addresses. This is to
805 		 * make sure that we do not delete all the addresses in the
806 		 * association.
807 		 */
808 		bp = &asoc->base.bind_addr;
809 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
810 					       addrcnt, sp);
811 		if ((laddr == NULL) && (addrcnt == 1)) {
812 			if (asoc->asconf_addr_del_pending)
813 				continue;
814 			asoc->asconf_addr_del_pending =
815 			    kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
816 			if (asoc->asconf_addr_del_pending == NULL) {
817 				retval = -ENOMEM;
818 				goto out;
819 			}
820 			asoc->asconf_addr_del_pending->sa.sa_family =
821 				    addrs->sa_family;
822 			asoc->asconf_addr_del_pending->v4.sin_port =
823 				    htons(bp->port);
824 			if (addrs->sa_family == AF_INET) {
825 				struct sockaddr_in *sin;
826 
827 				sin = (struct sockaddr_in *)addrs;
828 				asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
829 			} else if (addrs->sa_family == AF_INET6) {
830 				struct sockaddr_in6 *sin6;
831 
832 				sin6 = (struct sockaddr_in6 *)addrs;
833 				asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
834 			}
835 
836 			pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
837 				 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
838 				 asoc->asconf_addr_del_pending);
839 
840 			asoc->src_out_of_asoc_ok = 1;
841 			stored = 1;
842 			goto skip_mkasconf;
843 		}
844 
845 		if (laddr == NULL)
846 			return -EINVAL;
847 
848 		/* We do not need RCU protection throughout this loop
849 		 * because this is done under a socket lock from the
850 		 * setsockopt call.
851 		 */
852 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
853 						   SCTP_PARAM_DEL_IP);
854 		if (!chunk) {
855 			retval = -ENOMEM;
856 			goto out;
857 		}
858 
859 skip_mkasconf:
860 		/* Reset use_as_src flag for the addresses in the bind address
861 		 * list that are to be deleted.
862 		 */
863 		addr_buf = addrs;
864 		for (i = 0; i < addrcnt; i++) {
865 			laddr = addr_buf;
866 			af = sctp_get_af_specific(laddr->v4.sin_family);
867 			list_for_each_entry(saddr, &bp->address_list, list) {
868 				if (sctp_cmp_addr_exact(&saddr->a, laddr))
869 					saddr->state = SCTP_ADDR_DEL;
870 			}
871 			addr_buf += af->sockaddr_len;
872 		}
873 
874 		/* Update the route and saddr entries for all the transports
875 		 * as some of the addresses in the bind address list are
876 		 * about to be deleted and cannot be used as source addresses.
877 		 */
878 		list_for_each_entry(transport, &asoc->peer.transport_addr_list,
879 					transports) {
880 			sctp_transport_route(transport, NULL,
881 					     sctp_sk(asoc->base.sk));
882 		}
883 
884 		if (stored)
885 			/* We don't need to transmit ASCONF */
886 			continue;
887 		retval = sctp_send_asconf(asoc, chunk);
888 	}
889 out:
890 	return retval;
891 }
892 
893 /* set addr events to assocs in the endpoint.  ep and addr_wq must be locked */
894 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
895 {
896 	struct sock *sk = sctp_opt2sk(sp);
897 	union sctp_addr *addr;
898 	struct sctp_af *af;
899 
900 	/* It is safe to write port space in caller. */
901 	addr = &addrw->a;
902 	addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
903 	af = sctp_get_af_specific(addr->sa.sa_family);
904 	if (!af)
905 		return -EINVAL;
906 	if (sctp_verify_addr(sk, addr, af->sockaddr_len))
907 		return -EINVAL;
908 
909 	if (addrw->state == SCTP_ADDR_NEW)
910 		return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
911 	else
912 		return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
913 }
914 
915 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
916  *
917  * API 8.1
918  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
919  *                int flags);
920  *
921  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
922  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
923  * or IPv6 addresses.
924  *
925  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
926  * Section 3.1.2 for this usage.
927  *
928  * addrs is a pointer to an array of one or more socket addresses. Each
929  * address is contained in its appropriate structure (i.e. struct
930  * sockaddr_in or struct sockaddr_in6) the family of the address type
931  * must be used to distinguish the address length (note that this
932  * representation is termed a "packed array" of addresses). The caller
933  * specifies the number of addresses in the array with addrcnt.
934  *
935  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
936  * -1, and sets errno to the appropriate error code.
937  *
938  * For SCTP, the port given in each socket address must be the same, or
939  * sctp_bindx() will fail, setting errno to EINVAL.
940  *
941  * The flags parameter is formed from the bitwise OR of zero or more of
942  * the following currently defined flags:
943  *
944  * SCTP_BINDX_ADD_ADDR
945  *
946  * SCTP_BINDX_REM_ADDR
947  *
948  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
949  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
950  * addresses from the association. The two flags are mutually exclusive;
951  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
952  * not remove all addresses from an association; sctp_bindx() will
953  * reject such an attempt with EINVAL.
954  *
955  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
956  * additional addresses with an endpoint after calling bind().  Or use
957  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
958  * socket is associated with so that no new association accepted will be
959  * associated with those addresses. If the endpoint supports dynamic
960  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
961  * endpoint to send the appropriate message to the peer to change the
962  * peers address lists.
963  *
964  * Adding and removing addresses from a connected association is
965  * optional functionality. Implementations that do not support this
966  * functionality should return EOPNOTSUPP.
967  *
968  * Basically do nothing but copying the addresses from user to kernel
969  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
970  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
971  * from userspace.
972  *
973  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
974  * it.
975  *
976  * sk        The sk of the socket
977  * addrs     The pointer to the addresses in user land
978  * addrssize Size of the addrs buffer
979  * op        Operation to perform (add or remove, see the flags of
980  *           sctp_bindx)
981  *
982  * Returns 0 if ok, <0 errno code on error.
983  */
984 static int sctp_setsockopt_bindx(struct sock *sk,
985 				 struct sockaddr __user *addrs,
986 				 int addrs_size, int op)
987 {
988 	struct sockaddr *kaddrs;
989 	int err;
990 	int addrcnt = 0;
991 	int walk_size = 0;
992 	struct sockaddr *sa_addr;
993 	void *addr_buf;
994 	struct sctp_af *af;
995 
996 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
997 		 __func__, sk, addrs, addrs_size, op);
998 
999 	if (unlikely(addrs_size <= 0))
1000 		return -EINVAL;
1001 
1002 	kaddrs = vmemdup_user(addrs, addrs_size);
1003 	if (unlikely(IS_ERR(kaddrs)))
1004 		return PTR_ERR(kaddrs);
1005 
1006 	/* Walk through the addrs buffer and count the number of addresses. */
1007 	addr_buf = kaddrs;
1008 	while (walk_size < addrs_size) {
1009 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
1010 			kvfree(kaddrs);
1011 			return -EINVAL;
1012 		}
1013 
1014 		sa_addr = addr_buf;
1015 		af = sctp_get_af_specific(sa_addr->sa_family);
1016 
1017 		/* If the address family is not supported or if this address
1018 		 * causes the address buffer to overflow return EINVAL.
1019 		 */
1020 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1021 			kvfree(kaddrs);
1022 			return -EINVAL;
1023 		}
1024 		addrcnt++;
1025 		addr_buf += af->sockaddr_len;
1026 		walk_size += af->sockaddr_len;
1027 	}
1028 
1029 	/* Do the work. */
1030 	switch (op) {
1031 	case SCTP_BINDX_ADD_ADDR:
1032 		/* Allow security module to validate bindx addresses. */
1033 		err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD,
1034 						 (struct sockaddr *)kaddrs,
1035 						 addrs_size);
1036 		if (err)
1037 			goto out;
1038 		err = sctp_bindx_add(sk, kaddrs, addrcnt);
1039 		if (err)
1040 			goto out;
1041 		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1042 		break;
1043 
1044 	case SCTP_BINDX_REM_ADDR:
1045 		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1046 		if (err)
1047 			goto out;
1048 		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1049 		break;
1050 
1051 	default:
1052 		err = -EINVAL;
1053 		break;
1054 	}
1055 
1056 out:
1057 	kvfree(kaddrs);
1058 
1059 	return err;
1060 }
1061 
1062 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1063  *
1064  * Common routine for handling connect() and sctp_connectx().
1065  * Connect will come in with just a single address.
1066  */
1067 static int __sctp_connect(struct sock *sk,
1068 			  struct sockaddr *kaddrs,
1069 			  int addrs_size, int flags,
1070 			  sctp_assoc_t *assoc_id)
1071 {
1072 	struct net *net = sock_net(sk);
1073 	struct sctp_sock *sp;
1074 	struct sctp_endpoint *ep;
1075 	struct sctp_association *asoc = NULL;
1076 	struct sctp_association *asoc2;
1077 	struct sctp_transport *transport;
1078 	union sctp_addr to;
1079 	enum sctp_scope scope;
1080 	long timeo;
1081 	int err = 0;
1082 	int addrcnt = 0;
1083 	int walk_size = 0;
1084 	union sctp_addr *sa_addr = NULL;
1085 	void *addr_buf;
1086 	unsigned short port;
1087 
1088 	sp = sctp_sk(sk);
1089 	ep = sp->ep;
1090 
1091 	/* connect() cannot be done on a socket that is already in ESTABLISHED
1092 	 * state - UDP-style peeled off socket or a TCP-style socket that
1093 	 * is already connected.
1094 	 * It cannot be done even on a TCP-style listening socket.
1095 	 */
1096 	if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) ||
1097 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1098 		err = -EISCONN;
1099 		goto out_free;
1100 	}
1101 
1102 	/* Walk through the addrs buffer and count the number of addresses. */
1103 	addr_buf = kaddrs;
1104 	while (walk_size < addrs_size) {
1105 		struct sctp_af *af;
1106 
1107 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
1108 			err = -EINVAL;
1109 			goto out_free;
1110 		}
1111 
1112 		sa_addr = addr_buf;
1113 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
1114 
1115 		/* If the address family is not supported or if this address
1116 		 * causes the address buffer to overflow return EINVAL.
1117 		 */
1118 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1119 			err = -EINVAL;
1120 			goto out_free;
1121 		}
1122 
1123 		port = ntohs(sa_addr->v4.sin_port);
1124 
1125 		/* Save current address so we can work with it */
1126 		memcpy(&to, sa_addr, af->sockaddr_len);
1127 
1128 		err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1129 		if (err)
1130 			goto out_free;
1131 
1132 		/* Make sure the destination port is correctly set
1133 		 * in all addresses.
1134 		 */
1135 		if (asoc && asoc->peer.port && asoc->peer.port != port) {
1136 			err = -EINVAL;
1137 			goto out_free;
1138 		}
1139 
1140 		/* Check if there already is a matching association on the
1141 		 * endpoint (other than the one created here).
1142 		 */
1143 		asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1144 		if (asoc2 && asoc2 != asoc) {
1145 			if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1146 				err = -EISCONN;
1147 			else
1148 				err = -EALREADY;
1149 			goto out_free;
1150 		}
1151 
1152 		/* If we could not find a matching association on the endpoint,
1153 		 * make sure that there is no peeled-off association matching
1154 		 * the peer address even on another socket.
1155 		 */
1156 		if (sctp_endpoint_is_peeled_off(ep, &to)) {
1157 			err = -EADDRNOTAVAIL;
1158 			goto out_free;
1159 		}
1160 
1161 		if (!asoc) {
1162 			/* If a bind() or sctp_bindx() is not called prior to
1163 			 * an sctp_connectx() call, the system picks an
1164 			 * ephemeral port and will choose an address set
1165 			 * equivalent to binding with a wildcard address.
1166 			 */
1167 			if (!ep->base.bind_addr.port) {
1168 				if (sctp_autobind(sk)) {
1169 					err = -EAGAIN;
1170 					goto out_free;
1171 				}
1172 			} else {
1173 				/*
1174 				 * If an unprivileged user inherits a 1-many
1175 				 * style socket with open associations on a
1176 				 * privileged port, it MAY be permitted to
1177 				 * accept new associations, but it SHOULD NOT
1178 				 * be permitted to open new associations.
1179 				 */
1180 				if (ep->base.bind_addr.port <
1181 				    inet_prot_sock(net) &&
1182 				    !ns_capable(net->user_ns,
1183 				    CAP_NET_BIND_SERVICE)) {
1184 					err = -EACCES;
1185 					goto out_free;
1186 				}
1187 			}
1188 
1189 			scope = sctp_scope(&to);
1190 			asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1191 			if (!asoc) {
1192 				err = -ENOMEM;
1193 				goto out_free;
1194 			}
1195 
1196 			err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1197 							      GFP_KERNEL);
1198 			if (err < 0) {
1199 				goto out_free;
1200 			}
1201 
1202 		}
1203 
1204 		/* Prime the peer's transport structures.  */
1205 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1206 						SCTP_UNKNOWN);
1207 		if (!transport) {
1208 			err = -ENOMEM;
1209 			goto out_free;
1210 		}
1211 
1212 		addrcnt++;
1213 		addr_buf += af->sockaddr_len;
1214 		walk_size += af->sockaddr_len;
1215 	}
1216 
1217 	/* In case the user of sctp_connectx() wants an association
1218 	 * id back, assign one now.
1219 	 */
1220 	if (assoc_id) {
1221 		err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1222 		if (err < 0)
1223 			goto out_free;
1224 	}
1225 
1226 	err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1227 	if (err < 0) {
1228 		goto out_free;
1229 	}
1230 
1231 	/* Initialize sk's dport and daddr for getpeername() */
1232 	inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1233 	sp->pf->to_sk_daddr(sa_addr, sk);
1234 	sk->sk_err = 0;
1235 
1236 	timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);
1237 
1238 	if (assoc_id)
1239 		*assoc_id = asoc->assoc_id;
1240 
1241 	err = sctp_wait_for_connect(asoc, &timeo);
1242 	/* Note: the asoc may be freed after the return of
1243 	 * sctp_wait_for_connect.
1244 	 */
1245 
1246 	/* Don't free association on exit. */
1247 	asoc = NULL;
1248 
1249 out_free:
1250 	pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1251 		 __func__, asoc, kaddrs, err);
1252 
1253 	if (asoc) {
1254 		/* sctp_primitive_ASSOCIATE may have added this association
1255 		 * To the hash table, try to unhash it, just in case, its a noop
1256 		 * if it wasn't hashed so we're safe
1257 		 */
1258 		sctp_association_free(asoc);
1259 	}
1260 	return err;
1261 }
1262 
1263 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1264  *
1265  * API 8.9
1266  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1267  * 			sctp_assoc_t *asoc);
1268  *
1269  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1270  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1271  * or IPv6 addresses.
1272  *
1273  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1274  * Section 3.1.2 for this usage.
1275  *
1276  * addrs is a pointer to an array of one or more socket addresses. Each
1277  * address is contained in its appropriate structure (i.e. struct
1278  * sockaddr_in or struct sockaddr_in6) the family of the address type
1279  * must be used to distengish the address length (note that this
1280  * representation is termed a "packed array" of addresses). The caller
1281  * specifies the number of addresses in the array with addrcnt.
1282  *
1283  * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1284  * the association id of the new association.  On failure, sctp_connectx()
1285  * returns -1, and sets errno to the appropriate error code.  The assoc_id
1286  * is not touched by the kernel.
1287  *
1288  * For SCTP, the port given in each socket address must be the same, or
1289  * sctp_connectx() will fail, setting errno to EINVAL.
1290  *
1291  * An application can use sctp_connectx to initiate an association with
1292  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1293  * allows a caller to specify multiple addresses at which a peer can be
1294  * reached.  The way the SCTP stack uses the list of addresses to set up
1295  * the association is implementation dependent.  This function only
1296  * specifies that the stack will try to make use of all the addresses in
1297  * the list when needed.
1298  *
1299  * Note that the list of addresses passed in is only used for setting up
1300  * the association.  It does not necessarily equal the set of addresses
1301  * the peer uses for the resulting association.  If the caller wants to
1302  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1303  * retrieve them after the association has been set up.
1304  *
1305  * Basically do nothing but copying the addresses from user to kernel
1306  * land and invoking either sctp_connectx(). This is used for tunneling
1307  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1308  *
1309  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1310  * it.
1311  *
1312  * sk        The sk of the socket
1313  * addrs     The pointer to the addresses in user land
1314  * addrssize Size of the addrs buffer
1315  *
1316  * Returns >=0 if ok, <0 errno code on error.
1317  */
1318 static int __sctp_setsockopt_connectx(struct sock *sk,
1319 				      struct sockaddr __user *addrs,
1320 				      int addrs_size,
1321 				      sctp_assoc_t *assoc_id)
1322 {
1323 	struct sockaddr *kaddrs;
1324 	int err = 0, flags = 0;
1325 
1326 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1327 		 __func__, sk, addrs, addrs_size);
1328 
1329 	if (unlikely(addrs_size <= 0))
1330 		return -EINVAL;
1331 
1332 	kaddrs = vmemdup_user(addrs, addrs_size);
1333 	if (unlikely(IS_ERR(kaddrs)))
1334 		return PTR_ERR(kaddrs);
1335 
1336 	/* Allow security module to validate connectx addresses. */
1337 	err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX,
1338 					 (struct sockaddr *)kaddrs,
1339 					  addrs_size);
1340 	if (err)
1341 		goto out_free;
1342 
1343 	/* in-kernel sockets don't generally have a file allocated to them
1344 	 * if all they do is call sock_create_kern().
1345 	 */
1346 	if (sk->sk_socket->file)
1347 		flags = sk->sk_socket->file->f_flags;
1348 
1349 	err = __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id);
1350 
1351 out_free:
1352 	kvfree(kaddrs);
1353 
1354 	return err;
1355 }
1356 
1357 /*
1358  * This is an older interface.  It's kept for backward compatibility
1359  * to the option that doesn't provide association id.
1360  */
1361 static int sctp_setsockopt_connectx_old(struct sock *sk,
1362 					struct sockaddr __user *addrs,
1363 					int addrs_size)
1364 {
1365 	return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1366 }
1367 
1368 /*
1369  * New interface for the API.  The since the API is done with a socket
1370  * option, to make it simple we feed back the association id is as a return
1371  * indication to the call.  Error is always negative and association id is
1372  * always positive.
1373  */
1374 static int sctp_setsockopt_connectx(struct sock *sk,
1375 				    struct sockaddr __user *addrs,
1376 				    int addrs_size)
1377 {
1378 	sctp_assoc_t assoc_id = 0;
1379 	int err = 0;
1380 
1381 	err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1382 
1383 	if (err)
1384 		return err;
1385 	else
1386 		return assoc_id;
1387 }
1388 
1389 /*
1390  * New (hopefully final) interface for the API.
1391  * We use the sctp_getaddrs_old structure so that use-space library
1392  * can avoid any unnecessary allocations. The only different part
1393  * is that we store the actual length of the address buffer into the
1394  * addrs_num structure member. That way we can re-use the existing
1395  * code.
1396  */
1397 #ifdef CONFIG_COMPAT
1398 struct compat_sctp_getaddrs_old {
1399 	sctp_assoc_t	assoc_id;
1400 	s32		addr_num;
1401 	compat_uptr_t	addrs;		/* struct sockaddr * */
1402 };
1403 #endif
1404 
1405 static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1406 				     char __user *optval,
1407 				     int __user *optlen)
1408 {
1409 	struct sctp_getaddrs_old param;
1410 	sctp_assoc_t assoc_id = 0;
1411 	int err = 0;
1412 
1413 #ifdef CONFIG_COMPAT
1414 	if (in_compat_syscall()) {
1415 		struct compat_sctp_getaddrs_old param32;
1416 
1417 		if (len < sizeof(param32))
1418 			return -EINVAL;
1419 		if (copy_from_user(&param32, optval, sizeof(param32)))
1420 			return -EFAULT;
1421 
1422 		param.assoc_id = param32.assoc_id;
1423 		param.addr_num = param32.addr_num;
1424 		param.addrs = compat_ptr(param32.addrs);
1425 	} else
1426 #endif
1427 	{
1428 		if (len < sizeof(param))
1429 			return -EINVAL;
1430 		if (copy_from_user(&param, optval, sizeof(param)))
1431 			return -EFAULT;
1432 	}
1433 
1434 	err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *)
1435 					 param.addrs, param.addr_num,
1436 					 &assoc_id);
1437 	if (err == 0 || err == -EINPROGRESS) {
1438 		if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1439 			return -EFAULT;
1440 		if (put_user(sizeof(assoc_id), optlen))
1441 			return -EFAULT;
1442 	}
1443 
1444 	return err;
1445 }
1446 
1447 /* API 3.1.4 close() - UDP Style Syntax
1448  * Applications use close() to perform graceful shutdown (as described in
1449  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1450  * by a UDP-style socket.
1451  *
1452  * The syntax is
1453  *
1454  *   ret = close(int sd);
1455  *
1456  *   sd      - the socket descriptor of the associations to be closed.
1457  *
1458  * To gracefully shutdown a specific association represented by the
1459  * UDP-style socket, an application should use the sendmsg() call,
1460  * passing no user data, but including the appropriate flag in the
1461  * ancillary data (see Section xxxx).
1462  *
1463  * If sd in the close() call is a branched-off socket representing only
1464  * one association, the shutdown is performed on that association only.
1465  *
1466  * 4.1.6 close() - TCP Style Syntax
1467  *
1468  * Applications use close() to gracefully close down an association.
1469  *
1470  * The syntax is:
1471  *
1472  *    int close(int sd);
1473  *
1474  *      sd      - the socket descriptor of the association to be closed.
1475  *
1476  * After an application calls close() on a socket descriptor, no further
1477  * socket operations will succeed on that descriptor.
1478  *
1479  * API 7.1.4 SO_LINGER
1480  *
1481  * An application using the TCP-style socket can use this option to
1482  * perform the SCTP ABORT primitive.  The linger option structure is:
1483  *
1484  *  struct  linger {
1485  *     int     l_onoff;                // option on/off
1486  *     int     l_linger;               // linger time
1487  * };
1488  *
1489  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1490  * to 0, calling close() is the same as the ABORT primitive.  If the
1491  * value is set to a negative value, the setsockopt() call will return
1492  * an error.  If the value is set to a positive value linger_time, the
1493  * close() can be blocked for at most linger_time ms.  If the graceful
1494  * shutdown phase does not finish during this period, close() will
1495  * return but the graceful shutdown phase continues in the system.
1496  */
1497 static void sctp_close(struct sock *sk, long timeout)
1498 {
1499 	struct net *net = sock_net(sk);
1500 	struct sctp_endpoint *ep;
1501 	struct sctp_association *asoc;
1502 	struct list_head *pos, *temp;
1503 	unsigned int data_was_unread;
1504 
1505 	pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1506 
1507 	lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
1508 	sk->sk_shutdown = SHUTDOWN_MASK;
1509 	inet_sk_set_state(sk, SCTP_SS_CLOSING);
1510 
1511 	ep = sctp_sk(sk)->ep;
1512 
1513 	/* Clean up any skbs sitting on the receive queue.  */
1514 	data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1515 	data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1516 
1517 	/* Walk all associations on an endpoint.  */
1518 	list_for_each_safe(pos, temp, &ep->asocs) {
1519 		asoc = list_entry(pos, struct sctp_association, asocs);
1520 
1521 		if (sctp_style(sk, TCP)) {
1522 			/* A closed association can still be in the list if
1523 			 * it belongs to a TCP-style listening socket that is
1524 			 * not yet accepted. If so, free it. If not, send an
1525 			 * ABORT or SHUTDOWN based on the linger options.
1526 			 */
1527 			if (sctp_state(asoc, CLOSED)) {
1528 				sctp_association_free(asoc);
1529 				continue;
1530 			}
1531 		}
1532 
1533 		if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1534 		    !skb_queue_empty(&asoc->ulpq.reasm) ||
1535 		    !skb_queue_empty(&asoc->ulpq.reasm_uo) ||
1536 		    (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1537 			struct sctp_chunk *chunk;
1538 
1539 			chunk = sctp_make_abort_user(asoc, NULL, 0);
1540 			sctp_primitive_ABORT(net, asoc, chunk);
1541 		} else
1542 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1543 	}
1544 
1545 	/* On a TCP-style socket, block for at most linger_time if set. */
1546 	if (sctp_style(sk, TCP) && timeout)
1547 		sctp_wait_for_close(sk, timeout);
1548 
1549 	/* This will run the backlog queue.  */
1550 	release_sock(sk);
1551 
1552 	/* Supposedly, no process has access to the socket, but
1553 	 * the net layers still may.
1554 	 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock
1555 	 * held and that should be grabbed before socket lock.
1556 	 */
1557 	spin_lock_bh(&net->sctp.addr_wq_lock);
1558 	bh_lock_sock_nested(sk);
1559 
1560 	/* Hold the sock, since sk_common_release() will put sock_put()
1561 	 * and we have just a little more cleanup.
1562 	 */
1563 	sock_hold(sk);
1564 	sk_common_release(sk);
1565 
1566 	bh_unlock_sock(sk);
1567 	spin_unlock_bh(&net->sctp.addr_wq_lock);
1568 
1569 	sock_put(sk);
1570 
1571 	SCTP_DBG_OBJCNT_DEC(sock);
1572 }
1573 
1574 /* Handle EPIPE error. */
1575 static int sctp_error(struct sock *sk, int flags, int err)
1576 {
1577 	if (err == -EPIPE)
1578 		err = sock_error(sk) ? : -EPIPE;
1579 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1580 		send_sig(SIGPIPE, current, 0);
1581 	return err;
1582 }
1583 
1584 /* API 3.1.3 sendmsg() - UDP Style Syntax
1585  *
1586  * An application uses sendmsg() and recvmsg() calls to transmit data to
1587  * and receive data from its peer.
1588  *
1589  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1590  *                  int flags);
1591  *
1592  *  socket  - the socket descriptor of the endpoint.
1593  *  message - pointer to the msghdr structure which contains a single
1594  *            user message and possibly some ancillary data.
1595  *
1596  *            See Section 5 for complete description of the data
1597  *            structures.
1598  *
1599  *  flags   - flags sent or received with the user message, see Section
1600  *            5 for complete description of the flags.
1601  *
1602  * Note:  This function could use a rewrite especially when explicit
1603  * connect support comes in.
1604  */
1605 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1606 
1607 static int sctp_msghdr_parse(const struct msghdr *msg,
1608 			     struct sctp_cmsgs *cmsgs);
1609 
1610 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs,
1611 			      struct sctp_sndrcvinfo *srinfo,
1612 			      const struct msghdr *msg, size_t msg_len)
1613 {
1614 	__u16 sflags;
1615 	int err;
1616 
1617 	if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP))
1618 		return -EPIPE;
1619 
1620 	if (msg_len > sk->sk_sndbuf)
1621 		return -EMSGSIZE;
1622 
1623 	memset(cmsgs, 0, sizeof(*cmsgs));
1624 	err = sctp_msghdr_parse(msg, cmsgs);
1625 	if (err) {
1626 		pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1627 		return err;
1628 	}
1629 
1630 	memset(srinfo, 0, sizeof(*srinfo));
1631 	if (cmsgs->srinfo) {
1632 		srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream;
1633 		srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags;
1634 		srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid;
1635 		srinfo->sinfo_context = cmsgs->srinfo->sinfo_context;
1636 		srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id;
1637 		srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive;
1638 	}
1639 
1640 	if (cmsgs->sinfo) {
1641 		srinfo->sinfo_stream = cmsgs->sinfo->snd_sid;
1642 		srinfo->sinfo_flags = cmsgs->sinfo->snd_flags;
1643 		srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid;
1644 		srinfo->sinfo_context = cmsgs->sinfo->snd_context;
1645 		srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id;
1646 	}
1647 
1648 	if (cmsgs->prinfo) {
1649 		srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value;
1650 		SCTP_PR_SET_POLICY(srinfo->sinfo_flags,
1651 				   cmsgs->prinfo->pr_policy);
1652 	}
1653 
1654 	sflags = srinfo->sinfo_flags;
1655 	if (!sflags && msg_len)
1656 		return 0;
1657 
1658 	if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT)))
1659 		return -EINVAL;
1660 
1661 	if (((sflags & SCTP_EOF) && msg_len > 0) ||
1662 	    (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0))
1663 		return -EINVAL;
1664 
1665 	if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name)
1666 		return -EINVAL;
1667 
1668 	return 0;
1669 }
1670 
1671 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags,
1672 				 struct sctp_cmsgs *cmsgs,
1673 				 union sctp_addr *daddr,
1674 				 struct sctp_transport **tp)
1675 {
1676 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
1677 	struct net *net = sock_net(sk);
1678 	struct sctp_association *asoc;
1679 	enum sctp_scope scope;
1680 	struct cmsghdr *cmsg;
1681 	__be32 flowinfo = 0;
1682 	struct sctp_af *af;
1683 	int err;
1684 
1685 	*tp = NULL;
1686 
1687 	if (sflags & (SCTP_EOF | SCTP_ABORT))
1688 		return -EINVAL;
1689 
1690 	if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) ||
1691 				    sctp_sstate(sk, CLOSING)))
1692 		return -EADDRNOTAVAIL;
1693 
1694 	if (sctp_endpoint_is_peeled_off(ep, daddr))
1695 		return -EADDRNOTAVAIL;
1696 
1697 	if (!ep->base.bind_addr.port) {
1698 		if (sctp_autobind(sk))
1699 			return -EAGAIN;
1700 	} else {
1701 		if (ep->base.bind_addr.port < inet_prot_sock(net) &&
1702 		    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
1703 			return -EACCES;
1704 	}
1705 
1706 	scope = sctp_scope(daddr);
1707 
1708 	/* Label connection socket for first association 1-to-many
1709 	 * style for client sequence socket()->sendmsg(). This
1710 	 * needs to be done before sctp_assoc_add_peer() as that will
1711 	 * set up the initial packet that needs to account for any
1712 	 * security ip options (CIPSO/CALIPSO) added to the packet.
1713 	 */
1714 	af = sctp_get_af_specific(daddr->sa.sa_family);
1715 	if (!af)
1716 		return -EINVAL;
1717 	err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT,
1718 					 (struct sockaddr *)daddr,
1719 					 af->sockaddr_len);
1720 	if (err < 0)
1721 		return err;
1722 
1723 	asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1724 	if (!asoc)
1725 		return -ENOMEM;
1726 
1727 	if (sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL) < 0) {
1728 		err = -ENOMEM;
1729 		goto free;
1730 	}
1731 
1732 	if (cmsgs->init) {
1733 		struct sctp_initmsg *init = cmsgs->init;
1734 
1735 		if (init->sinit_num_ostreams) {
1736 			__u16 outcnt = init->sinit_num_ostreams;
1737 
1738 			asoc->c.sinit_num_ostreams = outcnt;
1739 			/* outcnt has been changed, need to re-init stream */
1740 			err = sctp_stream_init(&asoc->stream, outcnt, 0,
1741 					       GFP_KERNEL);
1742 			if (err)
1743 				goto free;
1744 		}
1745 
1746 		if (init->sinit_max_instreams)
1747 			asoc->c.sinit_max_instreams = init->sinit_max_instreams;
1748 
1749 		if (init->sinit_max_attempts)
1750 			asoc->max_init_attempts = init->sinit_max_attempts;
1751 
1752 		if (init->sinit_max_init_timeo)
1753 			asoc->max_init_timeo =
1754 				msecs_to_jiffies(init->sinit_max_init_timeo);
1755 	}
1756 
1757 	*tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
1758 	if (!*tp) {
1759 		err = -ENOMEM;
1760 		goto free;
1761 	}
1762 
1763 	if (!cmsgs->addrs_msg)
1764 		return 0;
1765 
1766 	if (daddr->sa.sa_family == AF_INET6)
1767 		flowinfo = daddr->v6.sin6_flowinfo;
1768 
1769 	/* sendv addr list parse */
1770 	for_each_cmsghdr(cmsg, cmsgs->addrs_msg) {
1771 		struct sctp_transport *transport;
1772 		struct sctp_association *old;
1773 		union sctp_addr _daddr;
1774 		int dlen;
1775 
1776 		if (cmsg->cmsg_level != IPPROTO_SCTP ||
1777 		    (cmsg->cmsg_type != SCTP_DSTADDRV4 &&
1778 		     cmsg->cmsg_type != SCTP_DSTADDRV6))
1779 			continue;
1780 
1781 		daddr = &_daddr;
1782 		memset(daddr, 0, sizeof(*daddr));
1783 		dlen = cmsg->cmsg_len - sizeof(struct cmsghdr);
1784 		if (cmsg->cmsg_type == SCTP_DSTADDRV4) {
1785 			if (dlen < sizeof(struct in_addr)) {
1786 				err = -EINVAL;
1787 				goto free;
1788 			}
1789 
1790 			dlen = sizeof(struct in_addr);
1791 			daddr->v4.sin_family = AF_INET;
1792 			daddr->v4.sin_port = htons(asoc->peer.port);
1793 			memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen);
1794 		} else {
1795 			if (dlen < sizeof(struct in6_addr)) {
1796 				err = -EINVAL;
1797 				goto free;
1798 			}
1799 
1800 			dlen = sizeof(struct in6_addr);
1801 			daddr->v6.sin6_flowinfo = flowinfo;
1802 			daddr->v6.sin6_family = AF_INET6;
1803 			daddr->v6.sin6_port = htons(asoc->peer.port);
1804 			memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen);
1805 		}
1806 		err = sctp_verify_addr(sk, daddr, sizeof(*daddr));
1807 		if (err)
1808 			goto free;
1809 
1810 		old = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
1811 		if (old && old != asoc) {
1812 			if (old->state >= SCTP_STATE_ESTABLISHED)
1813 				err = -EISCONN;
1814 			else
1815 				err = -EALREADY;
1816 			goto free;
1817 		}
1818 
1819 		if (sctp_endpoint_is_peeled_off(ep, daddr)) {
1820 			err = -EADDRNOTAVAIL;
1821 			goto free;
1822 		}
1823 
1824 		transport = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL,
1825 						SCTP_UNKNOWN);
1826 		if (!transport) {
1827 			err = -ENOMEM;
1828 			goto free;
1829 		}
1830 	}
1831 
1832 	return 0;
1833 
1834 free:
1835 	sctp_association_free(asoc);
1836 	return err;
1837 }
1838 
1839 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc,
1840 				     __u16 sflags, struct msghdr *msg,
1841 				     size_t msg_len)
1842 {
1843 	struct sock *sk = asoc->base.sk;
1844 	struct net *net = sock_net(sk);
1845 
1846 	if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP))
1847 		return -EPIPE;
1848 
1849 	if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) &&
1850 	    !sctp_state(asoc, ESTABLISHED))
1851 		return 0;
1852 
1853 	if (sflags & SCTP_EOF) {
1854 		pr_debug("%s: shutting down association:%p\n", __func__, asoc);
1855 		sctp_primitive_SHUTDOWN(net, asoc, NULL);
1856 
1857 		return 0;
1858 	}
1859 
1860 	if (sflags & SCTP_ABORT) {
1861 		struct sctp_chunk *chunk;
1862 
1863 		chunk = sctp_make_abort_user(asoc, msg, msg_len);
1864 		if (!chunk)
1865 			return -ENOMEM;
1866 
1867 		pr_debug("%s: aborting association:%p\n", __func__, asoc);
1868 		sctp_primitive_ABORT(net, asoc, chunk);
1869 
1870 		return 0;
1871 	}
1872 
1873 	return 1;
1874 }
1875 
1876 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc,
1877 				struct msghdr *msg, size_t msg_len,
1878 				struct sctp_transport *transport,
1879 				struct sctp_sndrcvinfo *sinfo)
1880 {
1881 	struct sock *sk = asoc->base.sk;
1882 	struct sctp_sock *sp = sctp_sk(sk);
1883 	struct net *net = sock_net(sk);
1884 	struct sctp_datamsg *datamsg;
1885 	bool wait_connect = false;
1886 	struct sctp_chunk *chunk;
1887 	long timeo;
1888 	int err;
1889 
1890 	if (sinfo->sinfo_stream >= asoc->stream.outcnt) {
1891 		err = -EINVAL;
1892 		goto err;
1893 	}
1894 
1895 	if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) {
1896 		err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream);
1897 		if (err)
1898 			goto err;
1899 	}
1900 
1901 	if (sp->disable_fragments && msg_len > asoc->frag_point) {
1902 		err = -EMSGSIZE;
1903 		goto err;
1904 	}
1905 
1906 	if (asoc->pmtu_pending) {
1907 		if (sp->param_flags & SPP_PMTUD_ENABLE)
1908 			sctp_assoc_sync_pmtu(asoc);
1909 		asoc->pmtu_pending = 0;
1910 	}
1911 
1912 	if (sctp_wspace(asoc) < (int)msg_len)
1913 		sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc));
1914 
1915 	if (sctp_wspace(asoc) <= 0) {
1916 		timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1917 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1918 		if (err)
1919 			goto err;
1920 	}
1921 
1922 	if (sctp_state(asoc, CLOSED)) {
1923 		err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1924 		if (err)
1925 			goto err;
1926 
1927 		if (sp->strm_interleave) {
1928 			timeo = sock_sndtimeo(sk, 0);
1929 			err = sctp_wait_for_connect(asoc, &timeo);
1930 			if (err) {
1931 				err = -ESRCH;
1932 				goto err;
1933 			}
1934 		} else {
1935 			wait_connect = true;
1936 		}
1937 
1938 		pr_debug("%s: we associated primitively\n", __func__);
1939 	}
1940 
1941 	datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
1942 	if (IS_ERR(datamsg)) {
1943 		err = PTR_ERR(datamsg);
1944 		goto err;
1945 	}
1946 
1947 	asoc->force_delay = !!(msg->msg_flags & MSG_MORE);
1948 
1949 	list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1950 		sctp_chunk_hold(chunk);
1951 		sctp_set_owner_w(chunk);
1952 		chunk->transport = transport;
1953 	}
1954 
1955 	err = sctp_primitive_SEND(net, asoc, datamsg);
1956 	if (err) {
1957 		sctp_datamsg_free(datamsg);
1958 		goto err;
1959 	}
1960 
1961 	pr_debug("%s: we sent primitively\n", __func__);
1962 
1963 	sctp_datamsg_put(datamsg);
1964 
1965 	if (unlikely(wait_connect)) {
1966 		timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1967 		sctp_wait_for_connect(asoc, &timeo);
1968 	}
1969 
1970 	err = msg_len;
1971 
1972 err:
1973 	return err;
1974 }
1975 
1976 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk,
1977 					       const struct msghdr *msg,
1978 					       struct sctp_cmsgs *cmsgs)
1979 {
1980 	union sctp_addr *daddr = NULL;
1981 	int err;
1982 
1983 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1984 		int len = msg->msg_namelen;
1985 
1986 		if (len > sizeof(*daddr))
1987 			len = sizeof(*daddr);
1988 
1989 		daddr = (union sctp_addr *)msg->msg_name;
1990 
1991 		err = sctp_verify_addr(sk, daddr, len);
1992 		if (err)
1993 			return ERR_PTR(err);
1994 	}
1995 
1996 	return daddr;
1997 }
1998 
1999 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc,
2000 				      struct sctp_sndrcvinfo *sinfo,
2001 				      struct sctp_cmsgs *cmsgs)
2002 {
2003 	if (!cmsgs->srinfo && !cmsgs->sinfo) {
2004 		sinfo->sinfo_stream = asoc->default_stream;
2005 		sinfo->sinfo_ppid = asoc->default_ppid;
2006 		sinfo->sinfo_context = asoc->default_context;
2007 		sinfo->sinfo_assoc_id = sctp_assoc2id(asoc);
2008 
2009 		if (!cmsgs->prinfo)
2010 			sinfo->sinfo_flags = asoc->default_flags;
2011 	}
2012 
2013 	if (!cmsgs->srinfo && !cmsgs->prinfo)
2014 		sinfo->sinfo_timetolive = asoc->default_timetolive;
2015 
2016 	if (cmsgs->authinfo) {
2017 		/* Reuse sinfo_tsn to indicate that authinfo was set and
2018 		 * sinfo_ssn to save the keyid on tx path.
2019 		 */
2020 		sinfo->sinfo_tsn = 1;
2021 		sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber;
2022 	}
2023 }
2024 
2025 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
2026 {
2027 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
2028 	struct sctp_transport *transport = NULL;
2029 	struct sctp_sndrcvinfo _sinfo, *sinfo;
2030 	struct sctp_association *asoc;
2031 	struct sctp_cmsgs cmsgs;
2032 	union sctp_addr *daddr;
2033 	bool new = false;
2034 	__u16 sflags;
2035 	int err;
2036 
2037 	/* Parse and get snd_info */
2038 	err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len);
2039 	if (err)
2040 		goto out;
2041 
2042 	sinfo  = &_sinfo;
2043 	sflags = sinfo->sinfo_flags;
2044 
2045 	/* Get daddr from msg */
2046 	daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs);
2047 	if (IS_ERR(daddr)) {
2048 		err = PTR_ERR(daddr);
2049 		goto out;
2050 	}
2051 
2052 	lock_sock(sk);
2053 
2054 	/* SCTP_SENDALL process */
2055 	if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) {
2056 		list_for_each_entry(asoc, &ep->asocs, asocs) {
2057 			err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
2058 							msg_len);
2059 			if (err == 0)
2060 				continue;
2061 			if (err < 0)
2062 				goto out_unlock;
2063 
2064 			sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
2065 
2066 			err = sctp_sendmsg_to_asoc(asoc, msg, msg_len,
2067 						   NULL, sinfo);
2068 			if (err < 0)
2069 				goto out_unlock;
2070 
2071 			iov_iter_revert(&msg->msg_iter, err);
2072 		}
2073 
2074 		goto out_unlock;
2075 	}
2076 
2077 	/* Get and check or create asoc */
2078 	if (daddr) {
2079 		asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
2080 		if (asoc) {
2081 			err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
2082 							msg_len);
2083 			if (err <= 0)
2084 				goto out_unlock;
2085 		} else {
2086 			err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr,
2087 						    &transport);
2088 			if (err)
2089 				goto out_unlock;
2090 
2091 			asoc = transport->asoc;
2092 			new = true;
2093 		}
2094 
2095 		if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER))
2096 			transport = NULL;
2097 	} else {
2098 		asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id);
2099 		if (!asoc) {
2100 			err = -EPIPE;
2101 			goto out_unlock;
2102 		}
2103 
2104 		err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len);
2105 		if (err <= 0)
2106 			goto out_unlock;
2107 	}
2108 
2109 	/* Update snd_info with the asoc */
2110 	sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
2111 
2112 	/* Send msg to the asoc */
2113 	err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo);
2114 	if (err < 0 && err != -ESRCH && new)
2115 		sctp_association_free(asoc);
2116 
2117 out_unlock:
2118 	release_sock(sk);
2119 out:
2120 	return sctp_error(sk, msg->msg_flags, err);
2121 }
2122 
2123 /* This is an extended version of skb_pull() that removes the data from the
2124  * start of a skb even when data is spread across the list of skb's in the
2125  * frag_list. len specifies the total amount of data that needs to be removed.
2126  * when 'len' bytes could be removed from the skb, it returns 0.
2127  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
2128  * could not be removed.
2129  */
2130 static int sctp_skb_pull(struct sk_buff *skb, int len)
2131 {
2132 	struct sk_buff *list;
2133 	int skb_len = skb_headlen(skb);
2134 	int rlen;
2135 
2136 	if (len <= skb_len) {
2137 		__skb_pull(skb, len);
2138 		return 0;
2139 	}
2140 	len -= skb_len;
2141 	__skb_pull(skb, skb_len);
2142 
2143 	skb_walk_frags(skb, list) {
2144 		rlen = sctp_skb_pull(list, len);
2145 		skb->len -= (len-rlen);
2146 		skb->data_len -= (len-rlen);
2147 
2148 		if (!rlen)
2149 			return 0;
2150 
2151 		len = rlen;
2152 	}
2153 
2154 	return len;
2155 }
2156 
2157 /* API 3.1.3  recvmsg() - UDP Style Syntax
2158  *
2159  *  ssize_t recvmsg(int socket, struct msghdr *message,
2160  *                    int flags);
2161  *
2162  *  socket  - the socket descriptor of the endpoint.
2163  *  message - pointer to the msghdr structure which contains a single
2164  *            user message and possibly some ancillary data.
2165  *
2166  *            See Section 5 for complete description of the data
2167  *            structures.
2168  *
2169  *  flags   - flags sent or received with the user message, see Section
2170  *            5 for complete description of the flags.
2171  */
2172 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2173 			int noblock, int flags, int *addr_len)
2174 {
2175 	struct sctp_ulpevent *event = NULL;
2176 	struct sctp_sock *sp = sctp_sk(sk);
2177 	struct sk_buff *skb, *head_skb;
2178 	int copied;
2179 	int err = 0;
2180 	int skb_len;
2181 
2182 	pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2183 		 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2184 		 addr_len);
2185 
2186 	lock_sock(sk);
2187 
2188 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) &&
2189 	    !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) {
2190 		err = -ENOTCONN;
2191 		goto out;
2192 	}
2193 
2194 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2195 	if (!skb)
2196 		goto out;
2197 
2198 	/* Get the total length of the skb including any skb's in the
2199 	 * frag_list.
2200 	 */
2201 	skb_len = skb->len;
2202 
2203 	copied = skb_len;
2204 	if (copied > len)
2205 		copied = len;
2206 
2207 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
2208 
2209 	event = sctp_skb2event(skb);
2210 
2211 	if (err)
2212 		goto out_free;
2213 
2214 	if (event->chunk && event->chunk->head_skb)
2215 		head_skb = event->chunk->head_skb;
2216 	else
2217 		head_skb = skb;
2218 	sock_recv_ts_and_drops(msg, sk, head_skb);
2219 	if (sctp_ulpevent_is_notification(event)) {
2220 		msg->msg_flags |= MSG_NOTIFICATION;
2221 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
2222 	} else {
2223 		sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len);
2224 	}
2225 
2226 	/* Check if we allow SCTP_NXTINFO. */
2227 	if (sp->recvnxtinfo)
2228 		sctp_ulpevent_read_nxtinfo(event, msg, sk);
2229 	/* Check if we allow SCTP_RCVINFO. */
2230 	if (sp->recvrcvinfo)
2231 		sctp_ulpevent_read_rcvinfo(event, msg);
2232 	/* Check if we allow SCTP_SNDRCVINFO. */
2233 	if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT))
2234 		sctp_ulpevent_read_sndrcvinfo(event, msg);
2235 
2236 	err = copied;
2237 
2238 	/* If skb's length exceeds the user's buffer, update the skb and
2239 	 * push it back to the receive_queue so that the next call to
2240 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2241 	 */
2242 	if (skb_len > copied) {
2243 		msg->msg_flags &= ~MSG_EOR;
2244 		if (flags & MSG_PEEK)
2245 			goto out_free;
2246 		sctp_skb_pull(skb, copied);
2247 		skb_queue_head(&sk->sk_receive_queue, skb);
2248 
2249 		/* When only partial message is copied to the user, increase
2250 		 * rwnd by that amount. If all the data in the skb is read,
2251 		 * rwnd is updated when the event is freed.
2252 		 */
2253 		if (!sctp_ulpevent_is_notification(event))
2254 			sctp_assoc_rwnd_increase(event->asoc, copied);
2255 		goto out;
2256 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
2257 		   (event->msg_flags & MSG_EOR))
2258 		msg->msg_flags |= MSG_EOR;
2259 	else
2260 		msg->msg_flags &= ~MSG_EOR;
2261 
2262 out_free:
2263 	if (flags & MSG_PEEK) {
2264 		/* Release the skb reference acquired after peeking the skb in
2265 		 * sctp_skb_recv_datagram().
2266 		 */
2267 		kfree_skb(skb);
2268 	} else {
2269 		/* Free the event which includes releasing the reference to
2270 		 * the owner of the skb, freeing the skb and updating the
2271 		 * rwnd.
2272 		 */
2273 		sctp_ulpevent_free(event);
2274 	}
2275 out:
2276 	release_sock(sk);
2277 	return err;
2278 }
2279 
2280 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2281  *
2282  * This option is a on/off flag.  If enabled no SCTP message
2283  * fragmentation will be performed.  Instead if a message being sent
2284  * exceeds the current PMTU size, the message will NOT be sent and
2285  * instead a error will be indicated to the user.
2286  */
2287 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2288 					     char __user *optval,
2289 					     unsigned int optlen)
2290 {
2291 	int val;
2292 
2293 	if (optlen < sizeof(int))
2294 		return -EINVAL;
2295 
2296 	if (get_user(val, (int __user *)optval))
2297 		return -EFAULT;
2298 
2299 	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2300 
2301 	return 0;
2302 }
2303 
2304 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2305 				  unsigned int optlen)
2306 {
2307 	struct sctp_event_subscribe subscribe;
2308 	__u8 *sn_type = (__u8 *)&subscribe;
2309 	struct sctp_sock *sp = sctp_sk(sk);
2310 	struct sctp_association *asoc;
2311 	int i;
2312 
2313 	if (optlen > sizeof(struct sctp_event_subscribe))
2314 		return -EINVAL;
2315 
2316 	if (copy_from_user(&subscribe, optval, optlen))
2317 		return -EFAULT;
2318 
2319 	for (i = 0; i < optlen; i++)
2320 		sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i,
2321 				       sn_type[i]);
2322 
2323 	list_for_each_entry(asoc, &sp->ep->asocs, asocs)
2324 		asoc->subscribe = sctp_sk(sk)->subscribe;
2325 
2326 	/* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2327 	 * if there is no data to be sent or retransmit, the stack will
2328 	 * immediately send up this notification.
2329 	 */
2330 	if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) {
2331 		struct sctp_ulpevent *event;
2332 
2333 		asoc = sctp_id2assoc(sk, 0);
2334 		if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2335 			event = sctp_ulpevent_make_sender_dry_event(asoc,
2336 					GFP_USER | __GFP_NOWARN);
2337 			if (!event)
2338 				return -ENOMEM;
2339 
2340 			asoc->stream.si->enqueue_event(&asoc->ulpq, event);
2341 		}
2342 	}
2343 
2344 	return 0;
2345 }
2346 
2347 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2348  *
2349  * This socket option is applicable to the UDP-style socket only.  When
2350  * set it will cause associations that are idle for more than the
2351  * specified number of seconds to automatically close.  An association
2352  * being idle is defined an association that has NOT sent or received
2353  * user data.  The special value of '0' indicates that no automatic
2354  * close of any associations should be performed.  The option expects an
2355  * integer defining the number of seconds of idle time before an
2356  * association is closed.
2357  */
2358 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2359 				     unsigned int optlen)
2360 {
2361 	struct sctp_sock *sp = sctp_sk(sk);
2362 	struct net *net = sock_net(sk);
2363 
2364 	/* Applicable to UDP-style socket only */
2365 	if (sctp_style(sk, TCP))
2366 		return -EOPNOTSUPP;
2367 	if (optlen != sizeof(int))
2368 		return -EINVAL;
2369 	if (copy_from_user(&sp->autoclose, optval, optlen))
2370 		return -EFAULT;
2371 
2372 	if (sp->autoclose > net->sctp.max_autoclose)
2373 		sp->autoclose = net->sctp.max_autoclose;
2374 
2375 	return 0;
2376 }
2377 
2378 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2379  *
2380  * Applications can enable or disable heartbeats for any peer address of
2381  * an association, modify an address's heartbeat interval, force a
2382  * heartbeat to be sent immediately, and adjust the address's maximum
2383  * number of retransmissions sent before an address is considered
2384  * unreachable.  The following structure is used to access and modify an
2385  * address's parameters:
2386  *
2387  *  struct sctp_paddrparams {
2388  *     sctp_assoc_t            spp_assoc_id;
2389  *     struct sockaddr_storage spp_address;
2390  *     uint32_t                spp_hbinterval;
2391  *     uint16_t                spp_pathmaxrxt;
2392  *     uint32_t                spp_pathmtu;
2393  *     uint32_t                spp_sackdelay;
2394  *     uint32_t                spp_flags;
2395  *     uint32_t                spp_ipv6_flowlabel;
2396  *     uint8_t                 spp_dscp;
2397  * };
2398  *
2399  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
2400  *                     application, and identifies the association for
2401  *                     this query.
2402  *   spp_address     - This specifies which address is of interest.
2403  *   spp_hbinterval  - This contains the value of the heartbeat interval,
2404  *                     in milliseconds.  If a  value of zero
2405  *                     is present in this field then no changes are to
2406  *                     be made to this parameter.
2407  *   spp_pathmaxrxt  - This contains the maximum number of
2408  *                     retransmissions before this address shall be
2409  *                     considered unreachable. If a  value of zero
2410  *                     is present in this field then no changes are to
2411  *                     be made to this parameter.
2412  *   spp_pathmtu     - When Path MTU discovery is disabled the value
2413  *                     specified here will be the "fixed" path mtu.
2414  *                     Note that if the spp_address field is empty
2415  *                     then all associations on this address will
2416  *                     have this fixed path mtu set upon them.
2417  *
2418  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2419  *                     the number of milliseconds that sacks will be delayed
2420  *                     for. This value will apply to all addresses of an
2421  *                     association if the spp_address field is empty. Note
2422  *                     also, that if delayed sack is enabled and this
2423  *                     value is set to 0, no change is made to the last
2424  *                     recorded delayed sack timer value.
2425  *
2426  *   spp_flags       - These flags are used to control various features
2427  *                     on an association. The flag field may contain
2428  *                     zero or more of the following options.
2429  *
2430  *                     SPP_HB_ENABLE  - Enable heartbeats on the
2431  *                     specified address. Note that if the address
2432  *                     field is empty all addresses for the association
2433  *                     have heartbeats enabled upon them.
2434  *
2435  *                     SPP_HB_DISABLE - Disable heartbeats on the
2436  *                     speicifed address. Note that if the address
2437  *                     field is empty all addresses for the association
2438  *                     will have their heartbeats disabled. Note also
2439  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2440  *                     mutually exclusive, only one of these two should
2441  *                     be specified. Enabling both fields will have
2442  *                     undetermined results.
2443  *
2444  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2445  *                     to be made immediately.
2446  *
2447  *                     SPP_HB_TIME_IS_ZERO - Specify's that the time for
2448  *                     heartbeat delayis to be set to the value of 0
2449  *                     milliseconds.
2450  *
2451  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2452  *                     discovery upon the specified address. Note that
2453  *                     if the address feild is empty then all addresses
2454  *                     on the association are effected.
2455  *
2456  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2457  *                     discovery upon the specified address. Note that
2458  *                     if the address feild is empty then all addresses
2459  *                     on the association are effected. Not also that
2460  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2461  *                     exclusive. Enabling both will have undetermined
2462  *                     results.
2463  *
2464  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2465  *                     on delayed sack. The time specified in spp_sackdelay
2466  *                     is used to specify the sack delay for this address. Note
2467  *                     that if spp_address is empty then all addresses will
2468  *                     enable delayed sack and take on the sack delay
2469  *                     value specified in spp_sackdelay.
2470  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2471  *                     off delayed sack. If the spp_address field is blank then
2472  *                     delayed sack is disabled for the entire association. Note
2473  *                     also that this field is mutually exclusive to
2474  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2475  *                     results.
2476  *
2477  *                     SPP_IPV6_FLOWLABEL:  Setting this flag enables the
2478  *                     setting of the IPV6 flow label value.  The value is
2479  *                     contained in the spp_ipv6_flowlabel field.
2480  *                     Upon retrieval, this flag will be set to indicate that
2481  *                     the spp_ipv6_flowlabel field has a valid value returned.
2482  *                     If a specific destination address is set (in the
2483  *                     spp_address field), then the value returned is that of
2484  *                     the address.  If just an association is specified (and
2485  *                     no address), then the association's default flow label
2486  *                     is returned.  If neither an association nor a destination
2487  *                     is specified, then the socket's default flow label is
2488  *                     returned.  For non-IPv6 sockets, this flag will be left
2489  *                     cleared.
2490  *
2491  *                     SPP_DSCP:  Setting this flag enables the setting of the
2492  *                     Differentiated Services Code Point (DSCP) value
2493  *                     associated with either the association or a specific
2494  *                     address.  The value is obtained in the spp_dscp field.
2495  *                     Upon retrieval, this flag will be set to indicate that
2496  *                     the spp_dscp field has a valid value returned.  If a
2497  *                     specific destination address is set when called (in the
2498  *                     spp_address field), then that specific destination
2499  *                     address's DSCP value is returned.  If just an association
2500  *                     is specified, then the association's default DSCP is
2501  *                     returned.  If neither an association nor a destination is
2502  *                     specified, then the socket's default DSCP is returned.
2503  *
2504  *   spp_ipv6_flowlabel
2505  *                   - This field is used in conjunction with the
2506  *                     SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
2507  *                     The 20 least significant bits are used for the flow
2508  *                     label.  This setting has precedence over any IPv6-layer
2509  *                     setting.
2510  *
2511  *   spp_dscp        - This field is used in conjunction with the SPP_DSCP flag
2512  *                     and contains the DSCP.  The 6 most significant bits are
2513  *                     used for the DSCP.  This setting has precedence over any
2514  *                     IPv4- or IPv6- layer setting.
2515  */
2516 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2517 				       struct sctp_transport   *trans,
2518 				       struct sctp_association *asoc,
2519 				       struct sctp_sock        *sp,
2520 				       int                      hb_change,
2521 				       int                      pmtud_change,
2522 				       int                      sackdelay_change)
2523 {
2524 	int error;
2525 
2526 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2527 		struct net *net = sock_net(trans->asoc->base.sk);
2528 
2529 		error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
2530 		if (error)
2531 			return error;
2532 	}
2533 
2534 	/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2535 	 * this field is ignored.  Note also that a value of zero indicates
2536 	 * the current setting should be left unchanged.
2537 	 */
2538 	if (params->spp_flags & SPP_HB_ENABLE) {
2539 
2540 		/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2541 		 * set.  This lets us use 0 value when this flag
2542 		 * is set.
2543 		 */
2544 		if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2545 			params->spp_hbinterval = 0;
2546 
2547 		if (params->spp_hbinterval ||
2548 		    (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2549 			if (trans) {
2550 				trans->hbinterval =
2551 				    msecs_to_jiffies(params->spp_hbinterval);
2552 			} else if (asoc) {
2553 				asoc->hbinterval =
2554 				    msecs_to_jiffies(params->spp_hbinterval);
2555 			} else {
2556 				sp->hbinterval = params->spp_hbinterval;
2557 			}
2558 		}
2559 	}
2560 
2561 	if (hb_change) {
2562 		if (trans) {
2563 			trans->param_flags =
2564 				(trans->param_flags & ~SPP_HB) | hb_change;
2565 		} else if (asoc) {
2566 			asoc->param_flags =
2567 				(asoc->param_flags & ~SPP_HB) | hb_change;
2568 		} else {
2569 			sp->param_flags =
2570 				(sp->param_flags & ~SPP_HB) | hb_change;
2571 		}
2572 	}
2573 
2574 	/* When Path MTU discovery is disabled the value specified here will
2575 	 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2576 	 * include the flag SPP_PMTUD_DISABLE for this field to have any
2577 	 * effect).
2578 	 */
2579 	if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2580 		if (trans) {
2581 			trans->pathmtu = params->spp_pathmtu;
2582 			sctp_assoc_sync_pmtu(asoc);
2583 		} else if (asoc) {
2584 			sctp_assoc_set_pmtu(asoc, params->spp_pathmtu);
2585 		} else {
2586 			sp->pathmtu = params->spp_pathmtu;
2587 		}
2588 	}
2589 
2590 	if (pmtud_change) {
2591 		if (trans) {
2592 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2593 				(params->spp_flags & SPP_PMTUD_ENABLE);
2594 			trans->param_flags =
2595 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2596 			if (update) {
2597 				sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2598 				sctp_assoc_sync_pmtu(asoc);
2599 			}
2600 		} else if (asoc) {
2601 			asoc->param_flags =
2602 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2603 		} else {
2604 			sp->param_flags =
2605 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2606 		}
2607 	}
2608 
2609 	/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2610 	 * value of this field is ignored.  Note also that a value of zero
2611 	 * indicates the current setting should be left unchanged.
2612 	 */
2613 	if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2614 		if (trans) {
2615 			trans->sackdelay =
2616 				msecs_to_jiffies(params->spp_sackdelay);
2617 		} else if (asoc) {
2618 			asoc->sackdelay =
2619 				msecs_to_jiffies(params->spp_sackdelay);
2620 		} else {
2621 			sp->sackdelay = params->spp_sackdelay;
2622 		}
2623 	}
2624 
2625 	if (sackdelay_change) {
2626 		if (trans) {
2627 			trans->param_flags =
2628 				(trans->param_flags & ~SPP_SACKDELAY) |
2629 				sackdelay_change;
2630 		} else if (asoc) {
2631 			asoc->param_flags =
2632 				(asoc->param_flags & ~SPP_SACKDELAY) |
2633 				sackdelay_change;
2634 		} else {
2635 			sp->param_flags =
2636 				(sp->param_flags & ~SPP_SACKDELAY) |
2637 				sackdelay_change;
2638 		}
2639 	}
2640 
2641 	/* Note that a value of zero indicates the current setting should be
2642 	   left unchanged.
2643 	 */
2644 	if (params->spp_pathmaxrxt) {
2645 		if (trans) {
2646 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2647 		} else if (asoc) {
2648 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2649 		} else {
2650 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2651 		}
2652 	}
2653 
2654 	if (params->spp_flags & SPP_IPV6_FLOWLABEL) {
2655 		if (trans) {
2656 			if (trans->ipaddr.sa.sa_family == AF_INET6) {
2657 				trans->flowlabel = params->spp_ipv6_flowlabel &
2658 						   SCTP_FLOWLABEL_VAL_MASK;
2659 				trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2660 			}
2661 		} else if (asoc) {
2662 			struct sctp_transport *t;
2663 
2664 			list_for_each_entry(t, &asoc->peer.transport_addr_list,
2665 					    transports) {
2666 				if (t->ipaddr.sa.sa_family != AF_INET6)
2667 					continue;
2668 				t->flowlabel = params->spp_ipv6_flowlabel &
2669 					       SCTP_FLOWLABEL_VAL_MASK;
2670 				t->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2671 			}
2672 			asoc->flowlabel = params->spp_ipv6_flowlabel &
2673 					  SCTP_FLOWLABEL_VAL_MASK;
2674 			asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2675 		} else if (sctp_opt2sk(sp)->sk_family == AF_INET6) {
2676 			sp->flowlabel = params->spp_ipv6_flowlabel &
2677 					SCTP_FLOWLABEL_VAL_MASK;
2678 			sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2679 		}
2680 	}
2681 
2682 	if (params->spp_flags & SPP_DSCP) {
2683 		if (trans) {
2684 			trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2685 			trans->dscp |= SCTP_DSCP_SET_MASK;
2686 		} else if (asoc) {
2687 			struct sctp_transport *t;
2688 
2689 			list_for_each_entry(t, &asoc->peer.transport_addr_list,
2690 					    transports) {
2691 				t->dscp = params->spp_dscp &
2692 					  SCTP_DSCP_VAL_MASK;
2693 				t->dscp |= SCTP_DSCP_SET_MASK;
2694 			}
2695 			asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2696 			asoc->dscp |= SCTP_DSCP_SET_MASK;
2697 		} else {
2698 			sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2699 			sp->dscp |= SCTP_DSCP_SET_MASK;
2700 		}
2701 	}
2702 
2703 	return 0;
2704 }
2705 
2706 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2707 					    char __user *optval,
2708 					    unsigned int optlen)
2709 {
2710 	struct sctp_paddrparams  params;
2711 	struct sctp_transport   *trans = NULL;
2712 	struct sctp_association *asoc = NULL;
2713 	struct sctp_sock        *sp = sctp_sk(sk);
2714 	int error;
2715 	int hb_change, pmtud_change, sackdelay_change;
2716 
2717 	if (optlen == sizeof(params)) {
2718 		if (copy_from_user(&params, optval, optlen))
2719 			return -EFAULT;
2720 	} else if (optlen == ALIGN(offsetof(struct sctp_paddrparams,
2721 					    spp_ipv6_flowlabel), 4)) {
2722 		if (copy_from_user(&params, optval, optlen))
2723 			return -EFAULT;
2724 		if (params.spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL))
2725 			return -EINVAL;
2726 	} else {
2727 		return -EINVAL;
2728 	}
2729 
2730 	/* Validate flags and value parameters. */
2731 	hb_change        = params.spp_flags & SPP_HB;
2732 	pmtud_change     = params.spp_flags & SPP_PMTUD;
2733 	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2734 
2735 	if (hb_change        == SPP_HB ||
2736 	    pmtud_change     == SPP_PMTUD ||
2737 	    sackdelay_change == SPP_SACKDELAY ||
2738 	    params.spp_sackdelay > 500 ||
2739 	    (params.spp_pathmtu &&
2740 	     params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2741 		return -EINVAL;
2742 
2743 	/* If an address other than INADDR_ANY is specified, and
2744 	 * no transport is found, then the request is invalid.
2745 	 */
2746 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
2747 		trans = sctp_addr_id2transport(sk, &params.spp_address,
2748 					       params.spp_assoc_id);
2749 		if (!trans)
2750 			return -EINVAL;
2751 	}
2752 
2753 	/* Get association, if assoc_id != 0 and the socket is a one
2754 	 * to many style socket, and an association was not found, then
2755 	 * the id was invalid.
2756 	 */
2757 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2758 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2759 		return -EINVAL;
2760 
2761 	/* Heartbeat demand can only be sent on a transport or
2762 	 * association, but not a socket.
2763 	 */
2764 	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2765 		return -EINVAL;
2766 
2767 	/* Process parameters. */
2768 	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2769 					    hb_change, pmtud_change,
2770 					    sackdelay_change);
2771 
2772 	if (error)
2773 		return error;
2774 
2775 	/* If changes are for association, also apply parameters to each
2776 	 * transport.
2777 	 */
2778 	if (!trans && asoc) {
2779 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2780 				transports) {
2781 			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2782 						    hb_change, pmtud_change,
2783 						    sackdelay_change);
2784 		}
2785 	}
2786 
2787 	return 0;
2788 }
2789 
2790 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2791 {
2792 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2793 }
2794 
2795 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2796 {
2797 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2798 }
2799 
2800 /*
2801  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
2802  *
2803  * This option will effect the way delayed acks are performed.  This
2804  * option allows you to get or set the delayed ack time, in
2805  * milliseconds.  It also allows changing the delayed ack frequency.
2806  * Changing the frequency to 1 disables the delayed sack algorithm.  If
2807  * the assoc_id is 0, then this sets or gets the endpoints default
2808  * values.  If the assoc_id field is non-zero, then the set or get
2809  * effects the specified association for the one to many model (the
2810  * assoc_id field is ignored by the one to one model).  Note that if
2811  * sack_delay or sack_freq are 0 when setting this option, then the
2812  * current values will remain unchanged.
2813  *
2814  * struct sctp_sack_info {
2815  *     sctp_assoc_t            sack_assoc_id;
2816  *     uint32_t                sack_delay;
2817  *     uint32_t                sack_freq;
2818  * };
2819  *
2820  * sack_assoc_id -  This parameter, indicates which association the user
2821  *    is performing an action upon.  Note that if this field's value is
2822  *    zero then the endpoints default value is changed (effecting future
2823  *    associations only).
2824  *
2825  * sack_delay -  This parameter contains the number of milliseconds that
2826  *    the user is requesting the delayed ACK timer be set to.  Note that
2827  *    this value is defined in the standard to be between 200 and 500
2828  *    milliseconds.
2829  *
2830  * sack_freq -  This parameter contains the number of packets that must
2831  *    be received before a sack is sent without waiting for the delay
2832  *    timer to expire.  The default value for this is 2, setting this
2833  *    value to 1 will disable the delayed sack algorithm.
2834  */
2835 
2836 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2837 				       char __user *optval, unsigned int optlen)
2838 {
2839 	struct sctp_sack_info    params;
2840 	struct sctp_transport   *trans = NULL;
2841 	struct sctp_association *asoc = NULL;
2842 	struct sctp_sock        *sp = sctp_sk(sk);
2843 
2844 	if (optlen == sizeof(struct sctp_sack_info)) {
2845 		if (copy_from_user(&params, optval, optlen))
2846 			return -EFAULT;
2847 
2848 		if (params.sack_delay == 0 && params.sack_freq == 0)
2849 			return 0;
2850 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2851 		pr_warn_ratelimited(DEPRECATED
2852 				    "%s (pid %d) "
2853 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2854 				    "Use struct sctp_sack_info instead\n",
2855 				    current->comm, task_pid_nr(current));
2856 		if (copy_from_user(&params, optval, optlen))
2857 			return -EFAULT;
2858 
2859 		if (params.sack_delay == 0)
2860 			params.sack_freq = 1;
2861 		else
2862 			params.sack_freq = 0;
2863 	} else
2864 		return -EINVAL;
2865 
2866 	/* Validate value parameter. */
2867 	if (params.sack_delay > 500)
2868 		return -EINVAL;
2869 
2870 	/* Get association, if sack_assoc_id != 0 and the socket is a one
2871 	 * to many style socket, and an association was not found, then
2872 	 * the id was invalid.
2873 	 */
2874 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2875 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2876 		return -EINVAL;
2877 
2878 	if (params.sack_delay) {
2879 		if (asoc) {
2880 			asoc->sackdelay =
2881 				msecs_to_jiffies(params.sack_delay);
2882 			asoc->param_flags =
2883 				sctp_spp_sackdelay_enable(asoc->param_flags);
2884 		} else {
2885 			sp->sackdelay = params.sack_delay;
2886 			sp->param_flags =
2887 				sctp_spp_sackdelay_enable(sp->param_flags);
2888 		}
2889 	}
2890 
2891 	if (params.sack_freq == 1) {
2892 		if (asoc) {
2893 			asoc->param_flags =
2894 				sctp_spp_sackdelay_disable(asoc->param_flags);
2895 		} else {
2896 			sp->param_flags =
2897 				sctp_spp_sackdelay_disable(sp->param_flags);
2898 		}
2899 	} else if (params.sack_freq > 1) {
2900 		if (asoc) {
2901 			asoc->sackfreq = params.sack_freq;
2902 			asoc->param_flags =
2903 				sctp_spp_sackdelay_enable(asoc->param_flags);
2904 		} else {
2905 			sp->sackfreq = params.sack_freq;
2906 			sp->param_flags =
2907 				sctp_spp_sackdelay_enable(sp->param_flags);
2908 		}
2909 	}
2910 
2911 	/* If change is for association, also apply to each transport. */
2912 	if (asoc) {
2913 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2914 				transports) {
2915 			if (params.sack_delay) {
2916 				trans->sackdelay =
2917 					msecs_to_jiffies(params.sack_delay);
2918 				trans->param_flags =
2919 					sctp_spp_sackdelay_enable(trans->param_flags);
2920 			}
2921 			if (params.sack_freq == 1) {
2922 				trans->param_flags =
2923 					sctp_spp_sackdelay_disable(trans->param_flags);
2924 			} else if (params.sack_freq > 1) {
2925 				trans->sackfreq = params.sack_freq;
2926 				trans->param_flags =
2927 					sctp_spp_sackdelay_enable(trans->param_flags);
2928 			}
2929 		}
2930 	}
2931 
2932 	return 0;
2933 }
2934 
2935 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2936  *
2937  * Applications can specify protocol parameters for the default association
2938  * initialization.  The option name argument to setsockopt() and getsockopt()
2939  * is SCTP_INITMSG.
2940  *
2941  * Setting initialization parameters is effective only on an unconnected
2942  * socket (for UDP-style sockets only future associations are effected
2943  * by the change).  With TCP-style sockets, this option is inherited by
2944  * sockets derived from a listener socket.
2945  */
2946 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2947 {
2948 	struct sctp_initmsg sinit;
2949 	struct sctp_sock *sp = sctp_sk(sk);
2950 
2951 	if (optlen != sizeof(struct sctp_initmsg))
2952 		return -EINVAL;
2953 	if (copy_from_user(&sinit, optval, optlen))
2954 		return -EFAULT;
2955 
2956 	if (sinit.sinit_num_ostreams)
2957 		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2958 	if (sinit.sinit_max_instreams)
2959 		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2960 	if (sinit.sinit_max_attempts)
2961 		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2962 	if (sinit.sinit_max_init_timeo)
2963 		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2964 
2965 	return 0;
2966 }
2967 
2968 /*
2969  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2970  *
2971  *   Applications that wish to use the sendto() system call may wish to
2972  *   specify a default set of parameters that would normally be supplied
2973  *   through the inclusion of ancillary data.  This socket option allows
2974  *   such an application to set the default sctp_sndrcvinfo structure.
2975  *   The application that wishes to use this socket option simply passes
2976  *   in to this call the sctp_sndrcvinfo structure defined in Section
2977  *   5.2.2) The input parameters accepted by this call include
2978  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2979  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2980  *   to this call if the caller is using the UDP model.
2981  */
2982 static int sctp_setsockopt_default_send_param(struct sock *sk,
2983 					      char __user *optval,
2984 					      unsigned int optlen)
2985 {
2986 	struct sctp_sock *sp = sctp_sk(sk);
2987 	struct sctp_association *asoc;
2988 	struct sctp_sndrcvinfo info;
2989 
2990 	if (optlen != sizeof(info))
2991 		return -EINVAL;
2992 	if (copy_from_user(&info, optval, optlen))
2993 		return -EFAULT;
2994 	if (info.sinfo_flags &
2995 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2996 	      SCTP_ABORT | SCTP_EOF))
2997 		return -EINVAL;
2998 
2999 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
3000 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
3001 		return -EINVAL;
3002 	if (asoc) {
3003 		asoc->default_stream = info.sinfo_stream;
3004 		asoc->default_flags = info.sinfo_flags;
3005 		asoc->default_ppid = info.sinfo_ppid;
3006 		asoc->default_context = info.sinfo_context;
3007 		asoc->default_timetolive = info.sinfo_timetolive;
3008 	} else {
3009 		sp->default_stream = info.sinfo_stream;
3010 		sp->default_flags = info.sinfo_flags;
3011 		sp->default_ppid = info.sinfo_ppid;
3012 		sp->default_context = info.sinfo_context;
3013 		sp->default_timetolive = info.sinfo_timetolive;
3014 	}
3015 
3016 	return 0;
3017 }
3018 
3019 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
3020  * (SCTP_DEFAULT_SNDINFO)
3021  */
3022 static int sctp_setsockopt_default_sndinfo(struct sock *sk,
3023 					   char __user *optval,
3024 					   unsigned int optlen)
3025 {
3026 	struct sctp_sock *sp = sctp_sk(sk);
3027 	struct sctp_association *asoc;
3028 	struct sctp_sndinfo info;
3029 
3030 	if (optlen != sizeof(info))
3031 		return -EINVAL;
3032 	if (copy_from_user(&info, optval, optlen))
3033 		return -EFAULT;
3034 	if (info.snd_flags &
3035 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
3036 	      SCTP_ABORT | SCTP_EOF))
3037 		return -EINVAL;
3038 
3039 	asoc = sctp_id2assoc(sk, info.snd_assoc_id);
3040 	if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
3041 		return -EINVAL;
3042 	if (asoc) {
3043 		asoc->default_stream = info.snd_sid;
3044 		asoc->default_flags = info.snd_flags;
3045 		asoc->default_ppid = info.snd_ppid;
3046 		asoc->default_context = info.snd_context;
3047 	} else {
3048 		sp->default_stream = info.snd_sid;
3049 		sp->default_flags = info.snd_flags;
3050 		sp->default_ppid = info.snd_ppid;
3051 		sp->default_context = info.snd_context;
3052 	}
3053 
3054 	return 0;
3055 }
3056 
3057 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
3058  *
3059  * Requests that the local SCTP stack use the enclosed peer address as
3060  * the association primary.  The enclosed address must be one of the
3061  * association peer's addresses.
3062  */
3063 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
3064 					unsigned int optlen)
3065 {
3066 	struct sctp_prim prim;
3067 	struct sctp_transport *trans;
3068 	struct sctp_af *af;
3069 	int err;
3070 
3071 	if (optlen != sizeof(struct sctp_prim))
3072 		return -EINVAL;
3073 
3074 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
3075 		return -EFAULT;
3076 
3077 	/* Allow security module to validate address but need address len. */
3078 	af = sctp_get_af_specific(prim.ssp_addr.ss_family);
3079 	if (!af)
3080 		return -EINVAL;
3081 
3082 	err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR,
3083 					 (struct sockaddr *)&prim.ssp_addr,
3084 					 af->sockaddr_len);
3085 	if (err)
3086 		return err;
3087 
3088 	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
3089 	if (!trans)
3090 		return -EINVAL;
3091 
3092 	sctp_assoc_set_primary(trans->asoc, trans);
3093 
3094 	return 0;
3095 }
3096 
3097 /*
3098  * 7.1.5 SCTP_NODELAY
3099  *
3100  * Turn on/off any Nagle-like algorithm.  This means that packets are
3101  * generally sent as soon as possible and no unnecessary delays are
3102  * introduced, at the cost of more packets in the network.  Expects an
3103  *  integer boolean flag.
3104  */
3105 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
3106 				   unsigned int optlen)
3107 {
3108 	int val;
3109 
3110 	if (optlen < sizeof(int))
3111 		return -EINVAL;
3112 	if (get_user(val, (int __user *)optval))
3113 		return -EFAULT;
3114 
3115 	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
3116 	return 0;
3117 }
3118 
3119 /*
3120  *
3121  * 7.1.1 SCTP_RTOINFO
3122  *
3123  * The protocol parameters used to initialize and bound retransmission
3124  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
3125  * and modify these parameters.
3126  * All parameters are time values, in milliseconds.  A value of 0, when
3127  * modifying the parameters, indicates that the current value should not
3128  * be changed.
3129  *
3130  */
3131 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
3132 {
3133 	struct sctp_rtoinfo rtoinfo;
3134 	struct sctp_association *asoc;
3135 	unsigned long rto_min, rto_max;
3136 	struct sctp_sock *sp = sctp_sk(sk);
3137 
3138 	if (optlen != sizeof (struct sctp_rtoinfo))
3139 		return -EINVAL;
3140 
3141 	if (copy_from_user(&rtoinfo, optval, optlen))
3142 		return -EFAULT;
3143 
3144 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
3145 
3146 	/* Set the values to the specific association */
3147 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
3148 		return -EINVAL;
3149 
3150 	rto_max = rtoinfo.srto_max;
3151 	rto_min = rtoinfo.srto_min;
3152 
3153 	if (rto_max)
3154 		rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
3155 	else
3156 		rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
3157 
3158 	if (rto_min)
3159 		rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
3160 	else
3161 		rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
3162 
3163 	if (rto_min > rto_max)
3164 		return -EINVAL;
3165 
3166 	if (asoc) {
3167 		if (rtoinfo.srto_initial != 0)
3168 			asoc->rto_initial =
3169 				msecs_to_jiffies(rtoinfo.srto_initial);
3170 		asoc->rto_max = rto_max;
3171 		asoc->rto_min = rto_min;
3172 	} else {
3173 		/* If there is no association or the association-id = 0
3174 		 * set the values to the endpoint.
3175 		 */
3176 		if (rtoinfo.srto_initial != 0)
3177 			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
3178 		sp->rtoinfo.srto_max = rto_max;
3179 		sp->rtoinfo.srto_min = rto_min;
3180 	}
3181 
3182 	return 0;
3183 }
3184 
3185 /*
3186  *
3187  * 7.1.2 SCTP_ASSOCINFO
3188  *
3189  * This option is used to tune the maximum retransmission attempts
3190  * of the association.
3191  * Returns an error if the new association retransmission value is
3192  * greater than the sum of the retransmission value  of the peer.
3193  * See [SCTP] for more information.
3194  *
3195  */
3196 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
3197 {
3198 
3199 	struct sctp_assocparams assocparams;
3200 	struct sctp_association *asoc;
3201 
3202 	if (optlen != sizeof(struct sctp_assocparams))
3203 		return -EINVAL;
3204 	if (copy_from_user(&assocparams, optval, optlen))
3205 		return -EFAULT;
3206 
3207 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
3208 
3209 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
3210 		return -EINVAL;
3211 
3212 	/* Set the values to the specific association */
3213 	if (asoc) {
3214 		if (assocparams.sasoc_asocmaxrxt != 0) {
3215 			__u32 path_sum = 0;
3216 			int   paths = 0;
3217 			struct sctp_transport *peer_addr;
3218 
3219 			list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
3220 					transports) {
3221 				path_sum += peer_addr->pathmaxrxt;
3222 				paths++;
3223 			}
3224 
3225 			/* Only validate asocmaxrxt if we have more than
3226 			 * one path/transport.  We do this because path
3227 			 * retransmissions are only counted when we have more
3228 			 * then one path.
3229 			 */
3230 			if (paths > 1 &&
3231 			    assocparams.sasoc_asocmaxrxt > path_sum)
3232 				return -EINVAL;
3233 
3234 			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
3235 		}
3236 
3237 		if (assocparams.sasoc_cookie_life != 0)
3238 			asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life);
3239 	} else {
3240 		/* Set the values to the endpoint */
3241 		struct sctp_sock *sp = sctp_sk(sk);
3242 
3243 		if (assocparams.sasoc_asocmaxrxt != 0)
3244 			sp->assocparams.sasoc_asocmaxrxt =
3245 						assocparams.sasoc_asocmaxrxt;
3246 		if (assocparams.sasoc_cookie_life != 0)
3247 			sp->assocparams.sasoc_cookie_life =
3248 						assocparams.sasoc_cookie_life;
3249 	}
3250 	return 0;
3251 }
3252 
3253 /*
3254  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3255  *
3256  * This socket option is a boolean flag which turns on or off mapped V4
3257  * addresses.  If this option is turned on and the socket is type
3258  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3259  * If this option is turned off, then no mapping will be done of V4
3260  * addresses and a user will receive both PF_INET6 and PF_INET type
3261  * addresses on the socket.
3262  */
3263 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
3264 {
3265 	int val;
3266 	struct sctp_sock *sp = sctp_sk(sk);
3267 
3268 	if (optlen < sizeof(int))
3269 		return -EINVAL;
3270 	if (get_user(val, (int __user *)optval))
3271 		return -EFAULT;
3272 	if (val)
3273 		sp->v4mapped = 1;
3274 	else
3275 		sp->v4mapped = 0;
3276 
3277 	return 0;
3278 }
3279 
3280 /*
3281  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3282  * This option will get or set the maximum size to put in any outgoing
3283  * SCTP DATA chunk.  If a message is larger than this size it will be
3284  * fragmented by SCTP into the specified size.  Note that the underlying
3285  * SCTP implementation may fragment into smaller sized chunks when the
3286  * PMTU of the underlying association is smaller than the value set by
3287  * the user.  The default value for this option is '0' which indicates
3288  * the user is NOT limiting fragmentation and only the PMTU will effect
3289  * SCTP's choice of DATA chunk size.  Note also that values set larger
3290  * than the maximum size of an IP datagram will effectively let SCTP
3291  * control fragmentation (i.e. the same as setting this option to 0).
3292  *
3293  * The following structure is used to access and modify this parameter:
3294  *
3295  * struct sctp_assoc_value {
3296  *   sctp_assoc_t assoc_id;
3297  *   uint32_t assoc_value;
3298  * };
3299  *
3300  * assoc_id:  This parameter is ignored for one-to-one style sockets.
3301  *    For one-to-many style sockets this parameter indicates which
3302  *    association the user is performing an action upon.  Note that if
3303  *    this field's value is zero then the endpoints default value is
3304  *    changed (effecting future associations only).
3305  * assoc_value:  This parameter specifies the maximum size in bytes.
3306  */
3307 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
3308 {
3309 	struct sctp_sock *sp = sctp_sk(sk);
3310 	struct sctp_assoc_value params;
3311 	struct sctp_association *asoc;
3312 	int val;
3313 
3314 	if (optlen == sizeof(int)) {
3315 		pr_warn_ratelimited(DEPRECATED
3316 				    "%s (pid %d) "
3317 				    "Use of int in maxseg socket option.\n"
3318 				    "Use struct sctp_assoc_value instead\n",
3319 				    current->comm, task_pid_nr(current));
3320 		if (copy_from_user(&val, optval, optlen))
3321 			return -EFAULT;
3322 		params.assoc_id = 0;
3323 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3324 		if (copy_from_user(&params, optval, optlen))
3325 			return -EFAULT;
3326 		val = params.assoc_value;
3327 	} else {
3328 		return -EINVAL;
3329 	}
3330 
3331 	asoc = sctp_id2assoc(sk, params.assoc_id);
3332 
3333 	if (val) {
3334 		int min_len, max_len;
3335 		__u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) :
3336 				 sizeof(struct sctp_data_chunk);
3337 
3338 		min_len = sctp_min_frag_point(sp, datasize);
3339 		max_len = SCTP_MAX_CHUNK_LEN - datasize;
3340 
3341 		if (val < min_len || val > max_len)
3342 			return -EINVAL;
3343 	}
3344 
3345 	if (asoc) {
3346 		asoc->user_frag = val;
3347 		sctp_assoc_update_frag_point(asoc);
3348 	} else {
3349 		if (params.assoc_id && sctp_style(sk, UDP))
3350 			return -EINVAL;
3351 		sp->user_frag = val;
3352 	}
3353 
3354 	return 0;
3355 }
3356 
3357 
3358 /*
3359  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3360  *
3361  *   Requests that the peer mark the enclosed address as the association
3362  *   primary. The enclosed address must be one of the association's
3363  *   locally bound addresses. The following structure is used to make a
3364  *   set primary request:
3365  */
3366 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3367 					     unsigned int optlen)
3368 {
3369 	struct net *net = sock_net(sk);
3370 	struct sctp_sock	*sp;
3371 	struct sctp_association	*asoc = NULL;
3372 	struct sctp_setpeerprim	prim;
3373 	struct sctp_chunk	*chunk;
3374 	struct sctp_af		*af;
3375 	int 			err;
3376 
3377 	sp = sctp_sk(sk);
3378 
3379 	if (!net->sctp.addip_enable)
3380 		return -EPERM;
3381 
3382 	if (optlen != sizeof(struct sctp_setpeerprim))
3383 		return -EINVAL;
3384 
3385 	if (copy_from_user(&prim, optval, optlen))
3386 		return -EFAULT;
3387 
3388 	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3389 	if (!asoc)
3390 		return -EINVAL;
3391 
3392 	if (!asoc->peer.asconf_capable)
3393 		return -EPERM;
3394 
3395 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3396 		return -EPERM;
3397 
3398 	if (!sctp_state(asoc, ESTABLISHED))
3399 		return -ENOTCONN;
3400 
3401 	af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3402 	if (!af)
3403 		return -EINVAL;
3404 
3405 	if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3406 		return -EADDRNOTAVAIL;
3407 
3408 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3409 		return -EADDRNOTAVAIL;
3410 
3411 	/* Allow security module to validate address. */
3412 	err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR,
3413 					 (struct sockaddr *)&prim.sspp_addr,
3414 					 af->sockaddr_len);
3415 	if (err)
3416 		return err;
3417 
3418 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
3419 	chunk = sctp_make_asconf_set_prim(asoc,
3420 					  (union sctp_addr *)&prim.sspp_addr);
3421 	if (!chunk)
3422 		return -ENOMEM;
3423 
3424 	err = sctp_send_asconf(asoc, chunk);
3425 
3426 	pr_debug("%s: we set peer primary addr primitively\n", __func__);
3427 
3428 	return err;
3429 }
3430 
3431 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3432 					    unsigned int optlen)
3433 {
3434 	struct sctp_setadaptation adaptation;
3435 
3436 	if (optlen != sizeof(struct sctp_setadaptation))
3437 		return -EINVAL;
3438 	if (copy_from_user(&adaptation, optval, optlen))
3439 		return -EFAULT;
3440 
3441 	sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3442 
3443 	return 0;
3444 }
3445 
3446 /*
3447  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
3448  *
3449  * The context field in the sctp_sndrcvinfo structure is normally only
3450  * used when a failed message is retrieved holding the value that was
3451  * sent down on the actual send call.  This option allows the setting of
3452  * a default context on an association basis that will be received on
3453  * reading messages from the peer.  This is especially helpful in the
3454  * one-2-many model for an application to keep some reference to an
3455  * internal state machine that is processing messages on the
3456  * association.  Note that the setting of this value only effects
3457  * received messages from the peer and does not effect the value that is
3458  * saved with outbound messages.
3459  */
3460 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3461 				   unsigned int optlen)
3462 {
3463 	struct sctp_assoc_value params;
3464 	struct sctp_sock *sp;
3465 	struct sctp_association *asoc;
3466 
3467 	if (optlen != sizeof(struct sctp_assoc_value))
3468 		return -EINVAL;
3469 	if (copy_from_user(&params, optval, optlen))
3470 		return -EFAULT;
3471 
3472 	sp = sctp_sk(sk);
3473 
3474 	if (params.assoc_id != 0) {
3475 		asoc = sctp_id2assoc(sk, params.assoc_id);
3476 		if (!asoc)
3477 			return -EINVAL;
3478 		asoc->default_rcv_context = params.assoc_value;
3479 	} else {
3480 		sp->default_rcv_context = params.assoc_value;
3481 	}
3482 
3483 	return 0;
3484 }
3485 
3486 /*
3487  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3488  *
3489  * This options will at a minimum specify if the implementation is doing
3490  * fragmented interleave.  Fragmented interleave, for a one to many
3491  * socket, is when subsequent calls to receive a message may return
3492  * parts of messages from different associations.  Some implementations
3493  * may allow you to turn this value on or off.  If so, when turned off,
3494  * no fragment interleave will occur (which will cause a head of line
3495  * blocking amongst multiple associations sharing the same one to many
3496  * socket).  When this option is turned on, then each receive call may
3497  * come from a different association (thus the user must receive data
3498  * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3499  * association each receive belongs to.
3500  *
3501  * This option takes a boolean value.  A non-zero value indicates that
3502  * fragmented interleave is on.  A value of zero indicates that
3503  * fragmented interleave is off.
3504  *
3505  * Note that it is important that an implementation that allows this
3506  * option to be turned on, have it off by default.  Otherwise an unaware
3507  * application using the one to many model may become confused and act
3508  * incorrectly.
3509  */
3510 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3511 					       char __user *optval,
3512 					       unsigned int optlen)
3513 {
3514 	int val;
3515 
3516 	if (optlen != sizeof(int))
3517 		return -EINVAL;
3518 	if (get_user(val, (int __user *)optval))
3519 		return -EFAULT;
3520 
3521 	sctp_sk(sk)->frag_interleave = !!val;
3522 
3523 	if (!sctp_sk(sk)->frag_interleave)
3524 		sctp_sk(sk)->strm_interleave = 0;
3525 
3526 	return 0;
3527 }
3528 
3529 /*
3530  * 8.1.21.  Set or Get the SCTP Partial Delivery Point
3531  *       (SCTP_PARTIAL_DELIVERY_POINT)
3532  *
3533  * This option will set or get the SCTP partial delivery point.  This
3534  * point is the size of a message where the partial delivery API will be
3535  * invoked to help free up rwnd space for the peer.  Setting this to a
3536  * lower value will cause partial deliveries to happen more often.  The
3537  * calls argument is an integer that sets or gets the partial delivery
3538  * point.  Note also that the call will fail if the user attempts to set
3539  * this value larger than the socket receive buffer size.
3540  *
3541  * Note that any single message having a length smaller than or equal to
3542  * the SCTP partial delivery point will be delivered in one single read
3543  * call as long as the user provided buffer is large enough to hold the
3544  * message.
3545  */
3546 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3547 						  char __user *optval,
3548 						  unsigned int optlen)
3549 {
3550 	u32 val;
3551 
3552 	if (optlen != sizeof(u32))
3553 		return -EINVAL;
3554 	if (get_user(val, (int __user *)optval))
3555 		return -EFAULT;
3556 
3557 	/* Note: We double the receive buffer from what the user sets
3558 	 * it to be, also initial rwnd is based on rcvbuf/2.
3559 	 */
3560 	if (val > (sk->sk_rcvbuf >> 1))
3561 		return -EINVAL;
3562 
3563 	sctp_sk(sk)->pd_point = val;
3564 
3565 	return 0; /* is this the right error code? */
3566 }
3567 
3568 /*
3569  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
3570  *
3571  * This option will allow a user to change the maximum burst of packets
3572  * that can be emitted by this association.  Note that the default value
3573  * is 4, and some implementations may restrict this setting so that it
3574  * can only be lowered.
3575  *
3576  * NOTE: This text doesn't seem right.  Do this on a socket basis with
3577  * future associations inheriting the socket value.
3578  */
3579 static int sctp_setsockopt_maxburst(struct sock *sk,
3580 				    char __user *optval,
3581 				    unsigned int optlen)
3582 {
3583 	struct sctp_assoc_value params;
3584 	struct sctp_sock *sp;
3585 	struct sctp_association *asoc;
3586 	int val;
3587 	int assoc_id = 0;
3588 
3589 	if (optlen == sizeof(int)) {
3590 		pr_warn_ratelimited(DEPRECATED
3591 				    "%s (pid %d) "
3592 				    "Use of int in max_burst socket option deprecated.\n"
3593 				    "Use struct sctp_assoc_value instead\n",
3594 				    current->comm, task_pid_nr(current));
3595 		if (copy_from_user(&val, optval, optlen))
3596 			return -EFAULT;
3597 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3598 		if (copy_from_user(&params, optval, optlen))
3599 			return -EFAULT;
3600 		val = params.assoc_value;
3601 		assoc_id = params.assoc_id;
3602 	} else
3603 		return -EINVAL;
3604 
3605 	sp = sctp_sk(sk);
3606 
3607 	if (assoc_id != 0) {
3608 		asoc = sctp_id2assoc(sk, assoc_id);
3609 		if (!asoc)
3610 			return -EINVAL;
3611 		asoc->max_burst = val;
3612 	} else
3613 		sp->max_burst = val;
3614 
3615 	return 0;
3616 }
3617 
3618 /*
3619  * 7.1.18.  Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3620  *
3621  * This set option adds a chunk type that the user is requesting to be
3622  * received only in an authenticated way.  Changes to the list of chunks
3623  * will only effect future associations on the socket.
3624  */
3625 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3626 				      char __user *optval,
3627 				      unsigned int optlen)
3628 {
3629 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3630 	struct sctp_authchunk val;
3631 
3632 	if (!ep->auth_enable)
3633 		return -EACCES;
3634 
3635 	if (optlen != sizeof(struct sctp_authchunk))
3636 		return -EINVAL;
3637 	if (copy_from_user(&val, optval, optlen))
3638 		return -EFAULT;
3639 
3640 	switch (val.sauth_chunk) {
3641 	case SCTP_CID_INIT:
3642 	case SCTP_CID_INIT_ACK:
3643 	case SCTP_CID_SHUTDOWN_COMPLETE:
3644 	case SCTP_CID_AUTH:
3645 		return -EINVAL;
3646 	}
3647 
3648 	/* add this chunk id to the endpoint */
3649 	return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk);
3650 }
3651 
3652 /*
3653  * 7.1.19.  Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3654  *
3655  * This option gets or sets the list of HMAC algorithms that the local
3656  * endpoint requires the peer to use.
3657  */
3658 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3659 				      char __user *optval,
3660 				      unsigned int optlen)
3661 {
3662 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3663 	struct sctp_hmacalgo *hmacs;
3664 	u32 idents;
3665 	int err;
3666 
3667 	if (!ep->auth_enable)
3668 		return -EACCES;
3669 
3670 	if (optlen < sizeof(struct sctp_hmacalgo))
3671 		return -EINVAL;
3672 	optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) +
3673 					     SCTP_AUTH_NUM_HMACS * sizeof(u16));
3674 
3675 	hmacs = memdup_user(optval, optlen);
3676 	if (IS_ERR(hmacs))
3677 		return PTR_ERR(hmacs);
3678 
3679 	idents = hmacs->shmac_num_idents;
3680 	if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3681 	    (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3682 		err = -EINVAL;
3683 		goto out;
3684 	}
3685 
3686 	err = sctp_auth_ep_set_hmacs(ep, hmacs);
3687 out:
3688 	kfree(hmacs);
3689 	return err;
3690 }
3691 
3692 /*
3693  * 7.1.20.  Set a shared key (SCTP_AUTH_KEY)
3694  *
3695  * This option will set a shared secret key which is used to build an
3696  * association shared key.
3697  */
3698 static int sctp_setsockopt_auth_key(struct sock *sk,
3699 				    char __user *optval,
3700 				    unsigned int optlen)
3701 {
3702 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3703 	struct sctp_authkey *authkey;
3704 	struct sctp_association *asoc;
3705 	int ret;
3706 
3707 	if (!ep->auth_enable)
3708 		return -EACCES;
3709 
3710 	if (optlen <= sizeof(struct sctp_authkey))
3711 		return -EINVAL;
3712 	/* authkey->sca_keylength is u16, so optlen can't be bigger than
3713 	 * this.
3714 	 */
3715 	optlen = min_t(unsigned int, optlen, USHRT_MAX +
3716 					     sizeof(struct sctp_authkey));
3717 
3718 	authkey = memdup_user(optval, optlen);
3719 	if (IS_ERR(authkey))
3720 		return PTR_ERR(authkey);
3721 
3722 	if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3723 		ret = -EINVAL;
3724 		goto out;
3725 	}
3726 
3727 	asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3728 	if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3729 		ret = -EINVAL;
3730 		goto out;
3731 	}
3732 
3733 	ret = sctp_auth_set_key(ep, asoc, authkey);
3734 out:
3735 	kzfree(authkey);
3736 	return ret;
3737 }
3738 
3739 /*
3740  * 7.1.21.  Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3741  *
3742  * This option will get or set the active shared key to be used to build
3743  * the association shared key.
3744  */
3745 static int sctp_setsockopt_active_key(struct sock *sk,
3746 				      char __user *optval,
3747 				      unsigned int optlen)
3748 {
3749 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3750 	struct sctp_authkeyid val;
3751 	struct sctp_association *asoc;
3752 
3753 	if (!ep->auth_enable)
3754 		return -EACCES;
3755 
3756 	if (optlen != sizeof(struct sctp_authkeyid))
3757 		return -EINVAL;
3758 	if (copy_from_user(&val, optval, optlen))
3759 		return -EFAULT;
3760 
3761 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3762 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3763 		return -EINVAL;
3764 
3765 	return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber);
3766 }
3767 
3768 /*
3769  * 7.1.22.  Delete a shared key (SCTP_AUTH_DELETE_KEY)
3770  *
3771  * This set option will delete a shared secret key from use.
3772  */
3773 static int sctp_setsockopt_del_key(struct sock *sk,
3774 				   char __user *optval,
3775 				   unsigned int optlen)
3776 {
3777 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3778 	struct sctp_authkeyid val;
3779 	struct sctp_association *asoc;
3780 
3781 	if (!ep->auth_enable)
3782 		return -EACCES;
3783 
3784 	if (optlen != sizeof(struct sctp_authkeyid))
3785 		return -EINVAL;
3786 	if (copy_from_user(&val, optval, optlen))
3787 		return -EFAULT;
3788 
3789 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3790 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3791 		return -EINVAL;
3792 
3793 	return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber);
3794 
3795 }
3796 
3797 /*
3798  * 8.3.4  Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY)
3799  *
3800  * This set option will deactivate a shared secret key.
3801  */
3802 static int sctp_setsockopt_deactivate_key(struct sock *sk, char __user *optval,
3803 					  unsigned int optlen)
3804 {
3805 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3806 	struct sctp_authkeyid val;
3807 	struct sctp_association *asoc;
3808 
3809 	if (!ep->auth_enable)
3810 		return -EACCES;
3811 
3812 	if (optlen != sizeof(struct sctp_authkeyid))
3813 		return -EINVAL;
3814 	if (copy_from_user(&val, optval, optlen))
3815 		return -EFAULT;
3816 
3817 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3818 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3819 		return -EINVAL;
3820 
3821 	return sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber);
3822 }
3823 
3824 /*
3825  * 8.1.23 SCTP_AUTO_ASCONF
3826  *
3827  * This option will enable or disable the use of the automatic generation of
3828  * ASCONF chunks to add and delete addresses to an existing association.  Note
3829  * that this option has two caveats namely: a) it only affects sockets that
3830  * are bound to all addresses available to the SCTP stack, and b) the system
3831  * administrator may have an overriding control that turns the ASCONF feature
3832  * off no matter what setting the socket option may have.
3833  * This option expects an integer boolean flag, where a non-zero value turns on
3834  * the option, and a zero value turns off the option.
3835  * Note. In this implementation, socket operation overrides default parameter
3836  * being set by sysctl as well as FreeBSD implementation
3837  */
3838 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3839 					unsigned int optlen)
3840 {
3841 	int val;
3842 	struct sctp_sock *sp = sctp_sk(sk);
3843 
3844 	if (optlen < sizeof(int))
3845 		return -EINVAL;
3846 	if (get_user(val, (int __user *)optval))
3847 		return -EFAULT;
3848 	if (!sctp_is_ep_boundall(sk) && val)
3849 		return -EINVAL;
3850 	if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3851 		return 0;
3852 
3853 	spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3854 	if (val == 0 && sp->do_auto_asconf) {
3855 		list_del(&sp->auto_asconf_list);
3856 		sp->do_auto_asconf = 0;
3857 	} else if (val && !sp->do_auto_asconf) {
3858 		list_add_tail(&sp->auto_asconf_list,
3859 		    &sock_net(sk)->sctp.auto_asconf_splist);
3860 		sp->do_auto_asconf = 1;
3861 	}
3862 	spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3863 	return 0;
3864 }
3865 
3866 /*
3867  * SCTP_PEER_ADDR_THLDS
3868  *
3869  * This option allows us to alter the partially failed threshold for one or all
3870  * transports in an association.  See Section 6.1 of:
3871  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3872  */
3873 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3874 					    char __user *optval,
3875 					    unsigned int optlen)
3876 {
3877 	struct sctp_paddrthlds val;
3878 	struct sctp_transport *trans;
3879 	struct sctp_association *asoc;
3880 
3881 	if (optlen < sizeof(struct sctp_paddrthlds))
3882 		return -EINVAL;
3883 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
3884 			   sizeof(struct sctp_paddrthlds)))
3885 		return -EFAULT;
3886 
3887 
3888 	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
3889 		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
3890 		if (!asoc)
3891 			return -ENOENT;
3892 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3893 				    transports) {
3894 			if (val.spt_pathmaxrxt)
3895 				trans->pathmaxrxt = val.spt_pathmaxrxt;
3896 			trans->pf_retrans = val.spt_pathpfthld;
3897 		}
3898 
3899 		if (val.spt_pathmaxrxt)
3900 			asoc->pathmaxrxt = val.spt_pathmaxrxt;
3901 		asoc->pf_retrans = val.spt_pathpfthld;
3902 	} else {
3903 		trans = sctp_addr_id2transport(sk, &val.spt_address,
3904 					       val.spt_assoc_id);
3905 		if (!trans)
3906 			return -ENOENT;
3907 
3908 		if (val.spt_pathmaxrxt)
3909 			trans->pathmaxrxt = val.spt_pathmaxrxt;
3910 		trans->pf_retrans = val.spt_pathpfthld;
3911 	}
3912 
3913 	return 0;
3914 }
3915 
3916 static int sctp_setsockopt_recvrcvinfo(struct sock *sk,
3917 				       char __user *optval,
3918 				       unsigned int optlen)
3919 {
3920 	int val;
3921 
3922 	if (optlen < sizeof(int))
3923 		return -EINVAL;
3924 	if (get_user(val, (int __user *) optval))
3925 		return -EFAULT;
3926 
3927 	sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1;
3928 
3929 	return 0;
3930 }
3931 
3932 static int sctp_setsockopt_recvnxtinfo(struct sock *sk,
3933 				       char __user *optval,
3934 				       unsigned int optlen)
3935 {
3936 	int val;
3937 
3938 	if (optlen < sizeof(int))
3939 		return -EINVAL;
3940 	if (get_user(val, (int __user *) optval))
3941 		return -EFAULT;
3942 
3943 	sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1;
3944 
3945 	return 0;
3946 }
3947 
3948 static int sctp_setsockopt_pr_supported(struct sock *sk,
3949 					char __user *optval,
3950 					unsigned int optlen)
3951 {
3952 	struct sctp_assoc_value params;
3953 
3954 	if (optlen != sizeof(params))
3955 		return -EINVAL;
3956 
3957 	if (copy_from_user(&params, optval, optlen))
3958 		return -EFAULT;
3959 
3960 	sctp_sk(sk)->ep->prsctp_enable = !!params.assoc_value;
3961 
3962 	return 0;
3963 }
3964 
3965 static int sctp_setsockopt_default_prinfo(struct sock *sk,
3966 					  char __user *optval,
3967 					  unsigned int optlen)
3968 {
3969 	struct sctp_default_prinfo info;
3970 	struct sctp_association *asoc;
3971 	int retval = -EINVAL;
3972 
3973 	if (optlen != sizeof(info))
3974 		goto out;
3975 
3976 	if (copy_from_user(&info, optval, sizeof(info))) {
3977 		retval = -EFAULT;
3978 		goto out;
3979 	}
3980 
3981 	if (info.pr_policy & ~SCTP_PR_SCTP_MASK)
3982 		goto out;
3983 
3984 	if (info.pr_policy == SCTP_PR_SCTP_NONE)
3985 		info.pr_value = 0;
3986 
3987 	asoc = sctp_id2assoc(sk, info.pr_assoc_id);
3988 	if (asoc) {
3989 		SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy);
3990 		asoc->default_timetolive = info.pr_value;
3991 	} else if (!info.pr_assoc_id) {
3992 		struct sctp_sock *sp = sctp_sk(sk);
3993 
3994 		SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy);
3995 		sp->default_timetolive = info.pr_value;
3996 	} else {
3997 		goto out;
3998 	}
3999 
4000 	retval = 0;
4001 
4002 out:
4003 	return retval;
4004 }
4005 
4006 static int sctp_setsockopt_reconfig_supported(struct sock *sk,
4007 					      char __user *optval,
4008 					      unsigned int optlen)
4009 {
4010 	struct sctp_assoc_value params;
4011 	struct sctp_association *asoc;
4012 	int retval = -EINVAL;
4013 
4014 	if (optlen != sizeof(params))
4015 		goto out;
4016 
4017 	if (copy_from_user(&params, optval, optlen)) {
4018 		retval = -EFAULT;
4019 		goto out;
4020 	}
4021 
4022 	asoc = sctp_id2assoc(sk, params.assoc_id);
4023 	if (asoc) {
4024 		asoc->reconf_enable = !!params.assoc_value;
4025 	} else if (!params.assoc_id) {
4026 		struct sctp_sock *sp = sctp_sk(sk);
4027 
4028 		sp->ep->reconf_enable = !!params.assoc_value;
4029 	} else {
4030 		goto out;
4031 	}
4032 
4033 	retval = 0;
4034 
4035 out:
4036 	return retval;
4037 }
4038 
4039 static int sctp_setsockopt_enable_strreset(struct sock *sk,
4040 					   char __user *optval,
4041 					   unsigned int optlen)
4042 {
4043 	struct sctp_assoc_value params;
4044 	struct sctp_association *asoc;
4045 	int retval = -EINVAL;
4046 
4047 	if (optlen != sizeof(params))
4048 		goto out;
4049 
4050 	if (copy_from_user(&params, optval, optlen)) {
4051 		retval = -EFAULT;
4052 		goto out;
4053 	}
4054 
4055 	if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK))
4056 		goto out;
4057 
4058 	asoc = sctp_id2assoc(sk, params.assoc_id);
4059 	if (asoc) {
4060 		asoc->strreset_enable = params.assoc_value;
4061 	} else if (!params.assoc_id) {
4062 		struct sctp_sock *sp = sctp_sk(sk);
4063 
4064 		sp->ep->strreset_enable = params.assoc_value;
4065 	} else {
4066 		goto out;
4067 	}
4068 
4069 	retval = 0;
4070 
4071 out:
4072 	return retval;
4073 }
4074 
4075 static int sctp_setsockopt_reset_streams(struct sock *sk,
4076 					 char __user *optval,
4077 					 unsigned int optlen)
4078 {
4079 	struct sctp_reset_streams *params;
4080 	struct sctp_association *asoc;
4081 	int retval = -EINVAL;
4082 
4083 	if (optlen < sizeof(*params))
4084 		return -EINVAL;
4085 	/* srs_number_streams is u16, so optlen can't be bigger than this. */
4086 	optlen = min_t(unsigned int, optlen, USHRT_MAX +
4087 					     sizeof(__u16) * sizeof(*params));
4088 
4089 	params = memdup_user(optval, optlen);
4090 	if (IS_ERR(params))
4091 		return PTR_ERR(params);
4092 
4093 	if (params->srs_number_streams * sizeof(__u16) >
4094 	    optlen - sizeof(*params))
4095 		goto out;
4096 
4097 	asoc = sctp_id2assoc(sk, params->srs_assoc_id);
4098 	if (!asoc)
4099 		goto out;
4100 
4101 	retval = sctp_send_reset_streams(asoc, params);
4102 
4103 out:
4104 	kfree(params);
4105 	return retval;
4106 }
4107 
4108 static int sctp_setsockopt_reset_assoc(struct sock *sk,
4109 				       char __user *optval,
4110 				       unsigned int optlen)
4111 {
4112 	struct sctp_association *asoc;
4113 	sctp_assoc_t associd;
4114 	int retval = -EINVAL;
4115 
4116 	if (optlen != sizeof(associd))
4117 		goto out;
4118 
4119 	if (copy_from_user(&associd, optval, optlen)) {
4120 		retval = -EFAULT;
4121 		goto out;
4122 	}
4123 
4124 	asoc = sctp_id2assoc(sk, associd);
4125 	if (!asoc)
4126 		goto out;
4127 
4128 	retval = sctp_send_reset_assoc(asoc);
4129 
4130 out:
4131 	return retval;
4132 }
4133 
4134 static int sctp_setsockopt_add_streams(struct sock *sk,
4135 				       char __user *optval,
4136 				       unsigned int optlen)
4137 {
4138 	struct sctp_association *asoc;
4139 	struct sctp_add_streams params;
4140 	int retval = -EINVAL;
4141 
4142 	if (optlen != sizeof(params))
4143 		goto out;
4144 
4145 	if (copy_from_user(&params, optval, optlen)) {
4146 		retval = -EFAULT;
4147 		goto out;
4148 	}
4149 
4150 	asoc = sctp_id2assoc(sk, params.sas_assoc_id);
4151 	if (!asoc)
4152 		goto out;
4153 
4154 	retval = sctp_send_add_streams(asoc, &params);
4155 
4156 out:
4157 	return retval;
4158 }
4159 
4160 static int sctp_setsockopt_scheduler(struct sock *sk,
4161 				     char __user *optval,
4162 				     unsigned int optlen)
4163 {
4164 	struct sctp_association *asoc;
4165 	struct sctp_assoc_value params;
4166 	int retval = -EINVAL;
4167 
4168 	if (optlen < sizeof(params))
4169 		goto out;
4170 
4171 	optlen = sizeof(params);
4172 	if (copy_from_user(&params, optval, optlen)) {
4173 		retval = -EFAULT;
4174 		goto out;
4175 	}
4176 
4177 	if (params.assoc_value > SCTP_SS_MAX)
4178 		goto out;
4179 
4180 	asoc = sctp_id2assoc(sk, params.assoc_id);
4181 	if (!asoc)
4182 		goto out;
4183 
4184 	retval = sctp_sched_set_sched(asoc, params.assoc_value);
4185 
4186 out:
4187 	return retval;
4188 }
4189 
4190 static int sctp_setsockopt_scheduler_value(struct sock *sk,
4191 					   char __user *optval,
4192 					   unsigned int optlen)
4193 {
4194 	struct sctp_association *asoc;
4195 	struct sctp_stream_value params;
4196 	int retval = -EINVAL;
4197 
4198 	if (optlen < sizeof(params))
4199 		goto out;
4200 
4201 	optlen = sizeof(params);
4202 	if (copy_from_user(&params, optval, optlen)) {
4203 		retval = -EFAULT;
4204 		goto out;
4205 	}
4206 
4207 	asoc = sctp_id2assoc(sk, params.assoc_id);
4208 	if (!asoc)
4209 		goto out;
4210 
4211 	retval = sctp_sched_set_value(asoc, params.stream_id,
4212 				      params.stream_value, GFP_KERNEL);
4213 
4214 out:
4215 	return retval;
4216 }
4217 
4218 static int sctp_setsockopt_interleaving_supported(struct sock *sk,
4219 						  char __user *optval,
4220 						  unsigned int optlen)
4221 {
4222 	struct sctp_sock *sp = sctp_sk(sk);
4223 	struct net *net = sock_net(sk);
4224 	struct sctp_assoc_value params;
4225 	int retval = -EINVAL;
4226 
4227 	if (optlen < sizeof(params))
4228 		goto out;
4229 
4230 	optlen = sizeof(params);
4231 	if (copy_from_user(&params, optval, optlen)) {
4232 		retval = -EFAULT;
4233 		goto out;
4234 	}
4235 
4236 	if (params.assoc_id)
4237 		goto out;
4238 
4239 	if (!net->sctp.intl_enable || !sp->frag_interleave) {
4240 		retval = -EPERM;
4241 		goto out;
4242 	}
4243 
4244 	sp->strm_interleave = !!params.assoc_value;
4245 
4246 	retval = 0;
4247 
4248 out:
4249 	return retval;
4250 }
4251 
4252 static int sctp_setsockopt_reuse_port(struct sock *sk, char __user *optval,
4253 				      unsigned int optlen)
4254 {
4255 	int val;
4256 
4257 	if (!sctp_style(sk, TCP))
4258 		return -EOPNOTSUPP;
4259 
4260 	if (sctp_sk(sk)->ep->base.bind_addr.port)
4261 		return -EFAULT;
4262 
4263 	if (optlen < sizeof(int))
4264 		return -EINVAL;
4265 
4266 	if (get_user(val, (int __user *)optval))
4267 		return -EFAULT;
4268 
4269 	sctp_sk(sk)->reuse = !!val;
4270 
4271 	return 0;
4272 }
4273 
4274 static int sctp_setsockopt_event(struct sock *sk, char __user *optval,
4275 				 unsigned int optlen)
4276 {
4277 	struct sctp_association *asoc;
4278 	struct sctp_ulpevent *event;
4279 	struct sctp_event param;
4280 	int retval = 0;
4281 
4282 	if (optlen < sizeof(param)) {
4283 		retval = -EINVAL;
4284 		goto out;
4285 	}
4286 
4287 	optlen = sizeof(param);
4288 	if (copy_from_user(&param, optval, optlen)) {
4289 		retval = -EFAULT;
4290 		goto out;
4291 	}
4292 
4293 	if (param.se_type < SCTP_SN_TYPE_BASE ||
4294 	    param.se_type > SCTP_SN_TYPE_MAX) {
4295 		retval = -EINVAL;
4296 		goto out;
4297 	}
4298 
4299 	asoc = sctp_id2assoc(sk, param.se_assoc_id);
4300 	if (!asoc) {
4301 		sctp_ulpevent_type_set(&sctp_sk(sk)->subscribe,
4302 				       param.se_type, param.se_on);
4303 		goto out;
4304 	}
4305 
4306 	sctp_ulpevent_type_set(&asoc->subscribe, param.se_type, param.se_on);
4307 
4308 	if (param.se_type == SCTP_SENDER_DRY_EVENT && param.se_on) {
4309 		if (sctp_outq_is_empty(&asoc->outqueue)) {
4310 			event = sctp_ulpevent_make_sender_dry_event(asoc,
4311 					GFP_USER | __GFP_NOWARN);
4312 			if (!event) {
4313 				retval = -ENOMEM;
4314 				goto out;
4315 			}
4316 
4317 			asoc->stream.si->enqueue_event(&asoc->ulpq, event);
4318 		}
4319 	}
4320 
4321 out:
4322 	return retval;
4323 }
4324 
4325 /* API 6.2 setsockopt(), getsockopt()
4326  *
4327  * Applications use setsockopt() and getsockopt() to set or retrieve
4328  * socket options.  Socket options are used to change the default
4329  * behavior of sockets calls.  They are described in Section 7.
4330  *
4331  * The syntax is:
4332  *
4333  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
4334  *                    int __user *optlen);
4335  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
4336  *                    int optlen);
4337  *
4338  *   sd      - the socket descript.
4339  *   level   - set to IPPROTO_SCTP for all SCTP options.
4340  *   optname - the option name.
4341  *   optval  - the buffer to store the value of the option.
4342  *   optlen  - the size of the buffer.
4343  */
4344 static int sctp_setsockopt(struct sock *sk, int level, int optname,
4345 			   char __user *optval, unsigned int optlen)
4346 {
4347 	int retval = 0;
4348 
4349 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
4350 
4351 	/* I can hardly begin to describe how wrong this is.  This is
4352 	 * so broken as to be worse than useless.  The API draft
4353 	 * REALLY is NOT helpful here...  I am not convinced that the
4354 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
4355 	 * are at all well-founded.
4356 	 */
4357 	if (level != SOL_SCTP) {
4358 		struct sctp_af *af = sctp_sk(sk)->pf->af;
4359 		retval = af->setsockopt(sk, level, optname, optval, optlen);
4360 		goto out_nounlock;
4361 	}
4362 
4363 	lock_sock(sk);
4364 
4365 	switch (optname) {
4366 	case SCTP_SOCKOPT_BINDX_ADD:
4367 		/* 'optlen' is the size of the addresses buffer. */
4368 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
4369 					       optlen, SCTP_BINDX_ADD_ADDR);
4370 		break;
4371 
4372 	case SCTP_SOCKOPT_BINDX_REM:
4373 		/* 'optlen' is the size of the addresses buffer. */
4374 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
4375 					       optlen, SCTP_BINDX_REM_ADDR);
4376 		break;
4377 
4378 	case SCTP_SOCKOPT_CONNECTX_OLD:
4379 		/* 'optlen' is the size of the addresses buffer. */
4380 		retval = sctp_setsockopt_connectx_old(sk,
4381 					    (struct sockaddr __user *)optval,
4382 					    optlen);
4383 		break;
4384 
4385 	case SCTP_SOCKOPT_CONNECTX:
4386 		/* 'optlen' is the size of the addresses buffer. */
4387 		retval = sctp_setsockopt_connectx(sk,
4388 					    (struct sockaddr __user *)optval,
4389 					    optlen);
4390 		break;
4391 
4392 	case SCTP_DISABLE_FRAGMENTS:
4393 		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
4394 		break;
4395 
4396 	case SCTP_EVENTS:
4397 		retval = sctp_setsockopt_events(sk, optval, optlen);
4398 		break;
4399 
4400 	case SCTP_AUTOCLOSE:
4401 		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
4402 		break;
4403 
4404 	case SCTP_PEER_ADDR_PARAMS:
4405 		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
4406 		break;
4407 
4408 	case SCTP_DELAYED_SACK:
4409 		retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
4410 		break;
4411 	case SCTP_PARTIAL_DELIVERY_POINT:
4412 		retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
4413 		break;
4414 
4415 	case SCTP_INITMSG:
4416 		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
4417 		break;
4418 	case SCTP_DEFAULT_SEND_PARAM:
4419 		retval = sctp_setsockopt_default_send_param(sk, optval,
4420 							    optlen);
4421 		break;
4422 	case SCTP_DEFAULT_SNDINFO:
4423 		retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen);
4424 		break;
4425 	case SCTP_PRIMARY_ADDR:
4426 		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
4427 		break;
4428 	case SCTP_SET_PEER_PRIMARY_ADDR:
4429 		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
4430 		break;
4431 	case SCTP_NODELAY:
4432 		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
4433 		break;
4434 	case SCTP_RTOINFO:
4435 		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
4436 		break;
4437 	case SCTP_ASSOCINFO:
4438 		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
4439 		break;
4440 	case SCTP_I_WANT_MAPPED_V4_ADDR:
4441 		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
4442 		break;
4443 	case SCTP_MAXSEG:
4444 		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
4445 		break;
4446 	case SCTP_ADAPTATION_LAYER:
4447 		retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
4448 		break;
4449 	case SCTP_CONTEXT:
4450 		retval = sctp_setsockopt_context(sk, optval, optlen);
4451 		break;
4452 	case SCTP_FRAGMENT_INTERLEAVE:
4453 		retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
4454 		break;
4455 	case SCTP_MAX_BURST:
4456 		retval = sctp_setsockopt_maxburst(sk, optval, optlen);
4457 		break;
4458 	case SCTP_AUTH_CHUNK:
4459 		retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
4460 		break;
4461 	case SCTP_HMAC_IDENT:
4462 		retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
4463 		break;
4464 	case SCTP_AUTH_KEY:
4465 		retval = sctp_setsockopt_auth_key(sk, optval, optlen);
4466 		break;
4467 	case SCTP_AUTH_ACTIVE_KEY:
4468 		retval = sctp_setsockopt_active_key(sk, optval, optlen);
4469 		break;
4470 	case SCTP_AUTH_DELETE_KEY:
4471 		retval = sctp_setsockopt_del_key(sk, optval, optlen);
4472 		break;
4473 	case SCTP_AUTH_DEACTIVATE_KEY:
4474 		retval = sctp_setsockopt_deactivate_key(sk, optval, optlen);
4475 		break;
4476 	case SCTP_AUTO_ASCONF:
4477 		retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
4478 		break;
4479 	case SCTP_PEER_ADDR_THLDS:
4480 		retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
4481 		break;
4482 	case SCTP_RECVRCVINFO:
4483 		retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen);
4484 		break;
4485 	case SCTP_RECVNXTINFO:
4486 		retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen);
4487 		break;
4488 	case SCTP_PR_SUPPORTED:
4489 		retval = sctp_setsockopt_pr_supported(sk, optval, optlen);
4490 		break;
4491 	case SCTP_DEFAULT_PRINFO:
4492 		retval = sctp_setsockopt_default_prinfo(sk, optval, optlen);
4493 		break;
4494 	case SCTP_RECONFIG_SUPPORTED:
4495 		retval = sctp_setsockopt_reconfig_supported(sk, optval, optlen);
4496 		break;
4497 	case SCTP_ENABLE_STREAM_RESET:
4498 		retval = sctp_setsockopt_enable_strreset(sk, optval, optlen);
4499 		break;
4500 	case SCTP_RESET_STREAMS:
4501 		retval = sctp_setsockopt_reset_streams(sk, optval, optlen);
4502 		break;
4503 	case SCTP_RESET_ASSOC:
4504 		retval = sctp_setsockopt_reset_assoc(sk, optval, optlen);
4505 		break;
4506 	case SCTP_ADD_STREAMS:
4507 		retval = sctp_setsockopt_add_streams(sk, optval, optlen);
4508 		break;
4509 	case SCTP_STREAM_SCHEDULER:
4510 		retval = sctp_setsockopt_scheduler(sk, optval, optlen);
4511 		break;
4512 	case SCTP_STREAM_SCHEDULER_VALUE:
4513 		retval = sctp_setsockopt_scheduler_value(sk, optval, optlen);
4514 		break;
4515 	case SCTP_INTERLEAVING_SUPPORTED:
4516 		retval = sctp_setsockopt_interleaving_supported(sk, optval,
4517 								optlen);
4518 		break;
4519 	case SCTP_REUSE_PORT:
4520 		retval = sctp_setsockopt_reuse_port(sk, optval, optlen);
4521 		break;
4522 	case SCTP_EVENT:
4523 		retval = sctp_setsockopt_event(sk, optval, optlen);
4524 		break;
4525 	default:
4526 		retval = -ENOPROTOOPT;
4527 		break;
4528 	}
4529 
4530 	release_sock(sk);
4531 
4532 out_nounlock:
4533 	return retval;
4534 }
4535 
4536 /* API 3.1.6 connect() - UDP Style Syntax
4537  *
4538  * An application may use the connect() call in the UDP model to initiate an
4539  * association without sending data.
4540  *
4541  * The syntax is:
4542  *
4543  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
4544  *
4545  * sd: the socket descriptor to have a new association added to.
4546  *
4547  * nam: the address structure (either struct sockaddr_in or struct
4548  *    sockaddr_in6 defined in RFC2553 [7]).
4549  *
4550  * len: the size of the address.
4551  */
4552 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
4553 			int addr_len, int flags)
4554 {
4555 	struct inet_sock *inet = inet_sk(sk);
4556 	struct sctp_af *af;
4557 	int err = 0;
4558 
4559 	lock_sock(sk);
4560 
4561 	pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
4562 		 addr, addr_len);
4563 
4564 	/* We may need to bind the socket. */
4565 	if (!inet->inet_num) {
4566 		if (sk->sk_prot->get_port(sk, 0)) {
4567 			release_sock(sk);
4568 			return -EAGAIN;
4569 		}
4570 		inet->inet_sport = htons(inet->inet_num);
4571 	}
4572 
4573 	/* Validate addr_len before calling common connect/connectx routine. */
4574 	af = sctp_get_af_specific(addr->sa_family);
4575 	if (!af || addr_len < af->sockaddr_len) {
4576 		err = -EINVAL;
4577 	} else {
4578 		/* Pass correct addr len to common routine (so it knows there
4579 		 * is only one address being passed.
4580 		 */
4581 		err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL);
4582 	}
4583 
4584 	release_sock(sk);
4585 	return err;
4586 }
4587 
4588 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr,
4589 		      int addr_len, int flags)
4590 {
4591 	if (addr_len < sizeof(uaddr->sa_family))
4592 		return -EINVAL;
4593 
4594 	if (uaddr->sa_family == AF_UNSPEC)
4595 		return -EOPNOTSUPP;
4596 
4597 	return sctp_connect(sock->sk, uaddr, addr_len, flags);
4598 }
4599 
4600 /* FIXME: Write comments. */
4601 static int sctp_disconnect(struct sock *sk, int flags)
4602 {
4603 	return -EOPNOTSUPP; /* STUB */
4604 }
4605 
4606 /* 4.1.4 accept() - TCP Style Syntax
4607  *
4608  * Applications use accept() call to remove an established SCTP
4609  * association from the accept queue of the endpoint.  A new socket
4610  * descriptor will be returned from accept() to represent the newly
4611  * formed association.
4612  */
4613 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern)
4614 {
4615 	struct sctp_sock *sp;
4616 	struct sctp_endpoint *ep;
4617 	struct sock *newsk = NULL;
4618 	struct sctp_association *asoc;
4619 	long timeo;
4620 	int error = 0;
4621 
4622 	lock_sock(sk);
4623 
4624 	sp = sctp_sk(sk);
4625 	ep = sp->ep;
4626 
4627 	if (!sctp_style(sk, TCP)) {
4628 		error = -EOPNOTSUPP;
4629 		goto out;
4630 	}
4631 
4632 	if (!sctp_sstate(sk, LISTENING)) {
4633 		error = -EINVAL;
4634 		goto out;
4635 	}
4636 
4637 	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
4638 
4639 	error = sctp_wait_for_accept(sk, timeo);
4640 	if (error)
4641 		goto out;
4642 
4643 	/* We treat the list of associations on the endpoint as the accept
4644 	 * queue and pick the first association on the list.
4645 	 */
4646 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
4647 
4648 	newsk = sp->pf->create_accept_sk(sk, asoc, kern);
4649 	if (!newsk) {
4650 		error = -ENOMEM;
4651 		goto out;
4652 	}
4653 
4654 	/* Populate the fields of the newsk from the oldsk and migrate the
4655 	 * asoc to the newsk.
4656 	 */
4657 	sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
4658 
4659 out:
4660 	release_sock(sk);
4661 	*err = error;
4662 	return newsk;
4663 }
4664 
4665 /* The SCTP ioctl handler. */
4666 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
4667 {
4668 	int rc = -ENOTCONN;
4669 
4670 	lock_sock(sk);
4671 
4672 	/*
4673 	 * SEQPACKET-style sockets in LISTENING state are valid, for
4674 	 * SCTP, so only discard TCP-style sockets in LISTENING state.
4675 	 */
4676 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4677 		goto out;
4678 
4679 	switch (cmd) {
4680 	case SIOCINQ: {
4681 		struct sk_buff *skb;
4682 		unsigned int amount = 0;
4683 
4684 		skb = skb_peek(&sk->sk_receive_queue);
4685 		if (skb != NULL) {
4686 			/*
4687 			 * We will only return the amount of this packet since
4688 			 * that is all that will be read.
4689 			 */
4690 			amount = skb->len;
4691 		}
4692 		rc = put_user(amount, (int __user *)arg);
4693 		break;
4694 	}
4695 	default:
4696 		rc = -ENOIOCTLCMD;
4697 		break;
4698 	}
4699 out:
4700 	release_sock(sk);
4701 	return rc;
4702 }
4703 
4704 /* This is the function which gets called during socket creation to
4705  * initialized the SCTP-specific portion of the sock.
4706  * The sock structure should already be zero-filled memory.
4707  */
4708 static int sctp_init_sock(struct sock *sk)
4709 {
4710 	struct net *net = sock_net(sk);
4711 	struct sctp_sock *sp;
4712 
4713 	pr_debug("%s: sk:%p\n", __func__, sk);
4714 
4715 	sp = sctp_sk(sk);
4716 
4717 	/* Initialize the SCTP per socket area.  */
4718 	switch (sk->sk_type) {
4719 	case SOCK_SEQPACKET:
4720 		sp->type = SCTP_SOCKET_UDP;
4721 		break;
4722 	case SOCK_STREAM:
4723 		sp->type = SCTP_SOCKET_TCP;
4724 		break;
4725 	default:
4726 		return -ESOCKTNOSUPPORT;
4727 	}
4728 
4729 	sk->sk_gso_type = SKB_GSO_SCTP;
4730 
4731 	/* Initialize default send parameters. These parameters can be
4732 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4733 	 */
4734 	sp->default_stream = 0;
4735 	sp->default_ppid = 0;
4736 	sp->default_flags = 0;
4737 	sp->default_context = 0;
4738 	sp->default_timetolive = 0;
4739 
4740 	sp->default_rcv_context = 0;
4741 	sp->max_burst = net->sctp.max_burst;
4742 
4743 	sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
4744 
4745 	/* Initialize default setup parameters. These parameters
4746 	 * can be modified with the SCTP_INITMSG socket option or
4747 	 * overridden by the SCTP_INIT CMSG.
4748 	 */
4749 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
4750 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
4751 	sp->initmsg.sinit_max_attempts   = net->sctp.max_retrans_init;
4752 	sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
4753 
4754 	/* Initialize default RTO related parameters.  These parameters can
4755 	 * be modified for with the SCTP_RTOINFO socket option.
4756 	 */
4757 	sp->rtoinfo.srto_initial = net->sctp.rto_initial;
4758 	sp->rtoinfo.srto_max     = net->sctp.rto_max;
4759 	sp->rtoinfo.srto_min     = net->sctp.rto_min;
4760 
4761 	/* Initialize default association related parameters. These parameters
4762 	 * can be modified with the SCTP_ASSOCINFO socket option.
4763 	 */
4764 	sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
4765 	sp->assocparams.sasoc_number_peer_destinations = 0;
4766 	sp->assocparams.sasoc_peer_rwnd = 0;
4767 	sp->assocparams.sasoc_local_rwnd = 0;
4768 	sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
4769 
4770 	/* Initialize default event subscriptions. By default, all the
4771 	 * options are off.
4772 	 */
4773 	sp->subscribe = 0;
4774 
4775 	/* Default Peer Address Parameters.  These defaults can
4776 	 * be modified via SCTP_PEER_ADDR_PARAMS
4777 	 */
4778 	sp->hbinterval  = net->sctp.hb_interval;
4779 	sp->pathmaxrxt  = net->sctp.max_retrans_path;
4780 	sp->pathmtu     = 0; /* allow default discovery */
4781 	sp->sackdelay   = net->sctp.sack_timeout;
4782 	sp->sackfreq	= 2;
4783 	sp->param_flags = SPP_HB_ENABLE |
4784 			  SPP_PMTUD_ENABLE |
4785 			  SPP_SACKDELAY_ENABLE;
4786 
4787 	/* If enabled no SCTP message fragmentation will be performed.
4788 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
4789 	 */
4790 	sp->disable_fragments = 0;
4791 
4792 	/* Enable Nagle algorithm by default.  */
4793 	sp->nodelay           = 0;
4794 
4795 	sp->recvrcvinfo = 0;
4796 	sp->recvnxtinfo = 0;
4797 
4798 	/* Enable by default. */
4799 	sp->v4mapped          = 1;
4800 
4801 	/* Auto-close idle associations after the configured
4802 	 * number of seconds.  A value of 0 disables this
4803 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
4804 	 * for UDP-style sockets only.
4805 	 */
4806 	sp->autoclose         = 0;
4807 
4808 	/* User specified fragmentation limit. */
4809 	sp->user_frag         = 0;
4810 
4811 	sp->adaptation_ind = 0;
4812 
4813 	sp->pf = sctp_get_pf_specific(sk->sk_family);
4814 
4815 	/* Control variables for partial data delivery. */
4816 	atomic_set(&sp->pd_mode, 0);
4817 	skb_queue_head_init(&sp->pd_lobby);
4818 	sp->frag_interleave = 0;
4819 
4820 	/* Create a per socket endpoint structure.  Even if we
4821 	 * change the data structure relationships, this may still
4822 	 * be useful for storing pre-connect address information.
4823 	 */
4824 	sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
4825 	if (!sp->ep)
4826 		return -ENOMEM;
4827 
4828 	sp->hmac = NULL;
4829 
4830 	sk->sk_destruct = sctp_destruct_sock;
4831 
4832 	SCTP_DBG_OBJCNT_INC(sock);
4833 
4834 	local_bh_disable();
4835 	sk_sockets_allocated_inc(sk);
4836 	sock_prot_inuse_add(net, sk->sk_prot, 1);
4837 
4838 	/* Nothing can fail after this block, otherwise
4839 	 * sctp_destroy_sock() will be called without addr_wq_lock held
4840 	 */
4841 	if (net->sctp.default_auto_asconf) {
4842 		spin_lock(&sock_net(sk)->sctp.addr_wq_lock);
4843 		list_add_tail(&sp->auto_asconf_list,
4844 		    &net->sctp.auto_asconf_splist);
4845 		sp->do_auto_asconf = 1;
4846 		spin_unlock(&sock_net(sk)->sctp.addr_wq_lock);
4847 	} else {
4848 		sp->do_auto_asconf = 0;
4849 	}
4850 
4851 	local_bh_enable();
4852 
4853 	return 0;
4854 }
4855 
4856 /* Cleanup any SCTP per socket resources. Must be called with
4857  * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
4858  */
4859 static void sctp_destroy_sock(struct sock *sk)
4860 {
4861 	struct sctp_sock *sp;
4862 
4863 	pr_debug("%s: sk:%p\n", __func__, sk);
4864 
4865 	/* Release our hold on the endpoint. */
4866 	sp = sctp_sk(sk);
4867 	/* This could happen during socket init, thus we bail out
4868 	 * early, since the rest of the below is not setup either.
4869 	 */
4870 	if (sp->ep == NULL)
4871 		return;
4872 
4873 	if (sp->do_auto_asconf) {
4874 		sp->do_auto_asconf = 0;
4875 		list_del(&sp->auto_asconf_list);
4876 	}
4877 	sctp_endpoint_free(sp->ep);
4878 	local_bh_disable();
4879 	sk_sockets_allocated_dec(sk);
4880 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
4881 	local_bh_enable();
4882 }
4883 
4884 /* Triggered when there are no references on the socket anymore */
4885 static void sctp_destruct_sock(struct sock *sk)
4886 {
4887 	struct sctp_sock *sp = sctp_sk(sk);
4888 
4889 	/* Free up the HMAC transform. */
4890 	crypto_free_shash(sp->hmac);
4891 
4892 	inet_sock_destruct(sk);
4893 }
4894 
4895 /* API 4.1.7 shutdown() - TCP Style Syntax
4896  *     int shutdown(int socket, int how);
4897  *
4898  *     sd      - the socket descriptor of the association to be closed.
4899  *     how     - Specifies the type of shutdown.  The  values  are
4900  *               as follows:
4901  *               SHUT_RD
4902  *                     Disables further receive operations. No SCTP
4903  *                     protocol action is taken.
4904  *               SHUT_WR
4905  *                     Disables further send operations, and initiates
4906  *                     the SCTP shutdown sequence.
4907  *               SHUT_RDWR
4908  *                     Disables further send  and  receive  operations
4909  *                     and initiates the SCTP shutdown sequence.
4910  */
4911 static void sctp_shutdown(struct sock *sk, int how)
4912 {
4913 	struct net *net = sock_net(sk);
4914 	struct sctp_endpoint *ep;
4915 
4916 	if (!sctp_style(sk, TCP))
4917 		return;
4918 
4919 	ep = sctp_sk(sk)->ep;
4920 	if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) {
4921 		struct sctp_association *asoc;
4922 
4923 		inet_sk_set_state(sk, SCTP_SS_CLOSING);
4924 		asoc = list_entry(ep->asocs.next,
4925 				  struct sctp_association, asocs);
4926 		sctp_primitive_SHUTDOWN(net, asoc, NULL);
4927 	}
4928 }
4929 
4930 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc,
4931 		       struct sctp_info *info)
4932 {
4933 	struct sctp_transport *prim;
4934 	struct list_head *pos;
4935 	int mask;
4936 
4937 	memset(info, 0, sizeof(*info));
4938 	if (!asoc) {
4939 		struct sctp_sock *sp = sctp_sk(sk);
4940 
4941 		info->sctpi_s_autoclose = sp->autoclose;
4942 		info->sctpi_s_adaptation_ind = sp->adaptation_ind;
4943 		info->sctpi_s_pd_point = sp->pd_point;
4944 		info->sctpi_s_nodelay = sp->nodelay;
4945 		info->sctpi_s_disable_fragments = sp->disable_fragments;
4946 		info->sctpi_s_v4mapped = sp->v4mapped;
4947 		info->sctpi_s_frag_interleave = sp->frag_interleave;
4948 		info->sctpi_s_type = sp->type;
4949 
4950 		return 0;
4951 	}
4952 
4953 	info->sctpi_tag = asoc->c.my_vtag;
4954 	info->sctpi_state = asoc->state;
4955 	info->sctpi_rwnd = asoc->a_rwnd;
4956 	info->sctpi_unackdata = asoc->unack_data;
4957 	info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4958 	info->sctpi_instrms = asoc->stream.incnt;
4959 	info->sctpi_outstrms = asoc->stream.outcnt;
4960 	list_for_each(pos, &asoc->base.inqueue.in_chunk_list)
4961 		info->sctpi_inqueue++;
4962 	list_for_each(pos, &asoc->outqueue.out_chunk_list)
4963 		info->sctpi_outqueue++;
4964 	info->sctpi_overall_error = asoc->overall_error_count;
4965 	info->sctpi_max_burst = asoc->max_burst;
4966 	info->sctpi_maxseg = asoc->frag_point;
4967 	info->sctpi_peer_rwnd = asoc->peer.rwnd;
4968 	info->sctpi_peer_tag = asoc->c.peer_vtag;
4969 
4970 	mask = asoc->peer.ecn_capable << 1;
4971 	mask = (mask | asoc->peer.ipv4_address) << 1;
4972 	mask = (mask | asoc->peer.ipv6_address) << 1;
4973 	mask = (mask | asoc->peer.hostname_address) << 1;
4974 	mask = (mask | asoc->peer.asconf_capable) << 1;
4975 	mask = (mask | asoc->peer.prsctp_capable) << 1;
4976 	mask = (mask | asoc->peer.auth_capable);
4977 	info->sctpi_peer_capable = mask;
4978 	mask = asoc->peer.sack_needed << 1;
4979 	mask = (mask | asoc->peer.sack_generation) << 1;
4980 	mask = (mask | asoc->peer.zero_window_announced);
4981 	info->sctpi_peer_sack = mask;
4982 
4983 	info->sctpi_isacks = asoc->stats.isacks;
4984 	info->sctpi_osacks = asoc->stats.osacks;
4985 	info->sctpi_opackets = asoc->stats.opackets;
4986 	info->sctpi_ipackets = asoc->stats.ipackets;
4987 	info->sctpi_rtxchunks = asoc->stats.rtxchunks;
4988 	info->sctpi_outofseqtsns = asoc->stats.outofseqtsns;
4989 	info->sctpi_idupchunks = asoc->stats.idupchunks;
4990 	info->sctpi_gapcnt = asoc->stats.gapcnt;
4991 	info->sctpi_ouodchunks = asoc->stats.ouodchunks;
4992 	info->sctpi_iuodchunks = asoc->stats.iuodchunks;
4993 	info->sctpi_oodchunks = asoc->stats.oodchunks;
4994 	info->sctpi_iodchunks = asoc->stats.iodchunks;
4995 	info->sctpi_octrlchunks = asoc->stats.octrlchunks;
4996 	info->sctpi_ictrlchunks = asoc->stats.ictrlchunks;
4997 
4998 	prim = asoc->peer.primary_path;
4999 	memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr));
5000 	info->sctpi_p_state = prim->state;
5001 	info->sctpi_p_cwnd = prim->cwnd;
5002 	info->sctpi_p_srtt = prim->srtt;
5003 	info->sctpi_p_rto = jiffies_to_msecs(prim->rto);
5004 	info->sctpi_p_hbinterval = prim->hbinterval;
5005 	info->sctpi_p_pathmaxrxt = prim->pathmaxrxt;
5006 	info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay);
5007 	info->sctpi_p_ssthresh = prim->ssthresh;
5008 	info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked;
5009 	info->sctpi_p_flight_size = prim->flight_size;
5010 	info->sctpi_p_error = prim->error_count;
5011 
5012 	return 0;
5013 }
5014 EXPORT_SYMBOL_GPL(sctp_get_sctp_info);
5015 
5016 /* use callback to avoid exporting the core structure */
5017 void sctp_transport_walk_start(struct rhashtable_iter *iter)
5018 {
5019 	rhltable_walk_enter(&sctp_transport_hashtable, iter);
5020 
5021 	rhashtable_walk_start(iter);
5022 }
5023 
5024 void sctp_transport_walk_stop(struct rhashtable_iter *iter)
5025 {
5026 	rhashtable_walk_stop(iter);
5027 	rhashtable_walk_exit(iter);
5028 }
5029 
5030 struct sctp_transport *sctp_transport_get_next(struct net *net,
5031 					       struct rhashtable_iter *iter)
5032 {
5033 	struct sctp_transport *t;
5034 
5035 	t = rhashtable_walk_next(iter);
5036 	for (; t; t = rhashtable_walk_next(iter)) {
5037 		if (IS_ERR(t)) {
5038 			if (PTR_ERR(t) == -EAGAIN)
5039 				continue;
5040 			break;
5041 		}
5042 
5043 		if (!sctp_transport_hold(t))
5044 			continue;
5045 
5046 		if (net_eq(sock_net(t->asoc->base.sk), net) &&
5047 		    t->asoc->peer.primary_path == t)
5048 			break;
5049 
5050 		sctp_transport_put(t);
5051 	}
5052 
5053 	return t;
5054 }
5055 
5056 struct sctp_transport *sctp_transport_get_idx(struct net *net,
5057 					      struct rhashtable_iter *iter,
5058 					      int pos)
5059 {
5060 	struct sctp_transport *t;
5061 
5062 	if (!pos)
5063 		return SEQ_START_TOKEN;
5064 
5065 	while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) {
5066 		if (!--pos)
5067 			break;
5068 		sctp_transport_put(t);
5069 	}
5070 
5071 	return t;
5072 }
5073 
5074 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *),
5075 			   void *p) {
5076 	int err = 0;
5077 	int hash = 0;
5078 	struct sctp_ep_common *epb;
5079 	struct sctp_hashbucket *head;
5080 
5081 	for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize;
5082 	     hash++, head++) {
5083 		read_lock_bh(&head->lock);
5084 		sctp_for_each_hentry(epb, &head->chain) {
5085 			err = cb(sctp_ep(epb), p);
5086 			if (err)
5087 				break;
5088 		}
5089 		read_unlock_bh(&head->lock);
5090 	}
5091 
5092 	return err;
5093 }
5094 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint);
5095 
5096 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *),
5097 				  struct net *net,
5098 				  const union sctp_addr *laddr,
5099 				  const union sctp_addr *paddr, void *p)
5100 {
5101 	struct sctp_transport *transport;
5102 	int err;
5103 
5104 	rcu_read_lock();
5105 	transport = sctp_addrs_lookup_transport(net, laddr, paddr);
5106 	rcu_read_unlock();
5107 	if (!transport)
5108 		return -ENOENT;
5109 
5110 	err = cb(transport, p);
5111 	sctp_transport_put(transport);
5112 
5113 	return err;
5114 }
5115 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process);
5116 
5117 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *),
5118 			    int (*cb_done)(struct sctp_transport *, void *),
5119 			    struct net *net, int *pos, void *p) {
5120 	struct rhashtable_iter hti;
5121 	struct sctp_transport *tsp;
5122 	int ret;
5123 
5124 again:
5125 	ret = 0;
5126 	sctp_transport_walk_start(&hti);
5127 
5128 	tsp = sctp_transport_get_idx(net, &hti, *pos + 1);
5129 	for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) {
5130 		ret = cb(tsp, p);
5131 		if (ret)
5132 			break;
5133 		(*pos)++;
5134 		sctp_transport_put(tsp);
5135 	}
5136 	sctp_transport_walk_stop(&hti);
5137 
5138 	if (ret) {
5139 		if (cb_done && !cb_done(tsp, p)) {
5140 			(*pos)++;
5141 			sctp_transport_put(tsp);
5142 			goto again;
5143 		}
5144 		sctp_transport_put(tsp);
5145 	}
5146 
5147 	return ret;
5148 }
5149 EXPORT_SYMBOL_GPL(sctp_for_each_transport);
5150 
5151 /* 7.2.1 Association Status (SCTP_STATUS)
5152 
5153  * Applications can retrieve current status information about an
5154  * association, including association state, peer receiver window size,
5155  * number of unacked data chunks, and number of data chunks pending
5156  * receipt.  This information is read-only.
5157  */
5158 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
5159 				       char __user *optval,
5160 				       int __user *optlen)
5161 {
5162 	struct sctp_status status;
5163 	struct sctp_association *asoc = NULL;
5164 	struct sctp_transport *transport;
5165 	sctp_assoc_t associd;
5166 	int retval = 0;
5167 
5168 	if (len < sizeof(status)) {
5169 		retval = -EINVAL;
5170 		goto out;
5171 	}
5172 
5173 	len = sizeof(status);
5174 	if (copy_from_user(&status, optval, len)) {
5175 		retval = -EFAULT;
5176 		goto out;
5177 	}
5178 
5179 	associd = status.sstat_assoc_id;
5180 	asoc = sctp_id2assoc(sk, associd);
5181 	if (!asoc) {
5182 		retval = -EINVAL;
5183 		goto out;
5184 	}
5185 
5186 	transport = asoc->peer.primary_path;
5187 
5188 	status.sstat_assoc_id = sctp_assoc2id(asoc);
5189 	status.sstat_state = sctp_assoc_to_state(asoc);
5190 	status.sstat_rwnd =  asoc->peer.rwnd;
5191 	status.sstat_unackdata = asoc->unack_data;
5192 
5193 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5194 	status.sstat_instrms = asoc->stream.incnt;
5195 	status.sstat_outstrms = asoc->stream.outcnt;
5196 	status.sstat_fragmentation_point = asoc->frag_point;
5197 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5198 	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
5199 			transport->af_specific->sockaddr_len);
5200 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
5201 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
5202 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
5203 	status.sstat_primary.spinfo_state = transport->state;
5204 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
5205 	status.sstat_primary.spinfo_srtt = transport->srtt;
5206 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
5207 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
5208 
5209 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
5210 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
5211 
5212 	if (put_user(len, optlen)) {
5213 		retval = -EFAULT;
5214 		goto out;
5215 	}
5216 
5217 	pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
5218 		 __func__, len, status.sstat_state, status.sstat_rwnd,
5219 		 status.sstat_assoc_id);
5220 
5221 	if (copy_to_user(optval, &status, len)) {
5222 		retval = -EFAULT;
5223 		goto out;
5224 	}
5225 
5226 out:
5227 	return retval;
5228 }
5229 
5230 
5231 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
5232  *
5233  * Applications can retrieve information about a specific peer address
5234  * of an association, including its reachability state, congestion
5235  * window, and retransmission timer values.  This information is
5236  * read-only.
5237  */
5238 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
5239 					  char __user *optval,
5240 					  int __user *optlen)
5241 {
5242 	struct sctp_paddrinfo pinfo;
5243 	struct sctp_transport *transport;
5244 	int retval = 0;
5245 
5246 	if (len < sizeof(pinfo)) {
5247 		retval = -EINVAL;
5248 		goto out;
5249 	}
5250 
5251 	len = sizeof(pinfo);
5252 	if (copy_from_user(&pinfo, optval, len)) {
5253 		retval = -EFAULT;
5254 		goto out;
5255 	}
5256 
5257 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
5258 					   pinfo.spinfo_assoc_id);
5259 	if (!transport)
5260 		return -EINVAL;
5261 
5262 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5263 	pinfo.spinfo_state = transport->state;
5264 	pinfo.spinfo_cwnd = transport->cwnd;
5265 	pinfo.spinfo_srtt = transport->srtt;
5266 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
5267 	pinfo.spinfo_mtu = transport->pathmtu;
5268 
5269 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
5270 		pinfo.spinfo_state = SCTP_ACTIVE;
5271 
5272 	if (put_user(len, optlen)) {
5273 		retval = -EFAULT;
5274 		goto out;
5275 	}
5276 
5277 	if (copy_to_user(optval, &pinfo, len)) {
5278 		retval = -EFAULT;
5279 		goto out;
5280 	}
5281 
5282 out:
5283 	return retval;
5284 }
5285 
5286 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
5287  *
5288  * This option is a on/off flag.  If enabled no SCTP message
5289  * fragmentation will be performed.  Instead if a message being sent
5290  * exceeds the current PMTU size, the message will NOT be sent and
5291  * instead a error will be indicated to the user.
5292  */
5293 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
5294 					char __user *optval, int __user *optlen)
5295 {
5296 	int val;
5297 
5298 	if (len < sizeof(int))
5299 		return -EINVAL;
5300 
5301 	len = sizeof(int);
5302 	val = (sctp_sk(sk)->disable_fragments == 1);
5303 	if (put_user(len, optlen))
5304 		return -EFAULT;
5305 	if (copy_to_user(optval, &val, len))
5306 		return -EFAULT;
5307 	return 0;
5308 }
5309 
5310 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
5311  *
5312  * This socket option is used to specify various notifications and
5313  * ancillary data the user wishes to receive.
5314  */
5315 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
5316 				  int __user *optlen)
5317 {
5318 	struct sctp_event_subscribe subscribe;
5319 	__u8 *sn_type = (__u8 *)&subscribe;
5320 	int i;
5321 
5322 	if (len == 0)
5323 		return -EINVAL;
5324 	if (len > sizeof(struct sctp_event_subscribe))
5325 		len = sizeof(struct sctp_event_subscribe);
5326 	if (put_user(len, optlen))
5327 		return -EFAULT;
5328 
5329 	for (i = 0; i < len; i++)
5330 		sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe,
5331 							SCTP_SN_TYPE_BASE + i);
5332 
5333 	if (copy_to_user(optval, &subscribe, len))
5334 		return -EFAULT;
5335 
5336 	return 0;
5337 }
5338 
5339 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
5340  *
5341  * This socket option is applicable to the UDP-style socket only.  When
5342  * set it will cause associations that are idle for more than the
5343  * specified number of seconds to automatically close.  An association
5344  * being idle is defined an association that has NOT sent or received
5345  * user data.  The special value of '0' indicates that no automatic
5346  * close of any associations should be performed.  The option expects an
5347  * integer defining the number of seconds of idle time before an
5348  * association is closed.
5349  */
5350 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
5351 {
5352 	/* Applicable to UDP-style socket only */
5353 	if (sctp_style(sk, TCP))
5354 		return -EOPNOTSUPP;
5355 	if (len < sizeof(int))
5356 		return -EINVAL;
5357 	len = sizeof(int);
5358 	if (put_user(len, optlen))
5359 		return -EFAULT;
5360 	if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval))
5361 		return -EFAULT;
5362 	return 0;
5363 }
5364 
5365 /* Helper routine to branch off an association to a new socket.  */
5366 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
5367 {
5368 	struct sctp_association *asoc = sctp_id2assoc(sk, id);
5369 	struct sctp_sock *sp = sctp_sk(sk);
5370 	struct socket *sock;
5371 	int err = 0;
5372 
5373 	/* Do not peel off from one netns to another one. */
5374 	if (!net_eq(current->nsproxy->net_ns, sock_net(sk)))
5375 		return -EINVAL;
5376 
5377 	if (!asoc)
5378 		return -EINVAL;
5379 
5380 	/* An association cannot be branched off from an already peeled-off
5381 	 * socket, nor is this supported for tcp style sockets.
5382 	 */
5383 	if (!sctp_style(sk, UDP))
5384 		return -EINVAL;
5385 
5386 	/* Create a new socket.  */
5387 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
5388 	if (err < 0)
5389 		return err;
5390 
5391 	sctp_copy_sock(sock->sk, sk, asoc);
5392 
5393 	/* Make peeled-off sockets more like 1-1 accepted sockets.
5394 	 * Set the daddr and initialize id to something more random and also
5395 	 * copy over any ip options.
5396 	 */
5397 	sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk);
5398 	sp->pf->copy_ip_options(sk, sock->sk);
5399 
5400 	/* Populate the fields of the newsk from the oldsk and migrate the
5401 	 * asoc to the newsk.
5402 	 */
5403 	sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
5404 
5405 	*sockp = sock;
5406 
5407 	return err;
5408 }
5409 EXPORT_SYMBOL(sctp_do_peeloff);
5410 
5411 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff,
5412 					  struct file **newfile, unsigned flags)
5413 {
5414 	struct socket *newsock;
5415 	int retval;
5416 
5417 	retval = sctp_do_peeloff(sk, peeloff->associd, &newsock);
5418 	if (retval < 0)
5419 		goto out;
5420 
5421 	/* Map the socket to an unused fd that can be returned to the user.  */
5422 	retval = get_unused_fd_flags(flags & SOCK_CLOEXEC);
5423 	if (retval < 0) {
5424 		sock_release(newsock);
5425 		goto out;
5426 	}
5427 
5428 	*newfile = sock_alloc_file(newsock, 0, NULL);
5429 	if (IS_ERR(*newfile)) {
5430 		put_unused_fd(retval);
5431 		retval = PTR_ERR(*newfile);
5432 		*newfile = NULL;
5433 		return retval;
5434 	}
5435 
5436 	pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
5437 		 retval);
5438 
5439 	peeloff->sd = retval;
5440 
5441 	if (flags & SOCK_NONBLOCK)
5442 		(*newfile)->f_flags |= O_NONBLOCK;
5443 out:
5444 	return retval;
5445 }
5446 
5447 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
5448 {
5449 	sctp_peeloff_arg_t peeloff;
5450 	struct file *newfile = NULL;
5451 	int retval = 0;
5452 
5453 	if (len < sizeof(sctp_peeloff_arg_t))
5454 		return -EINVAL;
5455 	len = sizeof(sctp_peeloff_arg_t);
5456 	if (copy_from_user(&peeloff, optval, len))
5457 		return -EFAULT;
5458 
5459 	retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0);
5460 	if (retval < 0)
5461 		goto out;
5462 
5463 	/* Return the fd mapped to the new socket.  */
5464 	if (put_user(len, optlen)) {
5465 		fput(newfile);
5466 		put_unused_fd(retval);
5467 		return -EFAULT;
5468 	}
5469 
5470 	if (copy_to_user(optval, &peeloff, len)) {
5471 		fput(newfile);
5472 		put_unused_fd(retval);
5473 		return -EFAULT;
5474 	}
5475 	fd_install(retval, newfile);
5476 out:
5477 	return retval;
5478 }
5479 
5480 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len,
5481 					 char __user *optval, int __user *optlen)
5482 {
5483 	sctp_peeloff_flags_arg_t peeloff;
5484 	struct file *newfile = NULL;
5485 	int retval = 0;
5486 
5487 	if (len < sizeof(sctp_peeloff_flags_arg_t))
5488 		return -EINVAL;
5489 	len = sizeof(sctp_peeloff_flags_arg_t);
5490 	if (copy_from_user(&peeloff, optval, len))
5491 		return -EFAULT;
5492 
5493 	retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg,
5494 						&newfile, peeloff.flags);
5495 	if (retval < 0)
5496 		goto out;
5497 
5498 	/* Return the fd mapped to the new socket.  */
5499 	if (put_user(len, optlen)) {
5500 		fput(newfile);
5501 		put_unused_fd(retval);
5502 		return -EFAULT;
5503 	}
5504 
5505 	if (copy_to_user(optval, &peeloff, len)) {
5506 		fput(newfile);
5507 		put_unused_fd(retval);
5508 		return -EFAULT;
5509 	}
5510 	fd_install(retval, newfile);
5511 out:
5512 	return retval;
5513 }
5514 
5515 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
5516  *
5517  * Applications can enable or disable heartbeats for any peer address of
5518  * an association, modify an address's heartbeat interval, force a
5519  * heartbeat to be sent immediately, and adjust the address's maximum
5520  * number of retransmissions sent before an address is considered
5521  * unreachable.  The following structure is used to access and modify an
5522  * address's parameters:
5523  *
5524  *  struct sctp_paddrparams {
5525  *     sctp_assoc_t            spp_assoc_id;
5526  *     struct sockaddr_storage spp_address;
5527  *     uint32_t                spp_hbinterval;
5528  *     uint16_t                spp_pathmaxrxt;
5529  *     uint32_t                spp_pathmtu;
5530  *     uint32_t                spp_sackdelay;
5531  *     uint32_t                spp_flags;
5532  * };
5533  *
5534  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
5535  *                     application, and identifies the association for
5536  *                     this query.
5537  *   spp_address     - This specifies which address is of interest.
5538  *   spp_hbinterval  - This contains the value of the heartbeat interval,
5539  *                     in milliseconds.  If a  value of zero
5540  *                     is present in this field then no changes are to
5541  *                     be made to this parameter.
5542  *   spp_pathmaxrxt  - This contains the maximum number of
5543  *                     retransmissions before this address shall be
5544  *                     considered unreachable. If a  value of zero
5545  *                     is present in this field then no changes are to
5546  *                     be made to this parameter.
5547  *   spp_pathmtu     - When Path MTU discovery is disabled the value
5548  *                     specified here will be the "fixed" path mtu.
5549  *                     Note that if the spp_address field is empty
5550  *                     then all associations on this address will
5551  *                     have this fixed path mtu set upon them.
5552  *
5553  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
5554  *                     the number of milliseconds that sacks will be delayed
5555  *                     for. This value will apply to all addresses of an
5556  *                     association if the spp_address field is empty. Note
5557  *                     also, that if delayed sack is enabled and this
5558  *                     value is set to 0, no change is made to the last
5559  *                     recorded delayed sack timer value.
5560  *
5561  *   spp_flags       - These flags are used to control various features
5562  *                     on an association. The flag field may contain
5563  *                     zero or more of the following options.
5564  *
5565  *                     SPP_HB_ENABLE  - Enable heartbeats on the
5566  *                     specified address. Note that if the address
5567  *                     field is empty all addresses for the association
5568  *                     have heartbeats enabled upon them.
5569  *
5570  *                     SPP_HB_DISABLE - Disable heartbeats on the
5571  *                     speicifed address. Note that if the address
5572  *                     field is empty all addresses for the association
5573  *                     will have their heartbeats disabled. Note also
5574  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
5575  *                     mutually exclusive, only one of these two should
5576  *                     be specified. Enabling both fields will have
5577  *                     undetermined results.
5578  *
5579  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
5580  *                     to be made immediately.
5581  *
5582  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
5583  *                     discovery upon the specified address. Note that
5584  *                     if the address feild is empty then all addresses
5585  *                     on the association are effected.
5586  *
5587  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
5588  *                     discovery upon the specified address. Note that
5589  *                     if the address feild is empty then all addresses
5590  *                     on the association are effected. Not also that
5591  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
5592  *                     exclusive. Enabling both will have undetermined
5593  *                     results.
5594  *
5595  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
5596  *                     on delayed sack. The time specified in spp_sackdelay
5597  *                     is used to specify the sack delay for this address. Note
5598  *                     that if spp_address is empty then all addresses will
5599  *                     enable delayed sack and take on the sack delay
5600  *                     value specified in spp_sackdelay.
5601  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
5602  *                     off delayed sack. If the spp_address field is blank then
5603  *                     delayed sack is disabled for the entire association. Note
5604  *                     also that this field is mutually exclusive to
5605  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
5606  *                     results.
5607  *
5608  *                     SPP_IPV6_FLOWLABEL:  Setting this flag enables the
5609  *                     setting of the IPV6 flow label value.  The value is
5610  *                     contained in the spp_ipv6_flowlabel field.
5611  *                     Upon retrieval, this flag will be set to indicate that
5612  *                     the spp_ipv6_flowlabel field has a valid value returned.
5613  *                     If a specific destination address is set (in the
5614  *                     spp_address field), then the value returned is that of
5615  *                     the address.  If just an association is specified (and
5616  *                     no address), then the association's default flow label
5617  *                     is returned.  If neither an association nor a destination
5618  *                     is specified, then the socket's default flow label is
5619  *                     returned.  For non-IPv6 sockets, this flag will be left
5620  *                     cleared.
5621  *
5622  *                     SPP_DSCP:  Setting this flag enables the setting of the
5623  *                     Differentiated Services Code Point (DSCP) value
5624  *                     associated with either the association or a specific
5625  *                     address.  The value is obtained in the spp_dscp field.
5626  *                     Upon retrieval, this flag will be set to indicate that
5627  *                     the spp_dscp field has a valid value returned.  If a
5628  *                     specific destination address is set when called (in the
5629  *                     spp_address field), then that specific destination
5630  *                     address's DSCP value is returned.  If just an association
5631  *                     is specified, then the association's default DSCP is
5632  *                     returned.  If neither an association nor a destination is
5633  *                     specified, then the socket's default DSCP is returned.
5634  *
5635  *   spp_ipv6_flowlabel
5636  *                   - This field is used in conjunction with the
5637  *                     SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
5638  *                     The 20 least significant bits are used for the flow
5639  *                     label.  This setting has precedence over any IPv6-layer
5640  *                     setting.
5641  *
5642  *   spp_dscp        - This field is used in conjunction with the SPP_DSCP flag
5643  *                     and contains the DSCP.  The 6 most significant bits are
5644  *                     used for the DSCP.  This setting has precedence over any
5645  *                     IPv4- or IPv6- layer setting.
5646  */
5647 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
5648 					    char __user *optval, int __user *optlen)
5649 {
5650 	struct sctp_paddrparams  params;
5651 	struct sctp_transport   *trans = NULL;
5652 	struct sctp_association *asoc = NULL;
5653 	struct sctp_sock        *sp = sctp_sk(sk);
5654 
5655 	if (len >= sizeof(params))
5656 		len = sizeof(params);
5657 	else if (len >= ALIGN(offsetof(struct sctp_paddrparams,
5658 				       spp_ipv6_flowlabel), 4))
5659 		len = ALIGN(offsetof(struct sctp_paddrparams,
5660 				     spp_ipv6_flowlabel), 4);
5661 	else
5662 		return -EINVAL;
5663 
5664 	if (copy_from_user(&params, optval, len))
5665 		return -EFAULT;
5666 
5667 	/* If an address other than INADDR_ANY is specified, and
5668 	 * no transport is found, then the request is invalid.
5669 	 */
5670 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
5671 		trans = sctp_addr_id2transport(sk, &params.spp_address,
5672 					       params.spp_assoc_id);
5673 		if (!trans) {
5674 			pr_debug("%s: failed no transport\n", __func__);
5675 			return -EINVAL;
5676 		}
5677 	}
5678 
5679 	/* Get association, if assoc_id != 0 and the socket is a one
5680 	 * to many style socket, and an association was not found, then
5681 	 * the id was invalid.
5682 	 */
5683 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
5684 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
5685 		pr_debug("%s: failed no association\n", __func__);
5686 		return -EINVAL;
5687 	}
5688 
5689 	if (trans) {
5690 		/* Fetch transport values. */
5691 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
5692 		params.spp_pathmtu    = trans->pathmtu;
5693 		params.spp_pathmaxrxt = trans->pathmaxrxt;
5694 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
5695 
5696 		/*draft-11 doesn't say what to return in spp_flags*/
5697 		params.spp_flags      = trans->param_flags;
5698 		if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5699 			params.spp_ipv6_flowlabel = trans->flowlabel &
5700 						    SCTP_FLOWLABEL_VAL_MASK;
5701 			params.spp_flags |= SPP_IPV6_FLOWLABEL;
5702 		}
5703 		if (trans->dscp & SCTP_DSCP_SET_MASK) {
5704 			params.spp_dscp	= trans->dscp & SCTP_DSCP_VAL_MASK;
5705 			params.spp_flags |= SPP_DSCP;
5706 		}
5707 	} else if (asoc) {
5708 		/* Fetch association values. */
5709 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
5710 		params.spp_pathmtu    = asoc->pathmtu;
5711 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
5712 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
5713 
5714 		/*draft-11 doesn't say what to return in spp_flags*/
5715 		params.spp_flags      = asoc->param_flags;
5716 		if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5717 			params.spp_ipv6_flowlabel = asoc->flowlabel &
5718 						    SCTP_FLOWLABEL_VAL_MASK;
5719 			params.spp_flags |= SPP_IPV6_FLOWLABEL;
5720 		}
5721 		if (asoc->dscp & SCTP_DSCP_SET_MASK) {
5722 			params.spp_dscp	= asoc->dscp & SCTP_DSCP_VAL_MASK;
5723 			params.spp_flags |= SPP_DSCP;
5724 		}
5725 	} else {
5726 		/* Fetch socket values. */
5727 		params.spp_hbinterval = sp->hbinterval;
5728 		params.spp_pathmtu    = sp->pathmtu;
5729 		params.spp_sackdelay  = sp->sackdelay;
5730 		params.spp_pathmaxrxt = sp->pathmaxrxt;
5731 
5732 		/*draft-11 doesn't say what to return in spp_flags*/
5733 		params.spp_flags      = sp->param_flags;
5734 		if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5735 			params.spp_ipv6_flowlabel = sp->flowlabel &
5736 						    SCTP_FLOWLABEL_VAL_MASK;
5737 			params.spp_flags |= SPP_IPV6_FLOWLABEL;
5738 		}
5739 		if (sp->dscp & SCTP_DSCP_SET_MASK) {
5740 			params.spp_dscp	= sp->dscp & SCTP_DSCP_VAL_MASK;
5741 			params.spp_flags |= SPP_DSCP;
5742 		}
5743 	}
5744 
5745 	if (copy_to_user(optval, &params, len))
5746 		return -EFAULT;
5747 
5748 	if (put_user(len, optlen))
5749 		return -EFAULT;
5750 
5751 	return 0;
5752 }
5753 
5754 /*
5755  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
5756  *
5757  * This option will effect the way delayed acks are performed.  This
5758  * option allows you to get or set the delayed ack time, in
5759  * milliseconds.  It also allows changing the delayed ack frequency.
5760  * Changing the frequency to 1 disables the delayed sack algorithm.  If
5761  * the assoc_id is 0, then this sets or gets the endpoints default
5762  * values.  If the assoc_id field is non-zero, then the set or get
5763  * effects the specified association for the one to many model (the
5764  * assoc_id field is ignored by the one to one model).  Note that if
5765  * sack_delay or sack_freq are 0 when setting this option, then the
5766  * current values will remain unchanged.
5767  *
5768  * struct sctp_sack_info {
5769  *     sctp_assoc_t            sack_assoc_id;
5770  *     uint32_t                sack_delay;
5771  *     uint32_t                sack_freq;
5772  * };
5773  *
5774  * sack_assoc_id -  This parameter, indicates which association the user
5775  *    is performing an action upon.  Note that if this field's value is
5776  *    zero then the endpoints default value is changed (effecting future
5777  *    associations only).
5778  *
5779  * sack_delay -  This parameter contains the number of milliseconds that
5780  *    the user is requesting the delayed ACK timer be set to.  Note that
5781  *    this value is defined in the standard to be between 200 and 500
5782  *    milliseconds.
5783  *
5784  * sack_freq -  This parameter contains the number of packets that must
5785  *    be received before a sack is sent without waiting for the delay
5786  *    timer to expire.  The default value for this is 2, setting this
5787  *    value to 1 will disable the delayed sack algorithm.
5788  */
5789 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
5790 					    char __user *optval,
5791 					    int __user *optlen)
5792 {
5793 	struct sctp_sack_info    params;
5794 	struct sctp_association *asoc = NULL;
5795 	struct sctp_sock        *sp = sctp_sk(sk);
5796 
5797 	if (len >= sizeof(struct sctp_sack_info)) {
5798 		len = sizeof(struct sctp_sack_info);
5799 
5800 		if (copy_from_user(&params, optval, len))
5801 			return -EFAULT;
5802 	} else if (len == sizeof(struct sctp_assoc_value)) {
5803 		pr_warn_ratelimited(DEPRECATED
5804 				    "%s (pid %d) "
5805 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
5806 				    "Use struct sctp_sack_info instead\n",
5807 				    current->comm, task_pid_nr(current));
5808 		if (copy_from_user(&params, optval, len))
5809 			return -EFAULT;
5810 	} else
5811 		return -EINVAL;
5812 
5813 	/* Get association, if sack_assoc_id != 0 and the socket is a one
5814 	 * to many style socket, and an association was not found, then
5815 	 * the id was invalid.
5816 	 */
5817 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
5818 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
5819 		return -EINVAL;
5820 
5821 	if (asoc) {
5822 		/* Fetch association values. */
5823 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
5824 			params.sack_delay = jiffies_to_msecs(
5825 				asoc->sackdelay);
5826 			params.sack_freq = asoc->sackfreq;
5827 
5828 		} else {
5829 			params.sack_delay = 0;
5830 			params.sack_freq = 1;
5831 		}
5832 	} else {
5833 		/* Fetch socket values. */
5834 		if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
5835 			params.sack_delay  = sp->sackdelay;
5836 			params.sack_freq = sp->sackfreq;
5837 		} else {
5838 			params.sack_delay  = 0;
5839 			params.sack_freq = 1;
5840 		}
5841 	}
5842 
5843 	if (copy_to_user(optval, &params, len))
5844 		return -EFAULT;
5845 
5846 	if (put_user(len, optlen))
5847 		return -EFAULT;
5848 
5849 	return 0;
5850 }
5851 
5852 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
5853  *
5854  * Applications can specify protocol parameters for the default association
5855  * initialization.  The option name argument to setsockopt() and getsockopt()
5856  * is SCTP_INITMSG.
5857  *
5858  * Setting initialization parameters is effective only on an unconnected
5859  * socket (for UDP-style sockets only future associations are effected
5860  * by the change).  With TCP-style sockets, this option is inherited by
5861  * sockets derived from a listener socket.
5862  */
5863 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
5864 {
5865 	if (len < sizeof(struct sctp_initmsg))
5866 		return -EINVAL;
5867 	len = sizeof(struct sctp_initmsg);
5868 	if (put_user(len, optlen))
5869 		return -EFAULT;
5870 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
5871 		return -EFAULT;
5872 	return 0;
5873 }
5874 
5875 
5876 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
5877 				      char __user *optval, int __user *optlen)
5878 {
5879 	struct sctp_association *asoc;
5880 	int cnt = 0;
5881 	struct sctp_getaddrs getaddrs;
5882 	struct sctp_transport *from;
5883 	void __user *to;
5884 	union sctp_addr temp;
5885 	struct sctp_sock *sp = sctp_sk(sk);
5886 	int addrlen;
5887 	size_t space_left;
5888 	int bytes_copied;
5889 
5890 	if (len < sizeof(struct sctp_getaddrs))
5891 		return -EINVAL;
5892 
5893 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
5894 		return -EFAULT;
5895 
5896 	/* For UDP-style sockets, id specifies the association to query.  */
5897 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
5898 	if (!asoc)
5899 		return -EINVAL;
5900 
5901 	to = optval + offsetof(struct sctp_getaddrs, addrs);
5902 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
5903 
5904 	list_for_each_entry(from, &asoc->peer.transport_addr_list,
5905 				transports) {
5906 		memcpy(&temp, &from->ipaddr, sizeof(temp));
5907 		addrlen = sctp_get_pf_specific(sk->sk_family)
5908 			      ->addr_to_user(sp, &temp);
5909 		if (space_left < addrlen)
5910 			return -ENOMEM;
5911 		if (copy_to_user(to, &temp, addrlen))
5912 			return -EFAULT;
5913 		to += addrlen;
5914 		cnt++;
5915 		space_left -= addrlen;
5916 	}
5917 
5918 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
5919 		return -EFAULT;
5920 	bytes_copied = ((char __user *)to) - optval;
5921 	if (put_user(bytes_copied, optlen))
5922 		return -EFAULT;
5923 
5924 	return 0;
5925 }
5926 
5927 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
5928 			    size_t space_left, int *bytes_copied)
5929 {
5930 	struct sctp_sockaddr_entry *addr;
5931 	union sctp_addr temp;
5932 	int cnt = 0;
5933 	int addrlen;
5934 	struct net *net = sock_net(sk);
5935 
5936 	rcu_read_lock();
5937 	list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
5938 		if (!addr->valid)
5939 			continue;
5940 
5941 		if ((PF_INET == sk->sk_family) &&
5942 		    (AF_INET6 == addr->a.sa.sa_family))
5943 			continue;
5944 		if ((PF_INET6 == sk->sk_family) &&
5945 		    inet_v6_ipv6only(sk) &&
5946 		    (AF_INET == addr->a.sa.sa_family))
5947 			continue;
5948 		memcpy(&temp, &addr->a, sizeof(temp));
5949 		if (!temp.v4.sin_port)
5950 			temp.v4.sin_port = htons(port);
5951 
5952 		addrlen = sctp_get_pf_specific(sk->sk_family)
5953 			      ->addr_to_user(sctp_sk(sk), &temp);
5954 
5955 		if (space_left < addrlen) {
5956 			cnt =  -ENOMEM;
5957 			break;
5958 		}
5959 		memcpy(to, &temp, addrlen);
5960 
5961 		to += addrlen;
5962 		cnt++;
5963 		space_left -= addrlen;
5964 		*bytes_copied += addrlen;
5965 	}
5966 	rcu_read_unlock();
5967 
5968 	return cnt;
5969 }
5970 
5971 
5972 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
5973 				       char __user *optval, int __user *optlen)
5974 {
5975 	struct sctp_bind_addr *bp;
5976 	struct sctp_association *asoc;
5977 	int cnt = 0;
5978 	struct sctp_getaddrs getaddrs;
5979 	struct sctp_sockaddr_entry *addr;
5980 	void __user *to;
5981 	union sctp_addr temp;
5982 	struct sctp_sock *sp = sctp_sk(sk);
5983 	int addrlen;
5984 	int err = 0;
5985 	size_t space_left;
5986 	int bytes_copied = 0;
5987 	void *addrs;
5988 	void *buf;
5989 
5990 	if (len < sizeof(struct sctp_getaddrs))
5991 		return -EINVAL;
5992 
5993 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
5994 		return -EFAULT;
5995 
5996 	/*
5997 	 *  For UDP-style sockets, id specifies the association to query.
5998 	 *  If the id field is set to the value '0' then the locally bound
5999 	 *  addresses are returned without regard to any particular
6000 	 *  association.
6001 	 */
6002 	if (0 == getaddrs.assoc_id) {
6003 		bp = &sctp_sk(sk)->ep->base.bind_addr;
6004 	} else {
6005 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
6006 		if (!asoc)
6007 			return -EINVAL;
6008 		bp = &asoc->base.bind_addr;
6009 	}
6010 
6011 	to = optval + offsetof(struct sctp_getaddrs, addrs);
6012 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
6013 
6014 	addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN);
6015 	if (!addrs)
6016 		return -ENOMEM;
6017 
6018 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
6019 	 * addresses from the global local address list.
6020 	 */
6021 	if (sctp_list_single_entry(&bp->address_list)) {
6022 		addr = list_entry(bp->address_list.next,
6023 				  struct sctp_sockaddr_entry, list);
6024 		if (sctp_is_any(sk, &addr->a)) {
6025 			cnt = sctp_copy_laddrs(sk, bp->port, addrs,
6026 						space_left, &bytes_copied);
6027 			if (cnt < 0) {
6028 				err = cnt;
6029 				goto out;
6030 			}
6031 			goto copy_getaddrs;
6032 		}
6033 	}
6034 
6035 	buf = addrs;
6036 	/* Protection on the bound address list is not needed since
6037 	 * in the socket option context we hold a socket lock and
6038 	 * thus the bound address list can't change.
6039 	 */
6040 	list_for_each_entry(addr, &bp->address_list, list) {
6041 		memcpy(&temp, &addr->a, sizeof(temp));
6042 		addrlen = sctp_get_pf_specific(sk->sk_family)
6043 			      ->addr_to_user(sp, &temp);
6044 		if (space_left < addrlen) {
6045 			err =  -ENOMEM; /*fixme: right error?*/
6046 			goto out;
6047 		}
6048 		memcpy(buf, &temp, addrlen);
6049 		buf += addrlen;
6050 		bytes_copied += addrlen;
6051 		cnt++;
6052 		space_left -= addrlen;
6053 	}
6054 
6055 copy_getaddrs:
6056 	if (copy_to_user(to, addrs, bytes_copied)) {
6057 		err = -EFAULT;
6058 		goto out;
6059 	}
6060 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
6061 		err = -EFAULT;
6062 		goto out;
6063 	}
6064 	/* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too,
6065 	 * but we can't change it anymore.
6066 	 */
6067 	if (put_user(bytes_copied, optlen))
6068 		err = -EFAULT;
6069 out:
6070 	kfree(addrs);
6071 	return err;
6072 }
6073 
6074 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
6075  *
6076  * Requests that the local SCTP stack use the enclosed peer address as
6077  * the association primary.  The enclosed address must be one of the
6078  * association peer's addresses.
6079  */
6080 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
6081 					char __user *optval, int __user *optlen)
6082 {
6083 	struct sctp_prim prim;
6084 	struct sctp_association *asoc;
6085 	struct sctp_sock *sp = sctp_sk(sk);
6086 
6087 	if (len < sizeof(struct sctp_prim))
6088 		return -EINVAL;
6089 
6090 	len = sizeof(struct sctp_prim);
6091 
6092 	if (copy_from_user(&prim, optval, len))
6093 		return -EFAULT;
6094 
6095 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
6096 	if (!asoc)
6097 		return -EINVAL;
6098 
6099 	if (!asoc->peer.primary_path)
6100 		return -ENOTCONN;
6101 
6102 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
6103 		asoc->peer.primary_path->af_specific->sockaddr_len);
6104 
6105 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
6106 			(union sctp_addr *)&prim.ssp_addr);
6107 
6108 	if (put_user(len, optlen))
6109 		return -EFAULT;
6110 	if (copy_to_user(optval, &prim, len))
6111 		return -EFAULT;
6112 
6113 	return 0;
6114 }
6115 
6116 /*
6117  * 7.1.11  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
6118  *
6119  * Requests that the local endpoint set the specified Adaptation Layer
6120  * Indication parameter for all future INIT and INIT-ACK exchanges.
6121  */
6122 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
6123 				  char __user *optval, int __user *optlen)
6124 {
6125 	struct sctp_setadaptation adaptation;
6126 
6127 	if (len < sizeof(struct sctp_setadaptation))
6128 		return -EINVAL;
6129 
6130 	len = sizeof(struct sctp_setadaptation);
6131 
6132 	adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
6133 
6134 	if (put_user(len, optlen))
6135 		return -EFAULT;
6136 	if (copy_to_user(optval, &adaptation, len))
6137 		return -EFAULT;
6138 
6139 	return 0;
6140 }
6141 
6142 /*
6143  *
6144  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
6145  *
6146  *   Applications that wish to use the sendto() system call may wish to
6147  *   specify a default set of parameters that would normally be supplied
6148  *   through the inclusion of ancillary data.  This socket option allows
6149  *   such an application to set the default sctp_sndrcvinfo structure.
6150 
6151 
6152  *   The application that wishes to use this socket option simply passes
6153  *   in to this call the sctp_sndrcvinfo structure defined in Section
6154  *   5.2.2) The input parameters accepted by this call include
6155  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
6156  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
6157  *   to this call if the caller is using the UDP model.
6158  *
6159  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
6160  */
6161 static int sctp_getsockopt_default_send_param(struct sock *sk,
6162 					int len, char __user *optval,
6163 					int __user *optlen)
6164 {
6165 	struct sctp_sock *sp = sctp_sk(sk);
6166 	struct sctp_association *asoc;
6167 	struct sctp_sndrcvinfo info;
6168 
6169 	if (len < sizeof(info))
6170 		return -EINVAL;
6171 
6172 	len = sizeof(info);
6173 
6174 	if (copy_from_user(&info, optval, len))
6175 		return -EFAULT;
6176 
6177 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
6178 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
6179 		return -EINVAL;
6180 	if (asoc) {
6181 		info.sinfo_stream = asoc->default_stream;
6182 		info.sinfo_flags = asoc->default_flags;
6183 		info.sinfo_ppid = asoc->default_ppid;
6184 		info.sinfo_context = asoc->default_context;
6185 		info.sinfo_timetolive = asoc->default_timetolive;
6186 	} else {
6187 		info.sinfo_stream = sp->default_stream;
6188 		info.sinfo_flags = sp->default_flags;
6189 		info.sinfo_ppid = sp->default_ppid;
6190 		info.sinfo_context = sp->default_context;
6191 		info.sinfo_timetolive = sp->default_timetolive;
6192 	}
6193 
6194 	if (put_user(len, optlen))
6195 		return -EFAULT;
6196 	if (copy_to_user(optval, &info, len))
6197 		return -EFAULT;
6198 
6199 	return 0;
6200 }
6201 
6202 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
6203  * (SCTP_DEFAULT_SNDINFO)
6204  */
6205 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
6206 					   char __user *optval,
6207 					   int __user *optlen)
6208 {
6209 	struct sctp_sock *sp = sctp_sk(sk);
6210 	struct sctp_association *asoc;
6211 	struct sctp_sndinfo info;
6212 
6213 	if (len < sizeof(info))
6214 		return -EINVAL;
6215 
6216 	len = sizeof(info);
6217 
6218 	if (copy_from_user(&info, optval, len))
6219 		return -EFAULT;
6220 
6221 	asoc = sctp_id2assoc(sk, info.snd_assoc_id);
6222 	if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
6223 		return -EINVAL;
6224 	if (asoc) {
6225 		info.snd_sid = asoc->default_stream;
6226 		info.snd_flags = asoc->default_flags;
6227 		info.snd_ppid = asoc->default_ppid;
6228 		info.snd_context = asoc->default_context;
6229 	} else {
6230 		info.snd_sid = sp->default_stream;
6231 		info.snd_flags = sp->default_flags;
6232 		info.snd_ppid = sp->default_ppid;
6233 		info.snd_context = sp->default_context;
6234 	}
6235 
6236 	if (put_user(len, optlen))
6237 		return -EFAULT;
6238 	if (copy_to_user(optval, &info, len))
6239 		return -EFAULT;
6240 
6241 	return 0;
6242 }
6243 
6244 /*
6245  *
6246  * 7.1.5 SCTP_NODELAY
6247  *
6248  * Turn on/off any Nagle-like algorithm.  This means that packets are
6249  * generally sent as soon as possible and no unnecessary delays are
6250  * introduced, at the cost of more packets in the network.  Expects an
6251  * integer boolean flag.
6252  */
6253 
6254 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
6255 				   char __user *optval, int __user *optlen)
6256 {
6257 	int val;
6258 
6259 	if (len < sizeof(int))
6260 		return -EINVAL;
6261 
6262 	len = sizeof(int);
6263 	val = (sctp_sk(sk)->nodelay == 1);
6264 	if (put_user(len, optlen))
6265 		return -EFAULT;
6266 	if (copy_to_user(optval, &val, len))
6267 		return -EFAULT;
6268 	return 0;
6269 }
6270 
6271 /*
6272  *
6273  * 7.1.1 SCTP_RTOINFO
6274  *
6275  * The protocol parameters used to initialize and bound retransmission
6276  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
6277  * and modify these parameters.
6278  * All parameters are time values, in milliseconds.  A value of 0, when
6279  * modifying the parameters, indicates that the current value should not
6280  * be changed.
6281  *
6282  */
6283 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
6284 				char __user *optval,
6285 				int __user *optlen) {
6286 	struct sctp_rtoinfo rtoinfo;
6287 	struct sctp_association *asoc;
6288 
6289 	if (len < sizeof (struct sctp_rtoinfo))
6290 		return -EINVAL;
6291 
6292 	len = sizeof(struct sctp_rtoinfo);
6293 
6294 	if (copy_from_user(&rtoinfo, optval, len))
6295 		return -EFAULT;
6296 
6297 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
6298 
6299 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
6300 		return -EINVAL;
6301 
6302 	/* Values corresponding to the specific association. */
6303 	if (asoc) {
6304 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
6305 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
6306 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
6307 	} else {
6308 		/* Values corresponding to the endpoint. */
6309 		struct sctp_sock *sp = sctp_sk(sk);
6310 
6311 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
6312 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
6313 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
6314 	}
6315 
6316 	if (put_user(len, optlen))
6317 		return -EFAULT;
6318 
6319 	if (copy_to_user(optval, &rtoinfo, len))
6320 		return -EFAULT;
6321 
6322 	return 0;
6323 }
6324 
6325 /*
6326  *
6327  * 7.1.2 SCTP_ASSOCINFO
6328  *
6329  * This option is used to tune the maximum retransmission attempts
6330  * of the association.
6331  * Returns an error if the new association retransmission value is
6332  * greater than the sum of the retransmission value  of the peer.
6333  * See [SCTP] for more information.
6334  *
6335  */
6336 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
6337 				     char __user *optval,
6338 				     int __user *optlen)
6339 {
6340 
6341 	struct sctp_assocparams assocparams;
6342 	struct sctp_association *asoc;
6343 	struct list_head *pos;
6344 	int cnt = 0;
6345 
6346 	if (len < sizeof (struct sctp_assocparams))
6347 		return -EINVAL;
6348 
6349 	len = sizeof(struct sctp_assocparams);
6350 
6351 	if (copy_from_user(&assocparams, optval, len))
6352 		return -EFAULT;
6353 
6354 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
6355 
6356 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
6357 		return -EINVAL;
6358 
6359 	/* Values correspoinding to the specific association */
6360 	if (asoc) {
6361 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
6362 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
6363 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
6364 		assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
6365 
6366 		list_for_each(pos, &asoc->peer.transport_addr_list) {
6367 			cnt++;
6368 		}
6369 
6370 		assocparams.sasoc_number_peer_destinations = cnt;
6371 	} else {
6372 		/* Values corresponding to the endpoint */
6373 		struct sctp_sock *sp = sctp_sk(sk);
6374 
6375 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
6376 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
6377 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
6378 		assocparams.sasoc_cookie_life =
6379 					sp->assocparams.sasoc_cookie_life;
6380 		assocparams.sasoc_number_peer_destinations =
6381 					sp->assocparams.
6382 					sasoc_number_peer_destinations;
6383 	}
6384 
6385 	if (put_user(len, optlen))
6386 		return -EFAULT;
6387 
6388 	if (copy_to_user(optval, &assocparams, len))
6389 		return -EFAULT;
6390 
6391 	return 0;
6392 }
6393 
6394 /*
6395  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
6396  *
6397  * This socket option is a boolean flag which turns on or off mapped V4
6398  * addresses.  If this option is turned on and the socket is type
6399  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
6400  * If this option is turned off, then no mapping will be done of V4
6401  * addresses and a user will receive both PF_INET6 and PF_INET type
6402  * addresses on the socket.
6403  */
6404 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
6405 				    char __user *optval, int __user *optlen)
6406 {
6407 	int val;
6408 	struct sctp_sock *sp = sctp_sk(sk);
6409 
6410 	if (len < sizeof(int))
6411 		return -EINVAL;
6412 
6413 	len = sizeof(int);
6414 	val = sp->v4mapped;
6415 	if (put_user(len, optlen))
6416 		return -EFAULT;
6417 	if (copy_to_user(optval, &val, len))
6418 		return -EFAULT;
6419 
6420 	return 0;
6421 }
6422 
6423 /*
6424  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
6425  * (chapter and verse is quoted at sctp_setsockopt_context())
6426  */
6427 static int sctp_getsockopt_context(struct sock *sk, int len,
6428 				   char __user *optval, int __user *optlen)
6429 {
6430 	struct sctp_assoc_value params;
6431 	struct sctp_sock *sp;
6432 	struct sctp_association *asoc;
6433 
6434 	if (len < sizeof(struct sctp_assoc_value))
6435 		return -EINVAL;
6436 
6437 	len = sizeof(struct sctp_assoc_value);
6438 
6439 	if (copy_from_user(&params, optval, len))
6440 		return -EFAULT;
6441 
6442 	sp = sctp_sk(sk);
6443 
6444 	if (params.assoc_id != 0) {
6445 		asoc = sctp_id2assoc(sk, params.assoc_id);
6446 		if (!asoc)
6447 			return -EINVAL;
6448 		params.assoc_value = asoc->default_rcv_context;
6449 	} else {
6450 		params.assoc_value = sp->default_rcv_context;
6451 	}
6452 
6453 	if (put_user(len, optlen))
6454 		return -EFAULT;
6455 	if (copy_to_user(optval, &params, len))
6456 		return -EFAULT;
6457 
6458 	return 0;
6459 }
6460 
6461 /*
6462  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
6463  * This option will get or set the maximum size to put in any outgoing
6464  * SCTP DATA chunk.  If a message is larger than this size it will be
6465  * fragmented by SCTP into the specified size.  Note that the underlying
6466  * SCTP implementation may fragment into smaller sized chunks when the
6467  * PMTU of the underlying association is smaller than the value set by
6468  * the user.  The default value for this option is '0' which indicates
6469  * the user is NOT limiting fragmentation and only the PMTU will effect
6470  * SCTP's choice of DATA chunk size.  Note also that values set larger
6471  * than the maximum size of an IP datagram will effectively let SCTP
6472  * control fragmentation (i.e. the same as setting this option to 0).
6473  *
6474  * The following structure is used to access and modify this parameter:
6475  *
6476  * struct sctp_assoc_value {
6477  *   sctp_assoc_t assoc_id;
6478  *   uint32_t assoc_value;
6479  * };
6480  *
6481  * assoc_id:  This parameter is ignored for one-to-one style sockets.
6482  *    For one-to-many style sockets this parameter indicates which
6483  *    association the user is performing an action upon.  Note that if
6484  *    this field's value is zero then the endpoints default value is
6485  *    changed (effecting future associations only).
6486  * assoc_value:  This parameter specifies the maximum size in bytes.
6487  */
6488 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
6489 				  char __user *optval, int __user *optlen)
6490 {
6491 	struct sctp_assoc_value params;
6492 	struct sctp_association *asoc;
6493 
6494 	if (len == sizeof(int)) {
6495 		pr_warn_ratelimited(DEPRECATED
6496 				    "%s (pid %d) "
6497 				    "Use of int in maxseg socket option.\n"
6498 				    "Use struct sctp_assoc_value instead\n",
6499 				    current->comm, task_pid_nr(current));
6500 		params.assoc_id = 0;
6501 	} else if (len >= sizeof(struct sctp_assoc_value)) {
6502 		len = sizeof(struct sctp_assoc_value);
6503 		if (copy_from_user(&params, optval, len))
6504 			return -EFAULT;
6505 	} else
6506 		return -EINVAL;
6507 
6508 	asoc = sctp_id2assoc(sk, params.assoc_id);
6509 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
6510 		return -EINVAL;
6511 
6512 	if (asoc)
6513 		params.assoc_value = asoc->frag_point;
6514 	else
6515 		params.assoc_value = sctp_sk(sk)->user_frag;
6516 
6517 	if (put_user(len, optlen))
6518 		return -EFAULT;
6519 	if (len == sizeof(int)) {
6520 		if (copy_to_user(optval, &params.assoc_value, len))
6521 			return -EFAULT;
6522 	} else {
6523 		if (copy_to_user(optval, &params, len))
6524 			return -EFAULT;
6525 	}
6526 
6527 	return 0;
6528 }
6529 
6530 /*
6531  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
6532  * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
6533  */
6534 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
6535 					       char __user *optval, int __user *optlen)
6536 {
6537 	int val;
6538 
6539 	if (len < sizeof(int))
6540 		return -EINVAL;
6541 
6542 	len = sizeof(int);
6543 
6544 	val = sctp_sk(sk)->frag_interleave;
6545 	if (put_user(len, optlen))
6546 		return -EFAULT;
6547 	if (copy_to_user(optval, &val, len))
6548 		return -EFAULT;
6549 
6550 	return 0;
6551 }
6552 
6553 /*
6554  * 7.1.25.  Set or Get the sctp partial delivery point
6555  * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
6556  */
6557 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
6558 						  char __user *optval,
6559 						  int __user *optlen)
6560 {
6561 	u32 val;
6562 
6563 	if (len < sizeof(u32))
6564 		return -EINVAL;
6565 
6566 	len = sizeof(u32);
6567 
6568 	val = sctp_sk(sk)->pd_point;
6569 	if (put_user(len, optlen))
6570 		return -EFAULT;
6571 	if (copy_to_user(optval, &val, len))
6572 		return -EFAULT;
6573 
6574 	return 0;
6575 }
6576 
6577 /*
6578  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
6579  * (chapter and verse is quoted at sctp_setsockopt_maxburst())
6580  */
6581 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
6582 				    char __user *optval,
6583 				    int __user *optlen)
6584 {
6585 	struct sctp_assoc_value params;
6586 	struct sctp_sock *sp;
6587 	struct sctp_association *asoc;
6588 
6589 	if (len == sizeof(int)) {
6590 		pr_warn_ratelimited(DEPRECATED
6591 				    "%s (pid %d) "
6592 				    "Use of int in max_burst socket option.\n"
6593 				    "Use struct sctp_assoc_value instead\n",
6594 				    current->comm, task_pid_nr(current));
6595 		params.assoc_id = 0;
6596 	} else if (len >= sizeof(struct sctp_assoc_value)) {
6597 		len = sizeof(struct sctp_assoc_value);
6598 		if (copy_from_user(&params, optval, len))
6599 			return -EFAULT;
6600 	} else
6601 		return -EINVAL;
6602 
6603 	sp = sctp_sk(sk);
6604 
6605 	if (params.assoc_id != 0) {
6606 		asoc = sctp_id2assoc(sk, params.assoc_id);
6607 		if (!asoc)
6608 			return -EINVAL;
6609 		params.assoc_value = asoc->max_burst;
6610 	} else
6611 		params.assoc_value = sp->max_burst;
6612 
6613 	if (len == sizeof(int)) {
6614 		if (copy_to_user(optval, &params.assoc_value, len))
6615 			return -EFAULT;
6616 	} else {
6617 		if (copy_to_user(optval, &params, len))
6618 			return -EFAULT;
6619 	}
6620 
6621 	return 0;
6622 
6623 }
6624 
6625 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
6626 				    char __user *optval, int __user *optlen)
6627 {
6628 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6629 	struct sctp_hmacalgo  __user *p = (void __user *)optval;
6630 	struct sctp_hmac_algo_param *hmacs;
6631 	__u16 data_len = 0;
6632 	u32 num_idents;
6633 	int i;
6634 
6635 	if (!ep->auth_enable)
6636 		return -EACCES;
6637 
6638 	hmacs = ep->auth_hmacs_list;
6639 	data_len = ntohs(hmacs->param_hdr.length) -
6640 		   sizeof(struct sctp_paramhdr);
6641 
6642 	if (len < sizeof(struct sctp_hmacalgo) + data_len)
6643 		return -EINVAL;
6644 
6645 	len = sizeof(struct sctp_hmacalgo) + data_len;
6646 	num_idents = data_len / sizeof(u16);
6647 
6648 	if (put_user(len, optlen))
6649 		return -EFAULT;
6650 	if (put_user(num_idents, &p->shmac_num_idents))
6651 		return -EFAULT;
6652 	for (i = 0; i < num_idents; i++) {
6653 		__u16 hmacid = ntohs(hmacs->hmac_ids[i]);
6654 
6655 		if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16)))
6656 			return -EFAULT;
6657 	}
6658 	return 0;
6659 }
6660 
6661 static int sctp_getsockopt_active_key(struct sock *sk, int len,
6662 				    char __user *optval, int __user *optlen)
6663 {
6664 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6665 	struct sctp_authkeyid val;
6666 	struct sctp_association *asoc;
6667 
6668 	if (!ep->auth_enable)
6669 		return -EACCES;
6670 
6671 	if (len < sizeof(struct sctp_authkeyid))
6672 		return -EINVAL;
6673 
6674 	len = sizeof(struct sctp_authkeyid);
6675 	if (copy_from_user(&val, optval, len))
6676 		return -EFAULT;
6677 
6678 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
6679 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
6680 		return -EINVAL;
6681 
6682 	if (asoc)
6683 		val.scact_keynumber = asoc->active_key_id;
6684 	else
6685 		val.scact_keynumber = ep->active_key_id;
6686 
6687 	if (put_user(len, optlen))
6688 		return -EFAULT;
6689 	if (copy_to_user(optval, &val, len))
6690 		return -EFAULT;
6691 
6692 	return 0;
6693 }
6694 
6695 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
6696 				    char __user *optval, int __user *optlen)
6697 {
6698 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6699 	struct sctp_authchunks __user *p = (void __user *)optval;
6700 	struct sctp_authchunks val;
6701 	struct sctp_association *asoc;
6702 	struct sctp_chunks_param *ch;
6703 	u32    num_chunks = 0;
6704 	char __user *to;
6705 
6706 	if (!ep->auth_enable)
6707 		return -EACCES;
6708 
6709 	if (len < sizeof(struct sctp_authchunks))
6710 		return -EINVAL;
6711 
6712 	if (copy_from_user(&val, optval, sizeof(val)))
6713 		return -EFAULT;
6714 
6715 	to = p->gauth_chunks;
6716 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6717 	if (!asoc)
6718 		return -EINVAL;
6719 
6720 	ch = asoc->peer.peer_chunks;
6721 	if (!ch)
6722 		goto num;
6723 
6724 	/* See if the user provided enough room for all the data */
6725 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
6726 	if (len < num_chunks)
6727 		return -EINVAL;
6728 
6729 	if (copy_to_user(to, ch->chunks, num_chunks))
6730 		return -EFAULT;
6731 num:
6732 	len = sizeof(struct sctp_authchunks) + num_chunks;
6733 	if (put_user(len, optlen))
6734 		return -EFAULT;
6735 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
6736 		return -EFAULT;
6737 	return 0;
6738 }
6739 
6740 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
6741 				    char __user *optval, int __user *optlen)
6742 {
6743 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6744 	struct sctp_authchunks __user *p = (void __user *)optval;
6745 	struct sctp_authchunks val;
6746 	struct sctp_association *asoc;
6747 	struct sctp_chunks_param *ch;
6748 	u32    num_chunks = 0;
6749 	char __user *to;
6750 
6751 	if (!ep->auth_enable)
6752 		return -EACCES;
6753 
6754 	if (len < sizeof(struct sctp_authchunks))
6755 		return -EINVAL;
6756 
6757 	if (copy_from_user(&val, optval, sizeof(val)))
6758 		return -EFAULT;
6759 
6760 	to = p->gauth_chunks;
6761 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6762 	if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
6763 		return -EINVAL;
6764 
6765 	if (asoc)
6766 		ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
6767 	else
6768 		ch = ep->auth_chunk_list;
6769 
6770 	if (!ch)
6771 		goto num;
6772 
6773 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
6774 	if (len < sizeof(struct sctp_authchunks) + num_chunks)
6775 		return -EINVAL;
6776 
6777 	if (copy_to_user(to, ch->chunks, num_chunks))
6778 		return -EFAULT;
6779 num:
6780 	len = sizeof(struct sctp_authchunks) + num_chunks;
6781 	if (put_user(len, optlen))
6782 		return -EFAULT;
6783 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
6784 		return -EFAULT;
6785 
6786 	return 0;
6787 }
6788 
6789 /*
6790  * 8.2.5.  Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
6791  * This option gets the current number of associations that are attached
6792  * to a one-to-many style socket.  The option value is an uint32_t.
6793  */
6794 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
6795 				    char __user *optval, int __user *optlen)
6796 {
6797 	struct sctp_sock *sp = sctp_sk(sk);
6798 	struct sctp_association *asoc;
6799 	u32 val = 0;
6800 
6801 	if (sctp_style(sk, TCP))
6802 		return -EOPNOTSUPP;
6803 
6804 	if (len < sizeof(u32))
6805 		return -EINVAL;
6806 
6807 	len = sizeof(u32);
6808 
6809 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6810 		val++;
6811 	}
6812 
6813 	if (put_user(len, optlen))
6814 		return -EFAULT;
6815 	if (copy_to_user(optval, &val, len))
6816 		return -EFAULT;
6817 
6818 	return 0;
6819 }
6820 
6821 /*
6822  * 8.1.23 SCTP_AUTO_ASCONF
6823  * See the corresponding setsockopt entry as description
6824  */
6825 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
6826 				   char __user *optval, int __user *optlen)
6827 {
6828 	int val = 0;
6829 
6830 	if (len < sizeof(int))
6831 		return -EINVAL;
6832 
6833 	len = sizeof(int);
6834 	if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
6835 		val = 1;
6836 	if (put_user(len, optlen))
6837 		return -EFAULT;
6838 	if (copy_to_user(optval, &val, len))
6839 		return -EFAULT;
6840 	return 0;
6841 }
6842 
6843 /*
6844  * 8.2.6. Get the Current Identifiers of Associations
6845  *        (SCTP_GET_ASSOC_ID_LIST)
6846  *
6847  * This option gets the current list of SCTP association identifiers of
6848  * the SCTP associations handled by a one-to-many style socket.
6849  */
6850 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
6851 				    char __user *optval, int __user *optlen)
6852 {
6853 	struct sctp_sock *sp = sctp_sk(sk);
6854 	struct sctp_association *asoc;
6855 	struct sctp_assoc_ids *ids;
6856 	u32 num = 0;
6857 
6858 	if (sctp_style(sk, TCP))
6859 		return -EOPNOTSUPP;
6860 
6861 	if (len < sizeof(struct sctp_assoc_ids))
6862 		return -EINVAL;
6863 
6864 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6865 		num++;
6866 	}
6867 
6868 	if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
6869 		return -EINVAL;
6870 
6871 	len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
6872 
6873 	ids = kmalloc(len, GFP_USER | __GFP_NOWARN);
6874 	if (unlikely(!ids))
6875 		return -ENOMEM;
6876 
6877 	ids->gaids_number_of_ids = num;
6878 	num = 0;
6879 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6880 		ids->gaids_assoc_id[num++] = asoc->assoc_id;
6881 	}
6882 
6883 	if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
6884 		kfree(ids);
6885 		return -EFAULT;
6886 	}
6887 
6888 	kfree(ids);
6889 	return 0;
6890 }
6891 
6892 /*
6893  * SCTP_PEER_ADDR_THLDS
6894  *
6895  * This option allows us to fetch the partially failed threshold for one or all
6896  * transports in an association.  See Section 6.1 of:
6897  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
6898  */
6899 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
6900 					    char __user *optval,
6901 					    int len,
6902 					    int __user *optlen)
6903 {
6904 	struct sctp_paddrthlds val;
6905 	struct sctp_transport *trans;
6906 	struct sctp_association *asoc;
6907 
6908 	if (len < sizeof(struct sctp_paddrthlds))
6909 		return -EINVAL;
6910 	len = sizeof(struct sctp_paddrthlds);
6911 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
6912 		return -EFAULT;
6913 
6914 	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
6915 		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
6916 		if (!asoc)
6917 			return -ENOENT;
6918 
6919 		val.spt_pathpfthld = asoc->pf_retrans;
6920 		val.spt_pathmaxrxt = asoc->pathmaxrxt;
6921 	} else {
6922 		trans = sctp_addr_id2transport(sk, &val.spt_address,
6923 					       val.spt_assoc_id);
6924 		if (!trans)
6925 			return -ENOENT;
6926 
6927 		val.spt_pathmaxrxt = trans->pathmaxrxt;
6928 		val.spt_pathpfthld = trans->pf_retrans;
6929 	}
6930 
6931 	if (put_user(len, optlen) || copy_to_user(optval, &val, len))
6932 		return -EFAULT;
6933 
6934 	return 0;
6935 }
6936 
6937 /*
6938  * SCTP_GET_ASSOC_STATS
6939  *
6940  * This option retrieves local per endpoint statistics. It is modeled
6941  * after OpenSolaris' implementation
6942  */
6943 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
6944 				       char __user *optval,
6945 				       int __user *optlen)
6946 {
6947 	struct sctp_assoc_stats sas;
6948 	struct sctp_association *asoc = NULL;
6949 
6950 	/* User must provide at least the assoc id */
6951 	if (len < sizeof(sctp_assoc_t))
6952 		return -EINVAL;
6953 
6954 	/* Allow the struct to grow and fill in as much as possible */
6955 	len = min_t(size_t, len, sizeof(sas));
6956 
6957 	if (copy_from_user(&sas, optval, len))
6958 		return -EFAULT;
6959 
6960 	asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
6961 	if (!asoc)
6962 		return -EINVAL;
6963 
6964 	sas.sas_rtxchunks = asoc->stats.rtxchunks;
6965 	sas.sas_gapcnt = asoc->stats.gapcnt;
6966 	sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
6967 	sas.sas_osacks = asoc->stats.osacks;
6968 	sas.sas_isacks = asoc->stats.isacks;
6969 	sas.sas_octrlchunks = asoc->stats.octrlchunks;
6970 	sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
6971 	sas.sas_oodchunks = asoc->stats.oodchunks;
6972 	sas.sas_iodchunks = asoc->stats.iodchunks;
6973 	sas.sas_ouodchunks = asoc->stats.ouodchunks;
6974 	sas.sas_iuodchunks = asoc->stats.iuodchunks;
6975 	sas.sas_idupchunks = asoc->stats.idupchunks;
6976 	sas.sas_opackets = asoc->stats.opackets;
6977 	sas.sas_ipackets = asoc->stats.ipackets;
6978 
6979 	/* New high max rto observed, will return 0 if not a single
6980 	 * RTO update took place. obs_rto_ipaddr will be bogus
6981 	 * in such a case
6982 	 */
6983 	sas.sas_maxrto = asoc->stats.max_obs_rto;
6984 	memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
6985 		sizeof(struct sockaddr_storage));
6986 
6987 	/* Mark beginning of a new observation period */
6988 	asoc->stats.max_obs_rto = asoc->rto_min;
6989 
6990 	if (put_user(len, optlen))
6991 		return -EFAULT;
6992 
6993 	pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
6994 
6995 	if (copy_to_user(optval, &sas, len))
6996 		return -EFAULT;
6997 
6998 	return 0;
6999 }
7000 
7001 static int sctp_getsockopt_recvrcvinfo(struct sock *sk,	int len,
7002 				       char __user *optval,
7003 				       int __user *optlen)
7004 {
7005 	int val = 0;
7006 
7007 	if (len < sizeof(int))
7008 		return -EINVAL;
7009 
7010 	len = sizeof(int);
7011 	if (sctp_sk(sk)->recvrcvinfo)
7012 		val = 1;
7013 	if (put_user(len, optlen))
7014 		return -EFAULT;
7015 	if (copy_to_user(optval, &val, len))
7016 		return -EFAULT;
7017 
7018 	return 0;
7019 }
7020 
7021 static int sctp_getsockopt_recvnxtinfo(struct sock *sk,	int len,
7022 				       char __user *optval,
7023 				       int __user *optlen)
7024 {
7025 	int val = 0;
7026 
7027 	if (len < sizeof(int))
7028 		return -EINVAL;
7029 
7030 	len = sizeof(int);
7031 	if (sctp_sk(sk)->recvnxtinfo)
7032 		val = 1;
7033 	if (put_user(len, optlen))
7034 		return -EFAULT;
7035 	if (copy_to_user(optval, &val, len))
7036 		return -EFAULT;
7037 
7038 	return 0;
7039 }
7040 
7041 static int sctp_getsockopt_pr_supported(struct sock *sk, int len,
7042 					char __user *optval,
7043 					int __user *optlen)
7044 {
7045 	struct sctp_assoc_value params;
7046 	struct sctp_association *asoc;
7047 	int retval = -EFAULT;
7048 
7049 	if (len < sizeof(params)) {
7050 		retval = -EINVAL;
7051 		goto out;
7052 	}
7053 
7054 	len = sizeof(params);
7055 	if (copy_from_user(&params, optval, len))
7056 		goto out;
7057 
7058 	asoc = sctp_id2assoc(sk, params.assoc_id);
7059 	if (asoc) {
7060 		params.assoc_value = asoc->prsctp_enable;
7061 	} else if (!params.assoc_id) {
7062 		struct sctp_sock *sp = sctp_sk(sk);
7063 
7064 		params.assoc_value = sp->ep->prsctp_enable;
7065 	} else {
7066 		retval = -EINVAL;
7067 		goto out;
7068 	}
7069 
7070 	if (put_user(len, optlen))
7071 		goto out;
7072 
7073 	if (copy_to_user(optval, &params, len))
7074 		goto out;
7075 
7076 	retval = 0;
7077 
7078 out:
7079 	return retval;
7080 }
7081 
7082 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len,
7083 					  char __user *optval,
7084 					  int __user *optlen)
7085 {
7086 	struct sctp_default_prinfo info;
7087 	struct sctp_association *asoc;
7088 	int retval = -EFAULT;
7089 
7090 	if (len < sizeof(info)) {
7091 		retval = -EINVAL;
7092 		goto out;
7093 	}
7094 
7095 	len = sizeof(info);
7096 	if (copy_from_user(&info, optval, len))
7097 		goto out;
7098 
7099 	asoc = sctp_id2assoc(sk, info.pr_assoc_id);
7100 	if (asoc) {
7101 		info.pr_policy = SCTP_PR_POLICY(asoc->default_flags);
7102 		info.pr_value = asoc->default_timetolive;
7103 	} else if (!info.pr_assoc_id) {
7104 		struct sctp_sock *sp = sctp_sk(sk);
7105 
7106 		info.pr_policy = SCTP_PR_POLICY(sp->default_flags);
7107 		info.pr_value = sp->default_timetolive;
7108 	} else {
7109 		retval = -EINVAL;
7110 		goto out;
7111 	}
7112 
7113 	if (put_user(len, optlen))
7114 		goto out;
7115 
7116 	if (copy_to_user(optval, &info, len))
7117 		goto out;
7118 
7119 	retval = 0;
7120 
7121 out:
7122 	return retval;
7123 }
7124 
7125 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len,
7126 					  char __user *optval,
7127 					  int __user *optlen)
7128 {
7129 	struct sctp_prstatus params;
7130 	struct sctp_association *asoc;
7131 	int policy;
7132 	int retval = -EINVAL;
7133 
7134 	if (len < sizeof(params))
7135 		goto out;
7136 
7137 	len = sizeof(params);
7138 	if (copy_from_user(&params, optval, len)) {
7139 		retval = -EFAULT;
7140 		goto out;
7141 	}
7142 
7143 	policy = params.sprstat_policy;
7144 	if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7145 	    ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7146 		goto out;
7147 
7148 	asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7149 	if (!asoc)
7150 		goto out;
7151 
7152 	if (policy == SCTP_PR_SCTP_ALL) {
7153 		params.sprstat_abandoned_unsent = 0;
7154 		params.sprstat_abandoned_sent = 0;
7155 		for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7156 			params.sprstat_abandoned_unsent +=
7157 				asoc->abandoned_unsent[policy];
7158 			params.sprstat_abandoned_sent +=
7159 				asoc->abandoned_sent[policy];
7160 		}
7161 	} else {
7162 		params.sprstat_abandoned_unsent =
7163 			asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7164 		params.sprstat_abandoned_sent =
7165 			asoc->abandoned_sent[__SCTP_PR_INDEX(policy)];
7166 	}
7167 
7168 	if (put_user(len, optlen)) {
7169 		retval = -EFAULT;
7170 		goto out;
7171 	}
7172 
7173 	if (copy_to_user(optval, &params, len)) {
7174 		retval = -EFAULT;
7175 		goto out;
7176 	}
7177 
7178 	retval = 0;
7179 
7180 out:
7181 	return retval;
7182 }
7183 
7184 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len,
7185 					   char __user *optval,
7186 					   int __user *optlen)
7187 {
7188 	struct sctp_stream_out_ext *streamoute;
7189 	struct sctp_association *asoc;
7190 	struct sctp_prstatus params;
7191 	int retval = -EINVAL;
7192 	int policy;
7193 
7194 	if (len < sizeof(params))
7195 		goto out;
7196 
7197 	len = sizeof(params);
7198 	if (copy_from_user(&params, optval, len)) {
7199 		retval = -EFAULT;
7200 		goto out;
7201 	}
7202 
7203 	policy = params.sprstat_policy;
7204 	if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7205 	    ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7206 		goto out;
7207 
7208 	asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7209 	if (!asoc || params.sprstat_sid >= asoc->stream.outcnt)
7210 		goto out;
7211 
7212 	streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext;
7213 	if (!streamoute) {
7214 		/* Not allocated yet, means all stats are 0 */
7215 		params.sprstat_abandoned_unsent = 0;
7216 		params.sprstat_abandoned_sent = 0;
7217 		retval = 0;
7218 		goto out;
7219 	}
7220 
7221 	if (policy == SCTP_PR_SCTP_ALL) {
7222 		params.sprstat_abandoned_unsent = 0;
7223 		params.sprstat_abandoned_sent = 0;
7224 		for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7225 			params.sprstat_abandoned_unsent +=
7226 				streamoute->abandoned_unsent[policy];
7227 			params.sprstat_abandoned_sent +=
7228 				streamoute->abandoned_sent[policy];
7229 		}
7230 	} else {
7231 		params.sprstat_abandoned_unsent =
7232 			streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7233 		params.sprstat_abandoned_sent =
7234 			streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)];
7235 	}
7236 
7237 	if (put_user(len, optlen) || copy_to_user(optval, &params, len)) {
7238 		retval = -EFAULT;
7239 		goto out;
7240 	}
7241 
7242 	retval = 0;
7243 
7244 out:
7245 	return retval;
7246 }
7247 
7248 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len,
7249 					      char __user *optval,
7250 					      int __user *optlen)
7251 {
7252 	struct sctp_assoc_value params;
7253 	struct sctp_association *asoc;
7254 	int retval = -EFAULT;
7255 
7256 	if (len < sizeof(params)) {
7257 		retval = -EINVAL;
7258 		goto out;
7259 	}
7260 
7261 	len = sizeof(params);
7262 	if (copy_from_user(&params, optval, len))
7263 		goto out;
7264 
7265 	asoc = sctp_id2assoc(sk, params.assoc_id);
7266 	if (asoc) {
7267 		params.assoc_value = asoc->reconf_enable;
7268 	} else if (!params.assoc_id) {
7269 		struct sctp_sock *sp = sctp_sk(sk);
7270 
7271 		params.assoc_value = sp->ep->reconf_enable;
7272 	} else {
7273 		retval = -EINVAL;
7274 		goto out;
7275 	}
7276 
7277 	if (put_user(len, optlen))
7278 		goto out;
7279 
7280 	if (copy_to_user(optval, &params, len))
7281 		goto out;
7282 
7283 	retval = 0;
7284 
7285 out:
7286 	return retval;
7287 }
7288 
7289 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len,
7290 					   char __user *optval,
7291 					   int __user *optlen)
7292 {
7293 	struct sctp_assoc_value params;
7294 	struct sctp_association *asoc;
7295 	int retval = -EFAULT;
7296 
7297 	if (len < sizeof(params)) {
7298 		retval = -EINVAL;
7299 		goto out;
7300 	}
7301 
7302 	len = sizeof(params);
7303 	if (copy_from_user(&params, optval, len))
7304 		goto out;
7305 
7306 	asoc = sctp_id2assoc(sk, params.assoc_id);
7307 	if (asoc) {
7308 		params.assoc_value = asoc->strreset_enable;
7309 	} else if (!params.assoc_id) {
7310 		struct sctp_sock *sp = sctp_sk(sk);
7311 
7312 		params.assoc_value = sp->ep->strreset_enable;
7313 	} else {
7314 		retval = -EINVAL;
7315 		goto out;
7316 	}
7317 
7318 	if (put_user(len, optlen))
7319 		goto out;
7320 
7321 	if (copy_to_user(optval, &params, len))
7322 		goto out;
7323 
7324 	retval = 0;
7325 
7326 out:
7327 	return retval;
7328 }
7329 
7330 static int sctp_getsockopt_scheduler(struct sock *sk, int len,
7331 				     char __user *optval,
7332 				     int __user *optlen)
7333 {
7334 	struct sctp_assoc_value params;
7335 	struct sctp_association *asoc;
7336 	int retval = -EFAULT;
7337 
7338 	if (len < sizeof(params)) {
7339 		retval = -EINVAL;
7340 		goto out;
7341 	}
7342 
7343 	len = sizeof(params);
7344 	if (copy_from_user(&params, optval, len))
7345 		goto out;
7346 
7347 	asoc = sctp_id2assoc(sk, params.assoc_id);
7348 	if (!asoc) {
7349 		retval = -EINVAL;
7350 		goto out;
7351 	}
7352 
7353 	params.assoc_value = sctp_sched_get_sched(asoc);
7354 
7355 	if (put_user(len, optlen))
7356 		goto out;
7357 
7358 	if (copy_to_user(optval, &params, len))
7359 		goto out;
7360 
7361 	retval = 0;
7362 
7363 out:
7364 	return retval;
7365 }
7366 
7367 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len,
7368 					   char __user *optval,
7369 					   int __user *optlen)
7370 {
7371 	struct sctp_stream_value params;
7372 	struct sctp_association *asoc;
7373 	int retval = -EFAULT;
7374 
7375 	if (len < sizeof(params)) {
7376 		retval = -EINVAL;
7377 		goto out;
7378 	}
7379 
7380 	len = sizeof(params);
7381 	if (copy_from_user(&params, optval, len))
7382 		goto out;
7383 
7384 	asoc = sctp_id2assoc(sk, params.assoc_id);
7385 	if (!asoc) {
7386 		retval = -EINVAL;
7387 		goto out;
7388 	}
7389 
7390 	retval = sctp_sched_get_value(asoc, params.stream_id,
7391 				      &params.stream_value);
7392 	if (retval)
7393 		goto out;
7394 
7395 	if (put_user(len, optlen)) {
7396 		retval = -EFAULT;
7397 		goto out;
7398 	}
7399 
7400 	if (copy_to_user(optval, &params, len)) {
7401 		retval = -EFAULT;
7402 		goto out;
7403 	}
7404 
7405 out:
7406 	return retval;
7407 }
7408 
7409 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len,
7410 						  char __user *optval,
7411 						  int __user *optlen)
7412 {
7413 	struct sctp_assoc_value params;
7414 	struct sctp_association *asoc;
7415 	int retval = -EFAULT;
7416 
7417 	if (len < sizeof(params)) {
7418 		retval = -EINVAL;
7419 		goto out;
7420 	}
7421 
7422 	len = sizeof(params);
7423 	if (copy_from_user(&params, optval, len))
7424 		goto out;
7425 
7426 	asoc = sctp_id2assoc(sk, params.assoc_id);
7427 	if (asoc) {
7428 		params.assoc_value = asoc->intl_enable;
7429 	} else if (!params.assoc_id) {
7430 		struct sctp_sock *sp = sctp_sk(sk);
7431 
7432 		params.assoc_value = sp->strm_interleave;
7433 	} else {
7434 		retval = -EINVAL;
7435 		goto out;
7436 	}
7437 
7438 	if (put_user(len, optlen))
7439 		goto out;
7440 
7441 	if (copy_to_user(optval, &params, len))
7442 		goto out;
7443 
7444 	retval = 0;
7445 
7446 out:
7447 	return retval;
7448 }
7449 
7450 static int sctp_getsockopt_reuse_port(struct sock *sk, int len,
7451 				      char __user *optval,
7452 				      int __user *optlen)
7453 {
7454 	int val;
7455 
7456 	if (len < sizeof(int))
7457 		return -EINVAL;
7458 
7459 	len = sizeof(int);
7460 	val = sctp_sk(sk)->reuse;
7461 	if (put_user(len, optlen))
7462 		return -EFAULT;
7463 
7464 	if (copy_to_user(optval, &val, len))
7465 		return -EFAULT;
7466 
7467 	return 0;
7468 }
7469 
7470 static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval,
7471 				 int __user *optlen)
7472 {
7473 	struct sctp_association *asoc;
7474 	struct sctp_event param;
7475 	__u16 subscribe;
7476 
7477 	if (len < sizeof(param))
7478 		return -EINVAL;
7479 
7480 	len = sizeof(param);
7481 	if (copy_from_user(&param, optval, len))
7482 		return -EFAULT;
7483 
7484 	if (param.se_type < SCTP_SN_TYPE_BASE ||
7485 	    param.se_type > SCTP_SN_TYPE_MAX)
7486 		return -EINVAL;
7487 
7488 	asoc = sctp_id2assoc(sk, param.se_assoc_id);
7489 	subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe;
7490 	param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type);
7491 
7492 	if (put_user(len, optlen))
7493 		return -EFAULT;
7494 
7495 	if (copy_to_user(optval, &param, len))
7496 		return -EFAULT;
7497 
7498 	return 0;
7499 }
7500 
7501 static int sctp_getsockopt(struct sock *sk, int level, int optname,
7502 			   char __user *optval, int __user *optlen)
7503 {
7504 	int retval = 0;
7505 	int len;
7506 
7507 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
7508 
7509 	/* I can hardly begin to describe how wrong this is.  This is
7510 	 * so broken as to be worse than useless.  The API draft
7511 	 * REALLY is NOT helpful here...  I am not convinced that the
7512 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
7513 	 * are at all well-founded.
7514 	 */
7515 	if (level != SOL_SCTP) {
7516 		struct sctp_af *af = sctp_sk(sk)->pf->af;
7517 
7518 		retval = af->getsockopt(sk, level, optname, optval, optlen);
7519 		return retval;
7520 	}
7521 
7522 	if (get_user(len, optlen))
7523 		return -EFAULT;
7524 
7525 	if (len < 0)
7526 		return -EINVAL;
7527 
7528 	lock_sock(sk);
7529 
7530 	switch (optname) {
7531 	case SCTP_STATUS:
7532 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
7533 		break;
7534 	case SCTP_DISABLE_FRAGMENTS:
7535 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
7536 							   optlen);
7537 		break;
7538 	case SCTP_EVENTS:
7539 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
7540 		break;
7541 	case SCTP_AUTOCLOSE:
7542 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
7543 		break;
7544 	case SCTP_SOCKOPT_PEELOFF:
7545 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
7546 		break;
7547 	case SCTP_SOCKOPT_PEELOFF_FLAGS:
7548 		retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen);
7549 		break;
7550 	case SCTP_PEER_ADDR_PARAMS:
7551 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
7552 							  optlen);
7553 		break;
7554 	case SCTP_DELAYED_SACK:
7555 		retval = sctp_getsockopt_delayed_ack(sk, len, optval,
7556 							  optlen);
7557 		break;
7558 	case SCTP_INITMSG:
7559 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
7560 		break;
7561 	case SCTP_GET_PEER_ADDRS:
7562 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
7563 						    optlen);
7564 		break;
7565 	case SCTP_GET_LOCAL_ADDRS:
7566 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
7567 						     optlen);
7568 		break;
7569 	case SCTP_SOCKOPT_CONNECTX3:
7570 		retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
7571 		break;
7572 	case SCTP_DEFAULT_SEND_PARAM:
7573 		retval = sctp_getsockopt_default_send_param(sk, len,
7574 							    optval, optlen);
7575 		break;
7576 	case SCTP_DEFAULT_SNDINFO:
7577 		retval = sctp_getsockopt_default_sndinfo(sk, len,
7578 							 optval, optlen);
7579 		break;
7580 	case SCTP_PRIMARY_ADDR:
7581 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
7582 		break;
7583 	case SCTP_NODELAY:
7584 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
7585 		break;
7586 	case SCTP_RTOINFO:
7587 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
7588 		break;
7589 	case SCTP_ASSOCINFO:
7590 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
7591 		break;
7592 	case SCTP_I_WANT_MAPPED_V4_ADDR:
7593 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
7594 		break;
7595 	case SCTP_MAXSEG:
7596 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
7597 		break;
7598 	case SCTP_GET_PEER_ADDR_INFO:
7599 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
7600 							optlen);
7601 		break;
7602 	case SCTP_ADAPTATION_LAYER:
7603 		retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
7604 							optlen);
7605 		break;
7606 	case SCTP_CONTEXT:
7607 		retval = sctp_getsockopt_context(sk, len, optval, optlen);
7608 		break;
7609 	case SCTP_FRAGMENT_INTERLEAVE:
7610 		retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
7611 							     optlen);
7612 		break;
7613 	case SCTP_PARTIAL_DELIVERY_POINT:
7614 		retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
7615 								optlen);
7616 		break;
7617 	case SCTP_MAX_BURST:
7618 		retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
7619 		break;
7620 	case SCTP_AUTH_KEY:
7621 	case SCTP_AUTH_CHUNK:
7622 	case SCTP_AUTH_DELETE_KEY:
7623 	case SCTP_AUTH_DEACTIVATE_KEY:
7624 		retval = -EOPNOTSUPP;
7625 		break;
7626 	case SCTP_HMAC_IDENT:
7627 		retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
7628 		break;
7629 	case SCTP_AUTH_ACTIVE_KEY:
7630 		retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
7631 		break;
7632 	case SCTP_PEER_AUTH_CHUNKS:
7633 		retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
7634 							optlen);
7635 		break;
7636 	case SCTP_LOCAL_AUTH_CHUNKS:
7637 		retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
7638 							optlen);
7639 		break;
7640 	case SCTP_GET_ASSOC_NUMBER:
7641 		retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
7642 		break;
7643 	case SCTP_GET_ASSOC_ID_LIST:
7644 		retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
7645 		break;
7646 	case SCTP_AUTO_ASCONF:
7647 		retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
7648 		break;
7649 	case SCTP_PEER_ADDR_THLDS:
7650 		retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
7651 		break;
7652 	case SCTP_GET_ASSOC_STATS:
7653 		retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
7654 		break;
7655 	case SCTP_RECVRCVINFO:
7656 		retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
7657 		break;
7658 	case SCTP_RECVNXTINFO:
7659 		retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
7660 		break;
7661 	case SCTP_PR_SUPPORTED:
7662 		retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen);
7663 		break;
7664 	case SCTP_DEFAULT_PRINFO:
7665 		retval = sctp_getsockopt_default_prinfo(sk, len, optval,
7666 							optlen);
7667 		break;
7668 	case SCTP_PR_ASSOC_STATUS:
7669 		retval = sctp_getsockopt_pr_assocstatus(sk, len, optval,
7670 							optlen);
7671 		break;
7672 	case SCTP_PR_STREAM_STATUS:
7673 		retval = sctp_getsockopt_pr_streamstatus(sk, len, optval,
7674 							 optlen);
7675 		break;
7676 	case SCTP_RECONFIG_SUPPORTED:
7677 		retval = sctp_getsockopt_reconfig_supported(sk, len, optval,
7678 							    optlen);
7679 		break;
7680 	case SCTP_ENABLE_STREAM_RESET:
7681 		retval = sctp_getsockopt_enable_strreset(sk, len, optval,
7682 							 optlen);
7683 		break;
7684 	case SCTP_STREAM_SCHEDULER:
7685 		retval = sctp_getsockopt_scheduler(sk, len, optval,
7686 						   optlen);
7687 		break;
7688 	case SCTP_STREAM_SCHEDULER_VALUE:
7689 		retval = sctp_getsockopt_scheduler_value(sk, len, optval,
7690 							 optlen);
7691 		break;
7692 	case SCTP_INTERLEAVING_SUPPORTED:
7693 		retval = sctp_getsockopt_interleaving_supported(sk, len, optval,
7694 								optlen);
7695 		break;
7696 	case SCTP_REUSE_PORT:
7697 		retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen);
7698 		break;
7699 	case SCTP_EVENT:
7700 		retval = sctp_getsockopt_event(sk, len, optval, optlen);
7701 		break;
7702 	default:
7703 		retval = -ENOPROTOOPT;
7704 		break;
7705 	}
7706 
7707 	release_sock(sk);
7708 	return retval;
7709 }
7710 
7711 static int sctp_hash(struct sock *sk)
7712 {
7713 	/* STUB */
7714 	return 0;
7715 }
7716 
7717 static void sctp_unhash(struct sock *sk)
7718 {
7719 	/* STUB */
7720 }
7721 
7722 /* Check if port is acceptable.  Possibly find first available port.
7723  *
7724  * The port hash table (contained in the 'global' SCTP protocol storage
7725  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
7726  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
7727  * list (the list number is the port number hashed out, so as you
7728  * would expect from a hash function, all the ports in a given list have
7729  * such a number that hashes out to the same list number; you were
7730  * expecting that, right?); so each list has a set of ports, with a
7731  * link to the socket (struct sock) that uses it, the port number and
7732  * a fastreuse flag (FIXME: NPI ipg).
7733  */
7734 static struct sctp_bind_bucket *sctp_bucket_create(
7735 	struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
7736 
7737 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
7738 {
7739 	struct sctp_sock *sp = sctp_sk(sk);
7740 	bool reuse = (sk->sk_reuse || sp->reuse);
7741 	struct sctp_bind_hashbucket *head; /* hash list */
7742 	kuid_t uid = sock_i_uid(sk);
7743 	struct sctp_bind_bucket *pp;
7744 	unsigned short snum;
7745 	int ret;
7746 
7747 	snum = ntohs(addr->v4.sin_port);
7748 
7749 	pr_debug("%s: begins, snum:%d\n", __func__, snum);
7750 
7751 	local_bh_disable();
7752 
7753 	if (snum == 0) {
7754 		/* Search for an available port. */
7755 		int low, high, remaining, index;
7756 		unsigned int rover;
7757 		struct net *net = sock_net(sk);
7758 
7759 		inet_get_local_port_range(net, &low, &high);
7760 		remaining = (high - low) + 1;
7761 		rover = prandom_u32() % remaining + low;
7762 
7763 		do {
7764 			rover++;
7765 			if ((rover < low) || (rover > high))
7766 				rover = low;
7767 			if (inet_is_local_reserved_port(net, rover))
7768 				continue;
7769 			index = sctp_phashfn(sock_net(sk), rover);
7770 			head = &sctp_port_hashtable[index];
7771 			spin_lock(&head->lock);
7772 			sctp_for_each_hentry(pp, &head->chain)
7773 				if ((pp->port == rover) &&
7774 				    net_eq(sock_net(sk), pp->net))
7775 					goto next;
7776 			break;
7777 		next:
7778 			spin_unlock(&head->lock);
7779 		} while (--remaining > 0);
7780 
7781 		/* Exhausted local port range during search? */
7782 		ret = 1;
7783 		if (remaining <= 0)
7784 			goto fail;
7785 
7786 		/* OK, here is the one we will use.  HEAD (the port
7787 		 * hash table list entry) is non-NULL and we hold it's
7788 		 * mutex.
7789 		 */
7790 		snum = rover;
7791 	} else {
7792 		/* We are given an specific port number; we verify
7793 		 * that it is not being used. If it is used, we will
7794 		 * exahust the search in the hash list corresponding
7795 		 * to the port number (snum) - we detect that with the
7796 		 * port iterator, pp being NULL.
7797 		 */
7798 		head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)];
7799 		spin_lock(&head->lock);
7800 		sctp_for_each_hentry(pp, &head->chain) {
7801 			if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
7802 				goto pp_found;
7803 		}
7804 	}
7805 	pp = NULL;
7806 	goto pp_not_found;
7807 pp_found:
7808 	if (!hlist_empty(&pp->owner)) {
7809 		/* We had a port hash table hit - there is an
7810 		 * available port (pp != NULL) and it is being
7811 		 * used by other socket (pp->owner not empty); that other
7812 		 * socket is going to be sk2.
7813 		 */
7814 		struct sock *sk2;
7815 
7816 		pr_debug("%s: found a possible match\n", __func__);
7817 
7818 		if ((pp->fastreuse && reuse &&
7819 		     sk->sk_state != SCTP_SS_LISTENING) ||
7820 		    (pp->fastreuseport && sk->sk_reuseport &&
7821 		     uid_eq(pp->fastuid, uid)))
7822 			goto success;
7823 
7824 		/* Run through the list of sockets bound to the port
7825 		 * (pp->port) [via the pointers bind_next and
7826 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
7827 		 * we get the endpoint they describe and run through
7828 		 * the endpoint's list of IP (v4 or v6) addresses,
7829 		 * comparing each of the addresses with the address of
7830 		 * the socket sk. If we find a match, then that means
7831 		 * that this port/socket (sk) combination are already
7832 		 * in an endpoint.
7833 		 */
7834 		sk_for_each_bound(sk2, &pp->owner) {
7835 			struct sctp_sock *sp2 = sctp_sk(sk2);
7836 			struct sctp_endpoint *ep2 = sp2->ep;
7837 
7838 			if (sk == sk2 ||
7839 			    (reuse && (sk2->sk_reuse || sp2->reuse) &&
7840 			     sk2->sk_state != SCTP_SS_LISTENING) ||
7841 			    (sk->sk_reuseport && sk2->sk_reuseport &&
7842 			     uid_eq(uid, sock_i_uid(sk2))))
7843 				continue;
7844 
7845 			if (sctp_bind_addr_conflict(&ep2->base.bind_addr,
7846 						    addr, sp2, sp)) {
7847 				ret = (long)sk2;
7848 				goto fail_unlock;
7849 			}
7850 		}
7851 
7852 		pr_debug("%s: found a match\n", __func__);
7853 	}
7854 pp_not_found:
7855 	/* If there was a hash table miss, create a new port.  */
7856 	ret = 1;
7857 	if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
7858 		goto fail_unlock;
7859 
7860 	/* In either case (hit or miss), make sure fastreuse is 1 only
7861 	 * if sk->sk_reuse is too (that is, if the caller requested
7862 	 * SO_REUSEADDR on this socket -sk-).
7863 	 */
7864 	if (hlist_empty(&pp->owner)) {
7865 		if (reuse && sk->sk_state != SCTP_SS_LISTENING)
7866 			pp->fastreuse = 1;
7867 		else
7868 			pp->fastreuse = 0;
7869 
7870 		if (sk->sk_reuseport) {
7871 			pp->fastreuseport = 1;
7872 			pp->fastuid = uid;
7873 		} else {
7874 			pp->fastreuseport = 0;
7875 		}
7876 	} else {
7877 		if (pp->fastreuse &&
7878 		    (!reuse || sk->sk_state == SCTP_SS_LISTENING))
7879 			pp->fastreuse = 0;
7880 
7881 		if (pp->fastreuseport &&
7882 		    (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid)))
7883 			pp->fastreuseport = 0;
7884 	}
7885 
7886 	/* We are set, so fill up all the data in the hash table
7887 	 * entry, tie the socket list information with the rest of the
7888 	 * sockets FIXME: Blurry, NPI (ipg).
7889 	 */
7890 success:
7891 	if (!sp->bind_hash) {
7892 		inet_sk(sk)->inet_num = snum;
7893 		sk_add_bind_node(sk, &pp->owner);
7894 		sp->bind_hash = pp;
7895 	}
7896 	ret = 0;
7897 
7898 fail_unlock:
7899 	spin_unlock(&head->lock);
7900 
7901 fail:
7902 	local_bh_enable();
7903 	return ret;
7904 }
7905 
7906 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
7907  * port is requested.
7908  */
7909 static int sctp_get_port(struct sock *sk, unsigned short snum)
7910 {
7911 	union sctp_addr addr;
7912 	struct sctp_af *af = sctp_sk(sk)->pf->af;
7913 
7914 	/* Set up a dummy address struct from the sk. */
7915 	af->from_sk(&addr, sk);
7916 	addr.v4.sin_port = htons(snum);
7917 
7918 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
7919 	return !!sctp_get_port_local(sk, &addr);
7920 }
7921 
7922 /*
7923  *  Move a socket to LISTENING state.
7924  */
7925 static int sctp_listen_start(struct sock *sk, int backlog)
7926 {
7927 	struct sctp_sock *sp = sctp_sk(sk);
7928 	struct sctp_endpoint *ep = sp->ep;
7929 	struct crypto_shash *tfm = NULL;
7930 	char alg[32];
7931 
7932 	/* Allocate HMAC for generating cookie. */
7933 	if (!sp->hmac && sp->sctp_hmac_alg) {
7934 		sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
7935 		tfm = crypto_alloc_shash(alg, 0, 0);
7936 		if (IS_ERR(tfm)) {
7937 			net_info_ratelimited("failed to load transform for %s: %ld\n",
7938 					     sp->sctp_hmac_alg, PTR_ERR(tfm));
7939 			return -ENOSYS;
7940 		}
7941 		sctp_sk(sk)->hmac = tfm;
7942 	}
7943 
7944 	/*
7945 	 * If a bind() or sctp_bindx() is not called prior to a listen()
7946 	 * call that allows new associations to be accepted, the system
7947 	 * picks an ephemeral port and will choose an address set equivalent
7948 	 * to binding with a wildcard address.
7949 	 *
7950 	 * This is not currently spelled out in the SCTP sockets
7951 	 * extensions draft, but follows the practice as seen in TCP
7952 	 * sockets.
7953 	 *
7954 	 */
7955 	inet_sk_set_state(sk, SCTP_SS_LISTENING);
7956 	if (!ep->base.bind_addr.port) {
7957 		if (sctp_autobind(sk))
7958 			return -EAGAIN;
7959 	} else {
7960 		if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
7961 			inet_sk_set_state(sk, SCTP_SS_CLOSED);
7962 			return -EADDRINUSE;
7963 		}
7964 	}
7965 
7966 	sk->sk_max_ack_backlog = backlog;
7967 	return sctp_hash_endpoint(ep);
7968 }
7969 
7970 /*
7971  * 4.1.3 / 5.1.3 listen()
7972  *
7973  *   By default, new associations are not accepted for UDP style sockets.
7974  *   An application uses listen() to mark a socket as being able to
7975  *   accept new associations.
7976  *
7977  *   On TCP style sockets, applications use listen() to ready the SCTP
7978  *   endpoint for accepting inbound associations.
7979  *
7980  *   On both types of endpoints a backlog of '0' disables listening.
7981  *
7982  *  Move a socket to LISTENING state.
7983  */
7984 int sctp_inet_listen(struct socket *sock, int backlog)
7985 {
7986 	struct sock *sk = sock->sk;
7987 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
7988 	int err = -EINVAL;
7989 
7990 	if (unlikely(backlog < 0))
7991 		return err;
7992 
7993 	lock_sock(sk);
7994 
7995 	/* Peeled-off sockets are not allowed to listen().  */
7996 	if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
7997 		goto out;
7998 
7999 	if (sock->state != SS_UNCONNECTED)
8000 		goto out;
8001 
8002 	if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED))
8003 		goto out;
8004 
8005 	/* If backlog is zero, disable listening. */
8006 	if (!backlog) {
8007 		if (sctp_sstate(sk, CLOSED))
8008 			goto out;
8009 
8010 		err = 0;
8011 		sctp_unhash_endpoint(ep);
8012 		sk->sk_state = SCTP_SS_CLOSED;
8013 		if (sk->sk_reuse || sctp_sk(sk)->reuse)
8014 			sctp_sk(sk)->bind_hash->fastreuse = 1;
8015 		goto out;
8016 	}
8017 
8018 	/* If we are already listening, just update the backlog */
8019 	if (sctp_sstate(sk, LISTENING))
8020 		sk->sk_max_ack_backlog = backlog;
8021 	else {
8022 		err = sctp_listen_start(sk, backlog);
8023 		if (err)
8024 			goto out;
8025 	}
8026 
8027 	err = 0;
8028 out:
8029 	release_sock(sk);
8030 	return err;
8031 }
8032 
8033 /*
8034  * This function is done by modeling the current datagram_poll() and the
8035  * tcp_poll().  Note that, based on these implementations, we don't
8036  * lock the socket in this function, even though it seems that,
8037  * ideally, locking or some other mechanisms can be used to ensure
8038  * the integrity of the counters (sndbuf and wmem_alloc) used
8039  * in this place.  We assume that we don't need locks either until proven
8040  * otherwise.
8041  *
8042  * Another thing to note is that we include the Async I/O support
8043  * here, again, by modeling the current TCP/UDP code.  We don't have
8044  * a good way to test with it yet.
8045  */
8046 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
8047 {
8048 	struct sock *sk = sock->sk;
8049 	struct sctp_sock *sp = sctp_sk(sk);
8050 	__poll_t mask;
8051 
8052 	poll_wait(file, sk_sleep(sk), wait);
8053 
8054 	sock_rps_record_flow(sk);
8055 
8056 	/* A TCP-style listening socket becomes readable when the accept queue
8057 	 * is not empty.
8058 	 */
8059 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
8060 		return (!list_empty(&sp->ep->asocs)) ?
8061 			(EPOLLIN | EPOLLRDNORM) : 0;
8062 
8063 	mask = 0;
8064 
8065 	/* Is there any exceptional events?  */
8066 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
8067 		mask |= EPOLLERR |
8068 			(sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0);
8069 	if (sk->sk_shutdown & RCV_SHUTDOWN)
8070 		mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM;
8071 	if (sk->sk_shutdown == SHUTDOWN_MASK)
8072 		mask |= EPOLLHUP;
8073 
8074 	/* Is it readable?  Reconsider this code with TCP-style support.  */
8075 	if (!skb_queue_empty(&sk->sk_receive_queue))
8076 		mask |= EPOLLIN | EPOLLRDNORM;
8077 
8078 	/* The association is either gone or not ready.  */
8079 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
8080 		return mask;
8081 
8082 	/* Is it writable?  */
8083 	if (sctp_writeable(sk)) {
8084 		mask |= EPOLLOUT | EPOLLWRNORM;
8085 	} else {
8086 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
8087 		/*
8088 		 * Since the socket is not locked, the buffer
8089 		 * might be made available after the writeable check and
8090 		 * before the bit is set.  This could cause a lost I/O
8091 		 * signal.  tcp_poll() has a race breaker for this race
8092 		 * condition.  Based on their implementation, we put
8093 		 * in the following code to cover it as well.
8094 		 */
8095 		if (sctp_writeable(sk))
8096 			mask |= EPOLLOUT | EPOLLWRNORM;
8097 	}
8098 	return mask;
8099 }
8100 
8101 /********************************************************************
8102  * 2nd Level Abstractions
8103  ********************************************************************/
8104 
8105 static struct sctp_bind_bucket *sctp_bucket_create(
8106 	struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
8107 {
8108 	struct sctp_bind_bucket *pp;
8109 
8110 	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
8111 	if (pp) {
8112 		SCTP_DBG_OBJCNT_INC(bind_bucket);
8113 		pp->port = snum;
8114 		pp->fastreuse = 0;
8115 		INIT_HLIST_HEAD(&pp->owner);
8116 		pp->net = net;
8117 		hlist_add_head(&pp->node, &head->chain);
8118 	}
8119 	return pp;
8120 }
8121 
8122 /* Caller must hold hashbucket lock for this tb with local BH disabled */
8123 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
8124 {
8125 	if (pp && hlist_empty(&pp->owner)) {
8126 		__hlist_del(&pp->node);
8127 		kmem_cache_free(sctp_bucket_cachep, pp);
8128 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
8129 	}
8130 }
8131 
8132 /* Release this socket's reference to a local port.  */
8133 static inline void __sctp_put_port(struct sock *sk)
8134 {
8135 	struct sctp_bind_hashbucket *head =
8136 		&sctp_port_hashtable[sctp_phashfn(sock_net(sk),
8137 						  inet_sk(sk)->inet_num)];
8138 	struct sctp_bind_bucket *pp;
8139 
8140 	spin_lock(&head->lock);
8141 	pp = sctp_sk(sk)->bind_hash;
8142 	__sk_del_bind_node(sk);
8143 	sctp_sk(sk)->bind_hash = NULL;
8144 	inet_sk(sk)->inet_num = 0;
8145 	sctp_bucket_destroy(pp);
8146 	spin_unlock(&head->lock);
8147 }
8148 
8149 void sctp_put_port(struct sock *sk)
8150 {
8151 	local_bh_disable();
8152 	__sctp_put_port(sk);
8153 	local_bh_enable();
8154 }
8155 
8156 /*
8157  * The system picks an ephemeral port and choose an address set equivalent
8158  * to binding with a wildcard address.
8159  * One of those addresses will be the primary address for the association.
8160  * This automatically enables the multihoming capability of SCTP.
8161  */
8162 static int sctp_autobind(struct sock *sk)
8163 {
8164 	union sctp_addr autoaddr;
8165 	struct sctp_af *af;
8166 	__be16 port;
8167 
8168 	/* Initialize a local sockaddr structure to INADDR_ANY. */
8169 	af = sctp_sk(sk)->pf->af;
8170 
8171 	port = htons(inet_sk(sk)->inet_num);
8172 	af->inaddr_any(&autoaddr, port);
8173 
8174 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
8175 }
8176 
8177 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
8178  *
8179  * From RFC 2292
8180  * 4.2 The cmsghdr Structure *
8181  *
8182  * When ancillary data is sent or received, any number of ancillary data
8183  * objects can be specified by the msg_control and msg_controllen members of
8184  * the msghdr structure, because each object is preceded by
8185  * a cmsghdr structure defining the object's length (the cmsg_len member).
8186  * Historically Berkeley-derived implementations have passed only one object
8187  * at a time, but this API allows multiple objects to be
8188  * passed in a single call to sendmsg() or recvmsg(). The following example
8189  * shows two ancillary data objects in a control buffer.
8190  *
8191  *   |<--------------------------- msg_controllen -------------------------->|
8192  *   |                                                                       |
8193  *
8194  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
8195  *
8196  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
8197  *   |                                   |                                   |
8198  *
8199  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
8200  *
8201  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
8202  *   |                                |  |                                |  |
8203  *
8204  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8205  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
8206  *
8207  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
8208  *
8209  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8210  *    ^
8211  *    |
8212  *
8213  * msg_control
8214  * points here
8215  */
8216 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs)
8217 {
8218 	struct msghdr *my_msg = (struct msghdr *)msg;
8219 	struct cmsghdr *cmsg;
8220 
8221 	for_each_cmsghdr(cmsg, my_msg) {
8222 		if (!CMSG_OK(my_msg, cmsg))
8223 			return -EINVAL;
8224 
8225 		/* Should we parse this header or ignore?  */
8226 		if (cmsg->cmsg_level != IPPROTO_SCTP)
8227 			continue;
8228 
8229 		/* Strictly check lengths following example in SCM code.  */
8230 		switch (cmsg->cmsg_type) {
8231 		case SCTP_INIT:
8232 			/* SCTP Socket API Extension
8233 			 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
8234 			 *
8235 			 * This cmsghdr structure provides information for
8236 			 * initializing new SCTP associations with sendmsg().
8237 			 * The SCTP_INITMSG socket option uses this same data
8238 			 * structure.  This structure is not used for
8239 			 * recvmsg().
8240 			 *
8241 			 * cmsg_level    cmsg_type      cmsg_data[]
8242 			 * ------------  ------------   ----------------------
8243 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
8244 			 */
8245 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
8246 				return -EINVAL;
8247 
8248 			cmsgs->init = CMSG_DATA(cmsg);
8249 			break;
8250 
8251 		case SCTP_SNDRCV:
8252 			/* SCTP Socket API Extension
8253 			 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
8254 			 *
8255 			 * This cmsghdr structure specifies SCTP options for
8256 			 * sendmsg() and describes SCTP header information
8257 			 * about a received message through recvmsg().
8258 			 *
8259 			 * cmsg_level    cmsg_type      cmsg_data[]
8260 			 * ------------  ------------   ----------------------
8261 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
8262 			 */
8263 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
8264 				return -EINVAL;
8265 
8266 			cmsgs->srinfo = CMSG_DATA(cmsg);
8267 
8268 			if (cmsgs->srinfo->sinfo_flags &
8269 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8270 			      SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8271 			      SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8272 				return -EINVAL;
8273 			break;
8274 
8275 		case SCTP_SNDINFO:
8276 			/* SCTP Socket API Extension
8277 			 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
8278 			 *
8279 			 * This cmsghdr structure specifies SCTP options for
8280 			 * sendmsg(). This structure and SCTP_RCVINFO replaces
8281 			 * SCTP_SNDRCV which has been deprecated.
8282 			 *
8283 			 * cmsg_level    cmsg_type      cmsg_data[]
8284 			 * ------------  ------------   ---------------------
8285 			 * IPPROTO_SCTP  SCTP_SNDINFO    struct sctp_sndinfo
8286 			 */
8287 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
8288 				return -EINVAL;
8289 
8290 			cmsgs->sinfo = CMSG_DATA(cmsg);
8291 
8292 			if (cmsgs->sinfo->snd_flags &
8293 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8294 			      SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8295 			      SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8296 				return -EINVAL;
8297 			break;
8298 		case SCTP_PRINFO:
8299 			/* SCTP Socket API Extension
8300 			 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO)
8301 			 *
8302 			 * This cmsghdr structure specifies SCTP options for sendmsg().
8303 			 *
8304 			 * cmsg_level    cmsg_type      cmsg_data[]
8305 			 * ------------  ------------   ---------------------
8306 			 * IPPROTO_SCTP  SCTP_PRINFO    struct sctp_prinfo
8307 			 */
8308 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo)))
8309 				return -EINVAL;
8310 
8311 			cmsgs->prinfo = CMSG_DATA(cmsg);
8312 			if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK)
8313 				return -EINVAL;
8314 
8315 			if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE)
8316 				cmsgs->prinfo->pr_value = 0;
8317 			break;
8318 		case SCTP_AUTHINFO:
8319 			/* SCTP Socket API Extension
8320 			 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO)
8321 			 *
8322 			 * This cmsghdr structure specifies SCTP options for sendmsg().
8323 			 *
8324 			 * cmsg_level    cmsg_type      cmsg_data[]
8325 			 * ------------  ------------   ---------------------
8326 			 * IPPROTO_SCTP  SCTP_AUTHINFO  struct sctp_authinfo
8327 			 */
8328 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo)))
8329 				return -EINVAL;
8330 
8331 			cmsgs->authinfo = CMSG_DATA(cmsg);
8332 			break;
8333 		case SCTP_DSTADDRV4:
8334 		case SCTP_DSTADDRV6:
8335 			/* SCTP Socket API Extension
8336 			 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6)
8337 			 *
8338 			 * This cmsghdr structure specifies SCTP options for sendmsg().
8339 			 *
8340 			 * cmsg_level    cmsg_type         cmsg_data[]
8341 			 * ------------  ------------   ---------------------
8342 			 * IPPROTO_SCTP  SCTP_DSTADDRV4 struct in_addr
8343 			 * ------------  ------------   ---------------------
8344 			 * IPPROTO_SCTP  SCTP_DSTADDRV6 struct in6_addr
8345 			 */
8346 			cmsgs->addrs_msg = my_msg;
8347 			break;
8348 		default:
8349 			return -EINVAL;
8350 		}
8351 	}
8352 
8353 	return 0;
8354 }
8355 
8356 /*
8357  * Wait for a packet..
8358  * Note: This function is the same function as in core/datagram.c
8359  * with a few modifications to make lksctp work.
8360  */
8361 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
8362 {
8363 	int error;
8364 	DEFINE_WAIT(wait);
8365 
8366 	prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
8367 
8368 	/* Socket errors? */
8369 	error = sock_error(sk);
8370 	if (error)
8371 		goto out;
8372 
8373 	if (!skb_queue_empty(&sk->sk_receive_queue))
8374 		goto ready;
8375 
8376 	/* Socket shut down?  */
8377 	if (sk->sk_shutdown & RCV_SHUTDOWN)
8378 		goto out;
8379 
8380 	/* Sequenced packets can come disconnected.  If so we report the
8381 	 * problem.
8382 	 */
8383 	error = -ENOTCONN;
8384 
8385 	/* Is there a good reason to think that we may receive some data?  */
8386 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
8387 		goto out;
8388 
8389 	/* Handle signals.  */
8390 	if (signal_pending(current))
8391 		goto interrupted;
8392 
8393 	/* Let another process have a go.  Since we are going to sleep
8394 	 * anyway.  Note: This may cause odd behaviors if the message
8395 	 * does not fit in the user's buffer, but this seems to be the
8396 	 * only way to honor MSG_DONTWAIT realistically.
8397 	 */
8398 	release_sock(sk);
8399 	*timeo_p = schedule_timeout(*timeo_p);
8400 	lock_sock(sk);
8401 
8402 ready:
8403 	finish_wait(sk_sleep(sk), &wait);
8404 	return 0;
8405 
8406 interrupted:
8407 	error = sock_intr_errno(*timeo_p);
8408 
8409 out:
8410 	finish_wait(sk_sleep(sk), &wait);
8411 	*err = error;
8412 	return error;
8413 }
8414 
8415 /* Receive a datagram.
8416  * Note: This is pretty much the same routine as in core/datagram.c
8417  * with a few changes to make lksctp work.
8418  */
8419 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
8420 				       int noblock, int *err)
8421 {
8422 	int error;
8423 	struct sk_buff *skb;
8424 	long timeo;
8425 
8426 	timeo = sock_rcvtimeo(sk, noblock);
8427 
8428 	pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
8429 		 MAX_SCHEDULE_TIMEOUT);
8430 
8431 	do {
8432 		/* Again only user level code calls this function,
8433 		 * so nothing interrupt level
8434 		 * will suddenly eat the receive_queue.
8435 		 *
8436 		 *  Look at current nfs client by the way...
8437 		 *  However, this function was correct in any case. 8)
8438 		 */
8439 		if (flags & MSG_PEEK) {
8440 			skb = skb_peek(&sk->sk_receive_queue);
8441 			if (skb)
8442 				refcount_inc(&skb->users);
8443 		} else {
8444 			skb = __skb_dequeue(&sk->sk_receive_queue);
8445 		}
8446 
8447 		if (skb)
8448 			return skb;
8449 
8450 		/* Caller is allowed not to check sk->sk_err before calling. */
8451 		error = sock_error(sk);
8452 		if (error)
8453 			goto no_packet;
8454 
8455 		if (sk->sk_shutdown & RCV_SHUTDOWN)
8456 			break;
8457 
8458 		if (sk_can_busy_loop(sk)) {
8459 			sk_busy_loop(sk, noblock);
8460 
8461 			if (!skb_queue_empty(&sk->sk_receive_queue))
8462 				continue;
8463 		}
8464 
8465 		/* User doesn't want to wait.  */
8466 		error = -EAGAIN;
8467 		if (!timeo)
8468 			goto no_packet;
8469 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
8470 
8471 	return NULL;
8472 
8473 no_packet:
8474 	*err = error;
8475 	return NULL;
8476 }
8477 
8478 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
8479 static void __sctp_write_space(struct sctp_association *asoc)
8480 {
8481 	struct sock *sk = asoc->base.sk;
8482 
8483 	if (sctp_wspace(asoc) <= 0)
8484 		return;
8485 
8486 	if (waitqueue_active(&asoc->wait))
8487 		wake_up_interruptible(&asoc->wait);
8488 
8489 	if (sctp_writeable(sk)) {
8490 		struct socket_wq *wq;
8491 
8492 		rcu_read_lock();
8493 		wq = rcu_dereference(sk->sk_wq);
8494 		if (wq) {
8495 			if (waitqueue_active(&wq->wait))
8496 				wake_up_interruptible(&wq->wait);
8497 
8498 			/* Note that we try to include the Async I/O support
8499 			 * here by modeling from the current TCP/UDP code.
8500 			 * We have not tested with it yet.
8501 			 */
8502 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
8503 				sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT);
8504 		}
8505 		rcu_read_unlock();
8506 	}
8507 }
8508 
8509 static void sctp_wake_up_waiters(struct sock *sk,
8510 				 struct sctp_association *asoc)
8511 {
8512 	struct sctp_association *tmp = asoc;
8513 
8514 	/* We do accounting for the sndbuf space per association,
8515 	 * so we only need to wake our own association.
8516 	 */
8517 	if (asoc->ep->sndbuf_policy)
8518 		return __sctp_write_space(asoc);
8519 
8520 	/* If association goes down and is just flushing its
8521 	 * outq, then just normally notify others.
8522 	 */
8523 	if (asoc->base.dead)
8524 		return sctp_write_space(sk);
8525 
8526 	/* Accounting for the sndbuf space is per socket, so we
8527 	 * need to wake up others, try to be fair and in case of
8528 	 * other associations, let them have a go first instead
8529 	 * of just doing a sctp_write_space() call.
8530 	 *
8531 	 * Note that we reach sctp_wake_up_waiters() only when
8532 	 * associations free up queued chunks, thus we are under
8533 	 * lock and the list of associations on a socket is
8534 	 * guaranteed not to change.
8535 	 */
8536 	for (tmp = list_next_entry(tmp, asocs); 1;
8537 	     tmp = list_next_entry(tmp, asocs)) {
8538 		/* Manually skip the head element. */
8539 		if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
8540 			continue;
8541 		/* Wake up association. */
8542 		__sctp_write_space(tmp);
8543 		/* We've reached the end. */
8544 		if (tmp == asoc)
8545 			break;
8546 	}
8547 }
8548 
8549 /* Do accounting for the sndbuf space.
8550  * Decrement the used sndbuf space of the corresponding association by the
8551  * data size which was just transmitted(freed).
8552  */
8553 static void sctp_wfree(struct sk_buff *skb)
8554 {
8555 	struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
8556 	struct sctp_association *asoc = chunk->asoc;
8557 	struct sock *sk = asoc->base.sk;
8558 
8559 	sk_mem_uncharge(sk, skb->truesize);
8560 	sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk);
8561 	asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk);
8562 	WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk),
8563 				      &sk->sk_wmem_alloc));
8564 
8565 	if (chunk->shkey) {
8566 		struct sctp_shared_key *shkey = chunk->shkey;
8567 
8568 		/* refcnt == 2 and !list_empty mean after this release, it's
8569 		 * not being used anywhere, and it's time to notify userland
8570 		 * that this shkey can be freed if it's been deactivated.
8571 		 */
8572 		if (shkey->deactivated && !list_empty(&shkey->key_list) &&
8573 		    refcount_read(&shkey->refcnt) == 2) {
8574 			struct sctp_ulpevent *ev;
8575 
8576 			ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id,
8577 							SCTP_AUTH_FREE_KEY,
8578 							GFP_KERNEL);
8579 			if (ev)
8580 				asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
8581 		}
8582 		sctp_auth_shkey_release(chunk->shkey);
8583 	}
8584 
8585 	sock_wfree(skb);
8586 	sctp_wake_up_waiters(sk, asoc);
8587 
8588 	sctp_association_put(asoc);
8589 }
8590 
8591 /* Do accounting for the receive space on the socket.
8592  * Accounting for the association is done in ulpevent.c
8593  * We set this as a destructor for the cloned data skbs so that
8594  * accounting is done at the correct time.
8595  */
8596 void sctp_sock_rfree(struct sk_buff *skb)
8597 {
8598 	struct sock *sk = skb->sk;
8599 	struct sctp_ulpevent *event = sctp_skb2event(skb);
8600 
8601 	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
8602 
8603 	/*
8604 	 * Mimic the behavior of sock_rfree
8605 	 */
8606 	sk_mem_uncharge(sk, event->rmem_len);
8607 }
8608 
8609 
8610 /* Helper function to wait for space in the sndbuf.  */
8611 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
8612 				size_t msg_len)
8613 {
8614 	struct sock *sk = asoc->base.sk;
8615 	long current_timeo = *timeo_p;
8616 	DEFINE_WAIT(wait);
8617 	int err = 0;
8618 
8619 	pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
8620 		 *timeo_p, msg_len);
8621 
8622 	/* Increment the association's refcnt.  */
8623 	sctp_association_hold(asoc);
8624 
8625 	/* Wait on the association specific sndbuf space. */
8626 	for (;;) {
8627 		prepare_to_wait_exclusive(&asoc->wait, &wait,
8628 					  TASK_INTERRUPTIBLE);
8629 		if (asoc->base.dead)
8630 			goto do_dead;
8631 		if (!*timeo_p)
8632 			goto do_nonblock;
8633 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING)
8634 			goto do_error;
8635 		if (signal_pending(current))
8636 			goto do_interrupted;
8637 		if ((int)msg_len <= sctp_wspace(asoc))
8638 			break;
8639 
8640 		/* Let another process have a go.  Since we are going
8641 		 * to sleep anyway.
8642 		 */
8643 		release_sock(sk);
8644 		current_timeo = schedule_timeout(current_timeo);
8645 		lock_sock(sk);
8646 		if (sk != asoc->base.sk)
8647 			goto do_error;
8648 
8649 		*timeo_p = current_timeo;
8650 	}
8651 
8652 out:
8653 	finish_wait(&asoc->wait, &wait);
8654 
8655 	/* Release the association's refcnt.  */
8656 	sctp_association_put(asoc);
8657 
8658 	return err;
8659 
8660 do_dead:
8661 	err = -ESRCH;
8662 	goto out;
8663 
8664 do_error:
8665 	err = -EPIPE;
8666 	goto out;
8667 
8668 do_interrupted:
8669 	err = sock_intr_errno(*timeo_p);
8670 	goto out;
8671 
8672 do_nonblock:
8673 	err = -EAGAIN;
8674 	goto out;
8675 }
8676 
8677 void sctp_data_ready(struct sock *sk)
8678 {
8679 	struct socket_wq *wq;
8680 
8681 	rcu_read_lock();
8682 	wq = rcu_dereference(sk->sk_wq);
8683 	if (skwq_has_sleeper(wq))
8684 		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN |
8685 						EPOLLRDNORM | EPOLLRDBAND);
8686 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
8687 	rcu_read_unlock();
8688 }
8689 
8690 /* If socket sndbuf has changed, wake up all per association waiters.  */
8691 void sctp_write_space(struct sock *sk)
8692 {
8693 	struct sctp_association *asoc;
8694 
8695 	/* Wake up the tasks in each wait queue.  */
8696 	list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
8697 		__sctp_write_space(asoc);
8698 	}
8699 }
8700 
8701 /* Is there any sndbuf space available on the socket?
8702  *
8703  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
8704  * associations on the same socket.  For a UDP-style socket with
8705  * multiple associations, it is possible for it to be "unwriteable"
8706  * prematurely.  I assume that this is acceptable because
8707  * a premature "unwriteable" is better than an accidental "writeable" which
8708  * would cause an unwanted block under certain circumstances.  For the 1-1
8709  * UDP-style sockets or TCP-style sockets, this code should work.
8710  *  - Daisy
8711  */
8712 static bool sctp_writeable(struct sock *sk)
8713 {
8714 	return sk->sk_sndbuf > sk->sk_wmem_queued;
8715 }
8716 
8717 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
8718  * returns immediately with EINPROGRESS.
8719  */
8720 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
8721 {
8722 	struct sock *sk = asoc->base.sk;
8723 	int err = 0;
8724 	long current_timeo = *timeo_p;
8725 	DEFINE_WAIT(wait);
8726 
8727 	pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
8728 
8729 	/* Increment the association's refcnt.  */
8730 	sctp_association_hold(asoc);
8731 
8732 	for (;;) {
8733 		prepare_to_wait_exclusive(&asoc->wait, &wait,
8734 					  TASK_INTERRUPTIBLE);
8735 		if (!*timeo_p)
8736 			goto do_nonblock;
8737 		if (sk->sk_shutdown & RCV_SHUTDOWN)
8738 			break;
8739 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
8740 		    asoc->base.dead)
8741 			goto do_error;
8742 		if (signal_pending(current))
8743 			goto do_interrupted;
8744 
8745 		if (sctp_state(asoc, ESTABLISHED))
8746 			break;
8747 
8748 		/* Let another process have a go.  Since we are going
8749 		 * to sleep anyway.
8750 		 */
8751 		release_sock(sk);
8752 		current_timeo = schedule_timeout(current_timeo);
8753 		lock_sock(sk);
8754 
8755 		*timeo_p = current_timeo;
8756 	}
8757 
8758 out:
8759 	finish_wait(&asoc->wait, &wait);
8760 
8761 	/* Release the association's refcnt.  */
8762 	sctp_association_put(asoc);
8763 
8764 	return err;
8765 
8766 do_error:
8767 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
8768 		err = -ETIMEDOUT;
8769 	else
8770 		err = -ECONNREFUSED;
8771 	goto out;
8772 
8773 do_interrupted:
8774 	err = sock_intr_errno(*timeo_p);
8775 	goto out;
8776 
8777 do_nonblock:
8778 	err = -EINPROGRESS;
8779 	goto out;
8780 }
8781 
8782 static int sctp_wait_for_accept(struct sock *sk, long timeo)
8783 {
8784 	struct sctp_endpoint *ep;
8785 	int err = 0;
8786 	DEFINE_WAIT(wait);
8787 
8788 	ep = sctp_sk(sk)->ep;
8789 
8790 
8791 	for (;;) {
8792 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
8793 					  TASK_INTERRUPTIBLE);
8794 
8795 		if (list_empty(&ep->asocs)) {
8796 			release_sock(sk);
8797 			timeo = schedule_timeout(timeo);
8798 			lock_sock(sk);
8799 		}
8800 
8801 		err = -EINVAL;
8802 		if (!sctp_sstate(sk, LISTENING))
8803 			break;
8804 
8805 		err = 0;
8806 		if (!list_empty(&ep->asocs))
8807 			break;
8808 
8809 		err = sock_intr_errno(timeo);
8810 		if (signal_pending(current))
8811 			break;
8812 
8813 		err = -EAGAIN;
8814 		if (!timeo)
8815 			break;
8816 	}
8817 
8818 	finish_wait(sk_sleep(sk), &wait);
8819 
8820 	return err;
8821 }
8822 
8823 static void sctp_wait_for_close(struct sock *sk, long timeout)
8824 {
8825 	DEFINE_WAIT(wait);
8826 
8827 	do {
8828 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
8829 		if (list_empty(&sctp_sk(sk)->ep->asocs))
8830 			break;
8831 		release_sock(sk);
8832 		timeout = schedule_timeout(timeout);
8833 		lock_sock(sk);
8834 	} while (!signal_pending(current) && timeout);
8835 
8836 	finish_wait(sk_sleep(sk), &wait);
8837 }
8838 
8839 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
8840 {
8841 	struct sk_buff *frag;
8842 
8843 	if (!skb->data_len)
8844 		goto done;
8845 
8846 	/* Don't forget the fragments. */
8847 	skb_walk_frags(skb, frag)
8848 		sctp_skb_set_owner_r_frag(frag, sk);
8849 
8850 done:
8851 	sctp_skb_set_owner_r(skb, sk);
8852 }
8853 
8854 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
8855 		    struct sctp_association *asoc)
8856 {
8857 	struct inet_sock *inet = inet_sk(sk);
8858 	struct inet_sock *newinet;
8859 	struct sctp_sock *sp = sctp_sk(sk);
8860 	struct sctp_endpoint *ep = sp->ep;
8861 
8862 	newsk->sk_type = sk->sk_type;
8863 	newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
8864 	newsk->sk_flags = sk->sk_flags;
8865 	newsk->sk_tsflags = sk->sk_tsflags;
8866 	newsk->sk_no_check_tx = sk->sk_no_check_tx;
8867 	newsk->sk_no_check_rx = sk->sk_no_check_rx;
8868 	newsk->sk_reuse = sk->sk_reuse;
8869 	sctp_sk(newsk)->reuse = sp->reuse;
8870 
8871 	newsk->sk_shutdown = sk->sk_shutdown;
8872 	newsk->sk_destruct = sctp_destruct_sock;
8873 	newsk->sk_family = sk->sk_family;
8874 	newsk->sk_protocol = IPPROTO_SCTP;
8875 	newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
8876 	newsk->sk_sndbuf = sk->sk_sndbuf;
8877 	newsk->sk_rcvbuf = sk->sk_rcvbuf;
8878 	newsk->sk_lingertime = sk->sk_lingertime;
8879 	newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
8880 	newsk->sk_sndtimeo = sk->sk_sndtimeo;
8881 	newsk->sk_rxhash = sk->sk_rxhash;
8882 
8883 	newinet = inet_sk(newsk);
8884 
8885 	/* Initialize sk's sport, dport, rcv_saddr and daddr for
8886 	 * getsockname() and getpeername()
8887 	 */
8888 	newinet->inet_sport = inet->inet_sport;
8889 	newinet->inet_saddr = inet->inet_saddr;
8890 	newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
8891 	newinet->inet_dport = htons(asoc->peer.port);
8892 	newinet->pmtudisc = inet->pmtudisc;
8893 	newinet->inet_id = asoc->next_tsn ^ jiffies;
8894 
8895 	newinet->uc_ttl = inet->uc_ttl;
8896 	newinet->mc_loop = 1;
8897 	newinet->mc_ttl = 1;
8898 	newinet->mc_index = 0;
8899 	newinet->mc_list = NULL;
8900 
8901 	if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
8902 		net_enable_timestamp();
8903 
8904 	/* Set newsk security attributes from orginal sk and connection
8905 	 * security attribute from ep.
8906 	 */
8907 	security_sctp_sk_clone(ep, sk, newsk);
8908 }
8909 
8910 static inline void sctp_copy_descendant(struct sock *sk_to,
8911 					const struct sock *sk_from)
8912 {
8913 	int ancestor_size = sizeof(struct inet_sock) +
8914 			    sizeof(struct sctp_sock) -
8915 			    offsetof(struct sctp_sock, auto_asconf_list);
8916 
8917 	if (sk_from->sk_family == PF_INET6)
8918 		ancestor_size += sizeof(struct ipv6_pinfo);
8919 
8920 	__inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
8921 }
8922 
8923 /* Populate the fields of the newsk from the oldsk and migrate the assoc
8924  * and its messages to the newsk.
8925  */
8926 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
8927 			      struct sctp_association *assoc,
8928 			      enum sctp_socket_type type)
8929 {
8930 	struct sctp_sock *oldsp = sctp_sk(oldsk);
8931 	struct sctp_sock *newsp = sctp_sk(newsk);
8932 	struct sctp_bind_bucket *pp; /* hash list port iterator */
8933 	struct sctp_endpoint *newep = newsp->ep;
8934 	struct sk_buff *skb, *tmp;
8935 	struct sctp_ulpevent *event;
8936 	struct sctp_bind_hashbucket *head;
8937 
8938 	/* Migrate socket buffer sizes and all the socket level options to the
8939 	 * new socket.
8940 	 */
8941 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
8942 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
8943 	/* Brute force copy old sctp opt. */
8944 	sctp_copy_descendant(newsk, oldsk);
8945 
8946 	/* Restore the ep value that was overwritten with the above structure
8947 	 * copy.
8948 	 */
8949 	newsp->ep = newep;
8950 	newsp->hmac = NULL;
8951 
8952 	/* Hook this new socket in to the bind_hash list. */
8953 	head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
8954 						 inet_sk(oldsk)->inet_num)];
8955 	spin_lock_bh(&head->lock);
8956 	pp = sctp_sk(oldsk)->bind_hash;
8957 	sk_add_bind_node(newsk, &pp->owner);
8958 	sctp_sk(newsk)->bind_hash = pp;
8959 	inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
8960 	spin_unlock_bh(&head->lock);
8961 
8962 	/* Copy the bind_addr list from the original endpoint to the new
8963 	 * endpoint so that we can handle restarts properly
8964 	 */
8965 	sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
8966 				&oldsp->ep->base.bind_addr, GFP_KERNEL);
8967 
8968 	/* Move any messages in the old socket's receive queue that are for the
8969 	 * peeled off association to the new socket's receive queue.
8970 	 */
8971 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
8972 		event = sctp_skb2event(skb);
8973 		if (event->asoc == assoc) {
8974 			__skb_unlink(skb, &oldsk->sk_receive_queue);
8975 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
8976 			sctp_skb_set_owner_r_frag(skb, newsk);
8977 		}
8978 	}
8979 
8980 	/* Clean up any messages pending delivery due to partial
8981 	 * delivery.   Three cases:
8982 	 * 1) No partial deliver;  no work.
8983 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
8984 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
8985 	 */
8986 	skb_queue_head_init(&newsp->pd_lobby);
8987 	atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
8988 
8989 	if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
8990 		struct sk_buff_head *queue;
8991 
8992 		/* Decide which queue to move pd_lobby skbs to. */
8993 		if (assoc->ulpq.pd_mode) {
8994 			queue = &newsp->pd_lobby;
8995 		} else
8996 			queue = &newsk->sk_receive_queue;
8997 
8998 		/* Walk through the pd_lobby, looking for skbs that
8999 		 * need moved to the new socket.
9000 		 */
9001 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
9002 			event = sctp_skb2event(skb);
9003 			if (event->asoc == assoc) {
9004 				__skb_unlink(skb, &oldsp->pd_lobby);
9005 				__skb_queue_tail(queue, skb);
9006 				sctp_skb_set_owner_r_frag(skb, newsk);
9007 			}
9008 		}
9009 
9010 		/* Clear up any skbs waiting for the partial
9011 		 * delivery to finish.
9012 		 */
9013 		if (assoc->ulpq.pd_mode)
9014 			sctp_clear_pd(oldsk, NULL);
9015 
9016 	}
9017 
9018 	sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag);
9019 
9020 	/* Set the type of socket to indicate that it is peeled off from the
9021 	 * original UDP-style socket or created with the accept() call on a
9022 	 * TCP-style socket..
9023 	 */
9024 	newsp->type = type;
9025 
9026 	/* Mark the new socket "in-use" by the user so that any packets
9027 	 * that may arrive on the association after we've moved it are
9028 	 * queued to the backlog.  This prevents a potential race between
9029 	 * backlog processing on the old socket and new-packet processing
9030 	 * on the new socket.
9031 	 *
9032 	 * The caller has just allocated newsk so we can guarantee that other
9033 	 * paths won't try to lock it and then oldsk.
9034 	 */
9035 	lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
9036 	sctp_for_each_tx_datachunk(assoc, sctp_clear_owner_w);
9037 	sctp_assoc_migrate(assoc, newsk);
9038 	sctp_for_each_tx_datachunk(assoc, sctp_set_owner_w);
9039 
9040 	/* If the association on the newsk is already closed before accept()
9041 	 * is called, set RCV_SHUTDOWN flag.
9042 	 */
9043 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) {
9044 		inet_sk_set_state(newsk, SCTP_SS_CLOSED);
9045 		newsk->sk_shutdown |= RCV_SHUTDOWN;
9046 	} else {
9047 		inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED);
9048 	}
9049 
9050 	release_sock(newsk);
9051 }
9052 
9053 
9054 /* This proto struct describes the ULP interface for SCTP.  */
9055 struct proto sctp_prot = {
9056 	.name        =	"SCTP",
9057 	.owner       =	THIS_MODULE,
9058 	.close       =	sctp_close,
9059 	.disconnect  =	sctp_disconnect,
9060 	.accept      =	sctp_accept,
9061 	.ioctl       =	sctp_ioctl,
9062 	.init        =	sctp_init_sock,
9063 	.destroy     =	sctp_destroy_sock,
9064 	.shutdown    =	sctp_shutdown,
9065 	.setsockopt  =	sctp_setsockopt,
9066 	.getsockopt  =	sctp_getsockopt,
9067 	.sendmsg     =	sctp_sendmsg,
9068 	.recvmsg     =	sctp_recvmsg,
9069 	.bind        =	sctp_bind,
9070 	.backlog_rcv =	sctp_backlog_rcv,
9071 	.hash        =	sctp_hash,
9072 	.unhash      =	sctp_unhash,
9073 	.get_port    =	sctp_get_port,
9074 	.obj_size    =  sizeof(struct sctp_sock),
9075 	.useroffset  =  offsetof(struct sctp_sock, subscribe),
9076 	.usersize    =  offsetof(struct sctp_sock, initmsg) -
9077 				offsetof(struct sctp_sock, subscribe) +
9078 				sizeof_field(struct sctp_sock, initmsg),
9079 	.sysctl_mem  =  sysctl_sctp_mem,
9080 	.sysctl_rmem =  sysctl_sctp_rmem,
9081 	.sysctl_wmem =  sysctl_sctp_wmem,
9082 	.memory_pressure = &sctp_memory_pressure,
9083 	.enter_memory_pressure = sctp_enter_memory_pressure,
9084 	.memory_allocated = &sctp_memory_allocated,
9085 	.sockets_allocated = &sctp_sockets_allocated,
9086 };
9087 
9088 #if IS_ENABLED(CONFIG_IPV6)
9089 
9090 #include <net/transp_v6.h>
9091 static void sctp_v6_destroy_sock(struct sock *sk)
9092 {
9093 	sctp_destroy_sock(sk);
9094 	inet6_destroy_sock(sk);
9095 }
9096 
9097 struct proto sctpv6_prot = {
9098 	.name		= "SCTPv6",
9099 	.owner		= THIS_MODULE,
9100 	.close		= sctp_close,
9101 	.disconnect	= sctp_disconnect,
9102 	.accept		= sctp_accept,
9103 	.ioctl		= sctp_ioctl,
9104 	.init		= sctp_init_sock,
9105 	.destroy	= sctp_v6_destroy_sock,
9106 	.shutdown	= sctp_shutdown,
9107 	.setsockopt	= sctp_setsockopt,
9108 	.getsockopt	= sctp_getsockopt,
9109 	.sendmsg	= sctp_sendmsg,
9110 	.recvmsg	= sctp_recvmsg,
9111 	.bind		= sctp_bind,
9112 	.backlog_rcv	= sctp_backlog_rcv,
9113 	.hash		= sctp_hash,
9114 	.unhash		= sctp_unhash,
9115 	.get_port	= sctp_get_port,
9116 	.obj_size	= sizeof(struct sctp6_sock),
9117 	.useroffset	= offsetof(struct sctp6_sock, sctp.subscribe),
9118 	.usersize	= offsetof(struct sctp6_sock, sctp.initmsg) -
9119 				offsetof(struct sctp6_sock, sctp.subscribe) +
9120 				sizeof_field(struct sctp6_sock, sctp.initmsg),
9121 	.sysctl_mem	= sysctl_sctp_mem,
9122 	.sysctl_rmem	= sysctl_sctp_rmem,
9123 	.sysctl_wmem	= sysctl_sctp_wmem,
9124 	.memory_pressure = &sctp_memory_pressure,
9125 	.enter_memory_pressure = sctp_enter_memory_pressure,
9126 	.memory_allocated = &sctp_memory_allocated,
9127 	.sockets_allocated = &sctp_sockets_allocated,
9128 };
9129 #endif /* IS_ENABLED(CONFIG_IPV6) */
9130