1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * 6 * This file is part of the SCTP kernel implementation 7 * 8 * These functions work with the state functions in sctp_sm_statefuns.c 9 * to implement that state operations. These functions implement the 10 * steps which require modifying existing data structures. 11 * 12 * This SCTP implementation is free software; 13 * you can redistribute it and/or modify it under the terms of 14 * the GNU General Public License as published by 15 * the Free Software Foundation; either version 2, or (at your option) 16 * any later version. 17 * 18 * This SCTP implementation is distributed in the hope that it 19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 20 * ************************ 21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 22 * See the GNU General Public License for more details. 23 * 24 * You should have received a copy of the GNU General Public License 25 * along with GNU CC; see the file COPYING. If not, write to 26 * the Free Software Foundation, 59 Temple Place - Suite 330, 27 * Boston, MA 02111-1307, USA. 28 * 29 * Please send any bug reports or fixes you make to the 30 * email address(es): 31 * lksctp developers <lksctp-developers@lists.sourceforge.net> 32 * 33 * Or submit a bug report through the following website: 34 * http://www.sf.net/projects/lksctp 35 * 36 * Written or modified by: 37 * La Monte H.P. Yarroll <piggy@acm.org> 38 * Karl Knutson <karl@athena.chicago.il.us> 39 * Jon Grimm <jgrimm@austin.ibm.com> 40 * Hui Huang <hui.huang@nokia.com> 41 * Dajiang Zhang <dajiang.zhang@nokia.com> 42 * Daisy Chang <daisyc@us.ibm.com> 43 * Sridhar Samudrala <sri@us.ibm.com> 44 * Ardelle Fan <ardelle.fan@intel.com> 45 * 46 * Any bugs reported given to us we will try to fix... any fixes shared will 47 * be incorporated into the next SCTP release. 48 */ 49 50 #include <linux/skbuff.h> 51 #include <linux/types.h> 52 #include <linux/socket.h> 53 #include <linux/ip.h> 54 #include <net/sock.h> 55 #include <net/sctp/sctp.h> 56 #include <net/sctp/sm.h> 57 58 static int sctp_cmd_interpreter(sctp_event_t event_type, 59 sctp_subtype_t subtype, 60 sctp_state_t state, 61 struct sctp_endpoint *ep, 62 struct sctp_association *asoc, 63 void *event_arg, 64 sctp_disposition_t status, 65 sctp_cmd_seq_t *commands, 66 gfp_t gfp); 67 static int sctp_side_effects(sctp_event_t event_type, sctp_subtype_t subtype, 68 sctp_state_t state, 69 struct sctp_endpoint *ep, 70 struct sctp_association *asoc, 71 void *event_arg, 72 sctp_disposition_t status, 73 sctp_cmd_seq_t *commands, 74 gfp_t gfp); 75 76 /******************************************************************** 77 * Helper functions 78 ********************************************************************/ 79 80 /* A helper function for delayed processing of INET ECN CE bit. */ 81 static void sctp_do_ecn_ce_work(struct sctp_association *asoc, 82 __u32 lowest_tsn) 83 { 84 /* Save the TSN away for comparison when we receive CWR */ 85 86 asoc->last_ecne_tsn = lowest_tsn; 87 asoc->need_ecne = 1; 88 } 89 90 /* Helper function for delayed processing of SCTP ECNE chunk. */ 91 /* RFC 2960 Appendix A 92 * 93 * RFC 2481 details a specific bit for a sender to send in 94 * the header of its next outbound TCP segment to indicate to 95 * its peer that it has reduced its congestion window. This 96 * is termed the CWR bit. For SCTP the same indication is made 97 * by including the CWR chunk. This chunk contains one data 98 * element, i.e. the TSN number that was sent in the ECNE chunk. 99 * This element represents the lowest TSN number in the datagram 100 * that was originally marked with the CE bit. 101 */ 102 static struct sctp_chunk *sctp_do_ecn_ecne_work(struct sctp_association *asoc, 103 __u32 lowest_tsn, 104 struct sctp_chunk *chunk) 105 { 106 struct sctp_chunk *repl; 107 108 /* Our previously transmitted packet ran into some congestion 109 * so we should take action by reducing cwnd and ssthresh 110 * and then ACK our peer that we we've done so by 111 * sending a CWR. 112 */ 113 114 /* First, try to determine if we want to actually lower 115 * our cwnd variables. Only lower them if the ECNE looks more 116 * recent than the last response. 117 */ 118 if (TSN_lt(asoc->last_cwr_tsn, lowest_tsn)) { 119 struct sctp_transport *transport; 120 121 /* Find which transport's congestion variables 122 * need to be adjusted. 123 */ 124 transport = sctp_assoc_lookup_tsn(asoc, lowest_tsn); 125 126 /* Update the congestion variables. */ 127 if (transport) 128 sctp_transport_lower_cwnd(transport, 129 SCTP_LOWER_CWND_ECNE); 130 asoc->last_cwr_tsn = lowest_tsn; 131 } 132 133 /* Always try to quiet the other end. In case of lost CWR, 134 * resend last_cwr_tsn. 135 */ 136 repl = sctp_make_cwr(asoc, asoc->last_cwr_tsn, chunk); 137 138 /* If we run out of memory, it will look like a lost CWR. We'll 139 * get back in sync eventually. 140 */ 141 return repl; 142 } 143 144 /* Helper function to do delayed processing of ECN CWR chunk. */ 145 static void sctp_do_ecn_cwr_work(struct sctp_association *asoc, 146 __u32 lowest_tsn) 147 { 148 /* Turn off ECNE getting auto-prepended to every outgoing 149 * packet 150 */ 151 asoc->need_ecne = 0; 152 } 153 154 /* Generate SACK if necessary. We call this at the end of a packet. */ 155 static int sctp_gen_sack(struct sctp_association *asoc, int force, 156 sctp_cmd_seq_t *commands) 157 { 158 __u32 ctsn, max_tsn_seen; 159 struct sctp_chunk *sack; 160 struct sctp_transport *trans = asoc->peer.last_data_from; 161 int error = 0; 162 163 if (force || 164 (!trans && (asoc->param_flags & SPP_SACKDELAY_DISABLE)) || 165 (trans && (trans->param_flags & SPP_SACKDELAY_DISABLE))) 166 asoc->peer.sack_needed = 1; 167 168 ctsn = sctp_tsnmap_get_ctsn(&asoc->peer.tsn_map); 169 max_tsn_seen = sctp_tsnmap_get_max_tsn_seen(&asoc->peer.tsn_map); 170 171 /* From 12.2 Parameters necessary per association (i.e. the TCB): 172 * 173 * Ack State : This flag indicates if the next received packet 174 * : is to be responded to with a SACK. ... 175 * : When DATA chunks are out of order, SACK's 176 * : are not delayed (see Section 6). 177 * 178 * [This is actually not mentioned in Section 6, but we 179 * implement it here anyway. --piggy] 180 */ 181 if (max_tsn_seen != ctsn) 182 asoc->peer.sack_needed = 1; 183 184 /* From 6.2 Acknowledgement on Reception of DATA Chunks: 185 * 186 * Section 4.2 of [RFC2581] SHOULD be followed. Specifically, 187 * an acknowledgement SHOULD be generated for at least every 188 * second packet (not every second DATA chunk) received, and 189 * SHOULD be generated within 200 ms of the arrival of any 190 * unacknowledged DATA chunk. ... 191 */ 192 if (!asoc->peer.sack_needed) { 193 asoc->peer.sack_cnt++; 194 195 /* Set the SACK delay timeout based on the 196 * SACK delay for the last transport 197 * data was received from, or the default 198 * for the association. 199 */ 200 if (trans) { 201 /* We will need a SACK for the next packet. */ 202 if (asoc->peer.sack_cnt >= trans->sackfreq - 1) 203 asoc->peer.sack_needed = 1; 204 205 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = 206 trans->sackdelay; 207 } else { 208 /* We will need a SACK for the next packet. */ 209 if (asoc->peer.sack_cnt >= asoc->sackfreq - 1) 210 asoc->peer.sack_needed = 1; 211 212 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = 213 asoc->sackdelay; 214 } 215 216 /* Restart the SACK timer. */ 217 sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART, 218 SCTP_TO(SCTP_EVENT_TIMEOUT_SACK)); 219 } else { 220 if (asoc->a_rwnd > asoc->rwnd) 221 asoc->a_rwnd = asoc->rwnd; 222 sack = sctp_make_sack(asoc); 223 if (!sack) 224 goto nomem; 225 226 asoc->peer.sack_needed = 0; 227 asoc->peer.sack_cnt = 0; 228 229 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(sack)); 230 231 /* Stop the SACK timer. */ 232 sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP, 233 SCTP_TO(SCTP_EVENT_TIMEOUT_SACK)); 234 } 235 236 return error; 237 nomem: 238 error = -ENOMEM; 239 return error; 240 } 241 242 /* When the T3-RTX timer expires, it calls this function to create the 243 * relevant state machine event. 244 */ 245 void sctp_generate_t3_rtx_event(unsigned long peer) 246 { 247 int error; 248 struct sctp_transport *transport = (struct sctp_transport *) peer; 249 struct sctp_association *asoc = transport->asoc; 250 251 /* Check whether a task is in the sock. */ 252 253 sctp_bh_lock_sock(asoc->base.sk); 254 if (sock_owned_by_user(asoc->base.sk)) { 255 SCTP_DEBUG_PRINTK("%s:Sock is busy.\n", __func__); 256 257 /* Try again later. */ 258 if (!mod_timer(&transport->T3_rtx_timer, jiffies + (HZ/20))) 259 sctp_transport_hold(transport); 260 goto out_unlock; 261 } 262 263 /* Is this transport really dead and just waiting around for 264 * the timer to let go of the reference? 265 */ 266 if (transport->dead) 267 goto out_unlock; 268 269 /* Run through the state machine. */ 270 error = sctp_do_sm(SCTP_EVENT_T_TIMEOUT, 271 SCTP_ST_TIMEOUT(SCTP_EVENT_TIMEOUT_T3_RTX), 272 asoc->state, 273 asoc->ep, asoc, 274 transport, GFP_ATOMIC); 275 276 if (error) 277 asoc->base.sk->sk_err = -error; 278 279 out_unlock: 280 sctp_bh_unlock_sock(asoc->base.sk); 281 sctp_transport_put(transport); 282 } 283 284 /* This is a sa interface for producing timeout events. It works 285 * for timeouts which use the association as their parameter. 286 */ 287 static void sctp_generate_timeout_event(struct sctp_association *asoc, 288 sctp_event_timeout_t timeout_type) 289 { 290 int error = 0; 291 292 sctp_bh_lock_sock(asoc->base.sk); 293 if (sock_owned_by_user(asoc->base.sk)) { 294 SCTP_DEBUG_PRINTK("%s:Sock is busy: timer %d\n", 295 __func__, 296 timeout_type); 297 298 /* Try again later. */ 299 if (!mod_timer(&asoc->timers[timeout_type], jiffies + (HZ/20))) 300 sctp_association_hold(asoc); 301 goto out_unlock; 302 } 303 304 /* Is this association really dead and just waiting around for 305 * the timer to let go of the reference? 306 */ 307 if (asoc->base.dead) 308 goto out_unlock; 309 310 /* Run through the state machine. */ 311 error = sctp_do_sm(SCTP_EVENT_T_TIMEOUT, 312 SCTP_ST_TIMEOUT(timeout_type), 313 asoc->state, asoc->ep, asoc, 314 (void *)timeout_type, GFP_ATOMIC); 315 316 if (error) 317 asoc->base.sk->sk_err = -error; 318 319 out_unlock: 320 sctp_bh_unlock_sock(asoc->base.sk); 321 sctp_association_put(asoc); 322 } 323 324 static void sctp_generate_t1_cookie_event(unsigned long data) 325 { 326 struct sctp_association *asoc = (struct sctp_association *) data; 327 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T1_COOKIE); 328 } 329 330 static void sctp_generate_t1_init_event(unsigned long data) 331 { 332 struct sctp_association *asoc = (struct sctp_association *) data; 333 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T1_INIT); 334 } 335 336 static void sctp_generate_t2_shutdown_event(unsigned long data) 337 { 338 struct sctp_association *asoc = (struct sctp_association *) data; 339 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T2_SHUTDOWN); 340 } 341 342 static void sctp_generate_t4_rto_event(unsigned long data) 343 { 344 struct sctp_association *asoc = (struct sctp_association *) data; 345 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T4_RTO); 346 } 347 348 static void sctp_generate_t5_shutdown_guard_event(unsigned long data) 349 { 350 struct sctp_association *asoc = (struct sctp_association *)data; 351 sctp_generate_timeout_event(asoc, 352 SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD); 353 354 } /* sctp_generate_t5_shutdown_guard_event() */ 355 356 static void sctp_generate_autoclose_event(unsigned long data) 357 { 358 struct sctp_association *asoc = (struct sctp_association *) data; 359 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_AUTOCLOSE); 360 } 361 362 /* Generate a heart beat event. If the sock is busy, reschedule. Make 363 * sure that the transport is still valid. 364 */ 365 void sctp_generate_heartbeat_event(unsigned long data) 366 { 367 int error = 0; 368 struct sctp_transport *transport = (struct sctp_transport *) data; 369 struct sctp_association *asoc = transport->asoc; 370 371 sctp_bh_lock_sock(asoc->base.sk); 372 if (sock_owned_by_user(asoc->base.sk)) { 373 SCTP_DEBUG_PRINTK("%s:Sock is busy.\n", __func__); 374 375 /* Try again later. */ 376 if (!mod_timer(&transport->hb_timer, jiffies + (HZ/20))) 377 sctp_transport_hold(transport); 378 goto out_unlock; 379 } 380 381 /* Is this structure just waiting around for us to actually 382 * get destroyed? 383 */ 384 if (transport->dead) 385 goto out_unlock; 386 387 error = sctp_do_sm(SCTP_EVENT_T_TIMEOUT, 388 SCTP_ST_TIMEOUT(SCTP_EVENT_TIMEOUT_HEARTBEAT), 389 asoc->state, asoc->ep, asoc, 390 transport, GFP_ATOMIC); 391 392 if (error) 393 asoc->base.sk->sk_err = -error; 394 395 out_unlock: 396 sctp_bh_unlock_sock(asoc->base.sk); 397 sctp_transport_put(transport); 398 } 399 400 /* Inject a SACK Timeout event into the state machine. */ 401 static void sctp_generate_sack_event(unsigned long data) 402 { 403 struct sctp_association *asoc = (struct sctp_association *) data; 404 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_SACK); 405 } 406 407 sctp_timer_event_t *sctp_timer_events[SCTP_NUM_TIMEOUT_TYPES] = { 408 NULL, 409 sctp_generate_t1_cookie_event, 410 sctp_generate_t1_init_event, 411 sctp_generate_t2_shutdown_event, 412 NULL, 413 sctp_generate_t4_rto_event, 414 sctp_generate_t5_shutdown_guard_event, 415 NULL, 416 sctp_generate_sack_event, 417 sctp_generate_autoclose_event, 418 }; 419 420 421 /* RFC 2960 8.2 Path Failure Detection 422 * 423 * When its peer endpoint is multi-homed, an endpoint should keep a 424 * error counter for each of the destination transport addresses of the 425 * peer endpoint. 426 * 427 * Each time the T3-rtx timer expires on any address, or when a 428 * HEARTBEAT sent to an idle address is not acknowledged within a RTO, 429 * the error counter of that destination address will be incremented. 430 * When the value in the error counter exceeds the protocol parameter 431 * 'Path.Max.Retrans' of that destination address, the endpoint should 432 * mark the destination transport address as inactive, and a 433 * notification SHOULD be sent to the upper layer. 434 * 435 */ 436 static void sctp_do_8_2_transport_strike(struct sctp_association *asoc, 437 struct sctp_transport *transport, 438 int is_hb) 439 { 440 /* The check for association's overall error counter exceeding the 441 * threshold is done in the state function. 442 */ 443 /* We are here due to a timer expiration. If the timer was 444 * not a HEARTBEAT, then normal error tracking is done. 445 * If the timer was a heartbeat, we only increment error counts 446 * when we already have an outstanding HEARTBEAT that has not 447 * been acknowledged. 448 * Additionaly, some tranport states inhibit error increments. 449 */ 450 if (!is_hb) { 451 asoc->overall_error_count++; 452 if (transport->state != SCTP_INACTIVE) 453 transport->error_count++; 454 } else if (transport->hb_sent) { 455 if (transport->state != SCTP_UNCONFIRMED) 456 asoc->overall_error_count++; 457 if (transport->state != SCTP_INACTIVE) 458 transport->error_count++; 459 } 460 461 if (transport->state != SCTP_INACTIVE && 462 (transport->error_count > transport->pathmaxrxt)) { 463 SCTP_DEBUG_PRINTK_IPADDR("transport_strike:association %p", 464 " transport IP: port:%d failed.\n", 465 asoc, 466 (&transport->ipaddr), 467 ntohs(transport->ipaddr.v4.sin_port)); 468 sctp_assoc_control_transport(asoc, transport, 469 SCTP_TRANSPORT_DOWN, 470 SCTP_FAILED_THRESHOLD); 471 } 472 473 /* E2) For the destination address for which the timer 474 * expires, set RTO <- RTO * 2 ("back off the timer"). The 475 * maximum value discussed in rule C7 above (RTO.max) may be 476 * used to provide an upper bound to this doubling operation. 477 * 478 * Special Case: the first HB doesn't trigger exponential backoff. 479 * The first unacknowleged HB triggers it. We do this with a flag 480 * that indicates that we have an outstanding HB. 481 */ 482 if (!is_hb || transport->hb_sent) { 483 transport->last_rto = transport->rto; 484 transport->rto = min((transport->rto * 2), transport->asoc->rto_max); 485 } 486 } 487 488 /* Worker routine to handle INIT command failure. */ 489 static void sctp_cmd_init_failed(sctp_cmd_seq_t *commands, 490 struct sctp_association *asoc, 491 unsigned error) 492 { 493 struct sctp_ulpevent *event; 494 495 event = sctp_ulpevent_make_assoc_change(asoc,0, SCTP_CANT_STR_ASSOC, 496 (__u16)error, 0, 0, NULL, 497 GFP_ATOMIC); 498 499 if (event) 500 sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP, 501 SCTP_ULPEVENT(event)); 502 503 sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE, 504 SCTP_STATE(SCTP_STATE_CLOSED)); 505 506 /* SEND_FAILED sent later when cleaning up the association. */ 507 asoc->outqueue.error = error; 508 sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL()); 509 } 510 511 /* Worker routine to handle SCTP_CMD_ASSOC_FAILED. */ 512 static void sctp_cmd_assoc_failed(sctp_cmd_seq_t *commands, 513 struct sctp_association *asoc, 514 sctp_event_t event_type, 515 sctp_subtype_t subtype, 516 struct sctp_chunk *chunk, 517 unsigned error) 518 { 519 struct sctp_ulpevent *event; 520 521 /* Cancel any partial delivery in progress. */ 522 sctp_ulpq_abort_pd(&asoc->ulpq, GFP_ATOMIC); 523 524 if (event_type == SCTP_EVENT_T_CHUNK && subtype.chunk == SCTP_CID_ABORT) 525 event = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_COMM_LOST, 526 (__u16)error, 0, 0, chunk, 527 GFP_ATOMIC); 528 else 529 event = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_COMM_LOST, 530 (__u16)error, 0, 0, NULL, 531 GFP_ATOMIC); 532 if (event) 533 sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP, 534 SCTP_ULPEVENT(event)); 535 536 sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE, 537 SCTP_STATE(SCTP_STATE_CLOSED)); 538 539 /* SEND_FAILED sent later when cleaning up the association. */ 540 asoc->outqueue.error = error; 541 sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL()); 542 } 543 544 /* Process an init chunk (may be real INIT/INIT-ACK or an embedded INIT 545 * inside the cookie. In reality, this is only used for INIT-ACK processing 546 * since all other cases use "temporary" associations and can do all 547 * their work in statefuns directly. 548 */ 549 static int sctp_cmd_process_init(sctp_cmd_seq_t *commands, 550 struct sctp_association *asoc, 551 struct sctp_chunk *chunk, 552 sctp_init_chunk_t *peer_init, 553 gfp_t gfp) 554 { 555 int error; 556 557 /* We only process the init as a sideeffect in a single 558 * case. This is when we process the INIT-ACK. If we 559 * fail during INIT processing (due to malloc problems), 560 * just return the error and stop processing the stack. 561 */ 562 if (!sctp_process_init(asoc, chunk->chunk_hdr->type, 563 sctp_source(chunk), peer_init, gfp)) 564 error = -ENOMEM; 565 else 566 error = 0; 567 568 return error; 569 } 570 571 /* Helper function to break out starting up of heartbeat timers. */ 572 static void sctp_cmd_hb_timers_start(sctp_cmd_seq_t *cmds, 573 struct sctp_association *asoc) 574 { 575 struct sctp_transport *t; 576 577 /* Start a heartbeat timer for each transport on the association. 578 * hold a reference on the transport to make sure none of 579 * the needed data structures go away. 580 */ 581 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) { 582 583 if (!mod_timer(&t->hb_timer, sctp_transport_timeout(t))) 584 sctp_transport_hold(t); 585 } 586 } 587 588 static void sctp_cmd_hb_timers_stop(sctp_cmd_seq_t *cmds, 589 struct sctp_association *asoc) 590 { 591 struct sctp_transport *t; 592 593 /* Stop all heartbeat timers. */ 594 595 list_for_each_entry(t, &asoc->peer.transport_addr_list, 596 transports) { 597 if (del_timer(&t->hb_timer)) 598 sctp_transport_put(t); 599 } 600 } 601 602 /* Helper function to stop any pending T3-RTX timers */ 603 static void sctp_cmd_t3_rtx_timers_stop(sctp_cmd_seq_t *cmds, 604 struct sctp_association *asoc) 605 { 606 struct sctp_transport *t; 607 608 list_for_each_entry(t, &asoc->peer.transport_addr_list, 609 transports) { 610 if (timer_pending(&t->T3_rtx_timer) && 611 del_timer(&t->T3_rtx_timer)) { 612 sctp_transport_put(t); 613 } 614 } 615 } 616 617 618 /* Helper function to update the heartbeat timer. */ 619 static void sctp_cmd_hb_timer_update(sctp_cmd_seq_t *cmds, 620 struct sctp_transport *t) 621 { 622 /* Update the heartbeat timer. */ 623 if (!mod_timer(&t->hb_timer, sctp_transport_timeout(t))) 624 sctp_transport_hold(t); 625 } 626 627 /* Helper function to handle the reception of an HEARTBEAT ACK. */ 628 static void sctp_cmd_transport_on(sctp_cmd_seq_t *cmds, 629 struct sctp_association *asoc, 630 struct sctp_transport *t, 631 struct sctp_chunk *chunk) 632 { 633 sctp_sender_hb_info_t *hbinfo; 634 635 /* 8.3 Upon the receipt of the HEARTBEAT ACK, the sender of the 636 * HEARTBEAT should clear the error counter of the destination 637 * transport address to which the HEARTBEAT was sent. 638 * The association's overall error count is also cleared. 639 */ 640 t->error_count = 0; 641 t->asoc->overall_error_count = 0; 642 643 /* Clear the hb_sent flag to signal that we had a good 644 * acknowledgement. 645 */ 646 t->hb_sent = 0; 647 648 /* Mark the destination transport address as active if it is not so 649 * marked. 650 */ 651 if ((t->state == SCTP_INACTIVE) || (t->state == SCTP_UNCONFIRMED)) 652 sctp_assoc_control_transport(asoc, t, SCTP_TRANSPORT_UP, 653 SCTP_HEARTBEAT_SUCCESS); 654 655 /* The receiver of the HEARTBEAT ACK should also perform an 656 * RTT measurement for that destination transport address 657 * using the time value carried in the HEARTBEAT ACK chunk. 658 * If the transport's rto_pending variable has been cleared, 659 * it was most likely due to a retransmit. However, we want 660 * to re-enable it to properly update the rto. 661 */ 662 if (t->rto_pending == 0) 663 t->rto_pending = 1; 664 665 hbinfo = (sctp_sender_hb_info_t *) chunk->skb->data; 666 sctp_transport_update_rto(t, (jiffies - hbinfo->sent_at)); 667 668 /* Update the heartbeat timer. */ 669 if (!mod_timer(&t->hb_timer, sctp_transport_timeout(t))) 670 sctp_transport_hold(t); 671 } 672 673 674 /* Helper function to process the process SACK command. */ 675 static int sctp_cmd_process_sack(sctp_cmd_seq_t *cmds, 676 struct sctp_association *asoc, 677 struct sctp_sackhdr *sackh) 678 { 679 int err = 0; 680 681 if (sctp_outq_sack(&asoc->outqueue, sackh)) { 682 /* There are no more TSNs awaiting SACK. */ 683 err = sctp_do_sm(SCTP_EVENT_T_OTHER, 684 SCTP_ST_OTHER(SCTP_EVENT_NO_PENDING_TSN), 685 asoc->state, asoc->ep, asoc, NULL, 686 GFP_ATOMIC); 687 } 688 689 return err; 690 } 691 692 /* Helper function to set the timeout value for T2-SHUTDOWN timer and to set 693 * the transport for a shutdown chunk. 694 */ 695 static void sctp_cmd_setup_t2(sctp_cmd_seq_t *cmds, 696 struct sctp_association *asoc, 697 struct sctp_chunk *chunk) 698 { 699 struct sctp_transport *t; 700 701 t = sctp_assoc_choose_alter_transport(asoc, 702 asoc->shutdown_last_sent_to); 703 asoc->shutdown_last_sent_to = t; 704 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = t->rto; 705 chunk->transport = t; 706 } 707 708 /* Helper function to change the state of an association. */ 709 static void sctp_cmd_new_state(sctp_cmd_seq_t *cmds, 710 struct sctp_association *asoc, 711 sctp_state_t state) 712 { 713 struct sock *sk = asoc->base.sk; 714 715 asoc->state = state; 716 717 SCTP_DEBUG_PRINTK("sctp_cmd_new_state: asoc %p[%s]\n", 718 asoc, sctp_state_tbl[state]); 719 720 if (sctp_style(sk, TCP)) { 721 /* Change the sk->sk_state of a TCP-style socket that has 722 * sucessfully completed a connect() call. 723 */ 724 if (sctp_state(asoc, ESTABLISHED) && sctp_sstate(sk, CLOSED)) 725 sk->sk_state = SCTP_SS_ESTABLISHED; 726 727 /* Set the RCV_SHUTDOWN flag when a SHUTDOWN is received. */ 728 if (sctp_state(asoc, SHUTDOWN_RECEIVED) && 729 sctp_sstate(sk, ESTABLISHED)) 730 sk->sk_shutdown |= RCV_SHUTDOWN; 731 } 732 733 if (sctp_state(asoc, COOKIE_WAIT)) { 734 /* Reset init timeouts since they may have been 735 * increased due to timer expirations. 736 */ 737 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = 738 asoc->rto_initial; 739 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = 740 asoc->rto_initial; 741 } 742 743 if (sctp_state(asoc, ESTABLISHED) || 744 sctp_state(asoc, CLOSED) || 745 sctp_state(asoc, SHUTDOWN_RECEIVED)) { 746 /* Wake up any processes waiting in the asoc's wait queue in 747 * sctp_wait_for_connect() or sctp_wait_for_sndbuf(). 748 */ 749 if (waitqueue_active(&asoc->wait)) 750 wake_up_interruptible(&asoc->wait); 751 752 /* Wake up any processes waiting in the sk's sleep queue of 753 * a TCP-style or UDP-style peeled-off socket in 754 * sctp_wait_for_accept() or sctp_wait_for_packet(). 755 * For a UDP-style socket, the waiters are woken up by the 756 * notifications. 757 */ 758 if (!sctp_style(sk, UDP)) 759 sk->sk_state_change(sk); 760 } 761 } 762 763 /* Helper function to delete an association. */ 764 static void sctp_cmd_delete_tcb(sctp_cmd_seq_t *cmds, 765 struct sctp_association *asoc) 766 { 767 struct sock *sk = asoc->base.sk; 768 769 /* If it is a non-temporary association belonging to a TCP-style 770 * listening socket that is not closed, do not free it so that accept() 771 * can pick it up later. 772 */ 773 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING) && 774 (!asoc->temp) && (sk->sk_shutdown != SHUTDOWN_MASK)) 775 return; 776 777 sctp_unhash_established(asoc); 778 sctp_association_free(asoc); 779 } 780 781 /* 782 * ADDIP Section 4.1 ASCONF Chunk Procedures 783 * A4) Start a T-4 RTO timer, using the RTO value of the selected 784 * destination address (we use active path instead of primary path just 785 * because primary path may be inactive. 786 */ 787 static void sctp_cmd_setup_t4(sctp_cmd_seq_t *cmds, 788 struct sctp_association *asoc, 789 struct sctp_chunk *chunk) 790 { 791 struct sctp_transport *t; 792 793 t = sctp_assoc_choose_alter_transport(asoc, chunk->transport); 794 asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = t->rto; 795 chunk->transport = t; 796 } 797 798 /* Process an incoming Operation Error Chunk. */ 799 static void sctp_cmd_process_operr(sctp_cmd_seq_t *cmds, 800 struct sctp_association *asoc, 801 struct sctp_chunk *chunk) 802 { 803 struct sctp_errhdr *err_hdr; 804 struct sctp_ulpevent *ev; 805 806 while (chunk->chunk_end > chunk->skb->data) { 807 err_hdr = (struct sctp_errhdr *)(chunk->skb->data); 808 809 ev = sctp_ulpevent_make_remote_error(asoc, chunk, 0, 810 GFP_ATOMIC); 811 if (!ev) 812 return; 813 814 sctp_ulpq_tail_event(&asoc->ulpq, ev); 815 816 switch (err_hdr->cause) { 817 case SCTP_ERROR_UNKNOWN_CHUNK: 818 { 819 sctp_chunkhdr_t *unk_chunk_hdr; 820 821 unk_chunk_hdr = (sctp_chunkhdr_t *)err_hdr->variable; 822 switch (unk_chunk_hdr->type) { 823 /* ADDIP 4.1 A9) If the peer responds to an ASCONF with 824 * an ERROR chunk reporting that it did not recognized 825 * the ASCONF chunk type, the sender of the ASCONF MUST 826 * NOT send any further ASCONF chunks and MUST stop its 827 * T-4 timer. 828 */ 829 case SCTP_CID_ASCONF: 830 if (asoc->peer.asconf_capable == 0) 831 break; 832 833 asoc->peer.asconf_capable = 0; 834 sctp_add_cmd_sf(cmds, SCTP_CMD_TIMER_STOP, 835 SCTP_TO(SCTP_EVENT_TIMEOUT_T4_RTO)); 836 break; 837 default: 838 break; 839 } 840 break; 841 } 842 default: 843 break; 844 } 845 } 846 } 847 848 /* Process variable FWDTSN chunk information. */ 849 static void sctp_cmd_process_fwdtsn(struct sctp_ulpq *ulpq, 850 struct sctp_chunk *chunk) 851 { 852 struct sctp_fwdtsn_skip *skip; 853 /* Walk through all the skipped SSNs */ 854 sctp_walk_fwdtsn(skip, chunk) { 855 sctp_ulpq_skip(ulpq, ntohs(skip->stream), ntohs(skip->ssn)); 856 } 857 858 return; 859 } 860 861 /* Helper function to remove the association non-primary peer 862 * transports. 863 */ 864 static void sctp_cmd_del_non_primary(struct sctp_association *asoc) 865 { 866 struct sctp_transport *t; 867 struct list_head *pos; 868 struct list_head *temp; 869 870 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 871 t = list_entry(pos, struct sctp_transport, transports); 872 if (!sctp_cmp_addr_exact(&t->ipaddr, 873 &asoc->peer.primary_addr)) { 874 sctp_assoc_del_peer(asoc, &t->ipaddr); 875 } 876 } 877 878 return; 879 } 880 881 /* Helper function to set sk_err on a 1-1 style socket. */ 882 static void sctp_cmd_set_sk_err(struct sctp_association *asoc, int error) 883 { 884 struct sock *sk = asoc->base.sk; 885 886 if (!sctp_style(sk, UDP)) 887 sk->sk_err = error; 888 } 889 890 /* Helper function to generate an association change event */ 891 static void sctp_cmd_assoc_change(sctp_cmd_seq_t *commands, 892 struct sctp_association *asoc, 893 u8 state) 894 { 895 struct sctp_ulpevent *ev; 896 897 ev = sctp_ulpevent_make_assoc_change(asoc, 0, state, 0, 898 asoc->c.sinit_num_ostreams, 899 asoc->c.sinit_max_instreams, 900 NULL, GFP_ATOMIC); 901 if (ev) 902 sctp_ulpq_tail_event(&asoc->ulpq, ev); 903 } 904 905 /* Helper function to generate an adaptation indication event */ 906 static void sctp_cmd_adaptation_ind(sctp_cmd_seq_t *commands, 907 struct sctp_association *asoc) 908 { 909 struct sctp_ulpevent *ev; 910 911 ev = sctp_ulpevent_make_adaptation_indication(asoc, GFP_ATOMIC); 912 913 if (ev) 914 sctp_ulpq_tail_event(&asoc->ulpq, ev); 915 } 916 917 918 static void sctp_cmd_t1_timer_update(struct sctp_association *asoc, 919 sctp_event_timeout_t timer, 920 char *name) 921 { 922 struct sctp_transport *t; 923 924 t = asoc->init_last_sent_to; 925 asoc->init_err_counter++; 926 927 if (t->init_sent_count > (asoc->init_cycle + 1)) { 928 asoc->timeouts[timer] *= 2; 929 if (asoc->timeouts[timer] > asoc->max_init_timeo) { 930 asoc->timeouts[timer] = asoc->max_init_timeo; 931 } 932 asoc->init_cycle++; 933 SCTP_DEBUG_PRINTK( 934 "T1 %s Timeout adjustment" 935 " init_err_counter: %d" 936 " cycle: %d" 937 " timeout: %ld\n", 938 name, 939 asoc->init_err_counter, 940 asoc->init_cycle, 941 asoc->timeouts[timer]); 942 } 943 944 } 945 946 /* Send the whole message, chunk by chunk, to the outqueue. 947 * This way the whole message is queued up and bundling if 948 * encouraged for small fragments. 949 */ 950 static int sctp_cmd_send_msg(struct sctp_association *asoc, 951 struct sctp_datamsg *msg) 952 { 953 struct sctp_chunk *chunk; 954 int error = 0; 955 956 list_for_each_entry(chunk, &msg->chunks, frag_list) { 957 error = sctp_outq_tail(&asoc->outqueue, chunk); 958 if (error) 959 break; 960 } 961 962 return error; 963 } 964 965 966 967 /* These three macros allow us to pull the debugging code out of the 968 * main flow of sctp_do_sm() to keep attention focused on the real 969 * functionality there. 970 */ 971 #define DEBUG_PRE \ 972 SCTP_DEBUG_PRINTK("sctp_do_sm prefn: " \ 973 "ep %p, %s, %s, asoc %p[%s], %s\n", \ 974 ep, sctp_evttype_tbl[event_type], \ 975 (*debug_fn)(subtype), asoc, \ 976 sctp_state_tbl[state], state_fn->name) 977 978 #define DEBUG_POST \ 979 SCTP_DEBUG_PRINTK("sctp_do_sm postfn: " \ 980 "asoc %p, status: %s\n", \ 981 asoc, sctp_status_tbl[status]) 982 983 #define DEBUG_POST_SFX \ 984 SCTP_DEBUG_PRINTK("sctp_do_sm post sfx: error %d, asoc %p[%s]\n", \ 985 error, asoc, \ 986 sctp_state_tbl[(asoc && sctp_id2assoc(ep->base.sk, \ 987 sctp_assoc2id(asoc)))?asoc->state:SCTP_STATE_CLOSED]) 988 989 /* 990 * This is the master state machine processing function. 991 * 992 * If you want to understand all of lksctp, this is a 993 * good place to start. 994 */ 995 int sctp_do_sm(sctp_event_t event_type, sctp_subtype_t subtype, 996 sctp_state_t state, 997 struct sctp_endpoint *ep, 998 struct sctp_association *asoc, 999 void *event_arg, 1000 gfp_t gfp) 1001 { 1002 sctp_cmd_seq_t commands; 1003 const sctp_sm_table_entry_t *state_fn; 1004 sctp_disposition_t status; 1005 int error = 0; 1006 typedef const char *(printfn_t)(sctp_subtype_t); 1007 1008 static printfn_t *table[] = { 1009 NULL, sctp_cname, sctp_tname, sctp_oname, sctp_pname, 1010 }; 1011 printfn_t *debug_fn __attribute__ ((unused)) = table[event_type]; 1012 1013 /* Look up the state function, run it, and then process the 1014 * side effects. These three steps are the heart of lksctp. 1015 */ 1016 state_fn = sctp_sm_lookup_event(event_type, state, subtype); 1017 1018 sctp_init_cmd_seq(&commands); 1019 1020 DEBUG_PRE; 1021 status = (*state_fn->fn)(ep, asoc, subtype, event_arg, &commands); 1022 DEBUG_POST; 1023 1024 error = sctp_side_effects(event_type, subtype, state, 1025 ep, asoc, event_arg, status, 1026 &commands, gfp); 1027 DEBUG_POST_SFX; 1028 1029 return error; 1030 } 1031 1032 #undef DEBUG_PRE 1033 #undef DEBUG_POST 1034 1035 /***************************************************************** 1036 * This the master state function side effect processing function. 1037 *****************************************************************/ 1038 static int sctp_side_effects(sctp_event_t event_type, sctp_subtype_t subtype, 1039 sctp_state_t state, 1040 struct sctp_endpoint *ep, 1041 struct sctp_association *asoc, 1042 void *event_arg, 1043 sctp_disposition_t status, 1044 sctp_cmd_seq_t *commands, 1045 gfp_t gfp) 1046 { 1047 int error; 1048 1049 /* FIXME - Most of the dispositions left today would be categorized 1050 * as "exceptional" dispositions. For those dispositions, it 1051 * may not be proper to run through any of the commands at all. 1052 * For example, the command interpreter might be run only with 1053 * disposition SCTP_DISPOSITION_CONSUME. 1054 */ 1055 if (0 != (error = sctp_cmd_interpreter(event_type, subtype, state, 1056 ep, asoc, 1057 event_arg, status, 1058 commands, gfp))) 1059 goto bail; 1060 1061 switch (status) { 1062 case SCTP_DISPOSITION_DISCARD: 1063 SCTP_DEBUG_PRINTK("Ignored sctp protocol event - state %d, " 1064 "event_type %d, event_id %d\n", 1065 state, event_type, subtype.chunk); 1066 break; 1067 1068 case SCTP_DISPOSITION_NOMEM: 1069 /* We ran out of memory, so we need to discard this 1070 * packet. 1071 */ 1072 /* BUG--we should now recover some memory, probably by 1073 * reneging... 1074 */ 1075 error = -ENOMEM; 1076 break; 1077 1078 case SCTP_DISPOSITION_DELETE_TCB: 1079 /* This should now be a command. */ 1080 break; 1081 1082 case SCTP_DISPOSITION_CONSUME: 1083 case SCTP_DISPOSITION_ABORT: 1084 /* 1085 * We should no longer have much work to do here as the 1086 * real work has been done as explicit commands above. 1087 */ 1088 break; 1089 1090 case SCTP_DISPOSITION_VIOLATION: 1091 if (net_ratelimit()) 1092 printk(KERN_ERR "sctp protocol violation state %d " 1093 "chunkid %d\n", state, subtype.chunk); 1094 break; 1095 1096 case SCTP_DISPOSITION_NOT_IMPL: 1097 printk(KERN_WARNING "sctp unimplemented feature in state %d, " 1098 "event_type %d, event_id %d\n", 1099 state, event_type, subtype.chunk); 1100 break; 1101 1102 case SCTP_DISPOSITION_BUG: 1103 printk(KERN_ERR "sctp bug in state %d, " 1104 "event_type %d, event_id %d\n", 1105 state, event_type, subtype.chunk); 1106 BUG(); 1107 break; 1108 1109 default: 1110 printk(KERN_ERR "sctp impossible disposition %d " 1111 "in state %d, event_type %d, event_id %d\n", 1112 status, state, event_type, subtype.chunk); 1113 BUG(); 1114 break; 1115 } 1116 1117 bail: 1118 return error; 1119 } 1120 1121 /******************************************************************** 1122 * 2nd Level Abstractions 1123 ********************************************************************/ 1124 1125 /* This is the side-effect interpreter. */ 1126 static int sctp_cmd_interpreter(sctp_event_t event_type, 1127 sctp_subtype_t subtype, 1128 sctp_state_t state, 1129 struct sctp_endpoint *ep, 1130 struct sctp_association *asoc, 1131 void *event_arg, 1132 sctp_disposition_t status, 1133 sctp_cmd_seq_t *commands, 1134 gfp_t gfp) 1135 { 1136 int error = 0; 1137 int force; 1138 sctp_cmd_t *cmd; 1139 struct sctp_chunk *new_obj; 1140 struct sctp_chunk *chunk = NULL; 1141 struct sctp_packet *packet; 1142 struct timer_list *timer; 1143 unsigned long timeout; 1144 struct sctp_transport *t; 1145 struct sctp_sackhdr sackh; 1146 int local_cork = 0; 1147 1148 if (SCTP_EVENT_T_TIMEOUT != event_type) 1149 chunk = (struct sctp_chunk *) event_arg; 1150 1151 /* Note: This whole file is a huge candidate for rework. 1152 * For example, each command could either have its own handler, so 1153 * the loop would look like: 1154 * while (cmds) 1155 * cmd->handle(x, y, z) 1156 * --jgrimm 1157 */ 1158 while (NULL != (cmd = sctp_next_cmd(commands))) { 1159 switch (cmd->verb) { 1160 case SCTP_CMD_NOP: 1161 /* Do nothing. */ 1162 break; 1163 1164 case SCTP_CMD_NEW_ASOC: 1165 /* Register a new association. */ 1166 if (local_cork) { 1167 sctp_outq_uncork(&asoc->outqueue); 1168 local_cork = 0; 1169 } 1170 asoc = cmd->obj.ptr; 1171 /* Register with the endpoint. */ 1172 sctp_endpoint_add_asoc(ep, asoc); 1173 sctp_hash_established(asoc); 1174 break; 1175 1176 case SCTP_CMD_UPDATE_ASSOC: 1177 sctp_assoc_update(asoc, cmd->obj.ptr); 1178 break; 1179 1180 case SCTP_CMD_PURGE_OUTQUEUE: 1181 sctp_outq_teardown(&asoc->outqueue); 1182 break; 1183 1184 case SCTP_CMD_DELETE_TCB: 1185 if (local_cork) { 1186 sctp_outq_uncork(&asoc->outqueue); 1187 local_cork = 0; 1188 } 1189 /* Delete the current association. */ 1190 sctp_cmd_delete_tcb(commands, asoc); 1191 asoc = NULL; 1192 break; 1193 1194 case SCTP_CMD_NEW_STATE: 1195 /* Enter a new state. */ 1196 sctp_cmd_new_state(commands, asoc, cmd->obj.state); 1197 break; 1198 1199 case SCTP_CMD_REPORT_TSN: 1200 /* Record the arrival of a TSN. */ 1201 error = sctp_tsnmap_mark(&asoc->peer.tsn_map, 1202 cmd->obj.u32); 1203 break; 1204 1205 case SCTP_CMD_REPORT_FWDTSN: 1206 /* Move the Cumulattive TSN Ack ahead. */ 1207 sctp_tsnmap_skip(&asoc->peer.tsn_map, cmd->obj.u32); 1208 1209 /* purge the fragmentation queue */ 1210 sctp_ulpq_reasm_flushtsn(&asoc->ulpq, cmd->obj.u32); 1211 1212 /* Abort any in progress partial delivery. */ 1213 sctp_ulpq_abort_pd(&asoc->ulpq, GFP_ATOMIC); 1214 break; 1215 1216 case SCTP_CMD_PROCESS_FWDTSN: 1217 sctp_cmd_process_fwdtsn(&asoc->ulpq, cmd->obj.ptr); 1218 break; 1219 1220 case SCTP_CMD_GEN_SACK: 1221 /* Generate a Selective ACK. 1222 * The argument tells us whether to just count 1223 * the packet and MAYBE generate a SACK, or 1224 * force a SACK out. 1225 */ 1226 force = cmd->obj.i32; 1227 error = sctp_gen_sack(asoc, force, commands); 1228 break; 1229 1230 case SCTP_CMD_PROCESS_SACK: 1231 /* Process an inbound SACK. */ 1232 error = sctp_cmd_process_sack(commands, asoc, 1233 cmd->obj.ptr); 1234 break; 1235 1236 case SCTP_CMD_GEN_INIT_ACK: 1237 /* Generate an INIT ACK chunk. */ 1238 new_obj = sctp_make_init_ack(asoc, chunk, GFP_ATOMIC, 1239 0); 1240 if (!new_obj) 1241 goto nomem; 1242 1243 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, 1244 SCTP_CHUNK(new_obj)); 1245 break; 1246 1247 case SCTP_CMD_PEER_INIT: 1248 /* Process a unified INIT from the peer. 1249 * Note: Only used during INIT-ACK processing. If 1250 * there is an error just return to the outter 1251 * layer which will bail. 1252 */ 1253 error = sctp_cmd_process_init(commands, asoc, chunk, 1254 cmd->obj.ptr, gfp); 1255 break; 1256 1257 case SCTP_CMD_GEN_COOKIE_ECHO: 1258 /* Generate a COOKIE ECHO chunk. */ 1259 new_obj = sctp_make_cookie_echo(asoc, chunk); 1260 if (!new_obj) { 1261 if (cmd->obj.ptr) 1262 sctp_chunk_free(cmd->obj.ptr); 1263 goto nomem; 1264 } 1265 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, 1266 SCTP_CHUNK(new_obj)); 1267 1268 /* If there is an ERROR chunk to be sent along with 1269 * the COOKIE_ECHO, send it, too. 1270 */ 1271 if (cmd->obj.ptr) 1272 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, 1273 SCTP_CHUNK(cmd->obj.ptr)); 1274 1275 if (new_obj->transport) { 1276 new_obj->transport->init_sent_count++; 1277 asoc->init_last_sent_to = new_obj->transport; 1278 } 1279 1280 /* FIXME - Eventually come up with a cleaner way to 1281 * enabling COOKIE-ECHO + DATA bundling during 1282 * multihoming stale cookie scenarios, the following 1283 * command plays with asoc->peer.retran_path to 1284 * avoid the problem of sending the COOKIE-ECHO and 1285 * DATA in different paths, which could result 1286 * in the association being ABORTed if the DATA chunk 1287 * is processed first by the server. Checking the 1288 * init error counter simply causes this command 1289 * to be executed only during failed attempts of 1290 * association establishment. 1291 */ 1292 if ((asoc->peer.retran_path != 1293 asoc->peer.primary_path) && 1294 (asoc->init_err_counter > 0)) { 1295 sctp_add_cmd_sf(commands, 1296 SCTP_CMD_FORCE_PRIM_RETRAN, 1297 SCTP_NULL()); 1298 } 1299 1300 break; 1301 1302 case SCTP_CMD_GEN_SHUTDOWN: 1303 /* Generate SHUTDOWN when in SHUTDOWN_SENT state. 1304 * Reset error counts. 1305 */ 1306 asoc->overall_error_count = 0; 1307 1308 /* Generate a SHUTDOWN chunk. */ 1309 new_obj = sctp_make_shutdown(asoc, chunk); 1310 if (!new_obj) 1311 goto nomem; 1312 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, 1313 SCTP_CHUNK(new_obj)); 1314 break; 1315 1316 case SCTP_CMD_CHUNK_ULP: 1317 /* Send a chunk to the sockets layer. */ 1318 SCTP_DEBUG_PRINTK("sm_sideff: %s %p, %s %p.\n", 1319 "chunk_up:", cmd->obj.ptr, 1320 "ulpq:", &asoc->ulpq); 1321 sctp_ulpq_tail_data(&asoc->ulpq, cmd->obj.ptr, 1322 GFP_ATOMIC); 1323 break; 1324 1325 case SCTP_CMD_EVENT_ULP: 1326 /* Send a notification to the sockets layer. */ 1327 SCTP_DEBUG_PRINTK("sm_sideff: %s %p, %s %p.\n", 1328 "event_up:",cmd->obj.ptr, 1329 "ulpq:",&asoc->ulpq); 1330 sctp_ulpq_tail_event(&asoc->ulpq, cmd->obj.ptr); 1331 break; 1332 1333 case SCTP_CMD_REPLY: 1334 /* If an caller has not already corked, do cork. */ 1335 if (!asoc->outqueue.cork) { 1336 sctp_outq_cork(&asoc->outqueue); 1337 local_cork = 1; 1338 } 1339 /* Send a chunk to our peer. */ 1340 error = sctp_outq_tail(&asoc->outqueue, cmd->obj.ptr); 1341 break; 1342 1343 case SCTP_CMD_SEND_PKT: 1344 /* Send a full packet to our peer. */ 1345 packet = cmd->obj.ptr; 1346 sctp_packet_transmit(packet); 1347 sctp_ootb_pkt_free(packet); 1348 break; 1349 1350 case SCTP_CMD_T1_RETRAN: 1351 /* Mark a transport for retransmission. */ 1352 sctp_retransmit(&asoc->outqueue, cmd->obj.transport, 1353 SCTP_RTXR_T1_RTX); 1354 break; 1355 1356 case SCTP_CMD_RETRAN: 1357 /* Mark a transport for retransmission. */ 1358 sctp_retransmit(&asoc->outqueue, cmd->obj.transport, 1359 SCTP_RTXR_T3_RTX); 1360 break; 1361 1362 case SCTP_CMD_TRANSMIT: 1363 /* Kick start transmission. */ 1364 error = sctp_outq_uncork(&asoc->outqueue); 1365 local_cork = 0; 1366 break; 1367 1368 case SCTP_CMD_ECN_CE: 1369 /* Do delayed CE processing. */ 1370 sctp_do_ecn_ce_work(asoc, cmd->obj.u32); 1371 break; 1372 1373 case SCTP_CMD_ECN_ECNE: 1374 /* Do delayed ECNE processing. */ 1375 new_obj = sctp_do_ecn_ecne_work(asoc, cmd->obj.u32, 1376 chunk); 1377 if (new_obj) 1378 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, 1379 SCTP_CHUNK(new_obj)); 1380 break; 1381 1382 case SCTP_CMD_ECN_CWR: 1383 /* Do delayed CWR processing. */ 1384 sctp_do_ecn_cwr_work(asoc, cmd->obj.u32); 1385 break; 1386 1387 case SCTP_CMD_SETUP_T2: 1388 sctp_cmd_setup_t2(commands, asoc, cmd->obj.ptr); 1389 break; 1390 1391 case SCTP_CMD_TIMER_START: 1392 timer = &asoc->timers[cmd->obj.to]; 1393 timeout = asoc->timeouts[cmd->obj.to]; 1394 BUG_ON(!timeout); 1395 1396 timer->expires = jiffies + timeout; 1397 sctp_association_hold(asoc); 1398 add_timer(timer); 1399 break; 1400 1401 case SCTP_CMD_TIMER_RESTART: 1402 timer = &asoc->timers[cmd->obj.to]; 1403 timeout = asoc->timeouts[cmd->obj.to]; 1404 if (!mod_timer(timer, jiffies + timeout)) 1405 sctp_association_hold(asoc); 1406 break; 1407 1408 case SCTP_CMD_TIMER_STOP: 1409 timer = &asoc->timers[cmd->obj.to]; 1410 if (timer_pending(timer) && del_timer(timer)) 1411 sctp_association_put(asoc); 1412 break; 1413 1414 case SCTP_CMD_INIT_CHOOSE_TRANSPORT: 1415 chunk = cmd->obj.ptr; 1416 t = sctp_assoc_choose_alter_transport(asoc, 1417 asoc->init_last_sent_to); 1418 asoc->init_last_sent_to = t; 1419 chunk->transport = t; 1420 t->init_sent_count++; 1421 break; 1422 1423 case SCTP_CMD_INIT_RESTART: 1424 /* Do the needed accounting and updates 1425 * associated with restarting an initialization 1426 * timer. Only multiply the timeout by two if 1427 * all transports have been tried at the current 1428 * timeout. 1429 */ 1430 sctp_cmd_t1_timer_update(asoc, 1431 SCTP_EVENT_TIMEOUT_T1_INIT, 1432 "INIT"); 1433 1434 sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART, 1435 SCTP_TO(SCTP_EVENT_TIMEOUT_T1_INIT)); 1436 break; 1437 1438 case SCTP_CMD_COOKIEECHO_RESTART: 1439 /* Do the needed accounting and updates 1440 * associated with restarting an initialization 1441 * timer. Only multiply the timeout by two if 1442 * all transports have been tried at the current 1443 * timeout. 1444 */ 1445 sctp_cmd_t1_timer_update(asoc, 1446 SCTP_EVENT_TIMEOUT_T1_COOKIE, 1447 "COOKIE"); 1448 1449 /* If we've sent any data bundled with 1450 * COOKIE-ECHO we need to resend. 1451 */ 1452 list_for_each_entry(t, &asoc->peer.transport_addr_list, 1453 transports) { 1454 sctp_retransmit_mark(&asoc->outqueue, t, 1455 SCTP_RTXR_T1_RTX); 1456 } 1457 1458 sctp_add_cmd_sf(commands, 1459 SCTP_CMD_TIMER_RESTART, 1460 SCTP_TO(SCTP_EVENT_TIMEOUT_T1_COOKIE)); 1461 break; 1462 1463 case SCTP_CMD_INIT_FAILED: 1464 sctp_cmd_init_failed(commands, asoc, cmd->obj.err); 1465 break; 1466 1467 case SCTP_CMD_ASSOC_FAILED: 1468 sctp_cmd_assoc_failed(commands, asoc, event_type, 1469 subtype, chunk, cmd->obj.err); 1470 break; 1471 1472 case SCTP_CMD_INIT_COUNTER_INC: 1473 asoc->init_err_counter++; 1474 break; 1475 1476 case SCTP_CMD_INIT_COUNTER_RESET: 1477 asoc->init_err_counter = 0; 1478 asoc->init_cycle = 0; 1479 list_for_each_entry(t, &asoc->peer.transport_addr_list, 1480 transports) { 1481 t->init_sent_count = 0; 1482 } 1483 break; 1484 1485 case SCTP_CMD_REPORT_DUP: 1486 sctp_tsnmap_mark_dup(&asoc->peer.tsn_map, 1487 cmd->obj.u32); 1488 break; 1489 1490 case SCTP_CMD_REPORT_BAD_TAG: 1491 SCTP_DEBUG_PRINTK("vtag mismatch!\n"); 1492 break; 1493 1494 case SCTP_CMD_STRIKE: 1495 /* Mark one strike against a transport. */ 1496 sctp_do_8_2_transport_strike(asoc, cmd->obj.transport, 1497 0); 1498 break; 1499 1500 case SCTP_CMD_TRANSPORT_IDLE: 1501 t = cmd->obj.transport; 1502 sctp_transport_lower_cwnd(t, SCTP_LOWER_CWND_INACTIVE); 1503 break; 1504 1505 case SCTP_CMD_TRANSPORT_HB_SENT: 1506 t = cmd->obj.transport; 1507 sctp_do_8_2_transport_strike(asoc, t, 1); 1508 t->hb_sent = 1; 1509 break; 1510 1511 case SCTP_CMD_TRANSPORT_ON: 1512 t = cmd->obj.transport; 1513 sctp_cmd_transport_on(commands, asoc, t, chunk); 1514 break; 1515 1516 case SCTP_CMD_HB_TIMERS_START: 1517 sctp_cmd_hb_timers_start(commands, asoc); 1518 break; 1519 1520 case SCTP_CMD_HB_TIMER_UPDATE: 1521 t = cmd->obj.transport; 1522 sctp_cmd_hb_timer_update(commands, t); 1523 break; 1524 1525 case SCTP_CMD_HB_TIMERS_STOP: 1526 sctp_cmd_hb_timers_stop(commands, asoc); 1527 break; 1528 1529 case SCTP_CMD_REPORT_ERROR: 1530 error = cmd->obj.error; 1531 break; 1532 1533 case SCTP_CMD_PROCESS_CTSN: 1534 /* Dummy up a SACK for processing. */ 1535 sackh.cum_tsn_ack = cmd->obj.be32; 1536 sackh.a_rwnd = asoc->peer.rwnd + 1537 asoc->outqueue.outstanding_bytes; 1538 sackh.num_gap_ack_blocks = 0; 1539 sackh.num_dup_tsns = 0; 1540 sctp_add_cmd_sf(commands, SCTP_CMD_PROCESS_SACK, 1541 SCTP_SACKH(&sackh)); 1542 break; 1543 1544 case SCTP_CMD_DISCARD_PACKET: 1545 /* We need to discard the whole packet. 1546 * Uncork the queue since there might be 1547 * responses pending 1548 */ 1549 chunk->pdiscard = 1; 1550 if (asoc) { 1551 sctp_outq_uncork(&asoc->outqueue); 1552 local_cork = 0; 1553 } 1554 break; 1555 1556 case SCTP_CMD_RTO_PENDING: 1557 t = cmd->obj.transport; 1558 t->rto_pending = 1; 1559 break; 1560 1561 case SCTP_CMD_PART_DELIVER: 1562 sctp_ulpq_partial_delivery(&asoc->ulpq, cmd->obj.ptr, 1563 GFP_ATOMIC); 1564 break; 1565 1566 case SCTP_CMD_RENEGE: 1567 sctp_ulpq_renege(&asoc->ulpq, cmd->obj.ptr, 1568 GFP_ATOMIC); 1569 break; 1570 1571 case SCTP_CMD_SETUP_T4: 1572 sctp_cmd_setup_t4(commands, asoc, cmd->obj.ptr); 1573 break; 1574 1575 case SCTP_CMD_PROCESS_OPERR: 1576 sctp_cmd_process_operr(commands, asoc, chunk); 1577 break; 1578 case SCTP_CMD_CLEAR_INIT_TAG: 1579 asoc->peer.i.init_tag = 0; 1580 break; 1581 case SCTP_CMD_DEL_NON_PRIMARY: 1582 sctp_cmd_del_non_primary(asoc); 1583 break; 1584 case SCTP_CMD_T3_RTX_TIMERS_STOP: 1585 sctp_cmd_t3_rtx_timers_stop(commands, asoc); 1586 break; 1587 case SCTP_CMD_FORCE_PRIM_RETRAN: 1588 t = asoc->peer.retran_path; 1589 asoc->peer.retran_path = asoc->peer.primary_path; 1590 error = sctp_outq_uncork(&asoc->outqueue); 1591 local_cork = 0; 1592 asoc->peer.retran_path = t; 1593 break; 1594 case SCTP_CMD_SET_SK_ERR: 1595 sctp_cmd_set_sk_err(asoc, cmd->obj.error); 1596 break; 1597 case SCTP_CMD_ASSOC_CHANGE: 1598 sctp_cmd_assoc_change(commands, asoc, 1599 cmd->obj.u8); 1600 break; 1601 case SCTP_CMD_ADAPTATION_IND: 1602 sctp_cmd_adaptation_ind(commands, asoc); 1603 break; 1604 1605 case SCTP_CMD_ASSOC_SHKEY: 1606 error = sctp_auth_asoc_init_active_key(asoc, 1607 GFP_ATOMIC); 1608 break; 1609 case SCTP_CMD_UPDATE_INITTAG: 1610 asoc->peer.i.init_tag = cmd->obj.u32; 1611 break; 1612 case SCTP_CMD_SEND_MSG: 1613 if (!asoc->outqueue.cork) { 1614 sctp_outq_cork(&asoc->outqueue); 1615 local_cork = 1; 1616 } 1617 error = sctp_cmd_send_msg(asoc, cmd->obj.msg); 1618 break; 1619 default: 1620 printk(KERN_WARNING "Impossible command: %u, %p\n", 1621 cmd->verb, cmd->obj.ptr); 1622 break; 1623 } 1624 1625 if (error) 1626 break; 1627 } 1628 1629 out: 1630 /* If this is in response to a received chunk, wait until 1631 * we are done with the packet to open the queue so that we don't 1632 * send multiple packets in response to a single request. 1633 */ 1634 if (asoc && SCTP_EVENT_T_CHUNK == event_type && chunk) { 1635 if (chunk->end_of_packet || chunk->singleton) 1636 error = sctp_outq_uncork(&asoc->outqueue); 1637 } else if (local_cork) 1638 error = sctp_outq_uncork(&asoc->outqueue); 1639 return error; 1640 nomem: 1641 error = -ENOMEM; 1642 goto out; 1643 } 1644 1645