1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * This SCTP implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * This SCTP implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, see 32 * <http://www.gnu.org/licenses/>. 33 * 34 * Please send any bug reports or fixes you make to the 35 * email address(es): 36 * lksctp developers <linux-sctp@vger.kernel.org> 37 * 38 * Written or modified by: 39 * La Monte H.P. Yarroll <piggy@acm.org> 40 * Narasimha Budihal <narsi@refcode.org> 41 * Karl Knutson <karl@athena.chicago.il.us> 42 * Jon Grimm <jgrimm@us.ibm.com> 43 * Xingang Guo <xingang.guo@intel.com> 44 * Daisy Chang <daisyc@us.ibm.com> 45 * Sridhar Samudrala <samudrala@us.ibm.com> 46 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 47 * Ardelle Fan <ardelle.fan@intel.com> 48 * Ryan Layer <rmlayer@us.ibm.com> 49 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 50 * Kevin Gao <kevin.gao@intel.com> 51 */ 52 53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 54 55 #include <crypto/hash.h> 56 #include <linux/types.h> 57 #include <linux/kernel.h> 58 #include <linux/wait.h> 59 #include <linux/time.h> 60 #include <linux/sched/signal.h> 61 #include <linux/ip.h> 62 #include <linux/capability.h> 63 #include <linux/fcntl.h> 64 #include <linux/poll.h> 65 #include <linux/init.h> 66 #include <linux/slab.h> 67 #include <linux/file.h> 68 #include <linux/compat.h> 69 70 #include <net/ip.h> 71 #include <net/icmp.h> 72 #include <net/route.h> 73 #include <net/ipv6.h> 74 #include <net/inet_common.h> 75 #include <net/busy_poll.h> 76 77 #include <linux/socket.h> /* for sa_family_t */ 78 #include <linux/export.h> 79 #include <net/sock.h> 80 #include <net/sctp/sctp.h> 81 #include <net/sctp/sm.h> 82 #include <net/sctp/stream_sched.h> 83 84 /* Forward declarations for internal helper functions. */ 85 static int sctp_writeable(struct sock *sk); 86 static void sctp_wfree(struct sk_buff *skb); 87 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 88 size_t msg_len); 89 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p); 90 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 91 static int sctp_wait_for_accept(struct sock *sk, long timeo); 92 static void sctp_wait_for_close(struct sock *sk, long timeo); 93 static void sctp_destruct_sock(struct sock *sk); 94 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 95 union sctp_addr *addr, int len); 96 static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 97 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 98 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 99 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 100 static int sctp_send_asconf(struct sctp_association *asoc, 101 struct sctp_chunk *chunk); 102 static int sctp_do_bind(struct sock *, union sctp_addr *, int); 103 static int sctp_autobind(struct sock *sk); 104 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 105 struct sctp_association *assoc, 106 enum sctp_socket_type type); 107 108 static unsigned long sctp_memory_pressure; 109 static atomic_long_t sctp_memory_allocated; 110 struct percpu_counter sctp_sockets_allocated; 111 112 static void sctp_enter_memory_pressure(struct sock *sk) 113 { 114 sctp_memory_pressure = 1; 115 } 116 117 118 /* Get the sndbuf space available at the time on the association. */ 119 static inline int sctp_wspace(struct sctp_association *asoc) 120 { 121 int amt; 122 123 if (asoc->ep->sndbuf_policy) 124 amt = asoc->sndbuf_used; 125 else 126 amt = sk_wmem_alloc_get(asoc->base.sk); 127 128 if (amt >= asoc->base.sk->sk_sndbuf) { 129 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK) 130 amt = 0; 131 else { 132 amt = sk_stream_wspace(asoc->base.sk); 133 if (amt < 0) 134 amt = 0; 135 } 136 } else { 137 amt = asoc->base.sk->sk_sndbuf - amt; 138 } 139 return amt; 140 } 141 142 /* Increment the used sndbuf space count of the corresponding association by 143 * the size of the outgoing data chunk. 144 * Also, set the skb destructor for sndbuf accounting later. 145 * 146 * Since it is always 1-1 between chunk and skb, and also a new skb is always 147 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 148 * destructor in the data chunk skb for the purpose of the sndbuf space 149 * tracking. 150 */ 151 static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 152 { 153 struct sctp_association *asoc = chunk->asoc; 154 struct sock *sk = asoc->base.sk; 155 156 /* The sndbuf space is tracked per association. */ 157 sctp_association_hold(asoc); 158 159 skb_set_owner_w(chunk->skb, sk); 160 161 chunk->skb->destructor = sctp_wfree; 162 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 163 skb_shinfo(chunk->skb)->destructor_arg = chunk; 164 165 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + 166 sizeof(struct sk_buff) + 167 sizeof(struct sctp_chunk); 168 169 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 170 sk->sk_wmem_queued += chunk->skb->truesize; 171 sk_mem_charge(sk, chunk->skb->truesize); 172 } 173 174 static void sctp_clear_owner_w(struct sctp_chunk *chunk) 175 { 176 skb_orphan(chunk->skb); 177 } 178 179 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc, 180 void (*cb)(struct sctp_chunk *)) 181 182 { 183 struct sctp_outq *q = &asoc->outqueue; 184 struct sctp_transport *t; 185 struct sctp_chunk *chunk; 186 187 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) 188 list_for_each_entry(chunk, &t->transmitted, transmitted_list) 189 cb(chunk); 190 191 list_for_each_entry(chunk, &q->retransmit, transmitted_list) 192 cb(chunk); 193 194 list_for_each_entry(chunk, &q->sacked, transmitted_list) 195 cb(chunk); 196 197 list_for_each_entry(chunk, &q->abandoned, transmitted_list) 198 cb(chunk); 199 200 list_for_each_entry(chunk, &q->out_chunk_list, list) 201 cb(chunk); 202 } 203 204 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk, 205 void (*cb)(struct sk_buff *, struct sock *)) 206 207 { 208 struct sk_buff *skb, *tmp; 209 210 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp) 211 cb(skb, sk); 212 213 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp) 214 cb(skb, sk); 215 216 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp) 217 cb(skb, sk); 218 } 219 220 /* Verify that this is a valid address. */ 221 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 222 int len) 223 { 224 struct sctp_af *af; 225 226 /* Verify basic sockaddr. */ 227 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 228 if (!af) 229 return -EINVAL; 230 231 /* Is this a valid SCTP address? */ 232 if (!af->addr_valid(addr, sctp_sk(sk), NULL)) 233 return -EINVAL; 234 235 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 236 return -EINVAL; 237 238 return 0; 239 } 240 241 /* Look up the association by its id. If this is not a UDP-style 242 * socket, the ID field is always ignored. 243 */ 244 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 245 { 246 struct sctp_association *asoc = NULL; 247 248 /* If this is not a UDP-style socket, assoc id should be ignored. */ 249 if (!sctp_style(sk, UDP)) { 250 /* Return NULL if the socket state is not ESTABLISHED. It 251 * could be a TCP-style listening socket or a socket which 252 * hasn't yet called connect() to establish an association. 253 */ 254 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING)) 255 return NULL; 256 257 /* Get the first and the only association from the list. */ 258 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 259 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 260 struct sctp_association, asocs); 261 return asoc; 262 } 263 264 /* Otherwise this is a UDP-style socket. */ 265 if (!id || (id == (sctp_assoc_t)-1)) 266 return NULL; 267 268 spin_lock_bh(&sctp_assocs_id_lock); 269 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 270 spin_unlock_bh(&sctp_assocs_id_lock); 271 272 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) 273 return NULL; 274 275 return asoc; 276 } 277 278 /* Look up the transport from an address and an assoc id. If both address and 279 * id are specified, the associations matching the address and the id should be 280 * the same. 281 */ 282 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 283 struct sockaddr_storage *addr, 284 sctp_assoc_t id) 285 { 286 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 287 struct sctp_af *af = sctp_get_af_specific(addr->ss_family); 288 union sctp_addr *laddr = (union sctp_addr *)addr; 289 struct sctp_transport *transport; 290 291 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len)) 292 return NULL; 293 294 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 295 laddr, 296 &transport); 297 298 if (!addr_asoc) 299 return NULL; 300 301 id_asoc = sctp_id2assoc(sk, id); 302 if (id_asoc && (id_asoc != addr_asoc)) 303 return NULL; 304 305 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 306 (union sctp_addr *)addr); 307 308 return transport; 309 } 310 311 /* API 3.1.2 bind() - UDP Style Syntax 312 * The syntax of bind() is, 313 * 314 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 315 * 316 * sd - the socket descriptor returned by socket(). 317 * addr - the address structure (struct sockaddr_in or struct 318 * sockaddr_in6 [RFC 2553]), 319 * addr_len - the size of the address structure. 320 */ 321 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 322 { 323 int retval = 0; 324 325 lock_sock(sk); 326 327 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, 328 addr, addr_len); 329 330 /* Disallow binding twice. */ 331 if (!sctp_sk(sk)->ep->base.bind_addr.port) 332 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 333 addr_len); 334 else 335 retval = -EINVAL; 336 337 release_sock(sk); 338 339 return retval; 340 } 341 342 static long sctp_get_port_local(struct sock *, union sctp_addr *); 343 344 /* Verify this is a valid sockaddr. */ 345 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 346 union sctp_addr *addr, int len) 347 { 348 struct sctp_af *af; 349 350 /* Check minimum size. */ 351 if (len < sizeof (struct sockaddr)) 352 return NULL; 353 354 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 355 return NULL; 356 357 /* V4 mapped address are really of AF_INET family */ 358 if (addr->sa.sa_family == AF_INET6 && 359 ipv6_addr_v4mapped(&addr->v6.sin6_addr) && 360 !opt->pf->af_supported(AF_INET, opt)) 361 return NULL; 362 363 /* If we get this far, af is valid. */ 364 af = sctp_get_af_specific(addr->sa.sa_family); 365 366 if (len < af->sockaddr_len) 367 return NULL; 368 369 return af; 370 } 371 372 /* Bind a local address either to an endpoint or to an association. */ 373 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 374 { 375 struct net *net = sock_net(sk); 376 struct sctp_sock *sp = sctp_sk(sk); 377 struct sctp_endpoint *ep = sp->ep; 378 struct sctp_bind_addr *bp = &ep->base.bind_addr; 379 struct sctp_af *af; 380 unsigned short snum; 381 int ret = 0; 382 383 /* Common sockaddr verification. */ 384 af = sctp_sockaddr_af(sp, addr, len); 385 if (!af) { 386 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n", 387 __func__, sk, addr, len); 388 return -EINVAL; 389 } 390 391 snum = ntohs(addr->v4.sin_port); 392 393 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n", 394 __func__, sk, &addr->sa, bp->port, snum, len); 395 396 /* PF specific bind() address verification. */ 397 if (!sp->pf->bind_verify(sp, addr)) 398 return -EADDRNOTAVAIL; 399 400 /* We must either be unbound, or bind to the same port. 401 * It's OK to allow 0 ports if we are already bound. 402 * We'll just inhert an already bound port in this case 403 */ 404 if (bp->port) { 405 if (!snum) 406 snum = bp->port; 407 else if (snum != bp->port) { 408 pr_debug("%s: new port %d doesn't match existing port " 409 "%d\n", __func__, snum, bp->port); 410 return -EINVAL; 411 } 412 } 413 414 if (snum && snum < inet_prot_sock(net) && 415 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) 416 return -EACCES; 417 418 /* See if the address matches any of the addresses we may have 419 * already bound before checking against other endpoints. 420 */ 421 if (sctp_bind_addr_match(bp, addr, sp)) 422 return -EINVAL; 423 424 /* Make sure we are allowed to bind here. 425 * The function sctp_get_port_local() does duplicate address 426 * detection. 427 */ 428 addr->v4.sin_port = htons(snum); 429 if ((ret = sctp_get_port_local(sk, addr))) { 430 return -EADDRINUSE; 431 } 432 433 /* Refresh ephemeral port. */ 434 if (!bp->port) 435 bp->port = inet_sk(sk)->inet_num; 436 437 /* Add the address to the bind address list. 438 * Use GFP_ATOMIC since BHs will be disabled. 439 */ 440 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len, 441 SCTP_ADDR_SRC, GFP_ATOMIC); 442 443 /* Copy back into socket for getsockname() use. */ 444 if (!ret) { 445 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num); 446 sp->pf->to_sk_saddr(addr, sk); 447 } 448 449 return ret; 450 } 451 452 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 453 * 454 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 455 * at any one time. If a sender, after sending an ASCONF chunk, decides 456 * it needs to transfer another ASCONF Chunk, it MUST wait until the 457 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 458 * subsequent ASCONF. Note this restriction binds each side, so at any 459 * time two ASCONF may be in-transit on any given association (one sent 460 * from each endpoint). 461 */ 462 static int sctp_send_asconf(struct sctp_association *asoc, 463 struct sctp_chunk *chunk) 464 { 465 struct net *net = sock_net(asoc->base.sk); 466 int retval = 0; 467 468 /* If there is an outstanding ASCONF chunk, queue it for later 469 * transmission. 470 */ 471 if (asoc->addip_last_asconf) { 472 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 473 goto out; 474 } 475 476 /* Hold the chunk until an ASCONF_ACK is received. */ 477 sctp_chunk_hold(chunk); 478 retval = sctp_primitive_ASCONF(net, asoc, chunk); 479 if (retval) 480 sctp_chunk_free(chunk); 481 else 482 asoc->addip_last_asconf = chunk; 483 484 out: 485 return retval; 486 } 487 488 /* Add a list of addresses as bind addresses to local endpoint or 489 * association. 490 * 491 * Basically run through each address specified in the addrs/addrcnt 492 * array/length pair, determine if it is IPv6 or IPv4 and call 493 * sctp_do_bind() on it. 494 * 495 * If any of them fails, then the operation will be reversed and the 496 * ones that were added will be removed. 497 * 498 * Only sctp_setsockopt_bindx() is supposed to call this function. 499 */ 500 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 501 { 502 int cnt; 503 int retval = 0; 504 void *addr_buf; 505 struct sockaddr *sa_addr; 506 struct sctp_af *af; 507 508 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, 509 addrs, addrcnt); 510 511 addr_buf = addrs; 512 for (cnt = 0; cnt < addrcnt; cnt++) { 513 /* The list may contain either IPv4 or IPv6 address; 514 * determine the address length for walking thru the list. 515 */ 516 sa_addr = addr_buf; 517 af = sctp_get_af_specific(sa_addr->sa_family); 518 if (!af) { 519 retval = -EINVAL; 520 goto err_bindx_add; 521 } 522 523 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 524 af->sockaddr_len); 525 526 addr_buf += af->sockaddr_len; 527 528 err_bindx_add: 529 if (retval < 0) { 530 /* Failed. Cleanup the ones that have been added */ 531 if (cnt > 0) 532 sctp_bindx_rem(sk, addrs, cnt); 533 return retval; 534 } 535 } 536 537 return retval; 538 } 539 540 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the 541 * associations that are part of the endpoint indicating that a list of local 542 * addresses are added to the endpoint. 543 * 544 * If any of the addresses is already in the bind address list of the 545 * association, we do not send the chunk for that association. But it will not 546 * affect other associations. 547 * 548 * Only sctp_setsockopt_bindx() is supposed to call this function. 549 */ 550 static int sctp_send_asconf_add_ip(struct sock *sk, 551 struct sockaddr *addrs, 552 int addrcnt) 553 { 554 struct net *net = sock_net(sk); 555 struct sctp_sock *sp; 556 struct sctp_endpoint *ep; 557 struct sctp_association *asoc; 558 struct sctp_bind_addr *bp; 559 struct sctp_chunk *chunk; 560 struct sctp_sockaddr_entry *laddr; 561 union sctp_addr *addr; 562 union sctp_addr saveaddr; 563 void *addr_buf; 564 struct sctp_af *af; 565 struct list_head *p; 566 int i; 567 int retval = 0; 568 569 if (!net->sctp.addip_enable) 570 return retval; 571 572 sp = sctp_sk(sk); 573 ep = sp->ep; 574 575 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 576 __func__, sk, addrs, addrcnt); 577 578 list_for_each_entry(asoc, &ep->asocs, asocs) { 579 if (!asoc->peer.asconf_capable) 580 continue; 581 582 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 583 continue; 584 585 if (!sctp_state(asoc, ESTABLISHED)) 586 continue; 587 588 /* Check if any address in the packed array of addresses is 589 * in the bind address list of the association. If so, 590 * do not send the asconf chunk to its peer, but continue with 591 * other associations. 592 */ 593 addr_buf = addrs; 594 for (i = 0; i < addrcnt; i++) { 595 addr = addr_buf; 596 af = sctp_get_af_specific(addr->v4.sin_family); 597 if (!af) { 598 retval = -EINVAL; 599 goto out; 600 } 601 602 if (sctp_assoc_lookup_laddr(asoc, addr)) 603 break; 604 605 addr_buf += af->sockaddr_len; 606 } 607 if (i < addrcnt) 608 continue; 609 610 /* Use the first valid address in bind addr list of 611 * association as Address Parameter of ASCONF CHUNK. 612 */ 613 bp = &asoc->base.bind_addr; 614 p = bp->address_list.next; 615 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 616 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 617 addrcnt, SCTP_PARAM_ADD_IP); 618 if (!chunk) { 619 retval = -ENOMEM; 620 goto out; 621 } 622 623 /* Add the new addresses to the bind address list with 624 * use_as_src set to 0. 625 */ 626 addr_buf = addrs; 627 for (i = 0; i < addrcnt; i++) { 628 addr = addr_buf; 629 af = sctp_get_af_specific(addr->v4.sin_family); 630 memcpy(&saveaddr, addr, af->sockaddr_len); 631 retval = sctp_add_bind_addr(bp, &saveaddr, 632 sizeof(saveaddr), 633 SCTP_ADDR_NEW, GFP_ATOMIC); 634 addr_buf += af->sockaddr_len; 635 } 636 if (asoc->src_out_of_asoc_ok) { 637 struct sctp_transport *trans; 638 639 list_for_each_entry(trans, 640 &asoc->peer.transport_addr_list, transports) { 641 /* Clear the source and route cache */ 642 sctp_transport_dst_release(trans); 643 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32, 644 2*asoc->pathmtu, 4380)); 645 trans->ssthresh = asoc->peer.i.a_rwnd; 646 trans->rto = asoc->rto_initial; 647 sctp_max_rto(asoc, trans); 648 trans->rtt = trans->srtt = trans->rttvar = 0; 649 sctp_transport_route(trans, NULL, 650 sctp_sk(asoc->base.sk)); 651 } 652 } 653 retval = sctp_send_asconf(asoc, chunk); 654 } 655 656 out: 657 return retval; 658 } 659 660 /* Remove a list of addresses from bind addresses list. Do not remove the 661 * last address. 662 * 663 * Basically run through each address specified in the addrs/addrcnt 664 * array/length pair, determine if it is IPv6 or IPv4 and call 665 * sctp_del_bind() on it. 666 * 667 * If any of them fails, then the operation will be reversed and the 668 * ones that were removed will be added back. 669 * 670 * At least one address has to be left; if only one address is 671 * available, the operation will return -EBUSY. 672 * 673 * Only sctp_setsockopt_bindx() is supposed to call this function. 674 */ 675 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 676 { 677 struct sctp_sock *sp = sctp_sk(sk); 678 struct sctp_endpoint *ep = sp->ep; 679 int cnt; 680 struct sctp_bind_addr *bp = &ep->base.bind_addr; 681 int retval = 0; 682 void *addr_buf; 683 union sctp_addr *sa_addr; 684 struct sctp_af *af; 685 686 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 687 __func__, sk, addrs, addrcnt); 688 689 addr_buf = addrs; 690 for (cnt = 0; cnt < addrcnt; cnt++) { 691 /* If the bind address list is empty or if there is only one 692 * bind address, there is nothing more to be removed (we need 693 * at least one address here). 694 */ 695 if (list_empty(&bp->address_list) || 696 (sctp_list_single_entry(&bp->address_list))) { 697 retval = -EBUSY; 698 goto err_bindx_rem; 699 } 700 701 sa_addr = addr_buf; 702 af = sctp_get_af_specific(sa_addr->sa.sa_family); 703 if (!af) { 704 retval = -EINVAL; 705 goto err_bindx_rem; 706 } 707 708 if (!af->addr_valid(sa_addr, sp, NULL)) { 709 retval = -EADDRNOTAVAIL; 710 goto err_bindx_rem; 711 } 712 713 if (sa_addr->v4.sin_port && 714 sa_addr->v4.sin_port != htons(bp->port)) { 715 retval = -EINVAL; 716 goto err_bindx_rem; 717 } 718 719 if (!sa_addr->v4.sin_port) 720 sa_addr->v4.sin_port = htons(bp->port); 721 722 /* FIXME - There is probably a need to check if sk->sk_saddr and 723 * sk->sk_rcv_addr are currently set to one of the addresses to 724 * be removed. This is something which needs to be looked into 725 * when we are fixing the outstanding issues with multi-homing 726 * socket routing and failover schemes. Refer to comments in 727 * sctp_do_bind(). -daisy 728 */ 729 retval = sctp_del_bind_addr(bp, sa_addr); 730 731 addr_buf += af->sockaddr_len; 732 err_bindx_rem: 733 if (retval < 0) { 734 /* Failed. Add the ones that has been removed back */ 735 if (cnt > 0) 736 sctp_bindx_add(sk, addrs, cnt); 737 return retval; 738 } 739 } 740 741 return retval; 742 } 743 744 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of 745 * the associations that are part of the endpoint indicating that a list of 746 * local addresses are removed from the endpoint. 747 * 748 * If any of the addresses is already in the bind address list of the 749 * association, we do not send the chunk for that association. But it will not 750 * affect other associations. 751 * 752 * Only sctp_setsockopt_bindx() is supposed to call this function. 753 */ 754 static int sctp_send_asconf_del_ip(struct sock *sk, 755 struct sockaddr *addrs, 756 int addrcnt) 757 { 758 struct net *net = sock_net(sk); 759 struct sctp_sock *sp; 760 struct sctp_endpoint *ep; 761 struct sctp_association *asoc; 762 struct sctp_transport *transport; 763 struct sctp_bind_addr *bp; 764 struct sctp_chunk *chunk; 765 union sctp_addr *laddr; 766 void *addr_buf; 767 struct sctp_af *af; 768 struct sctp_sockaddr_entry *saddr; 769 int i; 770 int retval = 0; 771 int stored = 0; 772 773 chunk = NULL; 774 if (!net->sctp.addip_enable) 775 return retval; 776 777 sp = sctp_sk(sk); 778 ep = sp->ep; 779 780 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", 781 __func__, sk, addrs, addrcnt); 782 783 list_for_each_entry(asoc, &ep->asocs, asocs) { 784 785 if (!asoc->peer.asconf_capable) 786 continue; 787 788 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 789 continue; 790 791 if (!sctp_state(asoc, ESTABLISHED)) 792 continue; 793 794 /* Check if any address in the packed array of addresses is 795 * not present in the bind address list of the association. 796 * If so, do not send the asconf chunk to its peer, but 797 * continue with other associations. 798 */ 799 addr_buf = addrs; 800 for (i = 0; i < addrcnt; i++) { 801 laddr = addr_buf; 802 af = sctp_get_af_specific(laddr->v4.sin_family); 803 if (!af) { 804 retval = -EINVAL; 805 goto out; 806 } 807 808 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 809 break; 810 811 addr_buf += af->sockaddr_len; 812 } 813 if (i < addrcnt) 814 continue; 815 816 /* Find one address in the association's bind address list 817 * that is not in the packed array of addresses. This is to 818 * make sure that we do not delete all the addresses in the 819 * association. 820 */ 821 bp = &asoc->base.bind_addr; 822 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 823 addrcnt, sp); 824 if ((laddr == NULL) && (addrcnt == 1)) { 825 if (asoc->asconf_addr_del_pending) 826 continue; 827 asoc->asconf_addr_del_pending = 828 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC); 829 if (asoc->asconf_addr_del_pending == NULL) { 830 retval = -ENOMEM; 831 goto out; 832 } 833 asoc->asconf_addr_del_pending->sa.sa_family = 834 addrs->sa_family; 835 asoc->asconf_addr_del_pending->v4.sin_port = 836 htons(bp->port); 837 if (addrs->sa_family == AF_INET) { 838 struct sockaddr_in *sin; 839 840 sin = (struct sockaddr_in *)addrs; 841 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr; 842 } else if (addrs->sa_family == AF_INET6) { 843 struct sockaddr_in6 *sin6; 844 845 sin6 = (struct sockaddr_in6 *)addrs; 846 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr; 847 } 848 849 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n", 850 __func__, asoc, &asoc->asconf_addr_del_pending->sa, 851 asoc->asconf_addr_del_pending); 852 853 asoc->src_out_of_asoc_ok = 1; 854 stored = 1; 855 goto skip_mkasconf; 856 } 857 858 if (laddr == NULL) 859 return -EINVAL; 860 861 /* We do not need RCU protection throughout this loop 862 * because this is done under a socket lock from the 863 * setsockopt call. 864 */ 865 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 866 SCTP_PARAM_DEL_IP); 867 if (!chunk) { 868 retval = -ENOMEM; 869 goto out; 870 } 871 872 skip_mkasconf: 873 /* Reset use_as_src flag for the addresses in the bind address 874 * list that are to be deleted. 875 */ 876 addr_buf = addrs; 877 for (i = 0; i < addrcnt; i++) { 878 laddr = addr_buf; 879 af = sctp_get_af_specific(laddr->v4.sin_family); 880 list_for_each_entry(saddr, &bp->address_list, list) { 881 if (sctp_cmp_addr_exact(&saddr->a, laddr)) 882 saddr->state = SCTP_ADDR_DEL; 883 } 884 addr_buf += af->sockaddr_len; 885 } 886 887 /* Update the route and saddr entries for all the transports 888 * as some of the addresses in the bind address list are 889 * about to be deleted and cannot be used as source addresses. 890 */ 891 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 892 transports) { 893 sctp_transport_dst_release(transport); 894 sctp_transport_route(transport, NULL, 895 sctp_sk(asoc->base.sk)); 896 } 897 898 if (stored) 899 /* We don't need to transmit ASCONF */ 900 continue; 901 retval = sctp_send_asconf(asoc, chunk); 902 } 903 out: 904 return retval; 905 } 906 907 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */ 908 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw) 909 { 910 struct sock *sk = sctp_opt2sk(sp); 911 union sctp_addr *addr; 912 struct sctp_af *af; 913 914 /* It is safe to write port space in caller. */ 915 addr = &addrw->a; 916 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port); 917 af = sctp_get_af_specific(addr->sa.sa_family); 918 if (!af) 919 return -EINVAL; 920 if (sctp_verify_addr(sk, addr, af->sockaddr_len)) 921 return -EINVAL; 922 923 if (addrw->state == SCTP_ADDR_NEW) 924 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1); 925 else 926 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1); 927 } 928 929 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 930 * 931 * API 8.1 932 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 933 * int flags); 934 * 935 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 936 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 937 * or IPv6 addresses. 938 * 939 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 940 * Section 3.1.2 for this usage. 941 * 942 * addrs is a pointer to an array of one or more socket addresses. Each 943 * address is contained in its appropriate structure (i.e. struct 944 * sockaddr_in or struct sockaddr_in6) the family of the address type 945 * must be used to distinguish the address length (note that this 946 * representation is termed a "packed array" of addresses). The caller 947 * specifies the number of addresses in the array with addrcnt. 948 * 949 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 950 * -1, and sets errno to the appropriate error code. 951 * 952 * For SCTP, the port given in each socket address must be the same, or 953 * sctp_bindx() will fail, setting errno to EINVAL. 954 * 955 * The flags parameter is formed from the bitwise OR of zero or more of 956 * the following currently defined flags: 957 * 958 * SCTP_BINDX_ADD_ADDR 959 * 960 * SCTP_BINDX_REM_ADDR 961 * 962 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 963 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 964 * addresses from the association. The two flags are mutually exclusive; 965 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 966 * not remove all addresses from an association; sctp_bindx() will 967 * reject such an attempt with EINVAL. 968 * 969 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 970 * additional addresses with an endpoint after calling bind(). Or use 971 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 972 * socket is associated with so that no new association accepted will be 973 * associated with those addresses. If the endpoint supports dynamic 974 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 975 * endpoint to send the appropriate message to the peer to change the 976 * peers address lists. 977 * 978 * Adding and removing addresses from a connected association is 979 * optional functionality. Implementations that do not support this 980 * functionality should return EOPNOTSUPP. 981 * 982 * Basically do nothing but copying the addresses from user to kernel 983 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 984 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 985 * from userspace. 986 * 987 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 988 * it. 989 * 990 * sk The sk of the socket 991 * addrs The pointer to the addresses in user land 992 * addrssize Size of the addrs buffer 993 * op Operation to perform (add or remove, see the flags of 994 * sctp_bindx) 995 * 996 * Returns 0 if ok, <0 errno code on error. 997 */ 998 static int sctp_setsockopt_bindx(struct sock *sk, 999 struct sockaddr __user *addrs, 1000 int addrs_size, int op) 1001 { 1002 struct sockaddr *kaddrs; 1003 int err; 1004 int addrcnt = 0; 1005 int walk_size = 0; 1006 struct sockaddr *sa_addr; 1007 void *addr_buf; 1008 struct sctp_af *af; 1009 1010 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", 1011 __func__, sk, addrs, addrs_size, op); 1012 1013 if (unlikely(addrs_size <= 0)) 1014 return -EINVAL; 1015 1016 kaddrs = vmemdup_user(addrs, addrs_size); 1017 if (unlikely(IS_ERR(kaddrs))) 1018 return PTR_ERR(kaddrs); 1019 1020 /* Walk through the addrs buffer and count the number of addresses. */ 1021 addr_buf = kaddrs; 1022 while (walk_size < addrs_size) { 1023 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1024 kvfree(kaddrs); 1025 return -EINVAL; 1026 } 1027 1028 sa_addr = addr_buf; 1029 af = sctp_get_af_specific(sa_addr->sa_family); 1030 1031 /* If the address family is not supported or if this address 1032 * causes the address buffer to overflow return EINVAL. 1033 */ 1034 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1035 kvfree(kaddrs); 1036 return -EINVAL; 1037 } 1038 addrcnt++; 1039 addr_buf += af->sockaddr_len; 1040 walk_size += af->sockaddr_len; 1041 } 1042 1043 /* Do the work. */ 1044 switch (op) { 1045 case SCTP_BINDX_ADD_ADDR: 1046 err = sctp_bindx_add(sk, kaddrs, addrcnt); 1047 if (err) 1048 goto out; 1049 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 1050 break; 1051 1052 case SCTP_BINDX_REM_ADDR: 1053 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 1054 if (err) 1055 goto out; 1056 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 1057 break; 1058 1059 default: 1060 err = -EINVAL; 1061 break; 1062 } 1063 1064 out: 1065 kvfree(kaddrs); 1066 1067 return err; 1068 } 1069 1070 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 1071 * 1072 * Common routine for handling connect() and sctp_connectx(). 1073 * Connect will come in with just a single address. 1074 */ 1075 static int __sctp_connect(struct sock *sk, 1076 struct sockaddr *kaddrs, 1077 int addrs_size, 1078 sctp_assoc_t *assoc_id) 1079 { 1080 struct net *net = sock_net(sk); 1081 struct sctp_sock *sp; 1082 struct sctp_endpoint *ep; 1083 struct sctp_association *asoc = NULL; 1084 struct sctp_association *asoc2; 1085 struct sctp_transport *transport; 1086 union sctp_addr to; 1087 enum sctp_scope scope; 1088 long timeo; 1089 int err = 0; 1090 int addrcnt = 0; 1091 int walk_size = 0; 1092 union sctp_addr *sa_addr = NULL; 1093 void *addr_buf; 1094 unsigned short port; 1095 unsigned int f_flags = 0; 1096 1097 sp = sctp_sk(sk); 1098 ep = sp->ep; 1099 1100 /* connect() cannot be done on a socket that is already in ESTABLISHED 1101 * state - UDP-style peeled off socket or a TCP-style socket that 1102 * is already connected. 1103 * It cannot be done even on a TCP-style listening socket. 1104 */ 1105 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) || 1106 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 1107 err = -EISCONN; 1108 goto out_free; 1109 } 1110 1111 /* Walk through the addrs buffer and count the number of addresses. */ 1112 addr_buf = kaddrs; 1113 while (walk_size < addrs_size) { 1114 struct sctp_af *af; 1115 1116 if (walk_size + sizeof(sa_family_t) > addrs_size) { 1117 err = -EINVAL; 1118 goto out_free; 1119 } 1120 1121 sa_addr = addr_buf; 1122 af = sctp_get_af_specific(sa_addr->sa.sa_family); 1123 1124 /* If the address family is not supported or if this address 1125 * causes the address buffer to overflow return EINVAL. 1126 */ 1127 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 1128 err = -EINVAL; 1129 goto out_free; 1130 } 1131 1132 port = ntohs(sa_addr->v4.sin_port); 1133 1134 /* Save current address so we can work with it */ 1135 memcpy(&to, sa_addr, af->sockaddr_len); 1136 1137 err = sctp_verify_addr(sk, &to, af->sockaddr_len); 1138 if (err) 1139 goto out_free; 1140 1141 /* Make sure the destination port is correctly set 1142 * in all addresses. 1143 */ 1144 if (asoc && asoc->peer.port && asoc->peer.port != port) { 1145 err = -EINVAL; 1146 goto out_free; 1147 } 1148 1149 /* Check if there already is a matching association on the 1150 * endpoint (other than the one created here). 1151 */ 1152 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1153 if (asoc2 && asoc2 != asoc) { 1154 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 1155 err = -EISCONN; 1156 else 1157 err = -EALREADY; 1158 goto out_free; 1159 } 1160 1161 /* If we could not find a matching association on the endpoint, 1162 * make sure that there is no peeled-off association matching 1163 * the peer address even on another socket. 1164 */ 1165 if (sctp_endpoint_is_peeled_off(ep, &to)) { 1166 err = -EADDRNOTAVAIL; 1167 goto out_free; 1168 } 1169 1170 if (!asoc) { 1171 /* If a bind() or sctp_bindx() is not called prior to 1172 * an sctp_connectx() call, the system picks an 1173 * ephemeral port and will choose an address set 1174 * equivalent to binding with a wildcard address. 1175 */ 1176 if (!ep->base.bind_addr.port) { 1177 if (sctp_autobind(sk)) { 1178 err = -EAGAIN; 1179 goto out_free; 1180 } 1181 } else { 1182 /* 1183 * If an unprivileged user inherits a 1-many 1184 * style socket with open associations on a 1185 * privileged port, it MAY be permitted to 1186 * accept new associations, but it SHOULD NOT 1187 * be permitted to open new associations. 1188 */ 1189 if (ep->base.bind_addr.port < 1190 inet_prot_sock(net) && 1191 !ns_capable(net->user_ns, 1192 CAP_NET_BIND_SERVICE)) { 1193 err = -EACCES; 1194 goto out_free; 1195 } 1196 } 1197 1198 scope = sctp_scope(&to); 1199 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1200 if (!asoc) { 1201 err = -ENOMEM; 1202 goto out_free; 1203 } 1204 1205 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, 1206 GFP_KERNEL); 1207 if (err < 0) { 1208 goto out_free; 1209 } 1210 1211 } 1212 1213 /* Prime the peer's transport structures. */ 1214 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1215 SCTP_UNKNOWN); 1216 if (!transport) { 1217 err = -ENOMEM; 1218 goto out_free; 1219 } 1220 1221 addrcnt++; 1222 addr_buf += af->sockaddr_len; 1223 walk_size += af->sockaddr_len; 1224 } 1225 1226 /* In case the user of sctp_connectx() wants an association 1227 * id back, assign one now. 1228 */ 1229 if (assoc_id) { 1230 err = sctp_assoc_set_id(asoc, GFP_KERNEL); 1231 if (err < 0) 1232 goto out_free; 1233 } 1234 1235 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1236 if (err < 0) { 1237 goto out_free; 1238 } 1239 1240 /* Initialize sk's dport and daddr for getpeername() */ 1241 inet_sk(sk)->inet_dport = htons(asoc->peer.port); 1242 sp->pf->to_sk_daddr(sa_addr, sk); 1243 sk->sk_err = 0; 1244 1245 /* in-kernel sockets don't generally have a file allocated to them 1246 * if all they do is call sock_create_kern(). 1247 */ 1248 if (sk->sk_socket->file) 1249 f_flags = sk->sk_socket->file->f_flags; 1250 1251 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK); 1252 1253 if (assoc_id) 1254 *assoc_id = asoc->assoc_id; 1255 err = sctp_wait_for_connect(asoc, &timeo); 1256 /* Note: the asoc may be freed after the return of 1257 * sctp_wait_for_connect. 1258 */ 1259 1260 /* Don't free association on exit. */ 1261 asoc = NULL; 1262 1263 out_free: 1264 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", 1265 __func__, asoc, kaddrs, err); 1266 1267 if (asoc) { 1268 /* sctp_primitive_ASSOCIATE may have added this association 1269 * To the hash table, try to unhash it, just in case, its a noop 1270 * if it wasn't hashed so we're safe 1271 */ 1272 sctp_association_free(asoc); 1273 } 1274 return err; 1275 } 1276 1277 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1278 * 1279 * API 8.9 1280 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, 1281 * sctp_assoc_t *asoc); 1282 * 1283 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1284 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1285 * or IPv6 addresses. 1286 * 1287 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1288 * Section 3.1.2 for this usage. 1289 * 1290 * addrs is a pointer to an array of one or more socket addresses. Each 1291 * address is contained in its appropriate structure (i.e. struct 1292 * sockaddr_in or struct sockaddr_in6) the family of the address type 1293 * must be used to distengish the address length (note that this 1294 * representation is termed a "packed array" of addresses). The caller 1295 * specifies the number of addresses in the array with addrcnt. 1296 * 1297 * On success, sctp_connectx() returns 0. It also sets the assoc_id to 1298 * the association id of the new association. On failure, sctp_connectx() 1299 * returns -1, and sets errno to the appropriate error code. The assoc_id 1300 * is not touched by the kernel. 1301 * 1302 * For SCTP, the port given in each socket address must be the same, or 1303 * sctp_connectx() will fail, setting errno to EINVAL. 1304 * 1305 * An application can use sctp_connectx to initiate an association with 1306 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1307 * allows a caller to specify multiple addresses at which a peer can be 1308 * reached. The way the SCTP stack uses the list of addresses to set up 1309 * the association is implementation dependent. This function only 1310 * specifies that the stack will try to make use of all the addresses in 1311 * the list when needed. 1312 * 1313 * Note that the list of addresses passed in is only used for setting up 1314 * the association. It does not necessarily equal the set of addresses 1315 * the peer uses for the resulting association. If the caller wants to 1316 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1317 * retrieve them after the association has been set up. 1318 * 1319 * Basically do nothing but copying the addresses from user to kernel 1320 * land and invoking either sctp_connectx(). This is used for tunneling 1321 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1322 * 1323 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1324 * it. 1325 * 1326 * sk The sk of the socket 1327 * addrs The pointer to the addresses in user land 1328 * addrssize Size of the addrs buffer 1329 * 1330 * Returns >=0 if ok, <0 errno code on error. 1331 */ 1332 static int __sctp_setsockopt_connectx(struct sock *sk, 1333 struct sockaddr __user *addrs, 1334 int addrs_size, 1335 sctp_assoc_t *assoc_id) 1336 { 1337 struct sockaddr *kaddrs; 1338 int err = 0; 1339 1340 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n", 1341 __func__, sk, addrs, addrs_size); 1342 1343 if (unlikely(addrs_size <= 0)) 1344 return -EINVAL; 1345 1346 kaddrs = vmemdup_user(addrs, addrs_size); 1347 if (unlikely(IS_ERR(kaddrs))) 1348 return PTR_ERR(kaddrs); 1349 1350 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id); 1351 kvfree(kaddrs); 1352 1353 return err; 1354 } 1355 1356 /* 1357 * This is an older interface. It's kept for backward compatibility 1358 * to the option that doesn't provide association id. 1359 */ 1360 static int sctp_setsockopt_connectx_old(struct sock *sk, 1361 struct sockaddr __user *addrs, 1362 int addrs_size) 1363 { 1364 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL); 1365 } 1366 1367 /* 1368 * New interface for the API. The since the API is done with a socket 1369 * option, to make it simple we feed back the association id is as a return 1370 * indication to the call. Error is always negative and association id is 1371 * always positive. 1372 */ 1373 static int sctp_setsockopt_connectx(struct sock *sk, 1374 struct sockaddr __user *addrs, 1375 int addrs_size) 1376 { 1377 sctp_assoc_t assoc_id = 0; 1378 int err = 0; 1379 1380 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id); 1381 1382 if (err) 1383 return err; 1384 else 1385 return assoc_id; 1386 } 1387 1388 /* 1389 * New (hopefully final) interface for the API. 1390 * We use the sctp_getaddrs_old structure so that use-space library 1391 * can avoid any unnecessary allocations. The only different part 1392 * is that we store the actual length of the address buffer into the 1393 * addrs_num structure member. That way we can re-use the existing 1394 * code. 1395 */ 1396 #ifdef CONFIG_COMPAT 1397 struct compat_sctp_getaddrs_old { 1398 sctp_assoc_t assoc_id; 1399 s32 addr_num; 1400 compat_uptr_t addrs; /* struct sockaddr * */ 1401 }; 1402 #endif 1403 1404 static int sctp_getsockopt_connectx3(struct sock *sk, int len, 1405 char __user *optval, 1406 int __user *optlen) 1407 { 1408 struct sctp_getaddrs_old param; 1409 sctp_assoc_t assoc_id = 0; 1410 int err = 0; 1411 1412 #ifdef CONFIG_COMPAT 1413 if (in_compat_syscall()) { 1414 struct compat_sctp_getaddrs_old param32; 1415 1416 if (len < sizeof(param32)) 1417 return -EINVAL; 1418 if (copy_from_user(¶m32, optval, sizeof(param32))) 1419 return -EFAULT; 1420 1421 param.assoc_id = param32.assoc_id; 1422 param.addr_num = param32.addr_num; 1423 param.addrs = compat_ptr(param32.addrs); 1424 } else 1425 #endif 1426 { 1427 if (len < sizeof(param)) 1428 return -EINVAL; 1429 if (copy_from_user(¶m, optval, sizeof(param))) 1430 return -EFAULT; 1431 } 1432 1433 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *) 1434 param.addrs, param.addr_num, 1435 &assoc_id); 1436 if (err == 0 || err == -EINPROGRESS) { 1437 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id))) 1438 return -EFAULT; 1439 if (put_user(sizeof(assoc_id), optlen)) 1440 return -EFAULT; 1441 } 1442 1443 return err; 1444 } 1445 1446 /* API 3.1.4 close() - UDP Style Syntax 1447 * Applications use close() to perform graceful shutdown (as described in 1448 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1449 * by a UDP-style socket. 1450 * 1451 * The syntax is 1452 * 1453 * ret = close(int sd); 1454 * 1455 * sd - the socket descriptor of the associations to be closed. 1456 * 1457 * To gracefully shutdown a specific association represented by the 1458 * UDP-style socket, an application should use the sendmsg() call, 1459 * passing no user data, but including the appropriate flag in the 1460 * ancillary data (see Section xxxx). 1461 * 1462 * If sd in the close() call is a branched-off socket representing only 1463 * one association, the shutdown is performed on that association only. 1464 * 1465 * 4.1.6 close() - TCP Style Syntax 1466 * 1467 * Applications use close() to gracefully close down an association. 1468 * 1469 * The syntax is: 1470 * 1471 * int close(int sd); 1472 * 1473 * sd - the socket descriptor of the association to be closed. 1474 * 1475 * After an application calls close() on a socket descriptor, no further 1476 * socket operations will succeed on that descriptor. 1477 * 1478 * API 7.1.4 SO_LINGER 1479 * 1480 * An application using the TCP-style socket can use this option to 1481 * perform the SCTP ABORT primitive. The linger option structure is: 1482 * 1483 * struct linger { 1484 * int l_onoff; // option on/off 1485 * int l_linger; // linger time 1486 * }; 1487 * 1488 * To enable the option, set l_onoff to 1. If the l_linger value is set 1489 * to 0, calling close() is the same as the ABORT primitive. If the 1490 * value is set to a negative value, the setsockopt() call will return 1491 * an error. If the value is set to a positive value linger_time, the 1492 * close() can be blocked for at most linger_time ms. If the graceful 1493 * shutdown phase does not finish during this period, close() will 1494 * return but the graceful shutdown phase continues in the system. 1495 */ 1496 static void sctp_close(struct sock *sk, long timeout) 1497 { 1498 struct net *net = sock_net(sk); 1499 struct sctp_endpoint *ep; 1500 struct sctp_association *asoc; 1501 struct list_head *pos, *temp; 1502 unsigned int data_was_unread; 1503 1504 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); 1505 1506 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 1507 sk->sk_shutdown = SHUTDOWN_MASK; 1508 inet_sk_set_state(sk, SCTP_SS_CLOSING); 1509 1510 ep = sctp_sk(sk)->ep; 1511 1512 /* Clean up any skbs sitting on the receive queue. */ 1513 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1514 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1515 1516 /* Walk all associations on an endpoint. */ 1517 list_for_each_safe(pos, temp, &ep->asocs) { 1518 asoc = list_entry(pos, struct sctp_association, asocs); 1519 1520 if (sctp_style(sk, TCP)) { 1521 /* A closed association can still be in the list if 1522 * it belongs to a TCP-style listening socket that is 1523 * not yet accepted. If so, free it. If not, send an 1524 * ABORT or SHUTDOWN based on the linger options. 1525 */ 1526 if (sctp_state(asoc, CLOSED)) { 1527 sctp_association_free(asoc); 1528 continue; 1529 } 1530 } 1531 1532 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) || 1533 !skb_queue_empty(&asoc->ulpq.reasm) || 1534 !skb_queue_empty(&asoc->ulpq.reasm_uo) || 1535 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) { 1536 struct sctp_chunk *chunk; 1537 1538 chunk = sctp_make_abort_user(asoc, NULL, 0); 1539 sctp_primitive_ABORT(net, asoc, chunk); 1540 } else 1541 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1542 } 1543 1544 /* On a TCP-style socket, block for at most linger_time if set. */ 1545 if (sctp_style(sk, TCP) && timeout) 1546 sctp_wait_for_close(sk, timeout); 1547 1548 /* This will run the backlog queue. */ 1549 release_sock(sk); 1550 1551 /* Supposedly, no process has access to the socket, but 1552 * the net layers still may. 1553 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock 1554 * held and that should be grabbed before socket lock. 1555 */ 1556 spin_lock_bh(&net->sctp.addr_wq_lock); 1557 bh_lock_sock_nested(sk); 1558 1559 /* Hold the sock, since sk_common_release() will put sock_put() 1560 * and we have just a little more cleanup. 1561 */ 1562 sock_hold(sk); 1563 sk_common_release(sk); 1564 1565 bh_unlock_sock(sk); 1566 spin_unlock_bh(&net->sctp.addr_wq_lock); 1567 1568 sock_put(sk); 1569 1570 SCTP_DBG_OBJCNT_DEC(sock); 1571 } 1572 1573 /* Handle EPIPE error. */ 1574 static int sctp_error(struct sock *sk, int flags, int err) 1575 { 1576 if (err == -EPIPE) 1577 err = sock_error(sk) ? : -EPIPE; 1578 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1579 send_sig(SIGPIPE, current, 0); 1580 return err; 1581 } 1582 1583 /* API 3.1.3 sendmsg() - UDP Style Syntax 1584 * 1585 * An application uses sendmsg() and recvmsg() calls to transmit data to 1586 * and receive data from its peer. 1587 * 1588 * ssize_t sendmsg(int socket, const struct msghdr *message, 1589 * int flags); 1590 * 1591 * socket - the socket descriptor of the endpoint. 1592 * message - pointer to the msghdr structure which contains a single 1593 * user message and possibly some ancillary data. 1594 * 1595 * See Section 5 for complete description of the data 1596 * structures. 1597 * 1598 * flags - flags sent or received with the user message, see Section 1599 * 5 for complete description of the flags. 1600 * 1601 * Note: This function could use a rewrite especially when explicit 1602 * connect support comes in. 1603 */ 1604 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1605 1606 static int sctp_msghdr_parse(const struct msghdr *msg, 1607 struct sctp_cmsgs *cmsgs); 1608 1609 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len) 1610 { 1611 struct net *net = sock_net(sk); 1612 struct sctp_sock *sp; 1613 struct sctp_endpoint *ep; 1614 struct sctp_association *new_asoc = NULL, *asoc = NULL; 1615 struct sctp_transport *transport, *chunk_tp; 1616 struct sctp_chunk *chunk; 1617 union sctp_addr to; 1618 struct sockaddr *msg_name = NULL; 1619 struct sctp_sndrcvinfo default_sinfo; 1620 struct sctp_sndrcvinfo *sinfo; 1621 struct sctp_initmsg *sinit; 1622 sctp_assoc_t associd = 0; 1623 struct sctp_cmsgs cmsgs = { NULL }; 1624 enum sctp_scope scope; 1625 bool fill_sinfo_ttl = false, wait_connect = false; 1626 struct sctp_datamsg *datamsg; 1627 int msg_flags = msg->msg_flags; 1628 __u16 sinfo_flags = 0; 1629 long timeo; 1630 int err; 1631 1632 err = 0; 1633 sp = sctp_sk(sk); 1634 ep = sp->ep; 1635 1636 pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk, 1637 msg, msg_len, ep); 1638 1639 /* We cannot send a message over a TCP-style listening socket. */ 1640 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) { 1641 err = -EPIPE; 1642 goto out_nounlock; 1643 } 1644 1645 /* Parse out the SCTP CMSGs. */ 1646 err = sctp_msghdr_parse(msg, &cmsgs); 1647 if (err) { 1648 pr_debug("%s: msghdr parse err:%x\n", __func__, err); 1649 goto out_nounlock; 1650 } 1651 1652 /* Fetch the destination address for this packet. This 1653 * address only selects the association--it is not necessarily 1654 * the address we will send to. 1655 * For a peeled-off socket, msg_name is ignored. 1656 */ 1657 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1658 int msg_namelen = msg->msg_namelen; 1659 1660 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name, 1661 msg_namelen); 1662 if (err) 1663 return err; 1664 1665 if (msg_namelen > sizeof(to)) 1666 msg_namelen = sizeof(to); 1667 memcpy(&to, msg->msg_name, msg_namelen); 1668 msg_name = msg->msg_name; 1669 } 1670 1671 sinit = cmsgs.init; 1672 if (cmsgs.sinfo != NULL) { 1673 memset(&default_sinfo, 0, sizeof(default_sinfo)); 1674 default_sinfo.sinfo_stream = cmsgs.sinfo->snd_sid; 1675 default_sinfo.sinfo_flags = cmsgs.sinfo->snd_flags; 1676 default_sinfo.sinfo_ppid = cmsgs.sinfo->snd_ppid; 1677 default_sinfo.sinfo_context = cmsgs.sinfo->snd_context; 1678 default_sinfo.sinfo_assoc_id = cmsgs.sinfo->snd_assoc_id; 1679 1680 sinfo = &default_sinfo; 1681 fill_sinfo_ttl = true; 1682 } else { 1683 sinfo = cmsgs.srinfo; 1684 } 1685 /* Did the user specify SNDINFO/SNDRCVINFO? */ 1686 if (sinfo) { 1687 sinfo_flags = sinfo->sinfo_flags; 1688 associd = sinfo->sinfo_assoc_id; 1689 } 1690 1691 pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__, 1692 msg_len, sinfo_flags); 1693 1694 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */ 1695 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) { 1696 err = -EINVAL; 1697 goto out_nounlock; 1698 } 1699 1700 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero 1701 * length messages when SCTP_EOF|SCTP_ABORT is not set. 1702 * If SCTP_ABORT is set, the message length could be non zero with 1703 * the msg_iov set to the user abort reason. 1704 */ 1705 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) || 1706 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) { 1707 err = -EINVAL; 1708 goto out_nounlock; 1709 } 1710 1711 /* If SCTP_ADDR_OVER is set, there must be an address 1712 * specified in msg_name. 1713 */ 1714 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) { 1715 err = -EINVAL; 1716 goto out_nounlock; 1717 } 1718 1719 transport = NULL; 1720 1721 pr_debug("%s: about to look up association\n", __func__); 1722 1723 lock_sock(sk); 1724 1725 /* If a msg_name has been specified, assume this is to be used. */ 1726 if (msg_name) { 1727 /* Look for a matching association on the endpoint. */ 1728 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1729 1730 /* If we could not find a matching association on the 1731 * endpoint, make sure that it is not a TCP-style 1732 * socket that already has an association or there is 1733 * no peeled-off association on another socket. 1734 */ 1735 if (!asoc && 1736 ((sctp_style(sk, TCP) && 1737 (sctp_sstate(sk, ESTABLISHED) || 1738 sctp_sstate(sk, CLOSING))) || 1739 sctp_endpoint_is_peeled_off(ep, &to))) { 1740 err = -EADDRNOTAVAIL; 1741 goto out_unlock; 1742 } 1743 } else { 1744 asoc = sctp_id2assoc(sk, associd); 1745 if (!asoc) { 1746 err = -EPIPE; 1747 goto out_unlock; 1748 } 1749 } 1750 1751 if (asoc) { 1752 pr_debug("%s: just looked up association:%p\n", __func__, asoc); 1753 1754 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED 1755 * socket that has an association in CLOSED state. This can 1756 * happen when an accepted socket has an association that is 1757 * already CLOSED. 1758 */ 1759 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) { 1760 err = -EPIPE; 1761 goto out_unlock; 1762 } 1763 1764 if (sinfo_flags & SCTP_EOF) { 1765 pr_debug("%s: shutting down association:%p\n", 1766 __func__, asoc); 1767 1768 sctp_primitive_SHUTDOWN(net, asoc, NULL); 1769 err = 0; 1770 goto out_unlock; 1771 } 1772 if (sinfo_flags & SCTP_ABORT) { 1773 1774 chunk = sctp_make_abort_user(asoc, msg, msg_len); 1775 if (!chunk) { 1776 err = -ENOMEM; 1777 goto out_unlock; 1778 } 1779 1780 pr_debug("%s: aborting association:%p\n", 1781 __func__, asoc); 1782 1783 sctp_primitive_ABORT(net, asoc, chunk); 1784 err = 0; 1785 goto out_unlock; 1786 } 1787 } 1788 1789 /* Do we need to create the association? */ 1790 if (!asoc) { 1791 pr_debug("%s: there is no association yet\n", __func__); 1792 1793 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) { 1794 err = -EINVAL; 1795 goto out_unlock; 1796 } 1797 1798 /* Check for invalid stream against the stream counts, 1799 * either the default or the user specified stream counts. 1800 */ 1801 if (sinfo) { 1802 if (!sinit || !sinit->sinit_num_ostreams) { 1803 /* Check against the defaults. */ 1804 if (sinfo->sinfo_stream >= 1805 sp->initmsg.sinit_num_ostreams) { 1806 err = -EINVAL; 1807 goto out_unlock; 1808 } 1809 } else { 1810 /* Check against the requested. */ 1811 if (sinfo->sinfo_stream >= 1812 sinit->sinit_num_ostreams) { 1813 err = -EINVAL; 1814 goto out_unlock; 1815 } 1816 } 1817 } 1818 1819 /* 1820 * API 3.1.2 bind() - UDP Style Syntax 1821 * If a bind() or sctp_bindx() is not called prior to a 1822 * sendmsg() call that initiates a new association, the 1823 * system picks an ephemeral port and will choose an address 1824 * set equivalent to binding with a wildcard address. 1825 */ 1826 if (!ep->base.bind_addr.port) { 1827 if (sctp_autobind(sk)) { 1828 err = -EAGAIN; 1829 goto out_unlock; 1830 } 1831 } else { 1832 /* 1833 * If an unprivileged user inherits a one-to-many 1834 * style socket with open associations on a privileged 1835 * port, it MAY be permitted to accept new associations, 1836 * but it SHOULD NOT be permitted to open new 1837 * associations. 1838 */ 1839 if (ep->base.bind_addr.port < inet_prot_sock(net) && 1840 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) { 1841 err = -EACCES; 1842 goto out_unlock; 1843 } 1844 } 1845 1846 scope = sctp_scope(&to); 1847 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1848 if (!new_asoc) { 1849 err = -ENOMEM; 1850 goto out_unlock; 1851 } 1852 asoc = new_asoc; 1853 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL); 1854 if (err < 0) { 1855 err = -ENOMEM; 1856 goto out_free; 1857 } 1858 1859 /* If the SCTP_INIT ancillary data is specified, set all 1860 * the association init values accordingly. 1861 */ 1862 if (sinit) { 1863 if (sinit->sinit_num_ostreams) { 1864 __u16 outcnt = sinit->sinit_num_ostreams; 1865 1866 asoc->c.sinit_num_ostreams = outcnt; 1867 /* outcnt has been changed, so re-init stream */ 1868 err = sctp_stream_init(&asoc->stream, outcnt, 0, 1869 GFP_KERNEL); 1870 if (err) 1871 goto out_free; 1872 } 1873 if (sinit->sinit_max_instreams) { 1874 asoc->c.sinit_max_instreams = 1875 sinit->sinit_max_instreams; 1876 } 1877 if (sinit->sinit_max_attempts) { 1878 asoc->max_init_attempts 1879 = sinit->sinit_max_attempts; 1880 } 1881 if (sinit->sinit_max_init_timeo) { 1882 asoc->max_init_timeo = 1883 msecs_to_jiffies(sinit->sinit_max_init_timeo); 1884 } 1885 } 1886 1887 /* Prime the peer's transport structures. */ 1888 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN); 1889 if (!transport) { 1890 err = -ENOMEM; 1891 goto out_free; 1892 } 1893 } 1894 1895 /* ASSERT: we have a valid association at this point. */ 1896 pr_debug("%s: we have a valid association\n", __func__); 1897 1898 if (!sinfo) { 1899 /* If the user didn't specify SNDINFO/SNDRCVINFO, make up 1900 * one with some defaults. 1901 */ 1902 memset(&default_sinfo, 0, sizeof(default_sinfo)); 1903 default_sinfo.sinfo_stream = asoc->default_stream; 1904 default_sinfo.sinfo_flags = asoc->default_flags; 1905 default_sinfo.sinfo_ppid = asoc->default_ppid; 1906 default_sinfo.sinfo_context = asoc->default_context; 1907 default_sinfo.sinfo_timetolive = asoc->default_timetolive; 1908 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc); 1909 1910 sinfo = &default_sinfo; 1911 } else if (fill_sinfo_ttl) { 1912 /* In case SNDINFO was specified, we still need to fill 1913 * it with a default ttl from the assoc here. 1914 */ 1915 sinfo->sinfo_timetolive = asoc->default_timetolive; 1916 } 1917 1918 /* API 7.1.7, the sndbuf size per association bounds the 1919 * maximum size of data that can be sent in a single send call. 1920 */ 1921 if (msg_len > sk->sk_sndbuf) { 1922 err = -EMSGSIZE; 1923 goto out_free; 1924 } 1925 1926 if (asoc->pmtu_pending) 1927 sctp_assoc_pending_pmtu(asoc); 1928 1929 /* If fragmentation is disabled and the message length exceeds the 1930 * association fragmentation point, return EMSGSIZE. The I-D 1931 * does not specify what this error is, but this looks like 1932 * a great fit. 1933 */ 1934 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) { 1935 err = -EMSGSIZE; 1936 goto out_free; 1937 } 1938 1939 /* Check for invalid stream. */ 1940 if (sinfo->sinfo_stream >= asoc->stream.outcnt) { 1941 err = -EINVAL; 1942 goto out_free; 1943 } 1944 1945 /* Allocate sctp_stream_out_ext if not already done */ 1946 if (unlikely(!asoc->stream.out[sinfo->sinfo_stream].ext)) { 1947 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream); 1948 if (err) 1949 goto out_free; 1950 } 1951 1952 if (sctp_wspace(asoc) < msg_len) 1953 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc)); 1954 1955 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1956 if (!sctp_wspace(asoc)) { 1957 /* sk can be changed by peel off when waiting for buf. */ 1958 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1959 if (err) { 1960 if (err == -ESRCH) { 1961 /* asoc is already dead. */ 1962 new_asoc = NULL; 1963 err = -EPIPE; 1964 } 1965 goto out_free; 1966 } 1967 } 1968 1969 /* If an address is passed with the sendto/sendmsg call, it is used 1970 * to override the primary destination address in the TCP model, or 1971 * when SCTP_ADDR_OVER flag is set in the UDP model. 1972 */ 1973 if ((sctp_style(sk, TCP) && msg_name) || 1974 (sinfo_flags & SCTP_ADDR_OVER)) { 1975 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to); 1976 if (!chunk_tp) { 1977 err = -EINVAL; 1978 goto out_free; 1979 } 1980 } else 1981 chunk_tp = NULL; 1982 1983 /* Auto-connect, if we aren't connected already. */ 1984 if (sctp_state(asoc, CLOSED)) { 1985 err = sctp_primitive_ASSOCIATE(net, asoc, NULL); 1986 if (err < 0) 1987 goto out_free; 1988 1989 /* If stream interleave is enabled, wait_connect has to be 1990 * done earlier than data enqueue, as it needs to make data 1991 * or idata according to asoc->intl_enable which is set 1992 * after connection is done. 1993 */ 1994 if (sctp_sk(asoc->base.sk)->strm_interleave) { 1995 timeo = sock_sndtimeo(sk, 0); 1996 err = sctp_wait_for_connect(asoc, &timeo); 1997 if (err) 1998 goto out_unlock; 1999 } else { 2000 wait_connect = true; 2001 } 2002 2003 pr_debug("%s: we associated primitively\n", __func__); 2004 } 2005 2006 /* Break the message into multiple chunks of maximum size. */ 2007 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter); 2008 if (IS_ERR(datamsg)) { 2009 err = PTR_ERR(datamsg); 2010 goto out_free; 2011 } 2012 asoc->force_delay = !!(msg->msg_flags & MSG_MORE); 2013 2014 /* Now send the (possibly) fragmented message. */ 2015 list_for_each_entry(chunk, &datamsg->chunks, frag_list) { 2016 sctp_chunk_hold(chunk); 2017 2018 /* Do accounting for the write space. */ 2019 sctp_set_owner_w(chunk); 2020 2021 chunk->transport = chunk_tp; 2022 } 2023 2024 /* Send it to the lower layers. Note: all chunks 2025 * must either fail or succeed. The lower layer 2026 * works that way today. Keep it that way or this 2027 * breaks. 2028 */ 2029 err = sctp_primitive_SEND(net, asoc, datamsg); 2030 /* Did the lower layer accept the chunk? */ 2031 if (err) { 2032 sctp_datamsg_free(datamsg); 2033 goto out_free; 2034 } 2035 2036 pr_debug("%s: we sent primitively\n", __func__); 2037 2038 sctp_datamsg_put(datamsg); 2039 err = msg_len; 2040 2041 if (unlikely(wait_connect)) { 2042 timeo = sock_sndtimeo(sk, msg_flags & MSG_DONTWAIT); 2043 sctp_wait_for_connect(asoc, &timeo); 2044 } 2045 2046 /* If we are already past ASSOCIATE, the lower 2047 * layers are responsible for association cleanup. 2048 */ 2049 goto out_unlock; 2050 2051 out_free: 2052 if (new_asoc) 2053 sctp_association_free(asoc); 2054 out_unlock: 2055 release_sock(sk); 2056 2057 out_nounlock: 2058 return sctp_error(sk, msg_flags, err); 2059 2060 #if 0 2061 do_sock_err: 2062 if (msg_len) 2063 err = msg_len; 2064 else 2065 err = sock_error(sk); 2066 goto out; 2067 2068 do_interrupted: 2069 if (msg_len) 2070 err = msg_len; 2071 goto out; 2072 #endif /* 0 */ 2073 } 2074 2075 /* This is an extended version of skb_pull() that removes the data from the 2076 * start of a skb even when data is spread across the list of skb's in the 2077 * frag_list. len specifies the total amount of data that needs to be removed. 2078 * when 'len' bytes could be removed from the skb, it returns 0. 2079 * If 'len' exceeds the total skb length, it returns the no. of bytes that 2080 * could not be removed. 2081 */ 2082 static int sctp_skb_pull(struct sk_buff *skb, int len) 2083 { 2084 struct sk_buff *list; 2085 int skb_len = skb_headlen(skb); 2086 int rlen; 2087 2088 if (len <= skb_len) { 2089 __skb_pull(skb, len); 2090 return 0; 2091 } 2092 len -= skb_len; 2093 __skb_pull(skb, skb_len); 2094 2095 skb_walk_frags(skb, list) { 2096 rlen = sctp_skb_pull(list, len); 2097 skb->len -= (len-rlen); 2098 skb->data_len -= (len-rlen); 2099 2100 if (!rlen) 2101 return 0; 2102 2103 len = rlen; 2104 } 2105 2106 return len; 2107 } 2108 2109 /* API 3.1.3 recvmsg() - UDP Style Syntax 2110 * 2111 * ssize_t recvmsg(int socket, struct msghdr *message, 2112 * int flags); 2113 * 2114 * socket - the socket descriptor of the endpoint. 2115 * message - pointer to the msghdr structure which contains a single 2116 * user message and possibly some ancillary data. 2117 * 2118 * See Section 5 for complete description of the data 2119 * structures. 2120 * 2121 * flags - flags sent or received with the user message, see Section 2122 * 5 for complete description of the flags. 2123 */ 2124 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2125 int noblock, int flags, int *addr_len) 2126 { 2127 struct sctp_ulpevent *event = NULL; 2128 struct sctp_sock *sp = sctp_sk(sk); 2129 struct sk_buff *skb, *head_skb; 2130 int copied; 2131 int err = 0; 2132 int skb_len; 2133 2134 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, " 2135 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags, 2136 addr_len); 2137 2138 lock_sock(sk); 2139 2140 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) && 2141 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) { 2142 err = -ENOTCONN; 2143 goto out; 2144 } 2145 2146 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 2147 if (!skb) 2148 goto out; 2149 2150 /* Get the total length of the skb including any skb's in the 2151 * frag_list. 2152 */ 2153 skb_len = skb->len; 2154 2155 copied = skb_len; 2156 if (copied > len) 2157 copied = len; 2158 2159 err = skb_copy_datagram_msg(skb, 0, msg, copied); 2160 2161 event = sctp_skb2event(skb); 2162 2163 if (err) 2164 goto out_free; 2165 2166 if (event->chunk && event->chunk->head_skb) 2167 head_skb = event->chunk->head_skb; 2168 else 2169 head_skb = skb; 2170 sock_recv_ts_and_drops(msg, sk, head_skb); 2171 if (sctp_ulpevent_is_notification(event)) { 2172 msg->msg_flags |= MSG_NOTIFICATION; 2173 sp->pf->event_msgname(event, msg->msg_name, addr_len); 2174 } else { 2175 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len); 2176 } 2177 2178 /* Check if we allow SCTP_NXTINFO. */ 2179 if (sp->recvnxtinfo) 2180 sctp_ulpevent_read_nxtinfo(event, msg, sk); 2181 /* Check if we allow SCTP_RCVINFO. */ 2182 if (sp->recvrcvinfo) 2183 sctp_ulpevent_read_rcvinfo(event, msg); 2184 /* Check if we allow SCTP_SNDRCVINFO. */ 2185 if (sp->subscribe.sctp_data_io_event) 2186 sctp_ulpevent_read_sndrcvinfo(event, msg); 2187 2188 err = copied; 2189 2190 /* If skb's length exceeds the user's buffer, update the skb and 2191 * push it back to the receive_queue so that the next call to 2192 * recvmsg() will return the remaining data. Don't set MSG_EOR. 2193 */ 2194 if (skb_len > copied) { 2195 msg->msg_flags &= ~MSG_EOR; 2196 if (flags & MSG_PEEK) 2197 goto out_free; 2198 sctp_skb_pull(skb, copied); 2199 skb_queue_head(&sk->sk_receive_queue, skb); 2200 2201 /* When only partial message is copied to the user, increase 2202 * rwnd by that amount. If all the data in the skb is read, 2203 * rwnd is updated when the event is freed. 2204 */ 2205 if (!sctp_ulpevent_is_notification(event)) 2206 sctp_assoc_rwnd_increase(event->asoc, copied); 2207 goto out; 2208 } else if ((event->msg_flags & MSG_NOTIFICATION) || 2209 (event->msg_flags & MSG_EOR)) 2210 msg->msg_flags |= MSG_EOR; 2211 else 2212 msg->msg_flags &= ~MSG_EOR; 2213 2214 out_free: 2215 if (flags & MSG_PEEK) { 2216 /* Release the skb reference acquired after peeking the skb in 2217 * sctp_skb_recv_datagram(). 2218 */ 2219 kfree_skb(skb); 2220 } else { 2221 /* Free the event which includes releasing the reference to 2222 * the owner of the skb, freeing the skb and updating the 2223 * rwnd. 2224 */ 2225 sctp_ulpevent_free(event); 2226 } 2227 out: 2228 release_sock(sk); 2229 return err; 2230 } 2231 2232 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2233 * 2234 * This option is a on/off flag. If enabled no SCTP message 2235 * fragmentation will be performed. Instead if a message being sent 2236 * exceeds the current PMTU size, the message will NOT be sent and 2237 * instead a error will be indicated to the user. 2238 */ 2239 static int sctp_setsockopt_disable_fragments(struct sock *sk, 2240 char __user *optval, 2241 unsigned int optlen) 2242 { 2243 int val; 2244 2245 if (optlen < sizeof(int)) 2246 return -EINVAL; 2247 2248 if (get_user(val, (int __user *)optval)) 2249 return -EFAULT; 2250 2251 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 2252 2253 return 0; 2254 } 2255 2256 static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 2257 unsigned int optlen) 2258 { 2259 struct sctp_association *asoc; 2260 struct sctp_ulpevent *event; 2261 2262 if (optlen > sizeof(struct sctp_event_subscribe)) 2263 return -EINVAL; 2264 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 2265 return -EFAULT; 2266 2267 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT, 2268 * if there is no data to be sent or retransmit, the stack will 2269 * immediately send up this notification. 2270 */ 2271 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT, 2272 &sctp_sk(sk)->subscribe)) { 2273 asoc = sctp_id2assoc(sk, 0); 2274 2275 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) { 2276 event = sctp_ulpevent_make_sender_dry_event(asoc, 2277 GFP_USER | __GFP_NOWARN); 2278 if (!event) 2279 return -ENOMEM; 2280 2281 asoc->stream.si->enqueue_event(&asoc->ulpq, event); 2282 } 2283 } 2284 2285 return 0; 2286 } 2287 2288 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2289 * 2290 * This socket option is applicable to the UDP-style socket only. When 2291 * set it will cause associations that are idle for more than the 2292 * specified number of seconds to automatically close. An association 2293 * being idle is defined an association that has NOT sent or received 2294 * user data. The special value of '0' indicates that no automatic 2295 * close of any associations should be performed. The option expects an 2296 * integer defining the number of seconds of idle time before an 2297 * association is closed. 2298 */ 2299 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 2300 unsigned int optlen) 2301 { 2302 struct sctp_sock *sp = sctp_sk(sk); 2303 struct net *net = sock_net(sk); 2304 2305 /* Applicable to UDP-style socket only */ 2306 if (sctp_style(sk, TCP)) 2307 return -EOPNOTSUPP; 2308 if (optlen != sizeof(int)) 2309 return -EINVAL; 2310 if (copy_from_user(&sp->autoclose, optval, optlen)) 2311 return -EFAULT; 2312 2313 if (sp->autoclose > net->sctp.max_autoclose) 2314 sp->autoclose = net->sctp.max_autoclose; 2315 2316 return 0; 2317 } 2318 2319 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 2320 * 2321 * Applications can enable or disable heartbeats for any peer address of 2322 * an association, modify an address's heartbeat interval, force a 2323 * heartbeat to be sent immediately, and adjust the address's maximum 2324 * number of retransmissions sent before an address is considered 2325 * unreachable. The following structure is used to access and modify an 2326 * address's parameters: 2327 * 2328 * struct sctp_paddrparams { 2329 * sctp_assoc_t spp_assoc_id; 2330 * struct sockaddr_storage spp_address; 2331 * uint32_t spp_hbinterval; 2332 * uint16_t spp_pathmaxrxt; 2333 * uint32_t spp_pathmtu; 2334 * uint32_t spp_sackdelay; 2335 * uint32_t spp_flags; 2336 * }; 2337 * 2338 * spp_assoc_id - (one-to-many style socket) This is filled in the 2339 * application, and identifies the association for 2340 * this query. 2341 * spp_address - This specifies which address is of interest. 2342 * spp_hbinterval - This contains the value of the heartbeat interval, 2343 * in milliseconds. If a value of zero 2344 * is present in this field then no changes are to 2345 * be made to this parameter. 2346 * spp_pathmaxrxt - This contains the maximum number of 2347 * retransmissions before this address shall be 2348 * considered unreachable. If a value of zero 2349 * is present in this field then no changes are to 2350 * be made to this parameter. 2351 * spp_pathmtu - When Path MTU discovery is disabled the value 2352 * specified here will be the "fixed" path mtu. 2353 * Note that if the spp_address field is empty 2354 * then all associations on this address will 2355 * have this fixed path mtu set upon them. 2356 * 2357 * spp_sackdelay - When delayed sack is enabled, this value specifies 2358 * the number of milliseconds that sacks will be delayed 2359 * for. This value will apply to all addresses of an 2360 * association if the spp_address field is empty. Note 2361 * also, that if delayed sack is enabled and this 2362 * value is set to 0, no change is made to the last 2363 * recorded delayed sack timer value. 2364 * 2365 * spp_flags - These flags are used to control various features 2366 * on an association. The flag field may contain 2367 * zero or more of the following options. 2368 * 2369 * SPP_HB_ENABLE - Enable heartbeats on the 2370 * specified address. Note that if the address 2371 * field is empty all addresses for the association 2372 * have heartbeats enabled upon them. 2373 * 2374 * SPP_HB_DISABLE - Disable heartbeats on the 2375 * speicifed address. Note that if the address 2376 * field is empty all addresses for the association 2377 * will have their heartbeats disabled. Note also 2378 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 2379 * mutually exclusive, only one of these two should 2380 * be specified. Enabling both fields will have 2381 * undetermined results. 2382 * 2383 * SPP_HB_DEMAND - Request a user initiated heartbeat 2384 * to be made immediately. 2385 * 2386 * SPP_HB_TIME_IS_ZERO - Specify's that the time for 2387 * heartbeat delayis to be set to the value of 0 2388 * milliseconds. 2389 * 2390 * SPP_PMTUD_ENABLE - This field will enable PMTU 2391 * discovery upon the specified address. Note that 2392 * if the address feild is empty then all addresses 2393 * on the association are effected. 2394 * 2395 * SPP_PMTUD_DISABLE - This field will disable PMTU 2396 * discovery upon the specified address. Note that 2397 * if the address feild is empty then all addresses 2398 * on the association are effected. Not also that 2399 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 2400 * exclusive. Enabling both will have undetermined 2401 * results. 2402 * 2403 * SPP_SACKDELAY_ENABLE - Setting this flag turns 2404 * on delayed sack. The time specified in spp_sackdelay 2405 * is used to specify the sack delay for this address. Note 2406 * that if spp_address is empty then all addresses will 2407 * enable delayed sack and take on the sack delay 2408 * value specified in spp_sackdelay. 2409 * SPP_SACKDELAY_DISABLE - Setting this flag turns 2410 * off delayed sack. If the spp_address field is blank then 2411 * delayed sack is disabled for the entire association. Note 2412 * also that this field is mutually exclusive to 2413 * SPP_SACKDELAY_ENABLE, setting both will have undefined 2414 * results. 2415 */ 2416 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, 2417 struct sctp_transport *trans, 2418 struct sctp_association *asoc, 2419 struct sctp_sock *sp, 2420 int hb_change, 2421 int pmtud_change, 2422 int sackdelay_change) 2423 { 2424 int error; 2425 2426 if (params->spp_flags & SPP_HB_DEMAND && trans) { 2427 struct net *net = sock_net(trans->asoc->base.sk); 2428 2429 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans); 2430 if (error) 2431 return error; 2432 } 2433 2434 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of 2435 * this field is ignored. Note also that a value of zero indicates 2436 * the current setting should be left unchanged. 2437 */ 2438 if (params->spp_flags & SPP_HB_ENABLE) { 2439 2440 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is 2441 * set. This lets us use 0 value when this flag 2442 * is set. 2443 */ 2444 if (params->spp_flags & SPP_HB_TIME_IS_ZERO) 2445 params->spp_hbinterval = 0; 2446 2447 if (params->spp_hbinterval || 2448 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { 2449 if (trans) { 2450 trans->hbinterval = 2451 msecs_to_jiffies(params->spp_hbinterval); 2452 } else if (asoc) { 2453 asoc->hbinterval = 2454 msecs_to_jiffies(params->spp_hbinterval); 2455 } else { 2456 sp->hbinterval = params->spp_hbinterval; 2457 } 2458 } 2459 } 2460 2461 if (hb_change) { 2462 if (trans) { 2463 trans->param_flags = 2464 (trans->param_flags & ~SPP_HB) | hb_change; 2465 } else if (asoc) { 2466 asoc->param_flags = 2467 (asoc->param_flags & ~SPP_HB) | hb_change; 2468 } else { 2469 sp->param_flags = 2470 (sp->param_flags & ~SPP_HB) | hb_change; 2471 } 2472 } 2473 2474 /* When Path MTU discovery is disabled the value specified here will 2475 * be the "fixed" path mtu (i.e. the value of the spp_flags field must 2476 * include the flag SPP_PMTUD_DISABLE for this field to have any 2477 * effect). 2478 */ 2479 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { 2480 if (trans) { 2481 trans->pathmtu = params->spp_pathmtu; 2482 sctp_assoc_sync_pmtu(asoc); 2483 } else if (asoc) { 2484 asoc->pathmtu = params->spp_pathmtu; 2485 } else { 2486 sp->pathmtu = params->spp_pathmtu; 2487 } 2488 } 2489 2490 if (pmtud_change) { 2491 if (trans) { 2492 int update = (trans->param_flags & SPP_PMTUD_DISABLE) && 2493 (params->spp_flags & SPP_PMTUD_ENABLE); 2494 trans->param_flags = 2495 (trans->param_flags & ~SPP_PMTUD) | pmtud_change; 2496 if (update) { 2497 sctp_transport_pmtu(trans, sctp_opt2sk(sp)); 2498 sctp_assoc_sync_pmtu(asoc); 2499 } 2500 } else if (asoc) { 2501 asoc->param_flags = 2502 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; 2503 } else { 2504 sp->param_flags = 2505 (sp->param_flags & ~SPP_PMTUD) | pmtud_change; 2506 } 2507 } 2508 2509 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the 2510 * value of this field is ignored. Note also that a value of zero 2511 * indicates the current setting should be left unchanged. 2512 */ 2513 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { 2514 if (trans) { 2515 trans->sackdelay = 2516 msecs_to_jiffies(params->spp_sackdelay); 2517 } else if (asoc) { 2518 asoc->sackdelay = 2519 msecs_to_jiffies(params->spp_sackdelay); 2520 } else { 2521 sp->sackdelay = params->spp_sackdelay; 2522 } 2523 } 2524 2525 if (sackdelay_change) { 2526 if (trans) { 2527 trans->param_flags = 2528 (trans->param_flags & ~SPP_SACKDELAY) | 2529 sackdelay_change; 2530 } else if (asoc) { 2531 asoc->param_flags = 2532 (asoc->param_flags & ~SPP_SACKDELAY) | 2533 sackdelay_change; 2534 } else { 2535 sp->param_flags = 2536 (sp->param_flags & ~SPP_SACKDELAY) | 2537 sackdelay_change; 2538 } 2539 } 2540 2541 /* Note that a value of zero indicates the current setting should be 2542 left unchanged. 2543 */ 2544 if (params->spp_pathmaxrxt) { 2545 if (trans) { 2546 trans->pathmaxrxt = params->spp_pathmaxrxt; 2547 } else if (asoc) { 2548 asoc->pathmaxrxt = params->spp_pathmaxrxt; 2549 } else { 2550 sp->pathmaxrxt = params->spp_pathmaxrxt; 2551 } 2552 } 2553 2554 return 0; 2555 } 2556 2557 static int sctp_setsockopt_peer_addr_params(struct sock *sk, 2558 char __user *optval, 2559 unsigned int optlen) 2560 { 2561 struct sctp_paddrparams params; 2562 struct sctp_transport *trans = NULL; 2563 struct sctp_association *asoc = NULL; 2564 struct sctp_sock *sp = sctp_sk(sk); 2565 int error; 2566 int hb_change, pmtud_change, sackdelay_change; 2567 2568 if (optlen != sizeof(struct sctp_paddrparams)) 2569 return -EINVAL; 2570 2571 if (copy_from_user(¶ms, optval, optlen)) 2572 return -EFAULT; 2573 2574 /* Validate flags and value parameters. */ 2575 hb_change = params.spp_flags & SPP_HB; 2576 pmtud_change = params.spp_flags & SPP_PMTUD; 2577 sackdelay_change = params.spp_flags & SPP_SACKDELAY; 2578 2579 if (hb_change == SPP_HB || 2580 pmtud_change == SPP_PMTUD || 2581 sackdelay_change == SPP_SACKDELAY || 2582 params.spp_sackdelay > 500 || 2583 (params.spp_pathmtu && 2584 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) 2585 return -EINVAL; 2586 2587 /* If an address other than INADDR_ANY is specified, and 2588 * no transport is found, then the request is invalid. 2589 */ 2590 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 2591 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 2592 params.spp_assoc_id); 2593 if (!trans) 2594 return -EINVAL; 2595 } 2596 2597 /* Get association, if assoc_id != 0 and the socket is a one 2598 * to many style socket, and an association was not found, then 2599 * the id was invalid. 2600 */ 2601 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 2602 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) 2603 return -EINVAL; 2604 2605 /* Heartbeat demand can only be sent on a transport or 2606 * association, but not a socket. 2607 */ 2608 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) 2609 return -EINVAL; 2610 2611 /* Process parameters. */ 2612 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2613 hb_change, pmtud_change, 2614 sackdelay_change); 2615 2616 if (error) 2617 return error; 2618 2619 /* If changes are for association, also apply parameters to each 2620 * transport. 2621 */ 2622 if (!trans && asoc) { 2623 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2624 transports) { 2625 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, 2626 hb_change, pmtud_change, 2627 sackdelay_change); 2628 } 2629 } 2630 2631 return 0; 2632 } 2633 2634 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags) 2635 { 2636 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; 2637 } 2638 2639 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags) 2640 { 2641 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; 2642 } 2643 2644 /* 2645 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 2646 * 2647 * This option will effect the way delayed acks are performed. This 2648 * option allows you to get or set the delayed ack time, in 2649 * milliseconds. It also allows changing the delayed ack frequency. 2650 * Changing the frequency to 1 disables the delayed sack algorithm. If 2651 * the assoc_id is 0, then this sets or gets the endpoints default 2652 * values. If the assoc_id field is non-zero, then the set or get 2653 * effects the specified association for the one to many model (the 2654 * assoc_id field is ignored by the one to one model). Note that if 2655 * sack_delay or sack_freq are 0 when setting this option, then the 2656 * current values will remain unchanged. 2657 * 2658 * struct sctp_sack_info { 2659 * sctp_assoc_t sack_assoc_id; 2660 * uint32_t sack_delay; 2661 * uint32_t sack_freq; 2662 * }; 2663 * 2664 * sack_assoc_id - This parameter, indicates which association the user 2665 * is performing an action upon. Note that if this field's value is 2666 * zero then the endpoints default value is changed (effecting future 2667 * associations only). 2668 * 2669 * sack_delay - This parameter contains the number of milliseconds that 2670 * the user is requesting the delayed ACK timer be set to. Note that 2671 * this value is defined in the standard to be between 200 and 500 2672 * milliseconds. 2673 * 2674 * sack_freq - This parameter contains the number of packets that must 2675 * be received before a sack is sent without waiting for the delay 2676 * timer to expire. The default value for this is 2, setting this 2677 * value to 1 will disable the delayed sack algorithm. 2678 */ 2679 2680 static int sctp_setsockopt_delayed_ack(struct sock *sk, 2681 char __user *optval, unsigned int optlen) 2682 { 2683 struct sctp_sack_info params; 2684 struct sctp_transport *trans = NULL; 2685 struct sctp_association *asoc = NULL; 2686 struct sctp_sock *sp = sctp_sk(sk); 2687 2688 if (optlen == sizeof(struct sctp_sack_info)) { 2689 if (copy_from_user(¶ms, optval, optlen)) 2690 return -EFAULT; 2691 2692 if (params.sack_delay == 0 && params.sack_freq == 0) 2693 return 0; 2694 } else if (optlen == sizeof(struct sctp_assoc_value)) { 2695 pr_warn_ratelimited(DEPRECATED 2696 "%s (pid %d) " 2697 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 2698 "Use struct sctp_sack_info instead\n", 2699 current->comm, task_pid_nr(current)); 2700 if (copy_from_user(¶ms, optval, optlen)) 2701 return -EFAULT; 2702 2703 if (params.sack_delay == 0) 2704 params.sack_freq = 1; 2705 else 2706 params.sack_freq = 0; 2707 } else 2708 return -EINVAL; 2709 2710 /* Validate value parameter. */ 2711 if (params.sack_delay > 500) 2712 return -EINVAL; 2713 2714 /* Get association, if sack_assoc_id != 0 and the socket is a one 2715 * to many style socket, and an association was not found, then 2716 * the id was invalid. 2717 */ 2718 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 2719 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 2720 return -EINVAL; 2721 2722 if (params.sack_delay) { 2723 if (asoc) { 2724 asoc->sackdelay = 2725 msecs_to_jiffies(params.sack_delay); 2726 asoc->param_flags = 2727 sctp_spp_sackdelay_enable(asoc->param_flags); 2728 } else { 2729 sp->sackdelay = params.sack_delay; 2730 sp->param_flags = 2731 sctp_spp_sackdelay_enable(sp->param_flags); 2732 } 2733 } 2734 2735 if (params.sack_freq == 1) { 2736 if (asoc) { 2737 asoc->param_flags = 2738 sctp_spp_sackdelay_disable(asoc->param_flags); 2739 } else { 2740 sp->param_flags = 2741 sctp_spp_sackdelay_disable(sp->param_flags); 2742 } 2743 } else if (params.sack_freq > 1) { 2744 if (asoc) { 2745 asoc->sackfreq = params.sack_freq; 2746 asoc->param_flags = 2747 sctp_spp_sackdelay_enable(asoc->param_flags); 2748 } else { 2749 sp->sackfreq = params.sack_freq; 2750 sp->param_flags = 2751 sctp_spp_sackdelay_enable(sp->param_flags); 2752 } 2753 } 2754 2755 /* If change is for association, also apply to each transport. */ 2756 if (asoc) { 2757 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 2758 transports) { 2759 if (params.sack_delay) { 2760 trans->sackdelay = 2761 msecs_to_jiffies(params.sack_delay); 2762 trans->param_flags = 2763 sctp_spp_sackdelay_enable(trans->param_flags); 2764 } 2765 if (params.sack_freq == 1) { 2766 trans->param_flags = 2767 sctp_spp_sackdelay_disable(trans->param_flags); 2768 } else if (params.sack_freq > 1) { 2769 trans->sackfreq = params.sack_freq; 2770 trans->param_flags = 2771 sctp_spp_sackdelay_enable(trans->param_flags); 2772 } 2773 } 2774 } 2775 2776 return 0; 2777 } 2778 2779 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2780 * 2781 * Applications can specify protocol parameters for the default association 2782 * initialization. The option name argument to setsockopt() and getsockopt() 2783 * is SCTP_INITMSG. 2784 * 2785 * Setting initialization parameters is effective only on an unconnected 2786 * socket (for UDP-style sockets only future associations are effected 2787 * by the change). With TCP-style sockets, this option is inherited by 2788 * sockets derived from a listener socket. 2789 */ 2790 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen) 2791 { 2792 struct sctp_initmsg sinit; 2793 struct sctp_sock *sp = sctp_sk(sk); 2794 2795 if (optlen != sizeof(struct sctp_initmsg)) 2796 return -EINVAL; 2797 if (copy_from_user(&sinit, optval, optlen)) 2798 return -EFAULT; 2799 2800 if (sinit.sinit_num_ostreams) 2801 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2802 if (sinit.sinit_max_instreams) 2803 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2804 if (sinit.sinit_max_attempts) 2805 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2806 if (sinit.sinit_max_init_timeo) 2807 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2808 2809 return 0; 2810 } 2811 2812 /* 2813 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2814 * 2815 * Applications that wish to use the sendto() system call may wish to 2816 * specify a default set of parameters that would normally be supplied 2817 * through the inclusion of ancillary data. This socket option allows 2818 * such an application to set the default sctp_sndrcvinfo structure. 2819 * The application that wishes to use this socket option simply passes 2820 * in to this call the sctp_sndrcvinfo structure defined in Section 2821 * 5.2.2) The input parameters accepted by this call include 2822 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2823 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2824 * to this call if the caller is using the UDP model. 2825 */ 2826 static int sctp_setsockopt_default_send_param(struct sock *sk, 2827 char __user *optval, 2828 unsigned int optlen) 2829 { 2830 struct sctp_sock *sp = sctp_sk(sk); 2831 struct sctp_association *asoc; 2832 struct sctp_sndrcvinfo info; 2833 2834 if (optlen != sizeof(info)) 2835 return -EINVAL; 2836 if (copy_from_user(&info, optval, optlen)) 2837 return -EFAULT; 2838 if (info.sinfo_flags & 2839 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2840 SCTP_ABORT | SCTP_EOF)) 2841 return -EINVAL; 2842 2843 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2844 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 2845 return -EINVAL; 2846 if (asoc) { 2847 asoc->default_stream = info.sinfo_stream; 2848 asoc->default_flags = info.sinfo_flags; 2849 asoc->default_ppid = info.sinfo_ppid; 2850 asoc->default_context = info.sinfo_context; 2851 asoc->default_timetolive = info.sinfo_timetolive; 2852 } else { 2853 sp->default_stream = info.sinfo_stream; 2854 sp->default_flags = info.sinfo_flags; 2855 sp->default_ppid = info.sinfo_ppid; 2856 sp->default_context = info.sinfo_context; 2857 sp->default_timetolive = info.sinfo_timetolive; 2858 } 2859 2860 return 0; 2861 } 2862 2863 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 2864 * (SCTP_DEFAULT_SNDINFO) 2865 */ 2866 static int sctp_setsockopt_default_sndinfo(struct sock *sk, 2867 char __user *optval, 2868 unsigned int optlen) 2869 { 2870 struct sctp_sock *sp = sctp_sk(sk); 2871 struct sctp_association *asoc; 2872 struct sctp_sndinfo info; 2873 2874 if (optlen != sizeof(info)) 2875 return -EINVAL; 2876 if (copy_from_user(&info, optval, optlen)) 2877 return -EFAULT; 2878 if (info.snd_flags & 2879 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 2880 SCTP_ABORT | SCTP_EOF)) 2881 return -EINVAL; 2882 2883 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 2884 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP)) 2885 return -EINVAL; 2886 if (asoc) { 2887 asoc->default_stream = info.snd_sid; 2888 asoc->default_flags = info.snd_flags; 2889 asoc->default_ppid = info.snd_ppid; 2890 asoc->default_context = info.snd_context; 2891 } else { 2892 sp->default_stream = info.snd_sid; 2893 sp->default_flags = info.snd_flags; 2894 sp->default_ppid = info.snd_ppid; 2895 sp->default_context = info.snd_context; 2896 } 2897 2898 return 0; 2899 } 2900 2901 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2902 * 2903 * Requests that the local SCTP stack use the enclosed peer address as 2904 * the association primary. The enclosed address must be one of the 2905 * association peer's addresses. 2906 */ 2907 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 2908 unsigned int optlen) 2909 { 2910 struct sctp_prim prim; 2911 struct sctp_transport *trans; 2912 2913 if (optlen != sizeof(struct sctp_prim)) 2914 return -EINVAL; 2915 2916 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 2917 return -EFAULT; 2918 2919 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 2920 if (!trans) 2921 return -EINVAL; 2922 2923 sctp_assoc_set_primary(trans->asoc, trans); 2924 2925 return 0; 2926 } 2927 2928 /* 2929 * 7.1.5 SCTP_NODELAY 2930 * 2931 * Turn on/off any Nagle-like algorithm. This means that packets are 2932 * generally sent as soon as possible and no unnecessary delays are 2933 * introduced, at the cost of more packets in the network. Expects an 2934 * integer boolean flag. 2935 */ 2936 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 2937 unsigned int optlen) 2938 { 2939 int val; 2940 2941 if (optlen < sizeof(int)) 2942 return -EINVAL; 2943 if (get_user(val, (int __user *)optval)) 2944 return -EFAULT; 2945 2946 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 2947 return 0; 2948 } 2949 2950 /* 2951 * 2952 * 7.1.1 SCTP_RTOINFO 2953 * 2954 * The protocol parameters used to initialize and bound retransmission 2955 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 2956 * and modify these parameters. 2957 * All parameters are time values, in milliseconds. A value of 0, when 2958 * modifying the parameters, indicates that the current value should not 2959 * be changed. 2960 * 2961 */ 2962 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen) 2963 { 2964 struct sctp_rtoinfo rtoinfo; 2965 struct sctp_association *asoc; 2966 unsigned long rto_min, rto_max; 2967 struct sctp_sock *sp = sctp_sk(sk); 2968 2969 if (optlen != sizeof (struct sctp_rtoinfo)) 2970 return -EINVAL; 2971 2972 if (copy_from_user(&rtoinfo, optval, optlen)) 2973 return -EFAULT; 2974 2975 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 2976 2977 /* Set the values to the specific association */ 2978 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 2979 return -EINVAL; 2980 2981 rto_max = rtoinfo.srto_max; 2982 rto_min = rtoinfo.srto_min; 2983 2984 if (rto_max) 2985 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max; 2986 else 2987 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max; 2988 2989 if (rto_min) 2990 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min; 2991 else 2992 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min; 2993 2994 if (rto_min > rto_max) 2995 return -EINVAL; 2996 2997 if (asoc) { 2998 if (rtoinfo.srto_initial != 0) 2999 asoc->rto_initial = 3000 msecs_to_jiffies(rtoinfo.srto_initial); 3001 asoc->rto_max = rto_max; 3002 asoc->rto_min = rto_min; 3003 } else { 3004 /* If there is no association or the association-id = 0 3005 * set the values to the endpoint. 3006 */ 3007 if (rtoinfo.srto_initial != 0) 3008 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 3009 sp->rtoinfo.srto_max = rto_max; 3010 sp->rtoinfo.srto_min = rto_min; 3011 } 3012 3013 return 0; 3014 } 3015 3016 /* 3017 * 3018 * 7.1.2 SCTP_ASSOCINFO 3019 * 3020 * This option is used to tune the maximum retransmission attempts 3021 * of the association. 3022 * Returns an error if the new association retransmission value is 3023 * greater than the sum of the retransmission value of the peer. 3024 * See [SCTP] for more information. 3025 * 3026 */ 3027 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen) 3028 { 3029 3030 struct sctp_assocparams assocparams; 3031 struct sctp_association *asoc; 3032 3033 if (optlen != sizeof(struct sctp_assocparams)) 3034 return -EINVAL; 3035 if (copy_from_user(&assocparams, optval, optlen)) 3036 return -EFAULT; 3037 3038 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 3039 3040 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 3041 return -EINVAL; 3042 3043 /* Set the values to the specific association */ 3044 if (asoc) { 3045 if (assocparams.sasoc_asocmaxrxt != 0) { 3046 __u32 path_sum = 0; 3047 int paths = 0; 3048 struct sctp_transport *peer_addr; 3049 3050 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list, 3051 transports) { 3052 path_sum += peer_addr->pathmaxrxt; 3053 paths++; 3054 } 3055 3056 /* Only validate asocmaxrxt if we have more than 3057 * one path/transport. We do this because path 3058 * retransmissions are only counted when we have more 3059 * then one path. 3060 */ 3061 if (paths > 1 && 3062 assocparams.sasoc_asocmaxrxt > path_sum) 3063 return -EINVAL; 3064 3065 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 3066 } 3067 3068 if (assocparams.sasoc_cookie_life != 0) 3069 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life); 3070 } else { 3071 /* Set the values to the endpoint */ 3072 struct sctp_sock *sp = sctp_sk(sk); 3073 3074 if (assocparams.sasoc_asocmaxrxt != 0) 3075 sp->assocparams.sasoc_asocmaxrxt = 3076 assocparams.sasoc_asocmaxrxt; 3077 if (assocparams.sasoc_cookie_life != 0) 3078 sp->assocparams.sasoc_cookie_life = 3079 assocparams.sasoc_cookie_life; 3080 } 3081 return 0; 3082 } 3083 3084 /* 3085 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3086 * 3087 * This socket option is a boolean flag which turns on or off mapped V4 3088 * addresses. If this option is turned on and the socket is type 3089 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3090 * If this option is turned off, then no mapping will be done of V4 3091 * addresses and a user will receive both PF_INET6 and PF_INET type 3092 * addresses on the socket. 3093 */ 3094 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen) 3095 { 3096 int val; 3097 struct sctp_sock *sp = sctp_sk(sk); 3098 3099 if (optlen < sizeof(int)) 3100 return -EINVAL; 3101 if (get_user(val, (int __user *)optval)) 3102 return -EFAULT; 3103 if (val) 3104 sp->v4mapped = 1; 3105 else 3106 sp->v4mapped = 0; 3107 3108 return 0; 3109 } 3110 3111 /* 3112 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 3113 * This option will get or set the maximum size to put in any outgoing 3114 * SCTP DATA chunk. If a message is larger than this size it will be 3115 * fragmented by SCTP into the specified size. Note that the underlying 3116 * SCTP implementation may fragment into smaller sized chunks when the 3117 * PMTU of the underlying association is smaller than the value set by 3118 * the user. The default value for this option is '0' which indicates 3119 * the user is NOT limiting fragmentation and only the PMTU will effect 3120 * SCTP's choice of DATA chunk size. Note also that values set larger 3121 * than the maximum size of an IP datagram will effectively let SCTP 3122 * control fragmentation (i.e. the same as setting this option to 0). 3123 * 3124 * The following structure is used to access and modify this parameter: 3125 * 3126 * struct sctp_assoc_value { 3127 * sctp_assoc_t assoc_id; 3128 * uint32_t assoc_value; 3129 * }; 3130 * 3131 * assoc_id: This parameter is ignored for one-to-one style sockets. 3132 * For one-to-many style sockets this parameter indicates which 3133 * association the user is performing an action upon. Note that if 3134 * this field's value is zero then the endpoints default value is 3135 * changed (effecting future associations only). 3136 * assoc_value: This parameter specifies the maximum size in bytes. 3137 */ 3138 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen) 3139 { 3140 struct sctp_sock *sp = sctp_sk(sk); 3141 struct sctp_assoc_value params; 3142 struct sctp_association *asoc; 3143 int val; 3144 3145 if (optlen == sizeof(int)) { 3146 pr_warn_ratelimited(DEPRECATED 3147 "%s (pid %d) " 3148 "Use of int in maxseg socket option.\n" 3149 "Use struct sctp_assoc_value instead\n", 3150 current->comm, task_pid_nr(current)); 3151 if (copy_from_user(&val, optval, optlen)) 3152 return -EFAULT; 3153 params.assoc_id = 0; 3154 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3155 if (copy_from_user(¶ms, optval, optlen)) 3156 return -EFAULT; 3157 val = params.assoc_value; 3158 } else { 3159 return -EINVAL; 3160 } 3161 3162 if (val) { 3163 int min_len, max_len; 3164 3165 min_len = SCTP_DEFAULT_MINSEGMENT - sp->pf->af->net_header_len; 3166 min_len -= sizeof(struct sctphdr) + 3167 sizeof(struct sctp_data_chunk); 3168 3169 max_len = SCTP_MAX_CHUNK_LEN - sizeof(struct sctp_data_chunk); 3170 3171 if (val < min_len || val > max_len) 3172 return -EINVAL; 3173 } 3174 3175 asoc = sctp_id2assoc(sk, params.assoc_id); 3176 if (asoc) { 3177 if (val == 0) { 3178 val = asoc->pathmtu - sp->pf->af->net_header_len; 3179 val -= sizeof(struct sctphdr) + 3180 sctp_datachk_len(&asoc->stream); 3181 } 3182 asoc->user_frag = val; 3183 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); 3184 } else { 3185 if (params.assoc_id && sctp_style(sk, UDP)) 3186 return -EINVAL; 3187 sp->user_frag = val; 3188 } 3189 3190 return 0; 3191 } 3192 3193 3194 /* 3195 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 3196 * 3197 * Requests that the peer mark the enclosed address as the association 3198 * primary. The enclosed address must be one of the association's 3199 * locally bound addresses. The following structure is used to make a 3200 * set primary request: 3201 */ 3202 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 3203 unsigned int optlen) 3204 { 3205 struct net *net = sock_net(sk); 3206 struct sctp_sock *sp; 3207 struct sctp_association *asoc = NULL; 3208 struct sctp_setpeerprim prim; 3209 struct sctp_chunk *chunk; 3210 struct sctp_af *af; 3211 int err; 3212 3213 sp = sctp_sk(sk); 3214 3215 if (!net->sctp.addip_enable) 3216 return -EPERM; 3217 3218 if (optlen != sizeof(struct sctp_setpeerprim)) 3219 return -EINVAL; 3220 3221 if (copy_from_user(&prim, optval, optlen)) 3222 return -EFAULT; 3223 3224 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 3225 if (!asoc) 3226 return -EINVAL; 3227 3228 if (!asoc->peer.asconf_capable) 3229 return -EPERM; 3230 3231 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 3232 return -EPERM; 3233 3234 if (!sctp_state(asoc, ESTABLISHED)) 3235 return -ENOTCONN; 3236 3237 af = sctp_get_af_specific(prim.sspp_addr.ss_family); 3238 if (!af) 3239 return -EINVAL; 3240 3241 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL)) 3242 return -EADDRNOTAVAIL; 3243 3244 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 3245 return -EADDRNOTAVAIL; 3246 3247 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 3248 chunk = sctp_make_asconf_set_prim(asoc, 3249 (union sctp_addr *)&prim.sspp_addr); 3250 if (!chunk) 3251 return -ENOMEM; 3252 3253 err = sctp_send_asconf(asoc, chunk); 3254 3255 pr_debug("%s: we set peer primary addr primitively\n", __func__); 3256 3257 return err; 3258 } 3259 3260 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, 3261 unsigned int optlen) 3262 { 3263 struct sctp_setadaptation adaptation; 3264 3265 if (optlen != sizeof(struct sctp_setadaptation)) 3266 return -EINVAL; 3267 if (copy_from_user(&adaptation, optval, optlen)) 3268 return -EFAULT; 3269 3270 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; 3271 3272 return 0; 3273 } 3274 3275 /* 3276 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 3277 * 3278 * The context field in the sctp_sndrcvinfo structure is normally only 3279 * used when a failed message is retrieved holding the value that was 3280 * sent down on the actual send call. This option allows the setting of 3281 * a default context on an association basis that will be received on 3282 * reading messages from the peer. This is especially helpful in the 3283 * one-2-many model for an application to keep some reference to an 3284 * internal state machine that is processing messages on the 3285 * association. Note that the setting of this value only effects 3286 * received messages from the peer and does not effect the value that is 3287 * saved with outbound messages. 3288 */ 3289 static int sctp_setsockopt_context(struct sock *sk, char __user *optval, 3290 unsigned int optlen) 3291 { 3292 struct sctp_assoc_value params; 3293 struct sctp_sock *sp; 3294 struct sctp_association *asoc; 3295 3296 if (optlen != sizeof(struct sctp_assoc_value)) 3297 return -EINVAL; 3298 if (copy_from_user(¶ms, optval, optlen)) 3299 return -EFAULT; 3300 3301 sp = sctp_sk(sk); 3302 3303 if (params.assoc_id != 0) { 3304 asoc = sctp_id2assoc(sk, params.assoc_id); 3305 if (!asoc) 3306 return -EINVAL; 3307 asoc->default_rcv_context = params.assoc_value; 3308 } else { 3309 sp->default_rcv_context = params.assoc_value; 3310 } 3311 3312 return 0; 3313 } 3314 3315 /* 3316 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 3317 * 3318 * This options will at a minimum specify if the implementation is doing 3319 * fragmented interleave. Fragmented interleave, for a one to many 3320 * socket, is when subsequent calls to receive a message may return 3321 * parts of messages from different associations. Some implementations 3322 * may allow you to turn this value on or off. If so, when turned off, 3323 * no fragment interleave will occur (which will cause a head of line 3324 * blocking amongst multiple associations sharing the same one to many 3325 * socket). When this option is turned on, then each receive call may 3326 * come from a different association (thus the user must receive data 3327 * with the extended calls (e.g. sctp_recvmsg) to keep track of which 3328 * association each receive belongs to. 3329 * 3330 * This option takes a boolean value. A non-zero value indicates that 3331 * fragmented interleave is on. A value of zero indicates that 3332 * fragmented interleave is off. 3333 * 3334 * Note that it is important that an implementation that allows this 3335 * option to be turned on, have it off by default. Otherwise an unaware 3336 * application using the one to many model may become confused and act 3337 * incorrectly. 3338 */ 3339 static int sctp_setsockopt_fragment_interleave(struct sock *sk, 3340 char __user *optval, 3341 unsigned int optlen) 3342 { 3343 int val; 3344 3345 if (optlen != sizeof(int)) 3346 return -EINVAL; 3347 if (get_user(val, (int __user *)optval)) 3348 return -EFAULT; 3349 3350 sctp_sk(sk)->frag_interleave = !!val; 3351 3352 if (!sctp_sk(sk)->frag_interleave) 3353 sctp_sk(sk)->strm_interleave = 0; 3354 3355 return 0; 3356 } 3357 3358 /* 3359 * 8.1.21. Set or Get the SCTP Partial Delivery Point 3360 * (SCTP_PARTIAL_DELIVERY_POINT) 3361 * 3362 * This option will set or get the SCTP partial delivery point. This 3363 * point is the size of a message where the partial delivery API will be 3364 * invoked to help free up rwnd space for the peer. Setting this to a 3365 * lower value will cause partial deliveries to happen more often. The 3366 * calls argument is an integer that sets or gets the partial delivery 3367 * point. Note also that the call will fail if the user attempts to set 3368 * this value larger than the socket receive buffer size. 3369 * 3370 * Note that any single message having a length smaller than or equal to 3371 * the SCTP partial delivery point will be delivered in one single read 3372 * call as long as the user provided buffer is large enough to hold the 3373 * message. 3374 */ 3375 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, 3376 char __user *optval, 3377 unsigned int optlen) 3378 { 3379 u32 val; 3380 3381 if (optlen != sizeof(u32)) 3382 return -EINVAL; 3383 if (get_user(val, (int __user *)optval)) 3384 return -EFAULT; 3385 3386 /* Note: We double the receive buffer from what the user sets 3387 * it to be, also initial rwnd is based on rcvbuf/2. 3388 */ 3389 if (val > (sk->sk_rcvbuf >> 1)) 3390 return -EINVAL; 3391 3392 sctp_sk(sk)->pd_point = val; 3393 3394 return 0; /* is this the right error code? */ 3395 } 3396 3397 /* 3398 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 3399 * 3400 * This option will allow a user to change the maximum burst of packets 3401 * that can be emitted by this association. Note that the default value 3402 * is 4, and some implementations may restrict this setting so that it 3403 * can only be lowered. 3404 * 3405 * NOTE: This text doesn't seem right. Do this on a socket basis with 3406 * future associations inheriting the socket value. 3407 */ 3408 static int sctp_setsockopt_maxburst(struct sock *sk, 3409 char __user *optval, 3410 unsigned int optlen) 3411 { 3412 struct sctp_assoc_value params; 3413 struct sctp_sock *sp; 3414 struct sctp_association *asoc; 3415 int val; 3416 int assoc_id = 0; 3417 3418 if (optlen == sizeof(int)) { 3419 pr_warn_ratelimited(DEPRECATED 3420 "%s (pid %d) " 3421 "Use of int in max_burst socket option deprecated.\n" 3422 "Use struct sctp_assoc_value instead\n", 3423 current->comm, task_pid_nr(current)); 3424 if (copy_from_user(&val, optval, optlen)) 3425 return -EFAULT; 3426 } else if (optlen == sizeof(struct sctp_assoc_value)) { 3427 if (copy_from_user(¶ms, optval, optlen)) 3428 return -EFAULT; 3429 val = params.assoc_value; 3430 assoc_id = params.assoc_id; 3431 } else 3432 return -EINVAL; 3433 3434 sp = sctp_sk(sk); 3435 3436 if (assoc_id != 0) { 3437 asoc = sctp_id2assoc(sk, assoc_id); 3438 if (!asoc) 3439 return -EINVAL; 3440 asoc->max_burst = val; 3441 } else 3442 sp->max_burst = val; 3443 3444 return 0; 3445 } 3446 3447 /* 3448 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK) 3449 * 3450 * This set option adds a chunk type that the user is requesting to be 3451 * received only in an authenticated way. Changes to the list of chunks 3452 * will only effect future associations on the socket. 3453 */ 3454 static int sctp_setsockopt_auth_chunk(struct sock *sk, 3455 char __user *optval, 3456 unsigned int optlen) 3457 { 3458 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3459 struct sctp_authchunk val; 3460 3461 if (!ep->auth_enable) 3462 return -EACCES; 3463 3464 if (optlen != sizeof(struct sctp_authchunk)) 3465 return -EINVAL; 3466 if (copy_from_user(&val, optval, optlen)) 3467 return -EFAULT; 3468 3469 switch (val.sauth_chunk) { 3470 case SCTP_CID_INIT: 3471 case SCTP_CID_INIT_ACK: 3472 case SCTP_CID_SHUTDOWN_COMPLETE: 3473 case SCTP_CID_AUTH: 3474 return -EINVAL; 3475 } 3476 3477 /* add this chunk id to the endpoint */ 3478 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk); 3479 } 3480 3481 /* 3482 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT) 3483 * 3484 * This option gets or sets the list of HMAC algorithms that the local 3485 * endpoint requires the peer to use. 3486 */ 3487 static int sctp_setsockopt_hmac_ident(struct sock *sk, 3488 char __user *optval, 3489 unsigned int optlen) 3490 { 3491 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3492 struct sctp_hmacalgo *hmacs; 3493 u32 idents; 3494 int err; 3495 3496 if (!ep->auth_enable) 3497 return -EACCES; 3498 3499 if (optlen < sizeof(struct sctp_hmacalgo)) 3500 return -EINVAL; 3501 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) + 3502 SCTP_AUTH_NUM_HMACS * sizeof(u16)); 3503 3504 hmacs = memdup_user(optval, optlen); 3505 if (IS_ERR(hmacs)) 3506 return PTR_ERR(hmacs); 3507 3508 idents = hmacs->shmac_num_idents; 3509 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS || 3510 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) { 3511 err = -EINVAL; 3512 goto out; 3513 } 3514 3515 err = sctp_auth_ep_set_hmacs(ep, hmacs); 3516 out: 3517 kfree(hmacs); 3518 return err; 3519 } 3520 3521 /* 3522 * 7.1.20. Set a shared key (SCTP_AUTH_KEY) 3523 * 3524 * This option will set a shared secret key which is used to build an 3525 * association shared key. 3526 */ 3527 static int sctp_setsockopt_auth_key(struct sock *sk, 3528 char __user *optval, 3529 unsigned int optlen) 3530 { 3531 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3532 struct sctp_authkey *authkey; 3533 struct sctp_association *asoc; 3534 int ret; 3535 3536 if (!ep->auth_enable) 3537 return -EACCES; 3538 3539 if (optlen <= sizeof(struct sctp_authkey)) 3540 return -EINVAL; 3541 /* authkey->sca_keylength is u16, so optlen can't be bigger than 3542 * this. 3543 */ 3544 optlen = min_t(unsigned int, optlen, USHRT_MAX + 3545 sizeof(struct sctp_authkey)); 3546 3547 authkey = memdup_user(optval, optlen); 3548 if (IS_ERR(authkey)) 3549 return PTR_ERR(authkey); 3550 3551 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) { 3552 ret = -EINVAL; 3553 goto out; 3554 } 3555 3556 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id); 3557 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) { 3558 ret = -EINVAL; 3559 goto out; 3560 } 3561 3562 ret = sctp_auth_set_key(ep, asoc, authkey); 3563 out: 3564 kzfree(authkey); 3565 return ret; 3566 } 3567 3568 /* 3569 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY) 3570 * 3571 * This option will get or set the active shared key to be used to build 3572 * the association shared key. 3573 */ 3574 static int sctp_setsockopt_active_key(struct sock *sk, 3575 char __user *optval, 3576 unsigned int optlen) 3577 { 3578 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3579 struct sctp_authkeyid val; 3580 struct sctp_association *asoc; 3581 3582 if (!ep->auth_enable) 3583 return -EACCES; 3584 3585 if (optlen != sizeof(struct sctp_authkeyid)) 3586 return -EINVAL; 3587 if (copy_from_user(&val, optval, optlen)) 3588 return -EFAULT; 3589 3590 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3591 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3592 return -EINVAL; 3593 3594 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber); 3595 } 3596 3597 /* 3598 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY) 3599 * 3600 * This set option will delete a shared secret key from use. 3601 */ 3602 static int sctp_setsockopt_del_key(struct sock *sk, 3603 char __user *optval, 3604 unsigned int optlen) 3605 { 3606 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 3607 struct sctp_authkeyid val; 3608 struct sctp_association *asoc; 3609 3610 if (!ep->auth_enable) 3611 return -EACCES; 3612 3613 if (optlen != sizeof(struct sctp_authkeyid)) 3614 return -EINVAL; 3615 if (copy_from_user(&val, optval, optlen)) 3616 return -EFAULT; 3617 3618 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 3619 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 3620 return -EINVAL; 3621 3622 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber); 3623 3624 } 3625 3626 /* 3627 * 8.1.23 SCTP_AUTO_ASCONF 3628 * 3629 * This option will enable or disable the use of the automatic generation of 3630 * ASCONF chunks to add and delete addresses to an existing association. Note 3631 * that this option has two caveats namely: a) it only affects sockets that 3632 * are bound to all addresses available to the SCTP stack, and b) the system 3633 * administrator may have an overriding control that turns the ASCONF feature 3634 * off no matter what setting the socket option may have. 3635 * This option expects an integer boolean flag, where a non-zero value turns on 3636 * the option, and a zero value turns off the option. 3637 * Note. In this implementation, socket operation overrides default parameter 3638 * being set by sysctl as well as FreeBSD implementation 3639 */ 3640 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval, 3641 unsigned int optlen) 3642 { 3643 int val; 3644 struct sctp_sock *sp = sctp_sk(sk); 3645 3646 if (optlen < sizeof(int)) 3647 return -EINVAL; 3648 if (get_user(val, (int __user *)optval)) 3649 return -EFAULT; 3650 if (!sctp_is_ep_boundall(sk) && val) 3651 return -EINVAL; 3652 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf)) 3653 return 0; 3654 3655 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3656 if (val == 0 && sp->do_auto_asconf) { 3657 list_del(&sp->auto_asconf_list); 3658 sp->do_auto_asconf = 0; 3659 } else if (val && !sp->do_auto_asconf) { 3660 list_add_tail(&sp->auto_asconf_list, 3661 &sock_net(sk)->sctp.auto_asconf_splist); 3662 sp->do_auto_asconf = 1; 3663 } 3664 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock); 3665 return 0; 3666 } 3667 3668 /* 3669 * SCTP_PEER_ADDR_THLDS 3670 * 3671 * This option allows us to alter the partially failed threshold for one or all 3672 * transports in an association. See Section 6.1 of: 3673 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 3674 */ 3675 static int sctp_setsockopt_paddr_thresholds(struct sock *sk, 3676 char __user *optval, 3677 unsigned int optlen) 3678 { 3679 struct sctp_paddrthlds val; 3680 struct sctp_transport *trans; 3681 struct sctp_association *asoc; 3682 3683 if (optlen < sizeof(struct sctp_paddrthlds)) 3684 return -EINVAL; 3685 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, 3686 sizeof(struct sctp_paddrthlds))) 3687 return -EFAULT; 3688 3689 3690 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 3691 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 3692 if (!asoc) 3693 return -ENOENT; 3694 list_for_each_entry(trans, &asoc->peer.transport_addr_list, 3695 transports) { 3696 if (val.spt_pathmaxrxt) 3697 trans->pathmaxrxt = val.spt_pathmaxrxt; 3698 trans->pf_retrans = val.spt_pathpfthld; 3699 } 3700 3701 if (val.spt_pathmaxrxt) 3702 asoc->pathmaxrxt = val.spt_pathmaxrxt; 3703 asoc->pf_retrans = val.spt_pathpfthld; 3704 } else { 3705 trans = sctp_addr_id2transport(sk, &val.spt_address, 3706 val.spt_assoc_id); 3707 if (!trans) 3708 return -ENOENT; 3709 3710 if (val.spt_pathmaxrxt) 3711 trans->pathmaxrxt = val.spt_pathmaxrxt; 3712 trans->pf_retrans = val.spt_pathpfthld; 3713 } 3714 3715 return 0; 3716 } 3717 3718 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, 3719 char __user *optval, 3720 unsigned int optlen) 3721 { 3722 int val; 3723 3724 if (optlen < sizeof(int)) 3725 return -EINVAL; 3726 if (get_user(val, (int __user *) optval)) 3727 return -EFAULT; 3728 3729 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1; 3730 3731 return 0; 3732 } 3733 3734 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, 3735 char __user *optval, 3736 unsigned int optlen) 3737 { 3738 int val; 3739 3740 if (optlen < sizeof(int)) 3741 return -EINVAL; 3742 if (get_user(val, (int __user *) optval)) 3743 return -EFAULT; 3744 3745 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1; 3746 3747 return 0; 3748 } 3749 3750 static int sctp_setsockopt_pr_supported(struct sock *sk, 3751 char __user *optval, 3752 unsigned int optlen) 3753 { 3754 struct sctp_assoc_value params; 3755 struct sctp_association *asoc; 3756 int retval = -EINVAL; 3757 3758 if (optlen != sizeof(params)) 3759 goto out; 3760 3761 if (copy_from_user(¶ms, optval, optlen)) { 3762 retval = -EFAULT; 3763 goto out; 3764 } 3765 3766 asoc = sctp_id2assoc(sk, params.assoc_id); 3767 if (asoc) { 3768 asoc->prsctp_enable = !!params.assoc_value; 3769 } else if (!params.assoc_id) { 3770 struct sctp_sock *sp = sctp_sk(sk); 3771 3772 sp->ep->prsctp_enable = !!params.assoc_value; 3773 } else { 3774 goto out; 3775 } 3776 3777 retval = 0; 3778 3779 out: 3780 return retval; 3781 } 3782 3783 static int sctp_setsockopt_default_prinfo(struct sock *sk, 3784 char __user *optval, 3785 unsigned int optlen) 3786 { 3787 struct sctp_default_prinfo info; 3788 struct sctp_association *asoc; 3789 int retval = -EINVAL; 3790 3791 if (optlen != sizeof(info)) 3792 goto out; 3793 3794 if (copy_from_user(&info, optval, sizeof(info))) { 3795 retval = -EFAULT; 3796 goto out; 3797 } 3798 3799 if (info.pr_policy & ~SCTP_PR_SCTP_MASK) 3800 goto out; 3801 3802 if (info.pr_policy == SCTP_PR_SCTP_NONE) 3803 info.pr_value = 0; 3804 3805 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 3806 if (asoc) { 3807 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy); 3808 asoc->default_timetolive = info.pr_value; 3809 } else if (!info.pr_assoc_id) { 3810 struct sctp_sock *sp = sctp_sk(sk); 3811 3812 SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy); 3813 sp->default_timetolive = info.pr_value; 3814 } else { 3815 goto out; 3816 } 3817 3818 retval = 0; 3819 3820 out: 3821 return retval; 3822 } 3823 3824 static int sctp_setsockopt_reconfig_supported(struct sock *sk, 3825 char __user *optval, 3826 unsigned int optlen) 3827 { 3828 struct sctp_assoc_value params; 3829 struct sctp_association *asoc; 3830 int retval = -EINVAL; 3831 3832 if (optlen != sizeof(params)) 3833 goto out; 3834 3835 if (copy_from_user(¶ms, optval, optlen)) { 3836 retval = -EFAULT; 3837 goto out; 3838 } 3839 3840 asoc = sctp_id2assoc(sk, params.assoc_id); 3841 if (asoc) { 3842 asoc->reconf_enable = !!params.assoc_value; 3843 } else if (!params.assoc_id) { 3844 struct sctp_sock *sp = sctp_sk(sk); 3845 3846 sp->ep->reconf_enable = !!params.assoc_value; 3847 } else { 3848 goto out; 3849 } 3850 3851 retval = 0; 3852 3853 out: 3854 return retval; 3855 } 3856 3857 static int sctp_setsockopt_enable_strreset(struct sock *sk, 3858 char __user *optval, 3859 unsigned int optlen) 3860 { 3861 struct sctp_assoc_value params; 3862 struct sctp_association *asoc; 3863 int retval = -EINVAL; 3864 3865 if (optlen != sizeof(params)) 3866 goto out; 3867 3868 if (copy_from_user(¶ms, optval, optlen)) { 3869 retval = -EFAULT; 3870 goto out; 3871 } 3872 3873 if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK)) 3874 goto out; 3875 3876 asoc = sctp_id2assoc(sk, params.assoc_id); 3877 if (asoc) { 3878 asoc->strreset_enable = params.assoc_value; 3879 } else if (!params.assoc_id) { 3880 struct sctp_sock *sp = sctp_sk(sk); 3881 3882 sp->ep->strreset_enable = params.assoc_value; 3883 } else { 3884 goto out; 3885 } 3886 3887 retval = 0; 3888 3889 out: 3890 return retval; 3891 } 3892 3893 static int sctp_setsockopt_reset_streams(struct sock *sk, 3894 char __user *optval, 3895 unsigned int optlen) 3896 { 3897 struct sctp_reset_streams *params; 3898 struct sctp_association *asoc; 3899 int retval = -EINVAL; 3900 3901 if (optlen < sizeof(*params)) 3902 return -EINVAL; 3903 /* srs_number_streams is u16, so optlen can't be bigger than this. */ 3904 optlen = min_t(unsigned int, optlen, USHRT_MAX + 3905 sizeof(__u16) * sizeof(*params)); 3906 3907 params = memdup_user(optval, optlen); 3908 if (IS_ERR(params)) 3909 return PTR_ERR(params); 3910 3911 if (params->srs_number_streams * sizeof(__u16) > 3912 optlen - sizeof(*params)) 3913 goto out; 3914 3915 asoc = sctp_id2assoc(sk, params->srs_assoc_id); 3916 if (!asoc) 3917 goto out; 3918 3919 retval = sctp_send_reset_streams(asoc, params); 3920 3921 out: 3922 kfree(params); 3923 return retval; 3924 } 3925 3926 static int sctp_setsockopt_reset_assoc(struct sock *sk, 3927 char __user *optval, 3928 unsigned int optlen) 3929 { 3930 struct sctp_association *asoc; 3931 sctp_assoc_t associd; 3932 int retval = -EINVAL; 3933 3934 if (optlen != sizeof(associd)) 3935 goto out; 3936 3937 if (copy_from_user(&associd, optval, optlen)) { 3938 retval = -EFAULT; 3939 goto out; 3940 } 3941 3942 asoc = sctp_id2assoc(sk, associd); 3943 if (!asoc) 3944 goto out; 3945 3946 retval = sctp_send_reset_assoc(asoc); 3947 3948 out: 3949 return retval; 3950 } 3951 3952 static int sctp_setsockopt_add_streams(struct sock *sk, 3953 char __user *optval, 3954 unsigned int optlen) 3955 { 3956 struct sctp_association *asoc; 3957 struct sctp_add_streams params; 3958 int retval = -EINVAL; 3959 3960 if (optlen != sizeof(params)) 3961 goto out; 3962 3963 if (copy_from_user(¶ms, optval, optlen)) { 3964 retval = -EFAULT; 3965 goto out; 3966 } 3967 3968 asoc = sctp_id2assoc(sk, params.sas_assoc_id); 3969 if (!asoc) 3970 goto out; 3971 3972 retval = sctp_send_add_streams(asoc, ¶ms); 3973 3974 out: 3975 return retval; 3976 } 3977 3978 static int sctp_setsockopt_scheduler(struct sock *sk, 3979 char __user *optval, 3980 unsigned int optlen) 3981 { 3982 struct sctp_association *asoc; 3983 struct sctp_assoc_value params; 3984 int retval = -EINVAL; 3985 3986 if (optlen < sizeof(params)) 3987 goto out; 3988 3989 optlen = sizeof(params); 3990 if (copy_from_user(¶ms, optval, optlen)) { 3991 retval = -EFAULT; 3992 goto out; 3993 } 3994 3995 if (params.assoc_value > SCTP_SS_MAX) 3996 goto out; 3997 3998 asoc = sctp_id2assoc(sk, params.assoc_id); 3999 if (!asoc) 4000 goto out; 4001 4002 retval = sctp_sched_set_sched(asoc, params.assoc_value); 4003 4004 out: 4005 return retval; 4006 } 4007 4008 static int sctp_setsockopt_scheduler_value(struct sock *sk, 4009 char __user *optval, 4010 unsigned int optlen) 4011 { 4012 struct sctp_association *asoc; 4013 struct sctp_stream_value params; 4014 int retval = -EINVAL; 4015 4016 if (optlen < sizeof(params)) 4017 goto out; 4018 4019 optlen = sizeof(params); 4020 if (copy_from_user(¶ms, optval, optlen)) { 4021 retval = -EFAULT; 4022 goto out; 4023 } 4024 4025 asoc = sctp_id2assoc(sk, params.assoc_id); 4026 if (!asoc) 4027 goto out; 4028 4029 retval = sctp_sched_set_value(asoc, params.stream_id, 4030 params.stream_value, GFP_KERNEL); 4031 4032 out: 4033 return retval; 4034 } 4035 4036 static int sctp_setsockopt_interleaving_supported(struct sock *sk, 4037 char __user *optval, 4038 unsigned int optlen) 4039 { 4040 struct sctp_sock *sp = sctp_sk(sk); 4041 struct net *net = sock_net(sk); 4042 struct sctp_assoc_value params; 4043 int retval = -EINVAL; 4044 4045 if (optlen < sizeof(params)) 4046 goto out; 4047 4048 optlen = sizeof(params); 4049 if (copy_from_user(¶ms, optval, optlen)) { 4050 retval = -EFAULT; 4051 goto out; 4052 } 4053 4054 if (params.assoc_id) 4055 goto out; 4056 4057 if (!net->sctp.intl_enable || !sp->frag_interleave) { 4058 retval = -EPERM; 4059 goto out; 4060 } 4061 4062 sp->strm_interleave = !!params.assoc_value; 4063 4064 retval = 0; 4065 4066 out: 4067 return retval; 4068 } 4069 4070 /* API 6.2 setsockopt(), getsockopt() 4071 * 4072 * Applications use setsockopt() and getsockopt() to set or retrieve 4073 * socket options. Socket options are used to change the default 4074 * behavior of sockets calls. They are described in Section 7. 4075 * 4076 * The syntax is: 4077 * 4078 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 4079 * int __user *optlen); 4080 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 4081 * int optlen); 4082 * 4083 * sd - the socket descript. 4084 * level - set to IPPROTO_SCTP for all SCTP options. 4085 * optname - the option name. 4086 * optval - the buffer to store the value of the option. 4087 * optlen - the size of the buffer. 4088 */ 4089 static int sctp_setsockopt(struct sock *sk, int level, int optname, 4090 char __user *optval, unsigned int optlen) 4091 { 4092 int retval = 0; 4093 4094 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 4095 4096 /* I can hardly begin to describe how wrong this is. This is 4097 * so broken as to be worse than useless. The API draft 4098 * REALLY is NOT helpful here... I am not convinced that the 4099 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 4100 * are at all well-founded. 4101 */ 4102 if (level != SOL_SCTP) { 4103 struct sctp_af *af = sctp_sk(sk)->pf->af; 4104 retval = af->setsockopt(sk, level, optname, optval, optlen); 4105 goto out_nounlock; 4106 } 4107 4108 lock_sock(sk); 4109 4110 switch (optname) { 4111 case SCTP_SOCKOPT_BINDX_ADD: 4112 /* 'optlen' is the size of the addresses buffer. */ 4113 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 4114 optlen, SCTP_BINDX_ADD_ADDR); 4115 break; 4116 4117 case SCTP_SOCKOPT_BINDX_REM: 4118 /* 'optlen' is the size of the addresses buffer. */ 4119 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 4120 optlen, SCTP_BINDX_REM_ADDR); 4121 break; 4122 4123 case SCTP_SOCKOPT_CONNECTX_OLD: 4124 /* 'optlen' is the size of the addresses buffer. */ 4125 retval = sctp_setsockopt_connectx_old(sk, 4126 (struct sockaddr __user *)optval, 4127 optlen); 4128 break; 4129 4130 case SCTP_SOCKOPT_CONNECTX: 4131 /* 'optlen' is the size of the addresses buffer. */ 4132 retval = sctp_setsockopt_connectx(sk, 4133 (struct sockaddr __user *)optval, 4134 optlen); 4135 break; 4136 4137 case SCTP_DISABLE_FRAGMENTS: 4138 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 4139 break; 4140 4141 case SCTP_EVENTS: 4142 retval = sctp_setsockopt_events(sk, optval, optlen); 4143 break; 4144 4145 case SCTP_AUTOCLOSE: 4146 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 4147 break; 4148 4149 case SCTP_PEER_ADDR_PARAMS: 4150 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 4151 break; 4152 4153 case SCTP_DELAYED_SACK: 4154 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen); 4155 break; 4156 case SCTP_PARTIAL_DELIVERY_POINT: 4157 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); 4158 break; 4159 4160 case SCTP_INITMSG: 4161 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 4162 break; 4163 case SCTP_DEFAULT_SEND_PARAM: 4164 retval = sctp_setsockopt_default_send_param(sk, optval, 4165 optlen); 4166 break; 4167 case SCTP_DEFAULT_SNDINFO: 4168 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen); 4169 break; 4170 case SCTP_PRIMARY_ADDR: 4171 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 4172 break; 4173 case SCTP_SET_PEER_PRIMARY_ADDR: 4174 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 4175 break; 4176 case SCTP_NODELAY: 4177 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 4178 break; 4179 case SCTP_RTOINFO: 4180 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 4181 break; 4182 case SCTP_ASSOCINFO: 4183 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 4184 break; 4185 case SCTP_I_WANT_MAPPED_V4_ADDR: 4186 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 4187 break; 4188 case SCTP_MAXSEG: 4189 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 4190 break; 4191 case SCTP_ADAPTATION_LAYER: 4192 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); 4193 break; 4194 case SCTP_CONTEXT: 4195 retval = sctp_setsockopt_context(sk, optval, optlen); 4196 break; 4197 case SCTP_FRAGMENT_INTERLEAVE: 4198 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); 4199 break; 4200 case SCTP_MAX_BURST: 4201 retval = sctp_setsockopt_maxburst(sk, optval, optlen); 4202 break; 4203 case SCTP_AUTH_CHUNK: 4204 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen); 4205 break; 4206 case SCTP_HMAC_IDENT: 4207 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen); 4208 break; 4209 case SCTP_AUTH_KEY: 4210 retval = sctp_setsockopt_auth_key(sk, optval, optlen); 4211 break; 4212 case SCTP_AUTH_ACTIVE_KEY: 4213 retval = sctp_setsockopt_active_key(sk, optval, optlen); 4214 break; 4215 case SCTP_AUTH_DELETE_KEY: 4216 retval = sctp_setsockopt_del_key(sk, optval, optlen); 4217 break; 4218 case SCTP_AUTO_ASCONF: 4219 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen); 4220 break; 4221 case SCTP_PEER_ADDR_THLDS: 4222 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen); 4223 break; 4224 case SCTP_RECVRCVINFO: 4225 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen); 4226 break; 4227 case SCTP_RECVNXTINFO: 4228 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen); 4229 break; 4230 case SCTP_PR_SUPPORTED: 4231 retval = sctp_setsockopt_pr_supported(sk, optval, optlen); 4232 break; 4233 case SCTP_DEFAULT_PRINFO: 4234 retval = sctp_setsockopt_default_prinfo(sk, optval, optlen); 4235 break; 4236 case SCTP_RECONFIG_SUPPORTED: 4237 retval = sctp_setsockopt_reconfig_supported(sk, optval, optlen); 4238 break; 4239 case SCTP_ENABLE_STREAM_RESET: 4240 retval = sctp_setsockopt_enable_strreset(sk, optval, optlen); 4241 break; 4242 case SCTP_RESET_STREAMS: 4243 retval = sctp_setsockopt_reset_streams(sk, optval, optlen); 4244 break; 4245 case SCTP_RESET_ASSOC: 4246 retval = sctp_setsockopt_reset_assoc(sk, optval, optlen); 4247 break; 4248 case SCTP_ADD_STREAMS: 4249 retval = sctp_setsockopt_add_streams(sk, optval, optlen); 4250 break; 4251 case SCTP_STREAM_SCHEDULER: 4252 retval = sctp_setsockopt_scheduler(sk, optval, optlen); 4253 break; 4254 case SCTP_STREAM_SCHEDULER_VALUE: 4255 retval = sctp_setsockopt_scheduler_value(sk, optval, optlen); 4256 break; 4257 case SCTP_INTERLEAVING_SUPPORTED: 4258 retval = sctp_setsockopt_interleaving_supported(sk, optval, 4259 optlen); 4260 break; 4261 default: 4262 retval = -ENOPROTOOPT; 4263 break; 4264 } 4265 4266 release_sock(sk); 4267 4268 out_nounlock: 4269 return retval; 4270 } 4271 4272 /* API 3.1.6 connect() - UDP Style Syntax 4273 * 4274 * An application may use the connect() call in the UDP model to initiate an 4275 * association without sending data. 4276 * 4277 * The syntax is: 4278 * 4279 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 4280 * 4281 * sd: the socket descriptor to have a new association added to. 4282 * 4283 * nam: the address structure (either struct sockaddr_in or struct 4284 * sockaddr_in6 defined in RFC2553 [7]). 4285 * 4286 * len: the size of the address. 4287 */ 4288 static int sctp_connect(struct sock *sk, struct sockaddr *addr, 4289 int addr_len) 4290 { 4291 int err = 0; 4292 struct sctp_af *af; 4293 4294 lock_sock(sk); 4295 4296 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, 4297 addr, addr_len); 4298 4299 /* Validate addr_len before calling common connect/connectx routine. */ 4300 af = sctp_get_af_specific(addr->sa_family); 4301 if (!af || addr_len < af->sockaddr_len) { 4302 err = -EINVAL; 4303 } else { 4304 /* Pass correct addr len to common routine (so it knows there 4305 * is only one address being passed. 4306 */ 4307 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL); 4308 } 4309 4310 release_sock(sk); 4311 return err; 4312 } 4313 4314 /* FIXME: Write comments. */ 4315 static int sctp_disconnect(struct sock *sk, int flags) 4316 { 4317 return -EOPNOTSUPP; /* STUB */ 4318 } 4319 4320 /* 4.1.4 accept() - TCP Style Syntax 4321 * 4322 * Applications use accept() call to remove an established SCTP 4323 * association from the accept queue of the endpoint. A new socket 4324 * descriptor will be returned from accept() to represent the newly 4325 * formed association. 4326 */ 4327 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern) 4328 { 4329 struct sctp_sock *sp; 4330 struct sctp_endpoint *ep; 4331 struct sock *newsk = NULL; 4332 struct sctp_association *asoc; 4333 long timeo; 4334 int error = 0; 4335 4336 lock_sock(sk); 4337 4338 sp = sctp_sk(sk); 4339 ep = sp->ep; 4340 4341 if (!sctp_style(sk, TCP)) { 4342 error = -EOPNOTSUPP; 4343 goto out; 4344 } 4345 4346 if (!sctp_sstate(sk, LISTENING)) { 4347 error = -EINVAL; 4348 goto out; 4349 } 4350 4351 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 4352 4353 error = sctp_wait_for_accept(sk, timeo); 4354 if (error) 4355 goto out; 4356 4357 /* We treat the list of associations on the endpoint as the accept 4358 * queue and pick the first association on the list. 4359 */ 4360 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 4361 4362 newsk = sp->pf->create_accept_sk(sk, asoc, kern); 4363 if (!newsk) { 4364 error = -ENOMEM; 4365 goto out; 4366 } 4367 4368 /* Populate the fields of the newsk from the oldsk and migrate the 4369 * asoc to the newsk. 4370 */ 4371 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 4372 4373 out: 4374 release_sock(sk); 4375 *err = error; 4376 return newsk; 4377 } 4378 4379 /* The SCTP ioctl handler. */ 4380 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 4381 { 4382 int rc = -ENOTCONN; 4383 4384 lock_sock(sk); 4385 4386 /* 4387 * SEQPACKET-style sockets in LISTENING state are valid, for 4388 * SCTP, so only discard TCP-style sockets in LISTENING state. 4389 */ 4390 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 4391 goto out; 4392 4393 switch (cmd) { 4394 case SIOCINQ: { 4395 struct sk_buff *skb; 4396 unsigned int amount = 0; 4397 4398 skb = skb_peek(&sk->sk_receive_queue); 4399 if (skb != NULL) { 4400 /* 4401 * We will only return the amount of this packet since 4402 * that is all that will be read. 4403 */ 4404 amount = skb->len; 4405 } 4406 rc = put_user(amount, (int __user *)arg); 4407 break; 4408 } 4409 default: 4410 rc = -ENOIOCTLCMD; 4411 break; 4412 } 4413 out: 4414 release_sock(sk); 4415 return rc; 4416 } 4417 4418 /* This is the function which gets called during socket creation to 4419 * initialized the SCTP-specific portion of the sock. 4420 * The sock structure should already be zero-filled memory. 4421 */ 4422 static int sctp_init_sock(struct sock *sk) 4423 { 4424 struct net *net = sock_net(sk); 4425 struct sctp_sock *sp; 4426 4427 pr_debug("%s: sk:%p\n", __func__, sk); 4428 4429 sp = sctp_sk(sk); 4430 4431 /* Initialize the SCTP per socket area. */ 4432 switch (sk->sk_type) { 4433 case SOCK_SEQPACKET: 4434 sp->type = SCTP_SOCKET_UDP; 4435 break; 4436 case SOCK_STREAM: 4437 sp->type = SCTP_SOCKET_TCP; 4438 break; 4439 default: 4440 return -ESOCKTNOSUPPORT; 4441 } 4442 4443 sk->sk_gso_type = SKB_GSO_SCTP; 4444 4445 /* Initialize default send parameters. These parameters can be 4446 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 4447 */ 4448 sp->default_stream = 0; 4449 sp->default_ppid = 0; 4450 sp->default_flags = 0; 4451 sp->default_context = 0; 4452 sp->default_timetolive = 0; 4453 4454 sp->default_rcv_context = 0; 4455 sp->max_burst = net->sctp.max_burst; 4456 4457 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg; 4458 4459 /* Initialize default setup parameters. These parameters 4460 * can be modified with the SCTP_INITMSG socket option or 4461 * overridden by the SCTP_INIT CMSG. 4462 */ 4463 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 4464 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 4465 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init; 4466 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max; 4467 4468 /* Initialize default RTO related parameters. These parameters can 4469 * be modified for with the SCTP_RTOINFO socket option. 4470 */ 4471 sp->rtoinfo.srto_initial = net->sctp.rto_initial; 4472 sp->rtoinfo.srto_max = net->sctp.rto_max; 4473 sp->rtoinfo.srto_min = net->sctp.rto_min; 4474 4475 /* Initialize default association related parameters. These parameters 4476 * can be modified with the SCTP_ASSOCINFO socket option. 4477 */ 4478 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association; 4479 sp->assocparams.sasoc_number_peer_destinations = 0; 4480 sp->assocparams.sasoc_peer_rwnd = 0; 4481 sp->assocparams.sasoc_local_rwnd = 0; 4482 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life; 4483 4484 /* Initialize default event subscriptions. By default, all the 4485 * options are off. 4486 */ 4487 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 4488 4489 /* Default Peer Address Parameters. These defaults can 4490 * be modified via SCTP_PEER_ADDR_PARAMS 4491 */ 4492 sp->hbinterval = net->sctp.hb_interval; 4493 sp->pathmaxrxt = net->sctp.max_retrans_path; 4494 sp->pathmtu = 0; /* allow default discovery */ 4495 sp->sackdelay = net->sctp.sack_timeout; 4496 sp->sackfreq = 2; 4497 sp->param_flags = SPP_HB_ENABLE | 4498 SPP_PMTUD_ENABLE | 4499 SPP_SACKDELAY_ENABLE; 4500 4501 /* If enabled no SCTP message fragmentation will be performed. 4502 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 4503 */ 4504 sp->disable_fragments = 0; 4505 4506 /* Enable Nagle algorithm by default. */ 4507 sp->nodelay = 0; 4508 4509 sp->recvrcvinfo = 0; 4510 sp->recvnxtinfo = 0; 4511 4512 /* Enable by default. */ 4513 sp->v4mapped = 1; 4514 4515 /* Auto-close idle associations after the configured 4516 * number of seconds. A value of 0 disables this 4517 * feature. Configure through the SCTP_AUTOCLOSE socket option, 4518 * for UDP-style sockets only. 4519 */ 4520 sp->autoclose = 0; 4521 4522 /* User specified fragmentation limit. */ 4523 sp->user_frag = 0; 4524 4525 sp->adaptation_ind = 0; 4526 4527 sp->pf = sctp_get_pf_specific(sk->sk_family); 4528 4529 /* Control variables for partial data delivery. */ 4530 atomic_set(&sp->pd_mode, 0); 4531 skb_queue_head_init(&sp->pd_lobby); 4532 sp->frag_interleave = 0; 4533 4534 /* Create a per socket endpoint structure. Even if we 4535 * change the data structure relationships, this may still 4536 * be useful for storing pre-connect address information. 4537 */ 4538 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL); 4539 if (!sp->ep) 4540 return -ENOMEM; 4541 4542 sp->hmac = NULL; 4543 4544 sk->sk_destruct = sctp_destruct_sock; 4545 4546 SCTP_DBG_OBJCNT_INC(sock); 4547 4548 local_bh_disable(); 4549 sk_sockets_allocated_inc(sk); 4550 sock_prot_inuse_add(net, sk->sk_prot, 1); 4551 4552 /* Nothing can fail after this block, otherwise 4553 * sctp_destroy_sock() will be called without addr_wq_lock held 4554 */ 4555 if (net->sctp.default_auto_asconf) { 4556 spin_lock(&sock_net(sk)->sctp.addr_wq_lock); 4557 list_add_tail(&sp->auto_asconf_list, 4558 &net->sctp.auto_asconf_splist); 4559 sp->do_auto_asconf = 1; 4560 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock); 4561 } else { 4562 sp->do_auto_asconf = 0; 4563 } 4564 4565 local_bh_enable(); 4566 4567 return 0; 4568 } 4569 4570 /* Cleanup any SCTP per socket resources. Must be called with 4571 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true 4572 */ 4573 static void sctp_destroy_sock(struct sock *sk) 4574 { 4575 struct sctp_sock *sp; 4576 4577 pr_debug("%s: sk:%p\n", __func__, sk); 4578 4579 /* Release our hold on the endpoint. */ 4580 sp = sctp_sk(sk); 4581 /* This could happen during socket init, thus we bail out 4582 * early, since the rest of the below is not setup either. 4583 */ 4584 if (sp->ep == NULL) 4585 return; 4586 4587 if (sp->do_auto_asconf) { 4588 sp->do_auto_asconf = 0; 4589 list_del(&sp->auto_asconf_list); 4590 } 4591 sctp_endpoint_free(sp->ep); 4592 local_bh_disable(); 4593 sk_sockets_allocated_dec(sk); 4594 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 4595 local_bh_enable(); 4596 } 4597 4598 /* Triggered when there are no references on the socket anymore */ 4599 static void sctp_destruct_sock(struct sock *sk) 4600 { 4601 struct sctp_sock *sp = sctp_sk(sk); 4602 4603 /* Free up the HMAC transform. */ 4604 crypto_free_shash(sp->hmac); 4605 4606 inet_sock_destruct(sk); 4607 } 4608 4609 /* API 4.1.7 shutdown() - TCP Style Syntax 4610 * int shutdown(int socket, int how); 4611 * 4612 * sd - the socket descriptor of the association to be closed. 4613 * how - Specifies the type of shutdown. The values are 4614 * as follows: 4615 * SHUT_RD 4616 * Disables further receive operations. No SCTP 4617 * protocol action is taken. 4618 * SHUT_WR 4619 * Disables further send operations, and initiates 4620 * the SCTP shutdown sequence. 4621 * SHUT_RDWR 4622 * Disables further send and receive operations 4623 * and initiates the SCTP shutdown sequence. 4624 */ 4625 static void sctp_shutdown(struct sock *sk, int how) 4626 { 4627 struct net *net = sock_net(sk); 4628 struct sctp_endpoint *ep; 4629 4630 if (!sctp_style(sk, TCP)) 4631 return; 4632 4633 ep = sctp_sk(sk)->ep; 4634 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) { 4635 struct sctp_association *asoc; 4636 4637 inet_sk_set_state(sk, SCTP_SS_CLOSING); 4638 asoc = list_entry(ep->asocs.next, 4639 struct sctp_association, asocs); 4640 sctp_primitive_SHUTDOWN(net, asoc, NULL); 4641 } 4642 } 4643 4644 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc, 4645 struct sctp_info *info) 4646 { 4647 struct sctp_transport *prim; 4648 struct list_head *pos; 4649 int mask; 4650 4651 memset(info, 0, sizeof(*info)); 4652 if (!asoc) { 4653 struct sctp_sock *sp = sctp_sk(sk); 4654 4655 info->sctpi_s_autoclose = sp->autoclose; 4656 info->sctpi_s_adaptation_ind = sp->adaptation_ind; 4657 info->sctpi_s_pd_point = sp->pd_point; 4658 info->sctpi_s_nodelay = sp->nodelay; 4659 info->sctpi_s_disable_fragments = sp->disable_fragments; 4660 info->sctpi_s_v4mapped = sp->v4mapped; 4661 info->sctpi_s_frag_interleave = sp->frag_interleave; 4662 info->sctpi_s_type = sp->type; 4663 4664 return 0; 4665 } 4666 4667 info->sctpi_tag = asoc->c.my_vtag; 4668 info->sctpi_state = asoc->state; 4669 info->sctpi_rwnd = asoc->a_rwnd; 4670 info->sctpi_unackdata = asoc->unack_data; 4671 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 4672 info->sctpi_instrms = asoc->stream.incnt; 4673 info->sctpi_outstrms = asoc->stream.outcnt; 4674 list_for_each(pos, &asoc->base.inqueue.in_chunk_list) 4675 info->sctpi_inqueue++; 4676 list_for_each(pos, &asoc->outqueue.out_chunk_list) 4677 info->sctpi_outqueue++; 4678 info->sctpi_overall_error = asoc->overall_error_count; 4679 info->sctpi_max_burst = asoc->max_burst; 4680 info->sctpi_maxseg = asoc->frag_point; 4681 info->sctpi_peer_rwnd = asoc->peer.rwnd; 4682 info->sctpi_peer_tag = asoc->c.peer_vtag; 4683 4684 mask = asoc->peer.ecn_capable << 1; 4685 mask = (mask | asoc->peer.ipv4_address) << 1; 4686 mask = (mask | asoc->peer.ipv6_address) << 1; 4687 mask = (mask | asoc->peer.hostname_address) << 1; 4688 mask = (mask | asoc->peer.asconf_capable) << 1; 4689 mask = (mask | asoc->peer.prsctp_capable) << 1; 4690 mask = (mask | asoc->peer.auth_capable); 4691 info->sctpi_peer_capable = mask; 4692 mask = asoc->peer.sack_needed << 1; 4693 mask = (mask | asoc->peer.sack_generation) << 1; 4694 mask = (mask | asoc->peer.zero_window_announced); 4695 info->sctpi_peer_sack = mask; 4696 4697 info->sctpi_isacks = asoc->stats.isacks; 4698 info->sctpi_osacks = asoc->stats.osacks; 4699 info->sctpi_opackets = asoc->stats.opackets; 4700 info->sctpi_ipackets = asoc->stats.ipackets; 4701 info->sctpi_rtxchunks = asoc->stats.rtxchunks; 4702 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns; 4703 info->sctpi_idupchunks = asoc->stats.idupchunks; 4704 info->sctpi_gapcnt = asoc->stats.gapcnt; 4705 info->sctpi_ouodchunks = asoc->stats.ouodchunks; 4706 info->sctpi_iuodchunks = asoc->stats.iuodchunks; 4707 info->sctpi_oodchunks = asoc->stats.oodchunks; 4708 info->sctpi_iodchunks = asoc->stats.iodchunks; 4709 info->sctpi_octrlchunks = asoc->stats.octrlchunks; 4710 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks; 4711 4712 prim = asoc->peer.primary_path; 4713 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr)); 4714 info->sctpi_p_state = prim->state; 4715 info->sctpi_p_cwnd = prim->cwnd; 4716 info->sctpi_p_srtt = prim->srtt; 4717 info->sctpi_p_rto = jiffies_to_msecs(prim->rto); 4718 info->sctpi_p_hbinterval = prim->hbinterval; 4719 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt; 4720 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay); 4721 info->sctpi_p_ssthresh = prim->ssthresh; 4722 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked; 4723 info->sctpi_p_flight_size = prim->flight_size; 4724 info->sctpi_p_error = prim->error_count; 4725 4726 return 0; 4727 } 4728 EXPORT_SYMBOL_GPL(sctp_get_sctp_info); 4729 4730 /* use callback to avoid exporting the core structure */ 4731 void sctp_transport_walk_start(struct rhashtable_iter *iter) 4732 { 4733 rhltable_walk_enter(&sctp_transport_hashtable, iter); 4734 4735 rhashtable_walk_start(iter); 4736 } 4737 4738 void sctp_transport_walk_stop(struct rhashtable_iter *iter) 4739 { 4740 rhashtable_walk_stop(iter); 4741 rhashtable_walk_exit(iter); 4742 } 4743 4744 struct sctp_transport *sctp_transport_get_next(struct net *net, 4745 struct rhashtable_iter *iter) 4746 { 4747 struct sctp_transport *t; 4748 4749 t = rhashtable_walk_next(iter); 4750 for (; t; t = rhashtable_walk_next(iter)) { 4751 if (IS_ERR(t)) { 4752 if (PTR_ERR(t) == -EAGAIN) 4753 continue; 4754 break; 4755 } 4756 4757 if (net_eq(sock_net(t->asoc->base.sk), net) && 4758 t->asoc->peer.primary_path == t) 4759 break; 4760 } 4761 4762 return t; 4763 } 4764 4765 struct sctp_transport *sctp_transport_get_idx(struct net *net, 4766 struct rhashtable_iter *iter, 4767 int pos) 4768 { 4769 void *obj = SEQ_START_TOKEN; 4770 4771 while (pos && (obj = sctp_transport_get_next(net, iter)) && 4772 !IS_ERR(obj)) 4773 pos--; 4774 4775 return obj; 4776 } 4777 4778 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *), 4779 void *p) { 4780 int err = 0; 4781 int hash = 0; 4782 struct sctp_ep_common *epb; 4783 struct sctp_hashbucket *head; 4784 4785 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize; 4786 hash++, head++) { 4787 read_lock_bh(&head->lock); 4788 sctp_for_each_hentry(epb, &head->chain) { 4789 err = cb(sctp_ep(epb), p); 4790 if (err) 4791 break; 4792 } 4793 read_unlock_bh(&head->lock); 4794 } 4795 4796 return err; 4797 } 4798 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint); 4799 4800 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *), 4801 struct net *net, 4802 const union sctp_addr *laddr, 4803 const union sctp_addr *paddr, void *p) 4804 { 4805 struct sctp_transport *transport; 4806 int err; 4807 4808 rcu_read_lock(); 4809 transport = sctp_addrs_lookup_transport(net, laddr, paddr); 4810 rcu_read_unlock(); 4811 if (!transport) 4812 return -ENOENT; 4813 4814 err = cb(transport, p); 4815 sctp_transport_put(transport); 4816 4817 return err; 4818 } 4819 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process); 4820 4821 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *), 4822 int (*cb_done)(struct sctp_transport *, void *), 4823 struct net *net, int *pos, void *p) { 4824 struct rhashtable_iter hti; 4825 struct sctp_transport *tsp; 4826 int ret; 4827 4828 again: 4829 ret = 0; 4830 sctp_transport_walk_start(&hti); 4831 4832 tsp = sctp_transport_get_idx(net, &hti, *pos + 1); 4833 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) { 4834 if (!sctp_transport_hold(tsp)) 4835 continue; 4836 ret = cb(tsp, p); 4837 if (ret) 4838 break; 4839 (*pos)++; 4840 sctp_transport_put(tsp); 4841 } 4842 sctp_transport_walk_stop(&hti); 4843 4844 if (ret) { 4845 if (cb_done && !cb_done(tsp, p)) { 4846 (*pos)++; 4847 sctp_transport_put(tsp); 4848 goto again; 4849 } 4850 sctp_transport_put(tsp); 4851 } 4852 4853 return ret; 4854 } 4855 EXPORT_SYMBOL_GPL(sctp_for_each_transport); 4856 4857 /* 7.2.1 Association Status (SCTP_STATUS) 4858 4859 * Applications can retrieve current status information about an 4860 * association, including association state, peer receiver window size, 4861 * number of unacked data chunks, and number of data chunks pending 4862 * receipt. This information is read-only. 4863 */ 4864 static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 4865 char __user *optval, 4866 int __user *optlen) 4867 { 4868 struct sctp_status status; 4869 struct sctp_association *asoc = NULL; 4870 struct sctp_transport *transport; 4871 sctp_assoc_t associd; 4872 int retval = 0; 4873 4874 if (len < sizeof(status)) { 4875 retval = -EINVAL; 4876 goto out; 4877 } 4878 4879 len = sizeof(status); 4880 if (copy_from_user(&status, optval, len)) { 4881 retval = -EFAULT; 4882 goto out; 4883 } 4884 4885 associd = status.sstat_assoc_id; 4886 asoc = sctp_id2assoc(sk, associd); 4887 if (!asoc) { 4888 retval = -EINVAL; 4889 goto out; 4890 } 4891 4892 transport = asoc->peer.primary_path; 4893 4894 status.sstat_assoc_id = sctp_assoc2id(asoc); 4895 status.sstat_state = sctp_assoc_to_state(asoc); 4896 status.sstat_rwnd = asoc->peer.rwnd; 4897 status.sstat_unackdata = asoc->unack_data; 4898 4899 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 4900 status.sstat_instrms = asoc->stream.incnt; 4901 status.sstat_outstrms = asoc->stream.outcnt; 4902 status.sstat_fragmentation_point = asoc->frag_point; 4903 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 4904 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, 4905 transport->af_specific->sockaddr_len); 4906 /* Map ipv4 address into v4-mapped-on-v6 address. */ 4907 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk), 4908 (union sctp_addr *)&status.sstat_primary.spinfo_address); 4909 status.sstat_primary.spinfo_state = transport->state; 4910 status.sstat_primary.spinfo_cwnd = transport->cwnd; 4911 status.sstat_primary.spinfo_srtt = transport->srtt; 4912 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 4913 status.sstat_primary.spinfo_mtu = transport->pathmtu; 4914 4915 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 4916 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 4917 4918 if (put_user(len, optlen)) { 4919 retval = -EFAULT; 4920 goto out; 4921 } 4922 4923 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", 4924 __func__, len, status.sstat_state, status.sstat_rwnd, 4925 status.sstat_assoc_id); 4926 4927 if (copy_to_user(optval, &status, len)) { 4928 retval = -EFAULT; 4929 goto out; 4930 } 4931 4932 out: 4933 return retval; 4934 } 4935 4936 4937 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 4938 * 4939 * Applications can retrieve information about a specific peer address 4940 * of an association, including its reachability state, congestion 4941 * window, and retransmission timer values. This information is 4942 * read-only. 4943 */ 4944 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 4945 char __user *optval, 4946 int __user *optlen) 4947 { 4948 struct sctp_paddrinfo pinfo; 4949 struct sctp_transport *transport; 4950 int retval = 0; 4951 4952 if (len < sizeof(pinfo)) { 4953 retval = -EINVAL; 4954 goto out; 4955 } 4956 4957 len = sizeof(pinfo); 4958 if (copy_from_user(&pinfo, optval, len)) { 4959 retval = -EFAULT; 4960 goto out; 4961 } 4962 4963 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 4964 pinfo.spinfo_assoc_id); 4965 if (!transport) 4966 return -EINVAL; 4967 4968 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 4969 pinfo.spinfo_state = transport->state; 4970 pinfo.spinfo_cwnd = transport->cwnd; 4971 pinfo.spinfo_srtt = transport->srtt; 4972 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 4973 pinfo.spinfo_mtu = transport->pathmtu; 4974 4975 if (pinfo.spinfo_state == SCTP_UNKNOWN) 4976 pinfo.spinfo_state = SCTP_ACTIVE; 4977 4978 if (put_user(len, optlen)) { 4979 retval = -EFAULT; 4980 goto out; 4981 } 4982 4983 if (copy_to_user(optval, &pinfo, len)) { 4984 retval = -EFAULT; 4985 goto out; 4986 } 4987 4988 out: 4989 return retval; 4990 } 4991 4992 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 4993 * 4994 * This option is a on/off flag. If enabled no SCTP message 4995 * fragmentation will be performed. Instead if a message being sent 4996 * exceeds the current PMTU size, the message will NOT be sent and 4997 * instead a error will be indicated to the user. 4998 */ 4999 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 5000 char __user *optval, int __user *optlen) 5001 { 5002 int val; 5003 5004 if (len < sizeof(int)) 5005 return -EINVAL; 5006 5007 len = sizeof(int); 5008 val = (sctp_sk(sk)->disable_fragments == 1); 5009 if (put_user(len, optlen)) 5010 return -EFAULT; 5011 if (copy_to_user(optval, &val, len)) 5012 return -EFAULT; 5013 return 0; 5014 } 5015 5016 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 5017 * 5018 * This socket option is used to specify various notifications and 5019 * ancillary data the user wishes to receive. 5020 */ 5021 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 5022 int __user *optlen) 5023 { 5024 if (len == 0) 5025 return -EINVAL; 5026 if (len > sizeof(struct sctp_event_subscribe)) 5027 len = sizeof(struct sctp_event_subscribe); 5028 if (put_user(len, optlen)) 5029 return -EFAULT; 5030 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 5031 return -EFAULT; 5032 return 0; 5033 } 5034 5035 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 5036 * 5037 * This socket option is applicable to the UDP-style socket only. When 5038 * set it will cause associations that are idle for more than the 5039 * specified number of seconds to automatically close. An association 5040 * being idle is defined an association that has NOT sent or received 5041 * user data. The special value of '0' indicates that no automatic 5042 * close of any associations should be performed. The option expects an 5043 * integer defining the number of seconds of idle time before an 5044 * association is closed. 5045 */ 5046 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 5047 { 5048 /* Applicable to UDP-style socket only */ 5049 if (sctp_style(sk, TCP)) 5050 return -EOPNOTSUPP; 5051 if (len < sizeof(int)) 5052 return -EINVAL; 5053 len = sizeof(int); 5054 if (put_user(len, optlen)) 5055 return -EFAULT; 5056 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval)) 5057 return -EFAULT; 5058 return 0; 5059 } 5060 5061 /* Helper routine to branch off an association to a new socket. */ 5062 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) 5063 { 5064 struct sctp_association *asoc = sctp_id2assoc(sk, id); 5065 struct sctp_sock *sp = sctp_sk(sk); 5066 struct socket *sock; 5067 int err = 0; 5068 5069 /* Do not peel off from one netns to another one. */ 5070 if (!net_eq(current->nsproxy->net_ns, sock_net(sk))) 5071 return -EINVAL; 5072 5073 if (!asoc) 5074 return -EINVAL; 5075 5076 /* An association cannot be branched off from an already peeled-off 5077 * socket, nor is this supported for tcp style sockets. 5078 */ 5079 if (!sctp_style(sk, UDP)) 5080 return -EINVAL; 5081 5082 /* Create a new socket. */ 5083 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 5084 if (err < 0) 5085 return err; 5086 5087 sctp_copy_sock(sock->sk, sk, asoc); 5088 5089 /* Make peeled-off sockets more like 1-1 accepted sockets. 5090 * Set the daddr and initialize id to something more random 5091 */ 5092 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk); 5093 5094 /* Populate the fields of the newsk from the oldsk and migrate the 5095 * asoc to the newsk. 5096 */ 5097 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 5098 5099 *sockp = sock; 5100 5101 return err; 5102 } 5103 EXPORT_SYMBOL(sctp_do_peeloff); 5104 5105 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff, 5106 struct file **newfile, unsigned flags) 5107 { 5108 struct socket *newsock; 5109 int retval; 5110 5111 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock); 5112 if (retval < 0) 5113 goto out; 5114 5115 /* Map the socket to an unused fd that can be returned to the user. */ 5116 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC); 5117 if (retval < 0) { 5118 sock_release(newsock); 5119 goto out; 5120 } 5121 5122 *newfile = sock_alloc_file(newsock, 0, NULL); 5123 if (IS_ERR(*newfile)) { 5124 put_unused_fd(retval); 5125 retval = PTR_ERR(*newfile); 5126 *newfile = NULL; 5127 return retval; 5128 } 5129 5130 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk, 5131 retval); 5132 5133 peeloff->sd = retval; 5134 5135 if (flags & SOCK_NONBLOCK) 5136 (*newfile)->f_flags |= O_NONBLOCK; 5137 out: 5138 return retval; 5139 } 5140 5141 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 5142 { 5143 sctp_peeloff_arg_t peeloff; 5144 struct file *newfile = NULL; 5145 int retval = 0; 5146 5147 if (len < sizeof(sctp_peeloff_arg_t)) 5148 return -EINVAL; 5149 len = sizeof(sctp_peeloff_arg_t); 5150 if (copy_from_user(&peeloff, optval, len)) 5151 return -EFAULT; 5152 5153 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0); 5154 if (retval < 0) 5155 goto out; 5156 5157 /* Return the fd mapped to the new socket. */ 5158 if (put_user(len, optlen)) { 5159 fput(newfile); 5160 put_unused_fd(retval); 5161 return -EFAULT; 5162 } 5163 5164 if (copy_to_user(optval, &peeloff, len)) { 5165 fput(newfile); 5166 put_unused_fd(retval); 5167 return -EFAULT; 5168 } 5169 fd_install(retval, newfile); 5170 out: 5171 return retval; 5172 } 5173 5174 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len, 5175 char __user *optval, int __user *optlen) 5176 { 5177 sctp_peeloff_flags_arg_t peeloff; 5178 struct file *newfile = NULL; 5179 int retval = 0; 5180 5181 if (len < sizeof(sctp_peeloff_flags_arg_t)) 5182 return -EINVAL; 5183 len = sizeof(sctp_peeloff_flags_arg_t); 5184 if (copy_from_user(&peeloff, optval, len)) 5185 return -EFAULT; 5186 5187 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg, 5188 &newfile, peeloff.flags); 5189 if (retval < 0) 5190 goto out; 5191 5192 /* Return the fd mapped to the new socket. */ 5193 if (put_user(len, optlen)) { 5194 fput(newfile); 5195 put_unused_fd(retval); 5196 return -EFAULT; 5197 } 5198 5199 if (copy_to_user(optval, &peeloff, len)) { 5200 fput(newfile); 5201 put_unused_fd(retval); 5202 return -EFAULT; 5203 } 5204 fd_install(retval, newfile); 5205 out: 5206 return retval; 5207 } 5208 5209 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 5210 * 5211 * Applications can enable or disable heartbeats for any peer address of 5212 * an association, modify an address's heartbeat interval, force a 5213 * heartbeat to be sent immediately, and adjust the address's maximum 5214 * number of retransmissions sent before an address is considered 5215 * unreachable. The following structure is used to access and modify an 5216 * address's parameters: 5217 * 5218 * struct sctp_paddrparams { 5219 * sctp_assoc_t spp_assoc_id; 5220 * struct sockaddr_storage spp_address; 5221 * uint32_t spp_hbinterval; 5222 * uint16_t spp_pathmaxrxt; 5223 * uint32_t spp_pathmtu; 5224 * uint32_t spp_sackdelay; 5225 * uint32_t spp_flags; 5226 * }; 5227 * 5228 * spp_assoc_id - (one-to-many style socket) This is filled in the 5229 * application, and identifies the association for 5230 * this query. 5231 * spp_address - This specifies which address is of interest. 5232 * spp_hbinterval - This contains the value of the heartbeat interval, 5233 * in milliseconds. If a value of zero 5234 * is present in this field then no changes are to 5235 * be made to this parameter. 5236 * spp_pathmaxrxt - This contains the maximum number of 5237 * retransmissions before this address shall be 5238 * considered unreachable. If a value of zero 5239 * is present in this field then no changes are to 5240 * be made to this parameter. 5241 * spp_pathmtu - When Path MTU discovery is disabled the value 5242 * specified here will be the "fixed" path mtu. 5243 * Note that if the spp_address field is empty 5244 * then all associations on this address will 5245 * have this fixed path mtu set upon them. 5246 * 5247 * spp_sackdelay - When delayed sack is enabled, this value specifies 5248 * the number of milliseconds that sacks will be delayed 5249 * for. This value will apply to all addresses of an 5250 * association if the spp_address field is empty. Note 5251 * also, that if delayed sack is enabled and this 5252 * value is set to 0, no change is made to the last 5253 * recorded delayed sack timer value. 5254 * 5255 * spp_flags - These flags are used to control various features 5256 * on an association. The flag field may contain 5257 * zero or more of the following options. 5258 * 5259 * SPP_HB_ENABLE - Enable heartbeats on the 5260 * specified address. Note that if the address 5261 * field is empty all addresses for the association 5262 * have heartbeats enabled upon them. 5263 * 5264 * SPP_HB_DISABLE - Disable heartbeats on the 5265 * speicifed address. Note that if the address 5266 * field is empty all addresses for the association 5267 * will have their heartbeats disabled. Note also 5268 * that SPP_HB_ENABLE and SPP_HB_DISABLE are 5269 * mutually exclusive, only one of these two should 5270 * be specified. Enabling both fields will have 5271 * undetermined results. 5272 * 5273 * SPP_HB_DEMAND - Request a user initiated heartbeat 5274 * to be made immediately. 5275 * 5276 * SPP_PMTUD_ENABLE - This field will enable PMTU 5277 * discovery upon the specified address. Note that 5278 * if the address feild is empty then all addresses 5279 * on the association are effected. 5280 * 5281 * SPP_PMTUD_DISABLE - This field will disable PMTU 5282 * discovery upon the specified address. Note that 5283 * if the address feild is empty then all addresses 5284 * on the association are effected. Not also that 5285 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually 5286 * exclusive. Enabling both will have undetermined 5287 * results. 5288 * 5289 * SPP_SACKDELAY_ENABLE - Setting this flag turns 5290 * on delayed sack. The time specified in spp_sackdelay 5291 * is used to specify the sack delay for this address. Note 5292 * that if spp_address is empty then all addresses will 5293 * enable delayed sack and take on the sack delay 5294 * value specified in spp_sackdelay. 5295 * SPP_SACKDELAY_DISABLE - Setting this flag turns 5296 * off delayed sack. If the spp_address field is blank then 5297 * delayed sack is disabled for the entire association. Note 5298 * also that this field is mutually exclusive to 5299 * SPP_SACKDELAY_ENABLE, setting both will have undefined 5300 * results. 5301 */ 5302 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 5303 char __user *optval, int __user *optlen) 5304 { 5305 struct sctp_paddrparams params; 5306 struct sctp_transport *trans = NULL; 5307 struct sctp_association *asoc = NULL; 5308 struct sctp_sock *sp = sctp_sk(sk); 5309 5310 if (len < sizeof(struct sctp_paddrparams)) 5311 return -EINVAL; 5312 len = sizeof(struct sctp_paddrparams); 5313 if (copy_from_user(¶ms, optval, len)) 5314 return -EFAULT; 5315 5316 /* If an address other than INADDR_ANY is specified, and 5317 * no transport is found, then the request is invalid. 5318 */ 5319 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) { 5320 trans = sctp_addr_id2transport(sk, ¶ms.spp_address, 5321 params.spp_assoc_id); 5322 if (!trans) { 5323 pr_debug("%s: failed no transport\n", __func__); 5324 return -EINVAL; 5325 } 5326 } 5327 5328 /* Get association, if assoc_id != 0 and the socket is a one 5329 * to many style socket, and an association was not found, then 5330 * the id was invalid. 5331 */ 5332 asoc = sctp_id2assoc(sk, params.spp_assoc_id); 5333 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { 5334 pr_debug("%s: failed no association\n", __func__); 5335 return -EINVAL; 5336 } 5337 5338 if (trans) { 5339 /* Fetch transport values. */ 5340 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); 5341 params.spp_pathmtu = trans->pathmtu; 5342 params.spp_pathmaxrxt = trans->pathmaxrxt; 5343 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); 5344 5345 /*draft-11 doesn't say what to return in spp_flags*/ 5346 params.spp_flags = trans->param_flags; 5347 } else if (asoc) { 5348 /* Fetch association values. */ 5349 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); 5350 params.spp_pathmtu = asoc->pathmtu; 5351 params.spp_pathmaxrxt = asoc->pathmaxrxt; 5352 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); 5353 5354 /*draft-11 doesn't say what to return in spp_flags*/ 5355 params.spp_flags = asoc->param_flags; 5356 } else { 5357 /* Fetch socket values. */ 5358 params.spp_hbinterval = sp->hbinterval; 5359 params.spp_pathmtu = sp->pathmtu; 5360 params.spp_sackdelay = sp->sackdelay; 5361 params.spp_pathmaxrxt = sp->pathmaxrxt; 5362 5363 /*draft-11 doesn't say what to return in spp_flags*/ 5364 params.spp_flags = sp->param_flags; 5365 } 5366 5367 if (copy_to_user(optval, ¶ms, len)) 5368 return -EFAULT; 5369 5370 if (put_user(len, optlen)) 5371 return -EFAULT; 5372 5373 return 0; 5374 } 5375 5376 /* 5377 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK) 5378 * 5379 * This option will effect the way delayed acks are performed. This 5380 * option allows you to get or set the delayed ack time, in 5381 * milliseconds. It also allows changing the delayed ack frequency. 5382 * Changing the frequency to 1 disables the delayed sack algorithm. If 5383 * the assoc_id is 0, then this sets or gets the endpoints default 5384 * values. If the assoc_id field is non-zero, then the set or get 5385 * effects the specified association for the one to many model (the 5386 * assoc_id field is ignored by the one to one model). Note that if 5387 * sack_delay or sack_freq are 0 when setting this option, then the 5388 * current values will remain unchanged. 5389 * 5390 * struct sctp_sack_info { 5391 * sctp_assoc_t sack_assoc_id; 5392 * uint32_t sack_delay; 5393 * uint32_t sack_freq; 5394 * }; 5395 * 5396 * sack_assoc_id - This parameter, indicates which association the user 5397 * is performing an action upon. Note that if this field's value is 5398 * zero then the endpoints default value is changed (effecting future 5399 * associations only). 5400 * 5401 * sack_delay - This parameter contains the number of milliseconds that 5402 * the user is requesting the delayed ACK timer be set to. Note that 5403 * this value is defined in the standard to be between 200 and 500 5404 * milliseconds. 5405 * 5406 * sack_freq - This parameter contains the number of packets that must 5407 * be received before a sack is sent without waiting for the delay 5408 * timer to expire. The default value for this is 2, setting this 5409 * value to 1 will disable the delayed sack algorithm. 5410 */ 5411 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len, 5412 char __user *optval, 5413 int __user *optlen) 5414 { 5415 struct sctp_sack_info params; 5416 struct sctp_association *asoc = NULL; 5417 struct sctp_sock *sp = sctp_sk(sk); 5418 5419 if (len >= sizeof(struct sctp_sack_info)) { 5420 len = sizeof(struct sctp_sack_info); 5421 5422 if (copy_from_user(¶ms, optval, len)) 5423 return -EFAULT; 5424 } else if (len == sizeof(struct sctp_assoc_value)) { 5425 pr_warn_ratelimited(DEPRECATED 5426 "%s (pid %d) " 5427 "Use of struct sctp_assoc_value in delayed_ack socket option.\n" 5428 "Use struct sctp_sack_info instead\n", 5429 current->comm, task_pid_nr(current)); 5430 if (copy_from_user(¶ms, optval, len)) 5431 return -EFAULT; 5432 } else 5433 return -EINVAL; 5434 5435 /* Get association, if sack_assoc_id != 0 and the socket is a one 5436 * to many style socket, and an association was not found, then 5437 * the id was invalid. 5438 */ 5439 asoc = sctp_id2assoc(sk, params.sack_assoc_id); 5440 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)) 5441 return -EINVAL; 5442 5443 if (asoc) { 5444 /* Fetch association values. */ 5445 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) { 5446 params.sack_delay = jiffies_to_msecs( 5447 asoc->sackdelay); 5448 params.sack_freq = asoc->sackfreq; 5449 5450 } else { 5451 params.sack_delay = 0; 5452 params.sack_freq = 1; 5453 } 5454 } else { 5455 /* Fetch socket values. */ 5456 if (sp->param_flags & SPP_SACKDELAY_ENABLE) { 5457 params.sack_delay = sp->sackdelay; 5458 params.sack_freq = sp->sackfreq; 5459 } else { 5460 params.sack_delay = 0; 5461 params.sack_freq = 1; 5462 } 5463 } 5464 5465 if (copy_to_user(optval, ¶ms, len)) 5466 return -EFAULT; 5467 5468 if (put_user(len, optlen)) 5469 return -EFAULT; 5470 5471 return 0; 5472 } 5473 5474 /* 7.1.3 Initialization Parameters (SCTP_INITMSG) 5475 * 5476 * Applications can specify protocol parameters for the default association 5477 * initialization. The option name argument to setsockopt() and getsockopt() 5478 * is SCTP_INITMSG. 5479 * 5480 * Setting initialization parameters is effective only on an unconnected 5481 * socket (for UDP-style sockets only future associations are effected 5482 * by the change). With TCP-style sockets, this option is inherited by 5483 * sockets derived from a listener socket. 5484 */ 5485 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 5486 { 5487 if (len < sizeof(struct sctp_initmsg)) 5488 return -EINVAL; 5489 len = sizeof(struct sctp_initmsg); 5490 if (put_user(len, optlen)) 5491 return -EFAULT; 5492 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 5493 return -EFAULT; 5494 return 0; 5495 } 5496 5497 5498 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 5499 char __user *optval, int __user *optlen) 5500 { 5501 struct sctp_association *asoc; 5502 int cnt = 0; 5503 struct sctp_getaddrs getaddrs; 5504 struct sctp_transport *from; 5505 void __user *to; 5506 union sctp_addr temp; 5507 struct sctp_sock *sp = sctp_sk(sk); 5508 int addrlen; 5509 size_t space_left; 5510 int bytes_copied; 5511 5512 if (len < sizeof(struct sctp_getaddrs)) 5513 return -EINVAL; 5514 5515 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 5516 return -EFAULT; 5517 5518 /* For UDP-style sockets, id specifies the association to query. */ 5519 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 5520 if (!asoc) 5521 return -EINVAL; 5522 5523 to = optval + offsetof(struct sctp_getaddrs, addrs); 5524 space_left = len - offsetof(struct sctp_getaddrs, addrs); 5525 5526 list_for_each_entry(from, &asoc->peer.transport_addr_list, 5527 transports) { 5528 memcpy(&temp, &from->ipaddr, sizeof(temp)); 5529 addrlen = sctp_get_pf_specific(sk->sk_family) 5530 ->addr_to_user(sp, &temp); 5531 if (space_left < addrlen) 5532 return -ENOMEM; 5533 if (copy_to_user(to, &temp, addrlen)) 5534 return -EFAULT; 5535 to += addrlen; 5536 cnt++; 5537 space_left -= addrlen; 5538 } 5539 5540 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 5541 return -EFAULT; 5542 bytes_copied = ((char __user *)to) - optval; 5543 if (put_user(bytes_copied, optlen)) 5544 return -EFAULT; 5545 5546 return 0; 5547 } 5548 5549 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, 5550 size_t space_left, int *bytes_copied) 5551 { 5552 struct sctp_sockaddr_entry *addr; 5553 union sctp_addr temp; 5554 int cnt = 0; 5555 int addrlen; 5556 struct net *net = sock_net(sk); 5557 5558 rcu_read_lock(); 5559 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) { 5560 if (!addr->valid) 5561 continue; 5562 5563 if ((PF_INET == sk->sk_family) && 5564 (AF_INET6 == addr->a.sa.sa_family)) 5565 continue; 5566 if ((PF_INET6 == sk->sk_family) && 5567 inet_v6_ipv6only(sk) && 5568 (AF_INET == addr->a.sa.sa_family)) 5569 continue; 5570 memcpy(&temp, &addr->a, sizeof(temp)); 5571 if (!temp.v4.sin_port) 5572 temp.v4.sin_port = htons(port); 5573 5574 addrlen = sctp_get_pf_specific(sk->sk_family) 5575 ->addr_to_user(sctp_sk(sk), &temp); 5576 5577 if (space_left < addrlen) { 5578 cnt = -ENOMEM; 5579 break; 5580 } 5581 memcpy(to, &temp, addrlen); 5582 5583 to += addrlen; 5584 cnt++; 5585 space_left -= addrlen; 5586 *bytes_copied += addrlen; 5587 } 5588 rcu_read_unlock(); 5589 5590 return cnt; 5591 } 5592 5593 5594 static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 5595 char __user *optval, int __user *optlen) 5596 { 5597 struct sctp_bind_addr *bp; 5598 struct sctp_association *asoc; 5599 int cnt = 0; 5600 struct sctp_getaddrs getaddrs; 5601 struct sctp_sockaddr_entry *addr; 5602 void __user *to; 5603 union sctp_addr temp; 5604 struct sctp_sock *sp = sctp_sk(sk); 5605 int addrlen; 5606 int err = 0; 5607 size_t space_left; 5608 int bytes_copied = 0; 5609 void *addrs; 5610 void *buf; 5611 5612 if (len < sizeof(struct sctp_getaddrs)) 5613 return -EINVAL; 5614 5615 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 5616 return -EFAULT; 5617 5618 /* 5619 * For UDP-style sockets, id specifies the association to query. 5620 * If the id field is set to the value '0' then the locally bound 5621 * addresses are returned without regard to any particular 5622 * association. 5623 */ 5624 if (0 == getaddrs.assoc_id) { 5625 bp = &sctp_sk(sk)->ep->base.bind_addr; 5626 } else { 5627 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 5628 if (!asoc) 5629 return -EINVAL; 5630 bp = &asoc->base.bind_addr; 5631 } 5632 5633 to = optval + offsetof(struct sctp_getaddrs, addrs); 5634 space_left = len - offsetof(struct sctp_getaddrs, addrs); 5635 5636 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN); 5637 if (!addrs) 5638 return -ENOMEM; 5639 5640 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 5641 * addresses from the global local address list. 5642 */ 5643 if (sctp_list_single_entry(&bp->address_list)) { 5644 addr = list_entry(bp->address_list.next, 5645 struct sctp_sockaddr_entry, list); 5646 if (sctp_is_any(sk, &addr->a)) { 5647 cnt = sctp_copy_laddrs(sk, bp->port, addrs, 5648 space_left, &bytes_copied); 5649 if (cnt < 0) { 5650 err = cnt; 5651 goto out; 5652 } 5653 goto copy_getaddrs; 5654 } 5655 } 5656 5657 buf = addrs; 5658 /* Protection on the bound address list is not needed since 5659 * in the socket option context we hold a socket lock and 5660 * thus the bound address list can't change. 5661 */ 5662 list_for_each_entry(addr, &bp->address_list, list) { 5663 memcpy(&temp, &addr->a, sizeof(temp)); 5664 addrlen = sctp_get_pf_specific(sk->sk_family) 5665 ->addr_to_user(sp, &temp); 5666 if (space_left < addrlen) { 5667 err = -ENOMEM; /*fixme: right error?*/ 5668 goto out; 5669 } 5670 memcpy(buf, &temp, addrlen); 5671 buf += addrlen; 5672 bytes_copied += addrlen; 5673 cnt++; 5674 space_left -= addrlen; 5675 } 5676 5677 copy_getaddrs: 5678 if (copy_to_user(to, addrs, bytes_copied)) { 5679 err = -EFAULT; 5680 goto out; 5681 } 5682 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { 5683 err = -EFAULT; 5684 goto out; 5685 } 5686 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too, 5687 * but we can't change it anymore. 5688 */ 5689 if (put_user(bytes_copied, optlen)) 5690 err = -EFAULT; 5691 out: 5692 kfree(addrs); 5693 return err; 5694 } 5695 5696 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 5697 * 5698 * Requests that the local SCTP stack use the enclosed peer address as 5699 * the association primary. The enclosed address must be one of the 5700 * association peer's addresses. 5701 */ 5702 static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 5703 char __user *optval, int __user *optlen) 5704 { 5705 struct sctp_prim prim; 5706 struct sctp_association *asoc; 5707 struct sctp_sock *sp = sctp_sk(sk); 5708 5709 if (len < sizeof(struct sctp_prim)) 5710 return -EINVAL; 5711 5712 len = sizeof(struct sctp_prim); 5713 5714 if (copy_from_user(&prim, optval, len)) 5715 return -EFAULT; 5716 5717 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 5718 if (!asoc) 5719 return -EINVAL; 5720 5721 if (!asoc->peer.primary_path) 5722 return -ENOTCONN; 5723 5724 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 5725 asoc->peer.primary_path->af_specific->sockaddr_len); 5726 5727 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp, 5728 (union sctp_addr *)&prim.ssp_addr); 5729 5730 if (put_user(len, optlen)) 5731 return -EFAULT; 5732 if (copy_to_user(optval, &prim, len)) 5733 return -EFAULT; 5734 5735 return 0; 5736 } 5737 5738 /* 5739 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) 5740 * 5741 * Requests that the local endpoint set the specified Adaptation Layer 5742 * Indication parameter for all future INIT and INIT-ACK exchanges. 5743 */ 5744 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, 5745 char __user *optval, int __user *optlen) 5746 { 5747 struct sctp_setadaptation adaptation; 5748 5749 if (len < sizeof(struct sctp_setadaptation)) 5750 return -EINVAL; 5751 5752 len = sizeof(struct sctp_setadaptation); 5753 5754 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; 5755 5756 if (put_user(len, optlen)) 5757 return -EFAULT; 5758 if (copy_to_user(optval, &adaptation, len)) 5759 return -EFAULT; 5760 5761 return 0; 5762 } 5763 5764 /* 5765 * 5766 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 5767 * 5768 * Applications that wish to use the sendto() system call may wish to 5769 * specify a default set of parameters that would normally be supplied 5770 * through the inclusion of ancillary data. This socket option allows 5771 * such an application to set the default sctp_sndrcvinfo structure. 5772 5773 5774 * The application that wishes to use this socket option simply passes 5775 * in to this call the sctp_sndrcvinfo structure defined in Section 5776 * 5.2.2) The input parameters accepted by this call include 5777 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 5778 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 5779 * to this call if the caller is using the UDP model. 5780 * 5781 * For getsockopt, it get the default sctp_sndrcvinfo structure. 5782 */ 5783 static int sctp_getsockopt_default_send_param(struct sock *sk, 5784 int len, char __user *optval, 5785 int __user *optlen) 5786 { 5787 struct sctp_sock *sp = sctp_sk(sk); 5788 struct sctp_association *asoc; 5789 struct sctp_sndrcvinfo info; 5790 5791 if (len < sizeof(info)) 5792 return -EINVAL; 5793 5794 len = sizeof(info); 5795 5796 if (copy_from_user(&info, optval, len)) 5797 return -EFAULT; 5798 5799 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 5800 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 5801 return -EINVAL; 5802 if (asoc) { 5803 info.sinfo_stream = asoc->default_stream; 5804 info.sinfo_flags = asoc->default_flags; 5805 info.sinfo_ppid = asoc->default_ppid; 5806 info.sinfo_context = asoc->default_context; 5807 info.sinfo_timetolive = asoc->default_timetolive; 5808 } else { 5809 info.sinfo_stream = sp->default_stream; 5810 info.sinfo_flags = sp->default_flags; 5811 info.sinfo_ppid = sp->default_ppid; 5812 info.sinfo_context = sp->default_context; 5813 info.sinfo_timetolive = sp->default_timetolive; 5814 } 5815 5816 if (put_user(len, optlen)) 5817 return -EFAULT; 5818 if (copy_to_user(optval, &info, len)) 5819 return -EFAULT; 5820 5821 return 0; 5822 } 5823 5824 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters 5825 * (SCTP_DEFAULT_SNDINFO) 5826 */ 5827 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len, 5828 char __user *optval, 5829 int __user *optlen) 5830 { 5831 struct sctp_sock *sp = sctp_sk(sk); 5832 struct sctp_association *asoc; 5833 struct sctp_sndinfo info; 5834 5835 if (len < sizeof(info)) 5836 return -EINVAL; 5837 5838 len = sizeof(info); 5839 5840 if (copy_from_user(&info, optval, len)) 5841 return -EFAULT; 5842 5843 asoc = sctp_id2assoc(sk, info.snd_assoc_id); 5844 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP)) 5845 return -EINVAL; 5846 if (asoc) { 5847 info.snd_sid = asoc->default_stream; 5848 info.snd_flags = asoc->default_flags; 5849 info.snd_ppid = asoc->default_ppid; 5850 info.snd_context = asoc->default_context; 5851 } else { 5852 info.snd_sid = sp->default_stream; 5853 info.snd_flags = sp->default_flags; 5854 info.snd_ppid = sp->default_ppid; 5855 info.snd_context = sp->default_context; 5856 } 5857 5858 if (put_user(len, optlen)) 5859 return -EFAULT; 5860 if (copy_to_user(optval, &info, len)) 5861 return -EFAULT; 5862 5863 return 0; 5864 } 5865 5866 /* 5867 * 5868 * 7.1.5 SCTP_NODELAY 5869 * 5870 * Turn on/off any Nagle-like algorithm. This means that packets are 5871 * generally sent as soon as possible and no unnecessary delays are 5872 * introduced, at the cost of more packets in the network. Expects an 5873 * integer boolean flag. 5874 */ 5875 5876 static int sctp_getsockopt_nodelay(struct sock *sk, int len, 5877 char __user *optval, int __user *optlen) 5878 { 5879 int val; 5880 5881 if (len < sizeof(int)) 5882 return -EINVAL; 5883 5884 len = sizeof(int); 5885 val = (sctp_sk(sk)->nodelay == 1); 5886 if (put_user(len, optlen)) 5887 return -EFAULT; 5888 if (copy_to_user(optval, &val, len)) 5889 return -EFAULT; 5890 return 0; 5891 } 5892 5893 /* 5894 * 5895 * 7.1.1 SCTP_RTOINFO 5896 * 5897 * The protocol parameters used to initialize and bound retransmission 5898 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 5899 * and modify these parameters. 5900 * All parameters are time values, in milliseconds. A value of 0, when 5901 * modifying the parameters, indicates that the current value should not 5902 * be changed. 5903 * 5904 */ 5905 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 5906 char __user *optval, 5907 int __user *optlen) { 5908 struct sctp_rtoinfo rtoinfo; 5909 struct sctp_association *asoc; 5910 5911 if (len < sizeof (struct sctp_rtoinfo)) 5912 return -EINVAL; 5913 5914 len = sizeof(struct sctp_rtoinfo); 5915 5916 if (copy_from_user(&rtoinfo, optval, len)) 5917 return -EFAULT; 5918 5919 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 5920 5921 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 5922 return -EINVAL; 5923 5924 /* Values corresponding to the specific association. */ 5925 if (asoc) { 5926 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 5927 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 5928 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 5929 } else { 5930 /* Values corresponding to the endpoint. */ 5931 struct sctp_sock *sp = sctp_sk(sk); 5932 5933 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 5934 rtoinfo.srto_max = sp->rtoinfo.srto_max; 5935 rtoinfo.srto_min = sp->rtoinfo.srto_min; 5936 } 5937 5938 if (put_user(len, optlen)) 5939 return -EFAULT; 5940 5941 if (copy_to_user(optval, &rtoinfo, len)) 5942 return -EFAULT; 5943 5944 return 0; 5945 } 5946 5947 /* 5948 * 5949 * 7.1.2 SCTP_ASSOCINFO 5950 * 5951 * This option is used to tune the maximum retransmission attempts 5952 * of the association. 5953 * Returns an error if the new association retransmission value is 5954 * greater than the sum of the retransmission value of the peer. 5955 * See [SCTP] for more information. 5956 * 5957 */ 5958 static int sctp_getsockopt_associnfo(struct sock *sk, int len, 5959 char __user *optval, 5960 int __user *optlen) 5961 { 5962 5963 struct sctp_assocparams assocparams; 5964 struct sctp_association *asoc; 5965 struct list_head *pos; 5966 int cnt = 0; 5967 5968 if (len < sizeof (struct sctp_assocparams)) 5969 return -EINVAL; 5970 5971 len = sizeof(struct sctp_assocparams); 5972 5973 if (copy_from_user(&assocparams, optval, len)) 5974 return -EFAULT; 5975 5976 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 5977 5978 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 5979 return -EINVAL; 5980 5981 /* Values correspoinding to the specific association */ 5982 if (asoc) { 5983 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 5984 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 5985 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 5986 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life); 5987 5988 list_for_each(pos, &asoc->peer.transport_addr_list) { 5989 cnt++; 5990 } 5991 5992 assocparams.sasoc_number_peer_destinations = cnt; 5993 } else { 5994 /* Values corresponding to the endpoint */ 5995 struct sctp_sock *sp = sctp_sk(sk); 5996 5997 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 5998 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 5999 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 6000 assocparams.sasoc_cookie_life = 6001 sp->assocparams.sasoc_cookie_life; 6002 assocparams.sasoc_number_peer_destinations = 6003 sp->assocparams. 6004 sasoc_number_peer_destinations; 6005 } 6006 6007 if (put_user(len, optlen)) 6008 return -EFAULT; 6009 6010 if (copy_to_user(optval, &assocparams, len)) 6011 return -EFAULT; 6012 6013 return 0; 6014 } 6015 6016 /* 6017 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 6018 * 6019 * This socket option is a boolean flag which turns on or off mapped V4 6020 * addresses. If this option is turned on and the socket is type 6021 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 6022 * If this option is turned off, then no mapping will be done of V4 6023 * addresses and a user will receive both PF_INET6 and PF_INET type 6024 * addresses on the socket. 6025 */ 6026 static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 6027 char __user *optval, int __user *optlen) 6028 { 6029 int val; 6030 struct sctp_sock *sp = sctp_sk(sk); 6031 6032 if (len < sizeof(int)) 6033 return -EINVAL; 6034 6035 len = sizeof(int); 6036 val = sp->v4mapped; 6037 if (put_user(len, optlen)) 6038 return -EFAULT; 6039 if (copy_to_user(optval, &val, len)) 6040 return -EFAULT; 6041 6042 return 0; 6043 } 6044 6045 /* 6046 * 7.1.29. Set or Get the default context (SCTP_CONTEXT) 6047 * (chapter and verse is quoted at sctp_setsockopt_context()) 6048 */ 6049 static int sctp_getsockopt_context(struct sock *sk, int len, 6050 char __user *optval, int __user *optlen) 6051 { 6052 struct sctp_assoc_value params; 6053 struct sctp_sock *sp; 6054 struct sctp_association *asoc; 6055 6056 if (len < sizeof(struct sctp_assoc_value)) 6057 return -EINVAL; 6058 6059 len = sizeof(struct sctp_assoc_value); 6060 6061 if (copy_from_user(¶ms, optval, len)) 6062 return -EFAULT; 6063 6064 sp = sctp_sk(sk); 6065 6066 if (params.assoc_id != 0) { 6067 asoc = sctp_id2assoc(sk, params.assoc_id); 6068 if (!asoc) 6069 return -EINVAL; 6070 params.assoc_value = asoc->default_rcv_context; 6071 } else { 6072 params.assoc_value = sp->default_rcv_context; 6073 } 6074 6075 if (put_user(len, optlen)) 6076 return -EFAULT; 6077 if (copy_to_user(optval, ¶ms, len)) 6078 return -EFAULT; 6079 6080 return 0; 6081 } 6082 6083 /* 6084 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG) 6085 * This option will get or set the maximum size to put in any outgoing 6086 * SCTP DATA chunk. If a message is larger than this size it will be 6087 * fragmented by SCTP into the specified size. Note that the underlying 6088 * SCTP implementation may fragment into smaller sized chunks when the 6089 * PMTU of the underlying association is smaller than the value set by 6090 * the user. The default value for this option is '0' which indicates 6091 * the user is NOT limiting fragmentation and only the PMTU will effect 6092 * SCTP's choice of DATA chunk size. Note also that values set larger 6093 * than the maximum size of an IP datagram will effectively let SCTP 6094 * control fragmentation (i.e. the same as setting this option to 0). 6095 * 6096 * The following structure is used to access and modify this parameter: 6097 * 6098 * struct sctp_assoc_value { 6099 * sctp_assoc_t assoc_id; 6100 * uint32_t assoc_value; 6101 * }; 6102 * 6103 * assoc_id: This parameter is ignored for one-to-one style sockets. 6104 * For one-to-many style sockets this parameter indicates which 6105 * association the user is performing an action upon. Note that if 6106 * this field's value is zero then the endpoints default value is 6107 * changed (effecting future associations only). 6108 * assoc_value: This parameter specifies the maximum size in bytes. 6109 */ 6110 static int sctp_getsockopt_maxseg(struct sock *sk, int len, 6111 char __user *optval, int __user *optlen) 6112 { 6113 struct sctp_assoc_value params; 6114 struct sctp_association *asoc; 6115 6116 if (len == sizeof(int)) { 6117 pr_warn_ratelimited(DEPRECATED 6118 "%s (pid %d) " 6119 "Use of int in maxseg socket option.\n" 6120 "Use struct sctp_assoc_value instead\n", 6121 current->comm, task_pid_nr(current)); 6122 params.assoc_id = 0; 6123 } else if (len >= sizeof(struct sctp_assoc_value)) { 6124 len = sizeof(struct sctp_assoc_value); 6125 if (copy_from_user(¶ms, optval, len)) 6126 return -EFAULT; 6127 } else 6128 return -EINVAL; 6129 6130 asoc = sctp_id2assoc(sk, params.assoc_id); 6131 if (!asoc && params.assoc_id && sctp_style(sk, UDP)) 6132 return -EINVAL; 6133 6134 if (asoc) 6135 params.assoc_value = asoc->frag_point; 6136 else 6137 params.assoc_value = sctp_sk(sk)->user_frag; 6138 6139 if (put_user(len, optlen)) 6140 return -EFAULT; 6141 if (len == sizeof(int)) { 6142 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6143 return -EFAULT; 6144 } else { 6145 if (copy_to_user(optval, ¶ms, len)) 6146 return -EFAULT; 6147 } 6148 6149 return 0; 6150 } 6151 6152 /* 6153 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) 6154 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) 6155 */ 6156 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, 6157 char __user *optval, int __user *optlen) 6158 { 6159 int val; 6160 6161 if (len < sizeof(int)) 6162 return -EINVAL; 6163 6164 len = sizeof(int); 6165 6166 val = sctp_sk(sk)->frag_interleave; 6167 if (put_user(len, optlen)) 6168 return -EFAULT; 6169 if (copy_to_user(optval, &val, len)) 6170 return -EFAULT; 6171 6172 return 0; 6173 } 6174 6175 /* 6176 * 7.1.25. Set or Get the sctp partial delivery point 6177 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) 6178 */ 6179 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, 6180 char __user *optval, 6181 int __user *optlen) 6182 { 6183 u32 val; 6184 6185 if (len < sizeof(u32)) 6186 return -EINVAL; 6187 6188 len = sizeof(u32); 6189 6190 val = sctp_sk(sk)->pd_point; 6191 if (put_user(len, optlen)) 6192 return -EFAULT; 6193 if (copy_to_user(optval, &val, len)) 6194 return -EFAULT; 6195 6196 return 0; 6197 } 6198 6199 /* 6200 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) 6201 * (chapter and verse is quoted at sctp_setsockopt_maxburst()) 6202 */ 6203 static int sctp_getsockopt_maxburst(struct sock *sk, int len, 6204 char __user *optval, 6205 int __user *optlen) 6206 { 6207 struct sctp_assoc_value params; 6208 struct sctp_sock *sp; 6209 struct sctp_association *asoc; 6210 6211 if (len == sizeof(int)) { 6212 pr_warn_ratelimited(DEPRECATED 6213 "%s (pid %d) " 6214 "Use of int in max_burst socket option.\n" 6215 "Use struct sctp_assoc_value instead\n", 6216 current->comm, task_pid_nr(current)); 6217 params.assoc_id = 0; 6218 } else if (len >= sizeof(struct sctp_assoc_value)) { 6219 len = sizeof(struct sctp_assoc_value); 6220 if (copy_from_user(¶ms, optval, len)) 6221 return -EFAULT; 6222 } else 6223 return -EINVAL; 6224 6225 sp = sctp_sk(sk); 6226 6227 if (params.assoc_id != 0) { 6228 asoc = sctp_id2assoc(sk, params.assoc_id); 6229 if (!asoc) 6230 return -EINVAL; 6231 params.assoc_value = asoc->max_burst; 6232 } else 6233 params.assoc_value = sp->max_burst; 6234 6235 if (len == sizeof(int)) { 6236 if (copy_to_user(optval, ¶ms.assoc_value, len)) 6237 return -EFAULT; 6238 } else { 6239 if (copy_to_user(optval, ¶ms, len)) 6240 return -EFAULT; 6241 } 6242 6243 return 0; 6244 6245 } 6246 6247 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len, 6248 char __user *optval, int __user *optlen) 6249 { 6250 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6251 struct sctp_hmacalgo __user *p = (void __user *)optval; 6252 struct sctp_hmac_algo_param *hmacs; 6253 __u16 data_len = 0; 6254 u32 num_idents; 6255 int i; 6256 6257 if (!ep->auth_enable) 6258 return -EACCES; 6259 6260 hmacs = ep->auth_hmacs_list; 6261 data_len = ntohs(hmacs->param_hdr.length) - 6262 sizeof(struct sctp_paramhdr); 6263 6264 if (len < sizeof(struct sctp_hmacalgo) + data_len) 6265 return -EINVAL; 6266 6267 len = sizeof(struct sctp_hmacalgo) + data_len; 6268 num_idents = data_len / sizeof(u16); 6269 6270 if (put_user(len, optlen)) 6271 return -EFAULT; 6272 if (put_user(num_idents, &p->shmac_num_idents)) 6273 return -EFAULT; 6274 for (i = 0; i < num_idents; i++) { 6275 __u16 hmacid = ntohs(hmacs->hmac_ids[i]); 6276 6277 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16))) 6278 return -EFAULT; 6279 } 6280 return 0; 6281 } 6282 6283 static int sctp_getsockopt_active_key(struct sock *sk, int len, 6284 char __user *optval, int __user *optlen) 6285 { 6286 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6287 struct sctp_authkeyid val; 6288 struct sctp_association *asoc; 6289 6290 if (!ep->auth_enable) 6291 return -EACCES; 6292 6293 if (len < sizeof(struct sctp_authkeyid)) 6294 return -EINVAL; 6295 6296 len = sizeof(struct sctp_authkeyid); 6297 if (copy_from_user(&val, optval, len)) 6298 return -EFAULT; 6299 6300 asoc = sctp_id2assoc(sk, val.scact_assoc_id); 6301 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)) 6302 return -EINVAL; 6303 6304 if (asoc) 6305 val.scact_keynumber = asoc->active_key_id; 6306 else 6307 val.scact_keynumber = ep->active_key_id; 6308 6309 if (put_user(len, optlen)) 6310 return -EFAULT; 6311 if (copy_to_user(optval, &val, len)) 6312 return -EFAULT; 6313 6314 return 0; 6315 } 6316 6317 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len, 6318 char __user *optval, int __user *optlen) 6319 { 6320 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6321 struct sctp_authchunks __user *p = (void __user *)optval; 6322 struct sctp_authchunks val; 6323 struct sctp_association *asoc; 6324 struct sctp_chunks_param *ch; 6325 u32 num_chunks = 0; 6326 char __user *to; 6327 6328 if (!ep->auth_enable) 6329 return -EACCES; 6330 6331 if (len < sizeof(struct sctp_authchunks)) 6332 return -EINVAL; 6333 6334 if (copy_from_user(&val, optval, sizeof(val))) 6335 return -EFAULT; 6336 6337 to = p->gauth_chunks; 6338 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6339 if (!asoc) 6340 return -EINVAL; 6341 6342 ch = asoc->peer.peer_chunks; 6343 if (!ch) 6344 goto num; 6345 6346 /* See if the user provided enough room for all the data */ 6347 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6348 if (len < num_chunks) 6349 return -EINVAL; 6350 6351 if (copy_to_user(to, ch->chunks, num_chunks)) 6352 return -EFAULT; 6353 num: 6354 len = sizeof(struct sctp_authchunks) + num_chunks; 6355 if (put_user(len, optlen)) 6356 return -EFAULT; 6357 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6358 return -EFAULT; 6359 return 0; 6360 } 6361 6362 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len, 6363 char __user *optval, int __user *optlen) 6364 { 6365 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 6366 struct sctp_authchunks __user *p = (void __user *)optval; 6367 struct sctp_authchunks val; 6368 struct sctp_association *asoc; 6369 struct sctp_chunks_param *ch; 6370 u32 num_chunks = 0; 6371 char __user *to; 6372 6373 if (!ep->auth_enable) 6374 return -EACCES; 6375 6376 if (len < sizeof(struct sctp_authchunks)) 6377 return -EINVAL; 6378 6379 if (copy_from_user(&val, optval, sizeof(val))) 6380 return -EFAULT; 6381 6382 to = p->gauth_chunks; 6383 asoc = sctp_id2assoc(sk, val.gauth_assoc_id); 6384 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP)) 6385 return -EINVAL; 6386 6387 if (asoc) 6388 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks; 6389 else 6390 ch = ep->auth_chunk_list; 6391 6392 if (!ch) 6393 goto num; 6394 6395 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr); 6396 if (len < sizeof(struct sctp_authchunks) + num_chunks) 6397 return -EINVAL; 6398 6399 if (copy_to_user(to, ch->chunks, num_chunks)) 6400 return -EFAULT; 6401 num: 6402 len = sizeof(struct sctp_authchunks) + num_chunks; 6403 if (put_user(len, optlen)) 6404 return -EFAULT; 6405 if (put_user(num_chunks, &p->gauth_number_of_chunks)) 6406 return -EFAULT; 6407 6408 return 0; 6409 } 6410 6411 /* 6412 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER) 6413 * This option gets the current number of associations that are attached 6414 * to a one-to-many style socket. The option value is an uint32_t. 6415 */ 6416 static int sctp_getsockopt_assoc_number(struct sock *sk, int len, 6417 char __user *optval, int __user *optlen) 6418 { 6419 struct sctp_sock *sp = sctp_sk(sk); 6420 struct sctp_association *asoc; 6421 u32 val = 0; 6422 6423 if (sctp_style(sk, TCP)) 6424 return -EOPNOTSUPP; 6425 6426 if (len < sizeof(u32)) 6427 return -EINVAL; 6428 6429 len = sizeof(u32); 6430 6431 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6432 val++; 6433 } 6434 6435 if (put_user(len, optlen)) 6436 return -EFAULT; 6437 if (copy_to_user(optval, &val, len)) 6438 return -EFAULT; 6439 6440 return 0; 6441 } 6442 6443 /* 6444 * 8.1.23 SCTP_AUTO_ASCONF 6445 * See the corresponding setsockopt entry as description 6446 */ 6447 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len, 6448 char __user *optval, int __user *optlen) 6449 { 6450 int val = 0; 6451 6452 if (len < sizeof(int)) 6453 return -EINVAL; 6454 6455 len = sizeof(int); 6456 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk)) 6457 val = 1; 6458 if (put_user(len, optlen)) 6459 return -EFAULT; 6460 if (copy_to_user(optval, &val, len)) 6461 return -EFAULT; 6462 return 0; 6463 } 6464 6465 /* 6466 * 8.2.6. Get the Current Identifiers of Associations 6467 * (SCTP_GET_ASSOC_ID_LIST) 6468 * 6469 * This option gets the current list of SCTP association identifiers of 6470 * the SCTP associations handled by a one-to-many style socket. 6471 */ 6472 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len, 6473 char __user *optval, int __user *optlen) 6474 { 6475 struct sctp_sock *sp = sctp_sk(sk); 6476 struct sctp_association *asoc; 6477 struct sctp_assoc_ids *ids; 6478 u32 num = 0; 6479 6480 if (sctp_style(sk, TCP)) 6481 return -EOPNOTSUPP; 6482 6483 if (len < sizeof(struct sctp_assoc_ids)) 6484 return -EINVAL; 6485 6486 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6487 num++; 6488 } 6489 6490 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num) 6491 return -EINVAL; 6492 6493 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num; 6494 6495 ids = kmalloc(len, GFP_USER | __GFP_NOWARN); 6496 if (unlikely(!ids)) 6497 return -ENOMEM; 6498 6499 ids->gaids_number_of_ids = num; 6500 num = 0; 6501 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) { 6502 ids->gaids_assoc_id[num++] = asoc->assoc_id; 6503 } 6504 6505 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) { 6506 kfree(ids); 6507 return -EFAULT; 6508 } 6509 6510 kfree(ids); 6511 return 0; 6512 } 6513 6514 /* 6515 * SCTP_PEER_ADDR_THLDS 6516 * 6517 * This option allows us to fetch the partially failed threshold for one or all 6518 * transports in an association. See Section 6.1 of: 6519 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt 6520 */ 6521 static int sctp_getsockopt_paddr_thresholds(struct sock *sk, 6522 char __user *optval, 6523 int len, 6524 int __user *optlen) 6525 { 6526 struct sctp_paddrthlds val; 6527 struct sctp_transport *trans; 6528 struct sctp_association *asoc; 6529 6530 if (len < sizeof(struct sctp_paddrthlds)) 6531 return -EINVAL; 6532 len = sizeof(struct sctp_paddrthlds); 6533 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len)) 6534 return -EFAULT; 6535 6536 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) { 6537 asoc = sctp_id2assoc(sk, val.spt_assoc_id); 6538 if (!asoc) 6539 return -ENOENT; 6540 6541 val.spt_pathpfthld = asoc->pf_retrans; 6542 val.spt_pathmaxrxt = asoc->pathmaxrxt; 6543 } else { 6544 trans = sctp_addr_id2transport(sk, &val.spt_address, 6545 val.spt_assoc_id); 6546 if (!trans) 6547 return -ENOENT; 6548 6549 val.spt_pathmaxrxt = trans->pathmaxrxt; 6550 val.spt_pathpfthld = trans->pf_retrans; 6551 } 6552 6553 if (put_user(len, optlen) || copy_to_user(optval, &val, len)) 6554 return -EFAULT; 6555 6556 return 0; 6557 } 6558 6559 /* 6560 * SCTP_GET_ASSOC_STATS 6561 * 6562 * This option retrieves local per endpoint statistics. It is modeled 6563 * after OpenSolaris' implementation 6564 */ 6565 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, 6566 char __user *optval, 6567 int __user *optlen) 6568 { 6569 struct sctp_assoc_stats sas; 6570 struct sctp_association *asoc = NULL; 6571 6572 /* User must provide at least the assoc id */ 6573 if (len < sizeof(sctp_assoc_t)) 6574 return -EINVAL; 6575 6576 /* Allow the struct to grow and fill in as much as possible */ 6577 len = min_t(size_t, len, sizeof(sas)); 6578 6579 if (copy_from_user(&sas, optval, len)) 6580 return -EFAULT; 6581 6582 asoc = sctp_id2assoc(sk, sas.sas_assoc_id); 6583 if (!asoc) 6584 return -EINVAL; 6585 6586 sas.sas_rtxchunks = asoc->stats.rtxchunks; 6587 sas.sas_gapcnt = asoc->stats.gapcnt; 6588 sas.sas_outofseqtsns = asoc->stats.outofseqtsns; 6589 sas.sas_osacks = asoc->stats.osacks; 6590 sas.sas_isacks = asoc->stats.isacks; 6591 sas.sas_octrlchunks = asoc->stats.octrlchunks; 6592 sas.sas_ictrlchunks = asoc->stats.ictrlchunks; 6593 sas.sas_oodchunks = asoc->stats.oodchunks; 6594 sas.sas_iodchunks = asoc->stats.iodchunks; 6595 sas.sas_ouodchunks = asoc->stats.ouodchunks; 6596 sas.sas_iuodchunks = asoc->stats.iuodchunks; 6597 sas.sas_idupchunks = asoc->stats.idupchunks; 6598 sas.sas_opackets = asoc->stats.opackets; 6599 sas.sas_ipackets = asoc->stats.ipackets; 6600 6601 /* New high max rto observed, will return 0 if not a single 6602 * RTO update took place. obs_rto_ipaddr will be bogus 6603 * in such a case 6604 */ 6605 sas.sas_maxrto = asoc->stats.max_obs_rto; 6606 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, 6607 sizeof(struct sockaddr_storage)); 6608 6609 /* Mark beginning of a new observation period */ 6610 asoc->stats.max_obs_rto = asoc->rto_min; 6611 6612 if (put_user(len, optlen)) 6613 return -EFAULT; 6614 6615 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id); 6616 6617 if (copy_to_user(optval, &sas, len)) 6618 return -EFAULT; 6619 6620 return 0; 6621 } 6622 6623 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len, 6624 char __user *optval, 6625 int __user *optlen) 6626 { 6627 int val = 0; 6628 6629 if (len < sizeof(int)) 6630 return -EINVAL; 6631 6632 len = sizeof(int); 6633 if (sctp_sk(sk)->recvrcvinfo) 6634 val = 1; 6635 if (put_user(len, optlen)) 6636 return -EFAULT; 6637 if (copy_to_user(optval, &val, len)) 6638 return -EFAULT; 6639 6640 return 0; 6641 } 6642 6643 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len, 6644 char __user *optval, 6645 int __user *optlen) 6646 { 6647 int val = 0; 6648 6649 if (len < sizeof(int)) 6650 return -EINVAL; 6651 6652 len = sizeof(int); 6653 if (sctp_sk(sk)->recvnxtinfo) 6654 val = 1; 6655 if (put_user(len, optlen)) 6656 return -EFAULT; 6657 if (copy_to_user(optval, &val, len)) 6658 return -EFAULT; 6659 6660 return 0; 6661 } 6662 6663 static int sctp_getsockopt_pr_supported(struct sock *sk, int len, 6664 char __user *optval, 6665 int __user *optlen) 6666 { 6667 struct sctp_assoc_value params; 6668 struct sctp_association *asoc; 6669 int retval = -EFAULT; 6670 6671 if (len < sizeof(params)) { 6672 retval = -EINVAL; 6673 goto out; 6674 } 6675 6676 len = sizeof(params); 6677 if (copy_from_user(¶ms, optval, len)) 6678 goto out; 6679 6680 asoc = sctp_id2assoc(sk, params.assoc_id); 6681 if (asoc) { 6682 params.assoc_value = asoc->prsctp_enable; 6683 } else if (!params.assoc_id) { 6684 struct sctp_sock *sp = sctp_sk(sk); 6685 6686 params.assoc_value = sp->ep->prsctp_enable; 6687 } else { 6688 retval = -EINVAL; 6689 goto out; 6690 } 6691 6692 if (put_user(len, optlen)) 6693 goto out; 6694 6695 if (copy_to_user(optval, ¶ms, len)) 6696 goto out; 6697 6698 retval = 0; 6699 6700 out: 6701 return retval; 6702 } 6703 6704 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len, 6705 char __user *optval, 6706 int __user *optlen) 6707 { 6708 struct sctp_default_prinfo info; 6709 struct sctp_association *asoc; 6710 int retval = -EFAULT; 6711 6712 if (len < sizeof(info)) { 6713 retval = -EINVAL; 6714 goto out; 6715 } 6716 6717 len = sizeof(info); 6718 if (copy_from_user(&info, optval, len)) 6719 goto out; 6720 6721 asoc = sctp_id2assoc(sk, info.pr_assoc_id); 6722 if (asoc) { 6723 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags); 6724 info.pr_value = asoc->default_timetolive; 6725 } else if (!info.pr_assoc_id) { 6726 struct sctp_sock *sp = sctp_sk(sk); 6727 6728 info.pr_policy = SCTP_PR_POLICY(sp->default_flags); 6729 info.pr_value = sp->default_timetolive; 6730 } else { 6731 retval = -EINVAL; 6732 goto out; 6733 } 6734 6735 if (put_user(len, optlen)) 6736 goto out; 6737 6738 if (copy_to_user(optval, &info, len)) 6739 goto out; 6740 6741 retval = 0; 6742 6743 out: 6744 return retval; 6745 } 6746 6747 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len, 6748 char __user *optval, 6749 int __user *optlen) 6750 { 6751 struct sctp_prstatus params; 6752 struct sctp_association *asoc; 6753 int policy; 6754 int retval = -EINVAL; 6755 6756 if (len < sizeof(params)) 6757 goto out; 6758 6759 len = sizeof(params); 6760 if (copy_from_user(¶ms, optval, len)) { 6761 retval = -EFAULT; 6762 goto out; 6763 } 6764 6765 policy = params.sprstat_policy; 6766 if (policy & ~SCTP_PR_SCTP_MASK) 6767 goto out; 6768 6769 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 6770 if (!asoc) 6771 goto out; 6772 6773 if (policy == SCTP_PR_SCTP_NONE) { 6774 params.sprstat_abandoned_unsent = 0; 6775 params.sprstat_abandoned_sent = 0; 6776 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 6777 params.sprstat_abandoned_unsent += 6778 asoc->abandoned_unsent[policy]; 6779 params.sprstat_abandoned_sent += 6780 asoc->abandoned_sent[policy]; 6781 } 6782 } else { 6783 params.sprstat_abandoned_unsent = 6784 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 6785 params.sprstat_abandoned_sent = 6786 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)]; 6787 } 6788 6789 if (put_user(len, optlen)) { 6790 retval = -EFAULT; 6791 goto out; 6792 } 6793 6794 if (copy_to_user(optval, ¶ms, len)) { 6795 retval = -EFAULT; 6796 goto out; 6797 } 6798 6799 retval = 0; 6800 6801 out: 6802 return retval; 6803 } 6804 6805 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len, 6806 char __user *optval, 6807 int __user *optlen) 6808 { 6809 struct sctp_stream_out_ext *streamoute; 6810 struct sctp_association *asoc; 6811 struct sctp_prstatus params; 6812 int retval = -EINVAL; 6813 int policy; 6814 6815 if (len < sizeof(params)) 6816 goto out; 6817 6818 len = sizeof(params); 6819 if (copy_from_user(¶ms, optval, len)) { 6820 retval = -EFAULT; 6821 goto out; 6822 } 6823 6824 policy = params.sprstat_policy; 6825 if (policy & ~SCTP_PR_SCTP_MASK) 6826 goto out; 6827 6828 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id); 6829 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt) 6830 goto out; 6831 6832 streamoute = asoc->stream.out[params.sprstat_sid].ext; 6833 if (!streamoute) { 6834 /* Not allocated yet, means all stats are 0 */ 6835 params.sprstat_abandoned_unsent = 0; 6836 params.sprstat_abandoned_sent = 0; 6837 retval = 0; 6838 goto out; 6839 } 6840 6841 if (policy == SCTP_PR_SCTP_NONE) { 6842 params.sprstat_abandoned_unsent = 0; 6843 params.sprstat_abandoned_sent = 0; 6844 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) { 6845 params.sprstat_abandoned_unsent += 6846 streamoute->abandoned_unsent[policy]; 6847 params.sprstat_abandoned_sent += 6848 streamoute->abandoned_sent[policy]; 6849 } 6850 } else { 6851 params.sprstat_abandoned_unsent = 6852 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)]; 6853 params.sprstat_abandoned_sent = 6854 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)]; 6855 } 6856 6857 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) { 6858 retval = -EFAULT; 6859 goto out; 6860 } 6861 6862 retval = 0; 6863 6864 out: 6865 return retval; 6866 } 6867 6868 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len, 6869 char __user *optval, 6870 int __user *optlen) 6871 { 6872 struct sctp_assoc_value params; 6873 struct sctp_association *asoc; 6874 int retval = -EFAULT; 6875 6876 if (len < sizeof(params)) { 6877 retval = -EINVAL; 6878 goto out; 6879 } 6880 6881 len = sizeof(params); 6882 if (copy_from_user(¶ms, optval, len)) 6883 goto out; 6884 6885 asoc = sctp_id2assoc(sk, params.assoc_id); 6886 if (asoc) { 6887 params.assoc_value = asoc->reconf_enable; 6888 } else if (!params.assoc_id) { 6889 struct sctp_sock *sp = sctp_sk(sk); 6890 6891 params.assoc_value = sp->ep->reconf_enable; 6892 } else { 6893 retval = -EINVAL; 6894 goto out; 6895 } 6896 6897 if (put_user(len, optlen)) 6898 goto out; 6899 6900 if (copy_to_user(optval, ¶ms, len)) 6901 goto out; 6902 6903 retval = 0; 6904 6905 out: 6906 return retval; 6907 } 6908 6909 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len, 6910 char __user *optval, 6911 int __user *optlen) 6912 { 6913 struct sctp_assoc_value params; 6914 struct sctp_association *asoc; 6915 int retval = -EFAULT; 6916 6917 if (len < sizeof(params)) { 6918 retval = -EINVAL; 6919 goto out; 6920 } 6921 6922 len = sizeof(params); 6923 if (copy_from_user(¶ms, optval, len)) 6924 goto out; 6925 6926 asoc = sctp_id2assoc(sk, params.assoc_id); 6927 if (asoc) { 6928 params.assoc_value = asoc->strreset_enable; 6929 } else if (!params.assoc_id) { 6930 struct sctp_sock *sp = sctp_sk(sk); 6931 6932 params.assoc_value = sp->ep->strreset_enable; 6933 } else { 6934 retval = -EINVAL; 6935 goto out; 6936 } 6937 6938 if (put_user(len, optlen)) 6939 goto out; 6940 6941 if (copy_to_user(optval, ¶ms, len)) 6942 goto out; 6943 6944 retval = 0; 6945 6946 out: 6947 return retval; 6948 } 6949 6950 static int sctp_getsockopt_scheduler(struct sock *sk, int len, 6951 char __user *optval, 6952 int __user *optlen) 6953 { 6954 struct sctp_assoc_value params; 6955 struct sctp_association *asoc; 6956 int retval = -EFAULT; 6957 6958 if (len < sizeof(params)) { 6959 retval = -EINVAL; 6960 goto out; 6961 } 6962 6963 len = sizeof(params); 6964 if (copy_from_user(¶ms, optval, len)) 6965 goto out; 6966 6967 asoc = sctp_id2assoc(sk, params.assoc_id); 6968 if (!asoc) { 6969 retval = -EINVAL; 6970 goto out; 6971 } 6972 6973 params.assoc_value = sctp_sched_get_sched(asoc); 6974 6975 if (put_user(len, optlen)) 6976 goto out; 6977 6978 if (copy_to_user(optval, ¶ms, len)) 6979 goto out; 6980 6981 retval = 0; 6982 6983 out: 6984 return retval; 6985 } 6986 6987 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len, 6988 char __user *optval, 6989 int __user *optlen) 6990 { 6991 struct sctp_stream_value params; 6992 struct sctp_association *asoc; 6993 int retval = -EFAULT; 6994 6995 if (len < sizeof(params)) { 6996 retval = -EINVAL; 6997 goto out; 6998 } 6999 7000 len = sizeof(params); 7001 if (copy_from_user(¶ms, optval, len)) 7002 goto out; 7003 7004 asoc = sctp_id2assoc(sk, params.assoc_id); 7005 if (!asoc) { 7006 retval = -EINVAL; 7007 goto out; 7008 } 7009 7010 retval = sctp_sched_get_value(asoc, params.stream_id, 7011 ¶ms.stream_value); 7012 if (retval) 7013 goto out; 7014 7015 if (put_user(len, optlen)) { 7016 retval = -EFAULT; 7017 goto out; 7018 } 7019 7020 if (copy_to_user(optval, ¶ms, len)) { 7021 retval = -EFAULT; 7022 goto out; 7023 } 7024 7025 out: 7026 return retval; 7027 } 7028 7029 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len, 7030 char __user *optval, 7031 int __user *optlen) 7032 { 7033 struct sctp_assoc_value params; 7034 struct sctp_association *asoc; 7035 int retval = -EFAULT; 7036 7037 if (len < sizeof(params)) { 7038 retval = -EINVAL; 7039 goto out; 7040 } 7041 7042 len = sizeof(params); 7043 if (copy_from_user(¶ms, optval, len)) 7044 goto out; 7045 7046 asoc = sctp_id2assoc(sk, params.assoc_id); 7047 if (asoc) { 7048 params.assoc_value = asoc->intl_enable; 7049 } else if (!params.assoc_id) { 7050 struct sctp_sock *sp = sctp_sk(sk); 7051 7052 params.assoc_value = sp->strm_interleave; 7053 } else { 7054 retval = -EINVAL; 7055 goto out; 7056 } 7057 7058 if (put_user(len, optlen)) 7059 goto out; 7060 7061 if (copy_to_user(optval, ¶ms, len)) 7062 goto out; 7063 7064 retval = 0; 7065 7066 out: 7067 return retval; 7068 } 7069 7070 static int sctp_getsockopt(struct sock *sk, int level, int optname, 7071 char __user *optval, int __user *optlen) 7072 { 7073 int retval = 0; 7074 int len; 7075 7076 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname); 7077 7078 /* I can hardly begin to describe how wrong this is. This is 7079 * so broken as to be worse than useless. The API draft 7080 * REALLY is NOT helpful here... I am not convinced that the 7081 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 7082 * are at all well-founded. 7083 */ 7084 if (level != SOL_SCTP) { 7085 struct sctp_af *af = sctp_sk(sk)->pf->af; 7086 7087 retval = af->getsockopt(sk, level, optname, optval, optlen); 7088 return retval; 7089 } 7090 7091 if (get_user(len, optlen)) 7092 return -EFAULT; 7093 7094 if (len < 0) 7095 return -EINVAL; 7096 7097 lock_sock(sk); 7098 7099 switch (optname) { 7100 case SCTP_STATUS: 7101 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 7102 break; 7103 case SCTP_DISABLE_FRAGMENTS: 7104 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 7105 optlen); 7106 break; 7107 case SCTP_EVENTS: 7108 retval = sctp_getsockopt_events(sk, len, optval, optlen); 7109 break; 7110 case SCTP_AUTOCLOSE: 7111 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 7112 break; 7113 case SCTP_SOCKOPT_PEELOFF: 7114 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 7115 break; 7116 case SCTP_SOCKOPT_PEELOFF_FLAGS: 7117 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen); 7118 break; 7119 case SCTP_PEER_ADDR_PARAMS: 7120 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 7121 optlen); 7122 break; 7123 case SCTP_DELAYED_SACK: 7124 retval = sctp_getsockopt_delayed_ack(sk, len, optval, 7125 optlen); 7126 break; 7127 case SCTP_INITMSG: 7128 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 7129 break; 7130 case SCTP_GET_PEER_ADDRS: 7131 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 7132 optlen); 7133 break; 7134 case SCTP_GET_LOCAL_ADDRS: 7135 retval = sctp_getsockopt_local_addrs(sk, len, optval, 7136 optlen); 7137 break; 7138 case SCTP_SOCKOPT_CONNECTX3: 7139 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen); 7140 break; 7141 case SCTP_DEFAULT_SEND_PARAM: 7142 retval = sctp_getsockopt_default_send_param(sk, len, 7143 optval, optlen); 7144 break; 7145 case SCTP_DEFAULT_SNDINFO: 7146 retval = sctp_getsockopt_default_sndinfo(sk, len, 7147 optval, optlen); 7148 break; 7149 case SCTP_PRIMARY_ADDR: 7150 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 7151 break; 7152 case SCTP_NODELAY: 7153 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 7154 break; 7155 case SCTP_RTOINFO: 7156 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 7157 break; 7158 case SCTP_ASSOCINFO: 7159 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 7160 break; 7161 case SCTP_I_WANT_MAPPED_V4_ADDR: 7162 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 7163 break; 7164 case SCTP_MAXSEG: 7165 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 7166 break; 7167 case SCTP_GET_PEER_ADDR_INFO: 7168 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 7169 optlen); 7170 break; 7171 case SCTP_ADAPTATION_LAYER: 7172 retval = sctp_getsockopt_adaptation_layer(sk, len, optval, 7173 optlen); 7174 break; 7175 case SCTP_CONTEXT: 7176 retval = sctp_getsockopt_context(sk, len, optval, optlen); 7177 break; 7178 case SCTP_FRAGMENT_INTERLEAVE: 7179 retval = sctp_getsockopt_fragment_interleave(sk, len, optval, 7180 optlen); 7181 break; 7182 case SCTP_PARTIAL_DELIVERY_POINT: 7183 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, 7184 optlen); 7185 break; 7186 case SCTP_MAX_BURST: 7187 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); 7188 break; 7189 case SCTP_AUTH_KEY: 7190 case SCTP_AUTH_CHUNK: 7191 case SCTP_AUTH_DELETE_KEY: 7192 retval = -EOPNOTSUPP; 7193 break; 7194 case SCTP_HMAC_IDENT: 7195 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen); 7196 break; 7197 case SCTP_AUTH_ACTIVE_KEY: 7198 retval = sctp_getsockopt_active_key(sk, len, optval, optlen); 7199 break; 7200 case SCTP_PEER_AUTH_CHUNKS: 7201 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval, 7202 optlen); 7203 break; 7204 case SCTP_LOCAL_AUTH_CHUNKS: 7205 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval, 7206 optlen); 7207 break; 7208 case SCTP_GET_ASSOC_NUMBER: 7209 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen); 7210 break; 7211 case SCTP_GET_ASSOC_ID_LIST: 7212 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen); 7213 break; 7214 case SCTP_AUTO_ASCONF: 7215 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen); 7216 break; 7217 case SCTP_PEER_ADDR_THLDS: 7218 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen); 7219 break; 7220 case SCTP_GET_ASSOC_STATS: 7221 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen); 7222 break; 7223 case SCTP_RECVRCVINFO: 7224 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen); 7225 break; 7226 case SCTP_RECVNXTINFO: 7227 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen); 7228 break; 7229 case SCTP_PR_SUPPORTED: 7230 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen); 7231 break; 7232 case SCTP_DEFAULT_PRINFO: 7233 retval = sctp_getsockopt_default_prinfo(sk, len, optval, 7234 optlen); 7235 break; 7236 case SCTP_PR_ASSOC_STATUS: 7237 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval, 7238 optlen); 7239 break; 7240 case SCTP_PR_STREAM_STATUS: 7241 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval, 7242 optlen); 7243 break; 7244 case SCTP_RECONFIG_SUPPORTED: 7245 retval = sctp_getsockopt_reconfig_supported(sk, len, optval, 7246 optlen); 7247 break; 7248 case SCTP_ENABLE_STREAM_RESET: 7249 retval = sctp_getsockopt_enable_strreset(sk, len, optval, 7250 optlen); 7251 break; 7252 case SCTP_STREAM_SCHEDULER: 7253 retval = sctp_getsockopt_scheduler(sk, len, optval, 7254 optlen); 7255 break; 7256 case SCTP_STREAM_SCHEDULER_VALUE: 7257 retval = sctp_getsockopt_scheduler_value(sk, len, optval, 7258 optlen); 7259 break; 7260 case SCTP_INTERLEAVING_SUPPORTED: 7261 retval = sctp_getsockopt_interleaving_supported(sk, len, optval, 7262 optlen); 7263 break; 7264 default: 7265 retval = -ENOPROTOOPT; 7266 break; 7267 } 7268 7269 release_sock(sk); 7270 return retval; 7271 } 7272 7273 static int sctp_hash(struct sock *sk) 7274 { 7275 /* STUB */ 7276 return 0; 7277 } 7278 7279 static void sctp_unhash(struct sock *sk) 7280 { 7281 /* STUB */ 7282 } 7283 7284 /* Check if port is acceptable. Possibly find first available port. 7285 * 7286 * The port hash table (contained in the 'global' SCTP protocol storage 7287 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 7288 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 7289 * list (the list number is the port number hashed out, so as you 7290 * would expect from a hash function, all the ports in a given list have 7291 * such a number that hashes out to the same list number; you were 7292 * expecting that, right?); so each list has a set of ports, with a 7293 * link to the socket (struct sock) that uses it, the port number and 7294 * a fastreuse flag (FIXME: NPI ipg). 7295 */ 7296 static struct sctp_bind_bucket *sctp_bucket_create( 7297 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum); 7298 7299 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 7300 { 7301 struct sctp_bind_hashbucket *head; /* hash list */ 7302 struct sctp_bind_bucket *pp; 7303 unsigned short snum; 7304 int ret; 7305 7306 snum = ntohs(addr->v4.sin_port); 7307 7308 pr_debug("%s: begins, snum:%d\n", __func__, snum); 7309 7310 local_bh_disable(); 7311 7312 if (snum == 0) { 7313 /* Search for an available port. */ 7314 int low, high, remaining, index; 7315 unsigned int rover; 7316 struct net *net = sock_net(sk); 7317 7318 inet_get_local_port_range(net, &low, &high); 7319 remaining = (high - low) + 1; 7320 rover = prandom_u32() % remaining + low; 7321 7322 do { 7323 rover++; 7324 if ((rover < low) || (rover > high)) 7325 rover = low; 7326 if (inet_is_local_reserved_port(net, rover)) 7327 continue; 7328 index = sctp_phashfn(sock_net(sk), rover); 7329 head = &sctp_port_hashtable[index]; 7330 spin_lock(&head->lock); 7331 sctp_for_each_hentry(pp, &head->chain) 7332 if ((pp->port == rover) && 7333 net_eq(sock_net(sk), pp->net)) 7334 goto next; 7335 break; 7336 next: 7337 spin_unlock(&head->lock); 7338 } while (--remaining > 0); 7339 7340 /* Exhausted local port range during search? */ 7341 ret = 1; 7342 if (remaining <= 0) 7343 goto fail; 7344 7345 /* OK, here is the one we will use. HEAD (the port 7346 * hash table list entry) is non-NULL and we hold it's 7347 * mutex. 7348 */ 7349 snum = rover; 7350 } else { 7351 /* We are given an specific port number; we verify 7352 * that it is not being used. If it is used, we will 7353 * exahust the search in the hash list corresponding 7354 * to the port number (snum) - we detect that with the 7355 * port iterator, pp being NULL. 7356 */ 7357 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)]; 7358 spin_lock(&head->lock); 7359 sctp_for_each_hentry(pp, &head->chain) { 7360 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk))) 7361 goto pp_found; 7362 } 7363 } 7364 pp = NULL; 7365 goto pp_not_found; 7366 pp_found: 7367 if (!hlist_empty(&pp->owner)) { 7368 /* We had a port hash table hit - there is an 7369 * available port (pp != NULL) and it is being 7370 * used by other socket (pp->owner not empty); that other 7371 * socket is going to be sk2. 7372 */ 7373 int reuse = sk->sk_reuse; 7374 struct sock *sk2; 7375 7376 pr_debug("%s: found a possible match\n", __func__); 7377 7378 if (pp->fastreuse && sk->sk_reuse && 7379 sk->sk_state != SCTP_SS_LISTENING) 7380 goto success; 7381 7382 /* Run through the list of sockets bound to the port 7383 * (pp->port) [via the pointers bind_next and 7384 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 7385 * we get the endpoint they describe and run through 7386 * the endpoint's list of IP (v4 or v6) addresses, 7387 * comparing each of the addresses with the address of 7388 * the socket sk. If we find a match, then that means 7389 * that this port/socket (sk) combination are already 7390 * in an endpoint. 7391 */ 7392 sk_for_each_bound(sk2, &pp->owner) { 7393 struct sctp_endpoint *ep2; 7394 ep2 = sctp_sk(sk2)->ep; 7395 7396 if (sk == sk2 || 7397 (reuse && sk2->sk_reuse && 7398 sk2->sk_state != SCTP_SS_LISTENING)) 7399 continue; 7400 7401 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr, 7402 sctp_sk(sk2), sctp_sk(sk))) { 7403 ret = (long)sk2; 7404 goto fail_unlock; 7405 } 7406 } 7407 7408 pr_debug("%s: found a match\n", __func__); 7409 } 7410 pp_not_found: 7411 /* If there was a hash table miss, create a new port. */ 7412 ret = 1; 7413 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum))) 7414 goto fail_unlock; 7415 7416 /* In either case (hit or miss), make sure fastreuse is 1 only 7417 * if sk->sk_reuse is too (that is, if the caller requested 7418 * SO_REUSEADDR on this socket -sk-). 7419 */ 7420 if (hlist_empty(&pp->owner)) { 7421 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING) 7422 pp->fastreuse = 1; 7423 else 7424 pp->fastreuse = 0; 7425 } else if (pp->fastreuse && 7426 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING)) 7427 pp->fastreuse = 0; 7428 7429 /* We are set, so fill up all the data in the hash table 7430 * entry, tie the socket list information with the rest of the 7431 * sockets FIXME: Blurry, NPI (ipg). 7432 */ 7433 success: 7434 if (!sctp_sk(sk)->bind_hash) { 7435 inet_sk(sk)->inet_num = snum; 7436 sk_add_bind_node(sk, &pp->owner); 7437 sctp_sk(sk)->bind_hash = pp; 7438 } 7439 ret = 0; 7440 7441 fail_unlock: 7442 spin_unlock(&head->lock); 7443 7444 fail: 7445 local_bh_enable(); 7446 return ret; 7447 } 7448 7449 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 7450 * port is requested. 7451 */ 7452 static int sctp_get_port(struct sock *sk, unsigned short snum) 7453 { 7454 union sctp_addr addr; 7455 struct sctp_af *af = sctp_sk(sk)->pf->af; 7456 7457 /* Set up a dummy address struct from the sk. */ 7458 af->from_sk(&addr, sk); 7459 addr.v4.sin_port = htons(snum); 7460 7461 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 7462 return !!sctp_get_port_local(sk, &addr); 7463 } 7464 7465 /* 7466 * Move a socket to LISTENING state. 7467 */ 7468 static int sctp_listen_start(struct sock *sk, int backlog) 7469 { 7470 struct sctp_sock *sp = sctp_sk(sk); 7471 struct sctp_endpoint *ep = sp->ep; 7472 struct crypto_shash *tfm = NULL; 7473 char alg[32]; 7474 7475 /* Allocate HMAC for generating cookie. */ 7476 if (!sp->hmac && sp->sctp_hmac_alg) { 7477 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg); 7478 tfm = crypto_alloc_shash(alg, 0, 0); 7479 if (IS_ERR(tfm)) { 7480 net_info_ratelimited("failed to load transform for %s: %ld\n", 7481 sp->sctp_hmac_alg, PTR_ERR(tfm)); 7482 return -ENOSYS; 7483 } 7484 sctp_sk(sk)->hmac = tfm; 7485 } 7486 7487 /* 7488 * If a bind() or sctp_bindx() is not called prior to a listen() 7489 * call that allows new associations to be accepted, the system 7490 * picks an ephemeral port and will choose an address set equivalent 7491 * to binding with a wildcard address. 7492 * 7493 * This is not currently spelled out in the SCTP sockets 7494 * extensions draft, but follows the practice as seen in TCP 7495 * sockets. 7496 * 7497 */ 7498 inet_sk_set_state(sk, SCTP_SS_LISTENING); 7499 if (!ep->base.bind_addr.port) { 7500 if (sctp_autobind(sk)) 7501 return -EAGAIN; 7502 } else { 7503 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) { 7504 inet_sk_set_state(sk, SCTP_SS_CLOSED); 7505 return -EADDRINUSE; 7506 } 7507 } 7508 7509 sk->sk_max_ack_backlog = backlog; 7510 sctp_hash_endpoint(ep); 7511 return 0; 7512 } 7513 7514 /* 7515 * 4.1.3 / 5.1.3 listen() 7516 * 7517 * By default, new associations are not accepted for UDP style sockets. 7518 * An application uses listen() to mark a socket as being able to 7519 * accept new associations. 7520 * 7521 * On TCP style sockets, applications use listen() to ready the SCTP 7522 * endpoint for accepting inbound associations. 7523 * 7524 * On both types of endpoints a backlog of '0' disables listening. 7525 * 7526 * Move a socket to LISTENING state. 7527 */ 7528 int sctp_inet_listen(struct socket *sock, int backlog) 7529 { 7530 struct sock *sk = sock->sk; 7531 struct sctp_endpoint *ep = sctp_sk(sk)->ep; 7532 int err = -EINVAL; 7533 7534 if (unlikely(backlog < 0)) 7535 return err; 7536 7537 lock_sock(sk); 7538 7539 /* Peeled-off sockets are not allowed to listen(). */ 7540 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)) 7541 goto out; 7542 7543 if (sock->state != SS_UNCONNECTED) 7544 goto out; 7545 7546 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED)) 7547 goto out; 7548 7549 /* If backlog is zero, disable listening. */ 7550 if (!backlog) { 7551 if (sctp_sstate(sk, CLOSED)) 7552 goto out; 7553 7554 err = 0; 7555 sctp_unhash_endpoint(ep); 7556 sk->sk_state = SCTP_SS_CLOSED; 7557 if (sk->sk_reuse) 7558 sctp_sk(sk)->bind_hash->fastreuse = 1; 7559 goto out; 7560 } 7561 7562 /* If we are already listening, just update the backlog */ 7563 if (sctp_sstate(sk, LISTENING)) 7564 sk->sk_max_ack_backlog = backlog; 7565 else { 7566 err = sctp_listen_start(sk, backlog); 7567 if (err) 7568 goto out; 7569 } 7570 7571 err = 0; 7572 out: 7573 release_sock(sk); 7574 return err; 7575 } 7576 7577 /* 7578 * This function is done by modeling the current datagram_poll() and the 7579 * tcp_poll(). Note that, based on these implementations, we don't 7580 * lock the socket in this function, even though it seems that, 7581 * ideally, locking or some other mechanisms can be used to ensure 7582 * the integrity of the counters (sndbuf and wmem_alloc) used 7583 * in this place. We assume that we don't need locks either until proven 7584 * otherwise. 7585 * 7586 * Another thing to note is that we include the Async I/O support 7587 * here, again, by modeling the current TCP/UDP code. We don't have 7588 * a good way to test with it yet. 7589 */ 7590 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 7591 { 7592 struct sock *sk = sock->sk; 7593 struct sctp_sock *sp = sctp_sk(sk); 7594 __poll_t mask; 7595 7596 poll_wait(file, sk_sleep(sk), wait); 7597 7598 sock_rps_record_flow(sk); 7599 7600 /* A TCP-style listening socket becomes readable when the accept queue 7601 * is not empty. 7602 */ 7603 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 7604 return (!list_empty(&sp->ep->asocs)) ? 7605 (EPOLLIN | EPOLLRDNORM) : 0; 7606 7607 mask = 0; 7608 7609 /* Is there any exceptional events? */ 7610 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 7611 mask |= EPOLLERR | 7612 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0); 7613 if (sk->sk_shutdown & RCV_SHUTDOWN) 7614 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM; 7615 if (sk->sk_shutdown == SHUTDOWN_MASK) 7616 mask |= EPOLLHUP; 7617 7618 /* Is it readable? Reconsider this code with TCP-style support. */ 7619 if (!skb_queue_empty(&sk->sk_receive_queue)) 7620 mask |= EPOLLIN | EPOLLRDNORM; 7621 7622 /* The association is either gone or not ready. */ 7623 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 7624 return mask; 7625 7626 /* Is it writable? */ 7627 if (sctp_writeable(sk)) { 7628 mask |= EPOLLOUT | EPOLLWRNORM; 7629 } else { 7630 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 7631 /* 7632 * Since the socket is not locked, the buffer 7633 * might be made available after the writeable check and 7634 * before the bit is set. This could cause a lost I/O 7635 * signal. tcp_poll() has a race breaker for this race 7636 * condition. Based on their implementation, we put 7637 * in the following code to cover it as well. 7638 */ 7639 if (sctp_writeable(sk)) 7640 mask |= EPOLLOUT | EPOLLWRNORM; 7641 } 7642 return mask; 7643 } 7644 7645 /******************************************************************** 7646 * 2nd Level Abstractions 7647 ********************************************************************/ 7648 7649 static struct sctp_bind_bucket *sctp_bucket_create( 7650 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum) 7651 { 7652 struct sctp_bind_bucket *pp; 7653 7654 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); 7655 if (pp) { 7656 SCTP_DBG_OBJCNT_INC(bind_bucket); 7657 pp->port = snum; 7658 pp->fastreuse = 0; 7659 INIT_HLIST_HEAD(&pp->owner); 7660 pp->net = net; 7661 hlist_add_head(&pp->node, &head->chain); 7662 } 7663 return pp; 7664 } 7665 7666 /* Caller must hold hashbucket lock for this tb with local BH disabled */ 7667 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 7668 { 7669 if (pp && hlist_empty(&pp->owner)) { 7670 __hlist_del(&pp->node); 7671 kmem_cache_free(sctp_bucket_cachep, pp); 7672 SCTP_DBG_OBJCNT_DEC(bind_bucket); 7673 } 7674 } 7675 7676 /* Release this socket's reference to a local port. */ 7677 static inline void __sctp_put_port(struct sock *sk) 7678 { 7679 struct sctp_bind_hashbucket *head = 7680 &sctp_port_hashtable[sctp_phashfn(sock_net(sk), 7681 inet_sk(sk)->inet_num)]; 7682 struct sctp_bind_bucket *pp; 7683 7684 spin_lock(&head->lock); 7685 pp = sctp_sk(sk)->bind_hash; 7686 __sk_del_bind_node(sk); 7687 sctp_sk(sk)->bind_hash = NULL; 7688 inet_sk(sk)->inet_num = 0; 7689 sctp_bucket_destroy(pp); 7690 spin_unlock(&head->lock); 7691 } 7692 7693 void sctp_put_port(struct sock *sk) 7694 { 7695 local_bh_disable(); 7696 __sctp_put_port(sk); 7697 local_bh_enable(); 7698 } 7699 7700 /* 7701 * The system picks an ephemeral port and choose an address set equivalent 7702 * to binding with a wildcard address. 7703 * One of those addresses will be the primary address for the association. 7704 * This automatically enables the multihoming capability of SCTP. 7705 */ 7706 static int sctp_autobind(struct sock *sk) 7707 { 7708 union sctp_addr autoaddr; 7709 struct sctp_af *af; 7710 __be16 port; 7711 7712 /* Initialize a local sockaddr structure to INADDR_ANY. */ 7713 af = sctp_sk(sk)->pf->af; 7714 7715 port = htons(inet_sk(sk)->inet_num); 7716 af->inaddr_any(&autoaddr, port); 7717 7718 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 7719 } 7720 7721 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 7722 * 7723 * From RFC 2292 7724 * 4.2 The cmsghdr Structure * 7725 * 7726 * When ancillary data is sent or received, any number of ancillary data 7727 * objects can be specified by the msg_control and msg_controllen members of 7728 * the msghdr structure, because each object is preceded by 7729 * a cmsghdr structure defining the object's length (the cmsg_len member). 7730 * Historically Berkeley-derived implementations have passed only one object 7731 * at a time, but this API allows multiple objects to be 7732 * passed in a single call to sendmsg() or recvmsg(). The following example 7733 * shows two ancillary data objects in a control buffer. 7734 * 7735 * |<--------------------------- msg_controllen -------------------------->| 7736 * | | 7737 * 7738 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 7739 * 7740 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 7741 * | | | 7742 * 7743 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 7744 * 7745 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 7746 * | | | | | 7747 * 7748 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 7749 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 7750 * 7751 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 7752 * 7753 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 7754 * ^ 7755 * | 7756 * 7757 * msg_control 7758 * points here 7759 */ 7760 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs) 7761 { 7762 struct msghdr *my_msg = (struct msghdr *)msg; 7763 struct cmsghdr *cmsg; 7764 7765 for_each_cmsghdr(cmsg, my_msg) { 7766 if (!CMSG_OK(my_msg, cmsg)) 7767 return -EINVAL; 7768 7769 /* Should we parse this header or ignore? */ 7770 if (cmsg->cmsg_level != IPPROTO_SCTP) 7771 continue; 7772 7773 /* Strictly check lengths following example in SCM code. */ 7774 switch (cmsg->cmsg_type) { 7775 case SCTP_INIT: 7776 /* SCTP Socket API Extension 7777 * 5.3.1 SCTP Initiation Structure (SCTP_INIT) 7778 * 7779 * This cmsghdr structure provides information for 7780 * initializing new SCTP associations with sendmsg(). 7781 * The SCTP_INITMSG socket option uses this same data 7782 * structure. This structure is not used for 7783 * recvmsg(). 7784 * 7785 * cmsg_level cmsg_type cmsg_data[] 7786 * ------------ ------------ ---------------------- 7787 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 7788 */ 7789 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) 7790 return -EINVAL; 7791 7792 cmsgs->init = CMSG_DATA(cmsg); 7793 break; 7794 7795 case SCTP_SNDRCV: 7796 /* SCTP Socket API Extension 7797 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV) 7798 * 7799 * This cmsghdr structure specifies SCTP options for 7800 * sendmsg() and describes SCTP header information 7801 * about a received message through recvmsg(). 7802 * 7803 * cmsg_level cmsg_type cmsg_data[] 7804 * ------------ ------------ ---------------------- 7805 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 7806 */ 7807 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 7808 return -EINVAL; 7809 7810 cmsgs->srinfo = CMSG_DATA(cmsg); 7811 7812 if (cmsgs->srinfo->sinfo_flags & 7813 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 7814 SCTP_SACK_IMMEDIATELY | SCTP_PR_SCTP_MASK | 7815 SCTP_ABORT | SCTP_EOF)) 7816 return -EINVAL; 7817 break; 7818 7819 case SCTP_SNDINFO: 7820 /* SCTP Socket API Extension 7821 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO) 7822 * 7823 * This cmsghdr structure specifies SCTP options for 7824 * sendmsg(). This structure and SCTP_RCVINFO replaces 7825 * SCTP_SNDRCV which has been deprecated. 7826 * 7827 * cmsg_level cmsg_type cmsg_data[] 7828 * ------------ ------------ --------------------- 7829 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo 7830 */ 7831 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))) 7832 return -EINVAL; 7833 7834 cmsgs->sinfo = CMSG_DATA(cmsg); 7835 7836 if (cmsgs->sinfo->snd_flags & 7837 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 7838 SCTP_SACK_IMMEDIATELY | SCTP_PR_SCTP_MASK | 7839 SCTP_ABORT | SCTP_EOF)) 7840 return -EINVAL; 7841 break; 7842 default: 7843 return -EINVAL; 7844 } 7845 } 7846 7847 return 0; 7848 } 7849 7850 /* 7851 * Wait for a packet.. 7852 * Note: This function is the same function as in core/datagram.c 7853 * with a few modifications to make lksctp work. 7854 */ 7855 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p) 7856 { 7857 int error; 7858 DEFINE_WAIT(wait); 7859 7860 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 7861 7862 /* Socket errors? */ 7863 error = sock_error(sk); 7864 if (error) 7865 goto out; 7866 7867 if (!skb_queue_empty(&sk->sk_receive_queue)) 7868 goto ready; 7869 7870 /* Socket shut down? */ 7871 if (sk->sk_shutdown & RCV_SHUTDOWN) 7872 goto out; 7873 7874 /* Sequenced packets can come disconnected. If so we report the 7875 * problem. 7876 */ 7877 error = -ENOTCONN; 7878 7879 /* Is there a good reason to think that we may receive some data? */ 7880 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 7881 goto out; 7882 7883 /* Handle signals. */ 7884 if (signal_pending(current)) 7885 goto interrupted; 7886 7887 /* Let another process have a go. Since we are going to sleep 7888 * anyway. Note: This may cause odd behaviors if the message 7889 * does not fit in the user's buffer, but this seems to be the 7890 * only way to honor MSG_DONTWAIT realistically. 7891 */ 7892 release_sock(sk); 7893 *timeo_p = schedule_timeout(*timeo_p); 7894 lock_sock(sk); 7895 7896 ready: 7897 finish_wait(sk_sleep(sk), &wait); 7898 return 0; 7899 7900 interrupted: 7901 error = sock_intr_errno(*timeo_p); 7902 7903 out: 7904 finish_wait(sk_sleep(sk), &wait); 7905 *err = error; 7906 return error; 7907 } 7908 7909 /* Receive a datagram. 7910 * Note: This is pretty much the same routine as in core/datagram.c 7911 * with a few changes to make lksctp work. 7912 */ 7913 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 7914 int noblock, int *err) 7915 { 7916 int error; 7917 struct sk_buff *skb; 7918 long timeo; 7919 7920 timeo = sock_rcvtimeo(sk, noblock); 7921 7922 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo, 7923 MAX_SCHEDULE_TIMEOUT); 7924 7925 do { 7926 /* Again only user level code calls this function, 7927 * so nothing interrupt level 7928 * will suddenly eat the receive_queue. 7929 * 7930 * Look at current nfs client by the way... 7931 * However, this function was correct in any case. 8) 7932 */ 7933 if (flags & MSG_PEEK) { 7934 skb = skb_peek(&sk->sk_receive_queue); 7935 if (skb) 7936 refcount_inc(&skb->users); 7937 } else { 7938 skb = __skb_dequeue(&sk->sk_receive_queue); 7939 } 7940 7941 if (skb) 7942 return skb; 7943 7944 /* Caller is allowed not to check sk->sk_err before calling. */ 7945 error = sock_error(sk); 7946 if (error) 7947 goto no_packet; 7948 7949 if (sk->sk_shutdown & RCV_SHUTDOWN) 7950 break; 7951 7952 if (sk_can_busy_loop(sk)) { 7953 sk_busy_loop(sk, noblock); 7954 7955 if (!skb_queue_empty(&sk->sk_receive_queue)) 7956 continue; 7957 } 7958 7959 /* User doesn't want to wait. */ 7960 error = -EAGAIN; 7961 if (!timeo) 7962 goto no_packet; 7963 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 7964 7965 return NULL; 7966 7967 no_packet: 7968 *err = error; 7969 return NULL; 7970 } 7971 7972 /* If sndbuf has changed, wake up per association sndbuf waiters. */ 7973 static void __sctp_write_space(struct sctp_association *asoc) 7974 { 7975 struct sock *sk = asoc->base.sk; 7976 7977 if (sctp_wspace(asoc) <= 0) 7978 return; 7979 7980 if (waitqueue_active(&asoc->wait)) 7981 wake_up_interruptible(&asoc->wait); 7982 7983 if (sctp_writeable(sk)) { 7984 struct socket_wq *wq; 7985 7986 rcu_read_lock(); 7987 wq = rcu_dereference(sk->sk_wq); 7988 if (wq) { 7989 if (waitqueue_active(&wq->wait)) 7990 wake_up_interruptible(&wq->wait); 7991 7992 /* Note that we try to include the Async I/O support 7993 * here by modeling from the current TCP/UDP code. 7994 * We have not tested with it yet. 7995 */ 7996 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) 7997 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT); 7998 } 7999 rcu_read_unlock(); 8000 } 8001 } 8002 8003 static void sctp_wake_up_waiters(struct sock *sk, 8004 struct sctp_association *asoc) 8005 { 8006 struct sctp_association *tmp = asoc; 8007 8008 /* We do accounting for the sndbuf space per association, 8009 * so we only need to wake our own association. 8010 */ 8011 if (asoc->ep->sndbuf_policy) 8012 return __sctp_write_space(asoc); 8013 8014 /* If association goes down and is just flushing its 8015 * outq, then just normally notify others. 8016 */ 8017 if (asoc->base.dead) 8018 return sctp_write_space(sk); 8019 8020 /* Accounting for the sndbuf space is per socket, so we 8021 * need to wake up others, try to be fair and in case of 8022 * other associations, let them have a go first instead 8023 * of just doing a sctp_write_space() call. 8024 * 8025 * Note that we reach sctp_wake_up_waiters() only when 8026 * associations free up queued chunks, thus we are under 8027 * lock and the list of associations on a socket is 8028 * guaranteed not to change. 8029 */ 8030 for (tmp = list_next_entry(tmp, asocs); 1; 8031 tmp = list_next_entry(tmp, asocs)) { 8032 /* Manually skip the head element. */ 8033 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs)) 8034 continue; 8035 /* Wake up association. */ 8036 __sctp_write_space(tmp); 8037 /* We've reached the end. */ 8038 if (tmp == asoc) 8039 break; 8040 } 8041 } 8042 8043 /* Do accounting for the sndbuf space. 8044 * Decrement the used sndbuf space of the corresponding association by the 8045 * data size which was just transmitted(freed). 8046 */ 8047 static void sctp_wfree(struct sk_buff *skb) 8048 { 8049 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg; 8050 struct sctp_association *asoc = chunk->asoc; 8051 struct sock *sk = asoc->base.sk; 8052 8053 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + 8054 sizeof(struct sk_buff) + 8055 sizeof(struct sctp_chunk); 8056 8057 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc)); 8058 8059 /* 8060 * This undoes what is done via sctp_set_owner_w and sk_mem_charge 8061 */ 8062 sk->sk_wmem_queued -= skb->truesize; 8063 sk_mem_uncharge(sk, skb->truesize); 8064 8065 sock_wfree(skb); 8066 sctp_wake_up_waiters(sk, asoc); 8067 8068 sctp_association_put(asoc); 8069 } 8070 8071 /* Do accounting for the receive space on the socket. 8072 * Accounting for the association is done in ulpevent.c 8073 * We set this as a destructor for the cloned data skbs so that 8074 * accounting is done at the correct time. 8075 */ 8076 void sctp_sock_rfree(struct sk_buff *skb) 8077 { 8078 struct sock *sk = skb->sk; 8079 struct sctp_ulpevent *event = sctp_skb2event(skb); 8080 8081 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); 8082 8083 /* 8084 * Mimic the behavior of sock_rfree 8085 */ 8086 sk_mem_uncharge(sk, event->rmem_len); 8087 } 8088 8089 8090 /* Helper function to wait for space in the sndbuf. */ 8091 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 8092 size_t msg_len) 8093 { 8094 struct sock *sk = asoc->base.sk; 8095 long current_timeo = *timeo_p; 8096 DEFINE_WAIT(wait); 8097 int err = 0; 8098 8099 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, 8100 *timeo_p, msg_len); 8101 8102 /* Increment the association's refcnt. */ 8103 sctp_association_hold(asoc); 8104 8105 /* Wait on the association specific sndbuf space. */ 8106 for (;;) { 8107 prepare_to_wait_exclusive(&asoc->wait, &wait, 8108 TASK_INTERRUPTIBLE); 8109 if (asoc->base.dead) 8110 goto do_dead; 8111 if (!*timeo_p) 8112 goto do_nonblock; 8113 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING) 8114 goto do_error; 8115 if (signal_pending(current)) 8116 goto do_interrupted; 8117 if (msg_len <= sctp_wspace(asoc)) 8118 break; 8119 8120 /* Let another process have a go. Since we are going 8121 * to sleep anyway. 8122 */ 8123 release_sock(sk); 8124 current_timeo = schedule_timeout(current_timeo); 8125 lock_sock(sk); 8126 if (sk != asoc->base.sk) 8127 goto do_error; 8128 8129 *timeo_p = current_timeo; 8130 } 8131 8132 out: 8133 finish_wait(&asoc->wait, &wait); 8134 8135 /* Release the association's refcnt. */ 8136 sctp_association_put(asoc); 8137 8138 return err; 8139 8140 do_dead: 8141 err = -ESRCH; 8142 goto out; 8143 8144 do_error: 8145 err = -EPIPE; 8146 goto out; 8147 8148 do_interrupted: 8149 err = sock_intr_errno(*timeo_p); 8150 goto out; 8151 8152 do_nonblock: 8153 err = -EAGAIN; 8154 goto out; 8155 } 8156 8157 void sctp_data_ready(struct sock *sk) 8158 { 8159 struct socket_wq *wq; 8160 8161 rcu_read_lock(); 8162 wq = rcu_dereference(sk->sk_wq); 8163 if (skwq_has_sleeper(wq)) 8164 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | 8165 EPOLLRDNORM | EPOLLRDBAND); 8166 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 8167 rcu_read_unlock(); 8168 } 8169 8170 /* If socket sndbuf has changed, wake up all per association waiters. */ 8171 void sctp_write_space(struct sock *sk) 8172 { 8173 struct sctp_association *asoc; 8174 8175 /* Wake up the tasks in each wait queue. */ 8176 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) { 8177 __sctp_write_space(asoc); 8178 } 8179 } 8180 8181 /* Is there any sndbuf space available on the socket? 8182 * 8183 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 8184 * associations on the same socket. For a UDP-style socket with 8185 * multiple associations, it is possible for it to be "unwriteable" 8186 * prematurely. I assume that this is acceptable because 8187 * a premature "unwriteable" is better than an accidental "writeable" which 8188 * would cause an unwanted block under certain circumstances. For the 1-1 8189 * UDP-style sockets or TCP-style sockets, this code should work. 8190 * - Daisy 8191 */ 8192 static int sctp_writeable(struct sock *sk) 8193 { 8194 int amt = 0; 8195 8196 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk); 8197 if (amt < 0) 8198 amt = 0; 8199 return amt; 8200 } 8201 8202 /* Wait for an association to go into ESTABLISHED state. If timeout is 0, 8203 * returns immediately with EINPROGRESS. 8204 */ 8205 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 8206 { 8207 struct sock *sk = asoc->base.sk; 8208 int err = 0; 8209 long current_timeo = *timeo_p; 8210 DEFINE_WAIT(wait); 8211 8212 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); 8213 8214 /* Increment the association's refcnt. */ 8215 sctp_association_hold(asoc); 8216 8217 for (;;) { 8218 prepare_to_wait_exclusive(&asoc->wait, &wait, 8219 TASK_INTERRUPTIBLE); 8220 if (!*timeo_p) 8221 goto do_nonblock; 8222 if (sk->sk_shutdown & RCV_SHUTDOWN) 8223 break; 8224 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 8225 asoc->base.dead) 8226 goto do_error; 8227 if (signal_pending(current)) 8228 goto do_interrupted; 8229 8230 if (sctp_state(asoc, ESTABLISHED)) 8231 break; 8232 8233 /* Let another process have a go. Since we are going 8234 * to sleep anyway. 8235 */ 8236 release_sock(sk); 8237 current_timeo = schedule_timeout(current_timeo); 8238 lock_sock(sk); 8239 8240 *timeo_p = current_timeo; 8241 } 8242 8243 out: 8244 finish_wait(&asoc->wait, &wait); 8245 8246 /* Release the association's refcnt. */ 8247 sctp_association_put(asoc); 8248 8249 return err; 8250 8251 do_error: 8252 if (asoc->init_err_counter + 1 > asoc->max_init_attempts) 8253 err = -ETIMEDOUT; 8254 else 8255 err = -ECONNREFUSED; 8256 goto out; 8257 8258 do_interrupted: 8259 err = sock_intr_errno(*timeo_p); 8260 goto out; 8261 8262 do_nonblock: 8263 err = -EINPROGRESS; 8264 goto out; 8265 } 8266 8267 static int sctp_wait_for_accept(struct sock *sk, long timeo) 8268 { 8269 struct sctp_endpoint *ep; 8270 int err = 0; 8271 DEFINE_WAIT(wait); 8272 8273 ep = sctp_sk(sk)->ep; 8274 8275 8276 for (;;) { 8277 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 8278 TASK_INTERRUPTIBLE); 8279 8280 if (list_empty(&ep->asocs)) { 8281 release_sock(sk); 8282 timeo = schedule_timeout(timeo); 8283 lock_sock(sk); 8284 } 8285 8286 err = -EINVAL; 8287 if (!sctp_sstate(sk, LISTENING)) 8288 break; 8289 8290 err = 0; 8291 if (!list_empty(&ep->asocs)) 8292 break; 8293 8294 err = sock_intr_errno(timeo); 8295 if (signal_pending(current)) 8296 break; 8297 8298 err = -EAGAIN; 8299 if (!timeo) 8300 break; 8301 } 8302 8303 finish_wait(sk_sleep(sk), &wait); 8304 8305 return err; 8306 } 8307 8308 static void sctp_wait_for_close(struct sock *sk, long timeout) 8309 { 8310 DEFINE_WAIT(wait); 8311 8312 do { 8313 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); 8314 if (list_empty(&sctp_sk(sk)->ep->asocs)) 8315 break; 8316 release_sock(sk); 8317 timeout = schedule_timeout(timeout); 8318 lock_sock(sk); 8319 } while (!signal_pending(current) && timeout); 8320 8321 finish_wait(sk_sleep(sk), &wait); 8322 } 8323 8324 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) 8325 { 8326 struct sk_buff *frag; 8327 8328 if (!skb->data_len) 8329 goto done; 8330 8331 /* Don't forget the fragments. */ 8332 skb_walk_frags(skb, frag) 8333 sctp_skb_set_owner_r_frag(frag, sk); 8334 8335 done: 8336 sctp_skb_set_owner_r(skb, sk); 8337 } 8338 8339 void sctp_copy_sock(struct sock *newsk, struct sock *sk, 8340 struct sctp_association *asoc) 8341 { 8342 struct inet_sock *inet = inet_sk(sk); 8343 struct inet_sock *newinet; 8344 8345 newsk->sk_type = sk->sk_type; 8346 newsk->sk_bound_dev_if = sk->sk_bound_dev_if; 8347 newsk->sk_flags = sk->sk_flags; 8348 newsk->sk_tsflags = sk->sk_tsflags; 8349 newsk->sk_no_check_tx = sk->sk_no_check_tx; 8350 newsk->sk_no_check_rx = sk->sk_no_check_rx; 8351 newsk->sk_reuse = sk->sk_reuse; 8352 8353 newsk->sk_shutdown = sk->sk_shutdown; 8354 newsk->sk_destruct = sctp_destruct_sock; 8355 newsk->sk_family = sk->sk_family; 8356 newsk->sk_protocol = IPPROTO_SCTP; 8357 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; 8358 newsk->sk_sndbuf = sk->sk_sndbuf; 8359 newsk->sk_rcvbuf = sk->sk_rcvbuf; 8360 newsk->sk_lingertime = sk->sk_lingertime; 8361 newsk->sk_rcvtimeo = sk->sk_rcvtimeo; 8362 newsk->sk_sndtimeo = sk->sk_sndtimeo; 8363 newsk->sk_rxhash = sk->sk_rxhash; 8364 8365 newinet = inet_sk(newsk); 8366 8367 /* Initialize sk's sport, dport, rcv_saddr and daddr for 8368 * getsockname() and getpeername() 8369 */ 8370 newinet->inet_sport = inet->inet_sport; 8371 newinet->inet_saddr = inet->inet_saddr; 8372 newinet->inet_rcv_saddr = inet->inet_rcv_saddr; 8373 newinet->inet_dport = htons(asoc->peer.port); 8374 newinet->pmtudisc = inet->pmtudisc; 8375 newinet->inet_id = asoc->next_tsn ^ jiffies; 8376 8377 newinet->uc_ttl = inet->uc_ttl; 8378 newinet->mc_loop = 1; 8379 newinet->mc_ttl = 1; 8380 newinet->mc_index = 0; 8381 newinet->mc_list = NULL; 8382 8383 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP) 8384 net_enable_timestamp(); 8385 8386 security_sk_clone(sk, newsk); 8387 } 8388 8389 static inline void sctp_copy_descendant(struct sock *sk_to, 8390 const struct sock *sk_from) 8391 { 8392 int ancestor_size = sizeof(struct inet_sock) + 8393 sizeof(struct sctp_sock) - 8394 offsetof(struct sctp_sock, auto_asconf_list); 8395 8396 if (sk_from->sk_family == PF_INET6) 8397 ancestor_size += sizeof(struct ipv6_pinfo); 8398 8399 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size); 8400 } 8401 8402 /* Populate the fields of the newsk from the oldsk and migrate the assoc 8403 * and its messages to the newsk. 8404 */ 8405 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 8406 struct sctp_association *assoc, 8407 enum sctp_socket_type type) 8408 { 8409 struct sctp_sock *oldsp = sctp_sk(oldsk); 8410 struct sctp_sock *newsp = sctp_sk(newsk); 8411 struct sctp_bind_bucket *pp; /* hash list port iterator */ 8412 struct sctp_endpoint *newep = newsp->ep; 8413 struct sk_buff *skb, *tmp; 8414 struct sctp_ulpevent *event; 8415 struct sctp_bind_hashbucket *head; 8416 8417 /* Migrate socket buffer sizes and all the socket level options to the 8418 * new socket. 8419 */ 8420 newsk->sk_sndbuf = oldsk->sk_sndbuf; 8421 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 8422 /* Brute force copy old sctp opt. */ 8423 sctp_copy_descendant(newsk, oldsk); 8424 8425 /* Restore the ep value that was overwritten with the above structure 8426 * copy. 8427 */ 8428 newsp->ep = newep; 8429 newsp->hmac = NULL; 8430 8431 /* Hook this new socket in to the bind_hash list. */ 8432 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk), 8433 inet_sk(oldsk)->inet_num)]; 8434 spin_lock_bh(&head->lock); 8435 pp = sctp_sk(oldsk)->bind_hash; 8436 sk_add_bind_node(newsk, &pp->owner); 8437 sctp_sk(newsk)->bind_hash = pp; 8438 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num; 8439 spin_unlock_bh(&head->lock); 8440 8441 /* Copy the bind_addr list from the original endpoint to the new 8442 * endpoint so that we can handle restarts properly 8443 */ 8444 sctp_bind_addr_dup(&newsp->ep->base.bind_addr, 8445 &oldsp->ep->base.bind_addr, GFP_KERNEL); 8446 8447 /* Move any messages in the old socket's receive queue that are for the 8448 * peeled off association to the new socket's receive queue. 8449 */ 8450 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 8451 event = sctp_skb2event(skb); 8452 if (event->asoc == assoc) { 8453 __skb_unlink(skb, &oldsk->sk_receive_queue); 8454 __skb_queue_tail(&newsk->sk_receive_queue, skb); 8455 sctp_skb_set_owner_r_frag(skb, newsk); 8456 } 8457 } 8458 8459 /* Clean up any messages pending delivery due to partial 8460 * delivery. Three cases: 8461 * 1) No partial deliver; no work. 8462 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 8463 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 8464 */ 8465 skb_queue_head_init(&newsp->pd_lobby); 8466 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); 8467 8468 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { 8469 struct sk_buff_head *queue; 8470 8471 /* Decide which queue to move pd_lobby skbs to. */ 8472 if (assoc->ulpq.pd_mode) { 8473 queue = &newsp->pd_lobby; 8474 } else 8475 queue = &newsk->sk_receive_queue; 8476 8477 /* Walk through the pd_lobby, looking for skbs that 8478 * need moved to the new socket. 8479 */ 8480 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 8481 event = sctp_skb2event(skb); 8482 if (event->asoc == assoc) { 8483 __skb_unlink(skb, &oldsp->pd_lobby); 8484 __skb_queue_tail(queue, skb); 8485 sctp_skb_set_owner_r_frag(skb, newsk); 8486 } 8487 } 8488 8489 /* Clear up any skbs waiting for the partial 8490 * delivery to finish. 8491 */ 8492 if (assoc->ulpq.pd_mode) 8493 sctp_clear_pd(oldsk, NULL); 8494 8495 } 8496 8497 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag); 8498 8499 /* Set the type of socket to indicate that it is peeled off from the 8500 * original UDP-style socket or created with the accept() call on a 8501 * TCP-style socket.. 8502 */ 8503 newsp->type = type; 8504 8505 /* Mark the new socket "in-use" by the user so that any packets 8506 * that may arrive on the association after we've moved it are 8507 * queued to the backlog. This prevents a potential race between 8508 * backlog processing on the old socket and new-packet processing 8509 * on the new socket. 8510 * 8511 * The caller has just allocated newsk so we can guarantee that other 8512 * paths won't try to lock it and then oldsk. 8513 */ 8514 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); 8515 sctp_for_each_tx_datachunk(assoc, sctp_clear_owner_w); 8516 sctp_assoc_migrate(assoc, newsk); 8517 sctp_for_each_tx_datachunk(assoc, sctp_set_owner_w); 8518 8519 /* If the association on the newsk is already closed before accept() 8520 * is called, set RCV_SHUTDOWN flag. 8521 */ 8522 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) { 8523 inet_sk_set_state(newsk, SCTP_SS_CLOSED); 8524 newsk->sk_shutdown |= RCV_SHUTDOWN; 8525 } else { 8526 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED); 8527 } 8528 8529 release_sock(newsk); 8530 } 8531 8532 8533 /* This proto struct describes the ULP interface for SCTP. */ 8534 struct proto sctp_prot = { 8535 .name = "SCTP", 8536 .owner = THIS_MODULE, 8537 .close = sctp_close, 8538 .connect = sctp_connect, 8539 .disconnect = sctp_disconnect, 8540 .accept = sctp_accept, 8541 .ioctl = sctp_ioctl, 8542 .init = sctp_init_sock, 8543 .destroy = sctp_destroy_sock, 8544 .shutdown = sctp_shutdown, 8545 .setsockopt = sctp_setsockopt, 8546 .getsockopt = sctp_getsockopt, 8547 .sendmsg = sctp_sendmsg, 8548 .recvmsg = sctp_recvmsg, 8549 .bind = sctp_bind, 8550 .backlog_rcv = sctp_backlog_rcv, 8551 .hash = sctp_hash, 8552 .unhash = sctp_unhash, 8553 .get_port = sctp_get_port, 8554 .obj_size = sizeof(struct sctp_sock), 8555 .useroffset = offsetof(struct sctp_sock, subscribe), 8556 .usersize = offsetof(struct sctp_sock, initmsg) - 8557 offsetof(struct sctp_sock, subscribe) + 8558 sizeof_field(struct sctp_sock, initmsg), 8559 .sysctl_mem = sysctl_sctp_mem, 8560 .sysctl_rmem = sysctl_sctp_rmem, 8561 .sysctl_wmem = sysctl_sctp_wmem, 8562 .memory_pressure = &sctp_memory_pressure, 8563 .enter_memory_pressure = sctp_enter_memory_pressure, 8564 .memory_allocated = &sctp_memory_allocated, 8565 .sockets_allocated = &sctp_sockets_allocated, 8566 }; 8567 8568 #if IS_ENABLED(CONFIG_IPV6) 8569 8570 #include <net/transp_v6.h> 8571 static void sctp_v6_destroy_sock(struct sock *sk) 8572 { 8573 sctp_destroy_sock(sk); 8574 inet6_destroy_sock(sk); 8575 } 8576 8577 struct proto sctpv6_prot = { 8578 .name = "SCTPv6", 8579 .owner = THIS_MODULE, 8580 .close = sctp_close, 8581 .connect = sctp_connect, 8582 .disconnect = sctp_disconnect, 8583 .accept = sctp_accept, 8584 .ioctl = sctp_ioctl, 8585 .init = sctp_init_sock, 8586 .destroy = sctp_v6_destroy_sock, 8587 .shutdown = sctp_shutdown, 8588 .setsockopt = sctp_setsockopt, 8589 .getsockopt = sctp_getsockopt, 8590 .sendmsg = sctp_sendmsg, 8591 .recvmsg = sctp_recvmsg, 8592 .bind = sctp_bind, 8593 .backlog_rcv = sctp_backlog_rcv, 8594 .hash = sctp_hash, 8595 .unhash = sctp_unhash, 8596 .get_port = sctp_get_port, 8597 .obj_size = sizeof(struct sctp6_sock), 8598 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe), 8599 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) - 8600 offsetof(struct sctp6_sock, sctp.subscribe) + 8601 sizeof_field(struct sctp6_sock, sctp.initmsg), 8602 .sysctl_mem = sysctl_sctp_mem, 8603 .sysctl_rmem = sysctl_sctp_rmem, 8604 .sysctl_wmem = sysctl_sctp_wmem, 8605 .memory_pressure = &sctp_memory_pressure, 8606 .enter_memory_pressure = sctp_enter_memory_pressure, 8607 .memory_allocated = &sctp_memory_allocated, 8608 .sockets_allocated = &sctp_sockets_allocated, 8609 }; 8610 #endif /* IS_ENABLED(CONFIG_IPV6) */ 8611