xref: /openbmc/linux/net/sctp/sm_sideeffect.c (revision f39650de)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* SCTP kernel implementation
3  * (C) Copyright IBM Corp. 2001, 2004
4  * Copyright (c) 1999 Cisco, Inc.
5  * Copyright (c) 1999-2001 Motorola, Inc.
6  *
7  * This file is part of the SCTP kernel implementation
8  *
9  * These functions work with the state functions in sctp_sm_statefuns.c
10  * to implement that state operations.  These functions implement the
11  * steps which require modifying existing data structures.
12  *
13  * Please send any bug reports or fixes you make to the
14  * email address(es):
15  *    lksctp developers <linux-sctp@vger.kernel.org>
16  *
17  * Written or modified by:
18  *    La Monte H.P. Yarroll <piggy@acm.org>
19  *    Karl Knutson          <karl@athena.chicago.il.us>
20  *    Jon Grimm             <jgrimm@austin.ibm.com>
21  *    Hui Huang		    <hui.huang@nokia.com>
22  *    Dajiang Zhang	    <dajiang.zhang@nokia.com>
23  *    Daisy Chang	    <daisyc@us.ibm.com>
24  *    Sridhar Samudrala	    <sri@us.ibm.com>
25  *    Ardelle Fan	    <ardelle.fan@intel.com>
26  */
27 
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29 
30 #include <linux/skbuff.h>
31 #include <linux/types.h>
32 #include <linux/socket.h>
33 #include <linux/ip.h>
34 #include <linux/gfp.h>
35 #include <net/sock.h>
36 #include <net/sctp/sctp.h>
37 #include <net/sctp/sm.h>
38 #include <net/sctp/stream_sched.h>
39 
40 static int sctp_cmd_interpreter(enum sctp_event_type event_type,
41 				union sctp_subtype subtype,
42 				enum sctp_state state,
43 				struct sctp_endpoint *ep,
44 				struct sctp_association *asoc,
45 				void *event_arg,
46 				enum sctp_disposition status,
47 				struct sctp_cmd_seq *commands,
48 				gfp_t gfp);
49 static int sctp_side_effects(enum sctp_event_type event_type,
50 			     union sctp_subtype subtype,
51 			     enum sctp_state state,
52 			     struct sctp_endpoint *ep,
53 			     struct sctp_association **asoc,
54 			     void *event_arg,
55 			     enum sctp_disposition status,
56 			     struct sctp_cmd_seq *commands,
57 			     gfp_t gfp);
58 
59 /********************************************************************
60  * Helper functions
61  ********************************************************************/
62 
63 /* A helper function for delayed processing of INET ECN CE bit. */
64 static void sctp_do_ecn_ce_work(struct sctp_association *asoc,
65 				__u32 lowest_tsn)
66 {
67 	/* Save the TSN away for comparison when we receive CWR */
68 
69 	asoc->last_ecne_tsn = lowest_tsn;
70 	asoc->need_ecne = 1;
71 }
72 
73 /* Helper function for delayed processing of SCTP ECNE chunk.  */
74 /* RFC 2960 Appendix A
75  *
76  * RFC 2481 details a specific bit for a sender to send in
77  * the header of its next outbound TCP segment to indicate to
78  * its peer that it has reduced its congestion window.  This
79  * is termed the CWR bit.  For SCTP the same indication is made
80  * by including the CWR chunk.  This chunk contains one data
81  * element, i.e. the TSN number that was sent in the ECNE chunk.
82  * This element represents the lowest TSN number in the datagram
83  * that was originally marked with the CE bit.
84  */
85 static struct sctp_chunk *sctp_do_ecn_ecne_work(struct sctp_association *asoc,
86 						__u32 lowest_tsn,
87 						struct sctp_chunk *chunk)
88 {
89 	struct sctp_chunk *repl;
90 
91 	/* Our previously transmitted packet ran into some congestion
92 	 * so we should take action by reducing cwnd and ssthresh
93 	 * and then ACK our peer that we we've done so by
94 	 * sending a CWR.
95 	 */
96 
97 	/* First, try to determine if we want to actually lower
98 	 * our cwnd variables.  Only lower them if the ECNE looks more
99 	 * recent than the last response.
100 	 */
101 	if (TSN_lt(asoc->last_cwr_tsn, lowest_tsn)) {
102 		struct sctp_transport *transport;
103 
104 		/* Find which transport's congestion variables
105 		 * need to be adjusted.
106 		 */
107 		transport = sctp_assoc_lookup_tsn(asoc, lowest_tsn);
108 
109 		/* Update the congestion variables. */
110 		if (transport)
111 			sctp_transport_lower_cwnd(transport,
112 						  SCTP_LOWER_CWND_ECNE);
113 		asoc->last_cwr_tsn = lowest_tsn;
114 	}
115 
116 	/* Always try to quiet the other end.  In case of lost CWR,
117 	 * resend last_cwr_tsn.
118 	 */
119 	repl = sctp_make_cwr(asoc, asoc->last_cwr_tsn, chunk);
120 
121 	/* If we run out of memory, it will look like a lost CWR.  We'll
122 	 * get back in sync eventually.
123 	 */
124 	return repl;
125 }
126 
127 /* Helper function to do delayed processing of ECN CWR chunk.  */
128 static void sctp_do_ecn_cwr_work(struct sctp_association *asoc,
129 				 __u32 lowest_tsn)
130 {
131 	/* Turn off ECNE getting auto-prepended to every outgoing
132 	 * packet
133 	 */
134 	asoc->need_ecne = 0;
135 }
136 
137 /* Generate SACK if necessary.  We call this at the end of a packet.  */
138 static int sctp_gen_sack(struct sctp_association *asoc, int force,
139 			 struct sctp_cmd_seq *commands)
140 {
141 	struct sctp_transport *trans = asoc->peer.last_data_from;
142 	__u32 ctsn, max_tsn_seen;
143 	struct sctp_chunk *sack;
144 	int error = 0;
145 
146 	if (force ||
147 	    (!trans && (asoc->param_flags & SPP_SACKDELAY_DISABLE)) ||
148 	    (trans && (trans->param_flags & SPP_SACKDELAY_DISABLE)))
149 		asoc->peer.sack_needed = 1;
150 
151 	ctsn = sctp_tsnmap_get_ctsn(&asoc->peer.tsn_map);
152 	max_tsn_seen = sctp_tsnmap_get_max_tsn_seen(&asoc->peer.tsn_map);
153 
154 	/* From 12.2 Parameters necessary per association (i.e. the TCB):
155 	 *
156 	 * Ack State : This flag indicates if the next received packet
157 	 * 	     : is to be responded to with a SACK. ...
158 	 *	     : When DATA chunks are out of order, SACK's
159 	 *           : are not delayed (see Section 6).
160 	 *
161 	 * [This is actually not mentioned in Section 6, but we
162 	 * implement it here anyway. --piggy]
163 	 */
164 	if (max_tsn_seen != ctsn)
165 		asoc->peer.sack_needed = 1;
166 
167 	/* From 6.2  Acknowledgement on Reception of DATA Chunks:
168 	 *
169 	 * Section 4.2 of [RFC2581] SHOULD be followed. Specifically,
170 	 * an acknowledgement SHOULD be generated for at least every
171 	 * second packet (not every second DATA chunk) received, and
172 	 * SHOULD be generated within 200 ms of the arrival of any
173 	 * unacknowledged DATA chunk. ...
174 	 */
175 	if (!asoc->peer.sack_needed) {
176 		asoc->peer.sack_cnt++;
177 
178 		/* Set the SACK delay timeout based on the
179 		 * SACK delay for the last transport
180 		 * data was received from, or the default
181 		 * for the association.
182 		 */
183 		if (trans) {
184 			/* We will need a SACK for the next packet.  */
185 			if (asoc->peer.sack_cnt >= trans->sackfreq - 1)
186 				asoc->peer.sack_needed = 1;
187 
188 			asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] =
189 				trans->sackdelay;
190 		} else {
191 			/* We will need a SACK for the next packet.  */
192 			if (asoc->peer.sack_cnt >= asoc->sackfreq - 1)
193 				asoc->peer.sack_needed = 1;
194 
195 			asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] =
196 				asoc->sackdelay;
197 		}
198 
199 		/* Restart the SACK timer. */
200 		sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART,
201 				SCTP_TO(SCTP_EVENT_TIMEOUT_SACK));
202 	} else {
203 		__u32 old_a_rwnd = asoc->a_rwnd;
204 
205 		asoc->a_rwnd = asoc->rwnd;
206 		sack = sctp_make_sack(asoc);
207 		if (!sack) {
208 			asoc->a_rwnd = old_a_rwnd;
209 			goto nomem;
210 		}
211 
212 		asoc->peer.sack_needed = 0;
213 		asoc->peer.sack_cnt = 0;
214 
215 		sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(sack));
216 
217 		/* Stop the SACK timer.  */
218 		sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP,
219 				SCTP_TO(SCTP_EVENT_TIMEOUT_SACK));
220 	}
221 
222 	return error;
223 nomem:
224 	error = -ENOMEM;
225 	return error;
226 }
227 
228 /* When the T3-RTX timer expires, it calls this function to create the
229  * relevant state machine event.
230  */
231 void sctp_generate_t3_rtx_event(struct timer_list *t)
232 {
233 	struct sctp_transport *transport =
234 		from_timer(transport, t, T3_rtx_timer);
235 	struct sctp_association *asoc = transport->asoc;
236 	struct sock *sk = asoc->base.sk;
237 	struct net *net = sock_net(sk);
238 	int error;
239 
240 	/* Check whether a task is in the sock.  */
241 
242 	bh_lock_sock(sk);
243 	if (sock_owned_by_user(sk)) {
244 		pr_debug("%s: sock is busy\n", __func__);
245 
246 		/* Try again later.  */
247 		if (!mod_timer(&transport->T3_rtx_timer, jiffies + (HZ/20)))
248 			sctp_transport_hold(transport);
249 		goto out_unlock;
250 	}
251 
252 	/* Run through the state machine.  */
253 	error = sctp_do_sm(net, SCTP_EVENT_T_TIMEOUT,
254 			   SCTP_ST_TIMEOUT(SCTP_EVENT_TIMEOUT_T3_RTX),
255 			   asoc->state,
256 			   asoc->ep, asoc,
257 			   transport, GFP_ATOMIC);
258 
259 	if (error)
260 		sk->sk_err = -error;
261 
262 out_unlock:
263 	bh_unlock_sock(sk);
264 	sctp_transport_put(transport);
265 }
266 
267 /* This is a sa interface for producing timeout events.  It works
268  * for timeouts which use the association as their parameter.
269  */
270 static void sctp_generate_timeout_event(struct sctp_association *asoc,
271 					enum sctp_event_timeout timeout_type)
272 {
273 	struct sock *sk = asoc->base.sk;
274 	struct net *net = sock_net(sk);
275 	int error = 0;
276 
277 	bh_lock_sock(sk);
278 	if (sock_owned_by_user(sk)) {
279 		pr_debug("%s: sock is busy: timer %d\n", __func__,
280 			 timeout_type);
281 
282 		/* Try again later.  */
283 		if (!mod_timer(&asoc->timers[timeout_type], jiffies + (HZ/20)))
284 			sctp_association_hold(asoc);
285 		goto out_unlock;
286 	}
287 
288 	/* Is this association really dead and just waiting around for
289 	 * the timer to let go of the reference?
290 	 */
291 	if (asoc->base.dead)
292 		goto out_unlock;
293 
294 	/* Run through the state machine.  */
295 	error = sctp_do_sm(net, SCTP_EVENT_T_TIMEOUT,
296 			   SCTP_ST_TIMEOUT(timeout_type),
297 			   asoc->state, asoc->ep, asoc,
298 			   (void *)timeout_type, GFP_ATOMIC);
299 
300 	if (error)
301 		sk->sk_err = -error;
302 
303 out_unlock:
304 	bh_unlock_sock(sk);
305 	sctp_association_put(asoc);
306 }
307 
308 static void sctp_generate_t1_cookie_event(struct timer_list *t)
309 {
310 	struct sctp_association *asoc =
311 		from_timer(asoc, t, timers[SCTP_EVENT_TIMEOUT_T1_COOKIE]);
312 
313 	sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T1_COOKIE);
314 }
315 
316 static void sctp_generate_t1_init_event(struct timer_list *t)
317 {
318 	struct sctp_association *asoc =
319 		from_timer(asoc, t, timers[SCTP_EVENT_TIMEOUT_T1_INIT]);
320 
321 	sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T1_INIT);
322 }
323 
324 static void sctp_generate_t2_shutdown_event(struct timer_list *t)
325 {
326 	struct sctp_association *asoc =
327 		from_timer(asoc, t, timers[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN]);
328 
329 	sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T2_SHUTDOWN);
330 }
331 
332 static void sctp_generate_t4_rto_event(struct timer_list *t)
333 {
334 	struct sctp_association *asoc =
335 		from_timer(asoc, t, timers[SCTP_EVENT_TIMEOUT_T4_RTO]);
336 
337 	sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T4_RTO);
338 }
339 
340 static void sctp_generate_t5_shutdown_guard_event(struct timer_list *t)
341 {
342 	struct sctp_association *asoc =
343 		from_timer(asoc, t,
344 			   timers[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]);
345 
346 	sctp_generate_timeout_event(asoc,
347 				    SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD);
348 
349 } /* sctp_generate_t5_shutdown_guard_event() */
350 
351 static void sctp_generate_autoclose_event(struct timer_list *t)
352 {
353 	struct sctp_association *asoc =
354 		from_timer(asoc, t, timers[SCTP_EVENT_TIMEOUT_AUTOCLOSE]);
355 
356 	sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_AUTOCLOSE);
357 }
358 
359 /* Generate a heart beat event.  If the sock is busy, reschedule.   Make
360  * sure that the transport is still valid.
361  */
362 void sctp_generate_heartbeat_event(struct timer_list *t)
363 {
364 	struct sctp_transport *transport = from_timer(transport, t, hb_timer);
365 	struct sctp_association *asoc = transport->asoc;
366 	struct sock *sk = asoc->base.sk;
367 	struct net *net = sock_net(sk);
368 	u32 elapsed, timeout;
369 	int error = 0;
370 
371 	bh_lock_sock(sk);
372 	if (sock_owned_by_user(sk)) {
373 		pr_debug("%s: sock is busy\n", __func__);
374 
375 		/* Try again later.  */
376 		if (!mod_timer(&transport->hb_timer, jiffies + (HZ/20)))
377 			sctp_transport_hold(transport);
378 		goto out_unlock;
379 	}
380 
381 	/* Check if we should still send the heartbeat or reschedule */
382 	elapsed = jiffies - transport->last_time_sent;
383 	timeout = sctp_transport_timeout(transport);
384 	if (elapsed < timeout) {
385 		elapsed = timeout - elapsed;
386 		if (!mod_timer(&transport->hb_timer, jiffies + elapsed))
387 			sctp_transport_hold(transport);
388 		goto out_unlock;
389 	}
390 
391 	error = sctp_do_sm(net, SCTP_EVENT_T_TIMEOUT,
392 			   SCTP_ST_TIMEOUT(SCTP_EVENT_TIMEOUT_HEARTBEAT),
393 			   asoc->state, asoc->ep, asoc,
394 			   transport, GFP_ATOMIC);
395 
396 	if (error)
397 		sk->sk_err = -error;
398 
399 out_unlock:
400 	bh_unlock_sock(sk);
401 	sctp_transport_put(transport);
402 }
403 
404 /* Handle the timeout of the ICMP protocol unreachable timer.  Trigger
405  * the correct state machine transition that will close the association.
406  */
407 void sctp_generate_proto_unreach_event(struct timer_list *t)
408 {
409 	struct sctp_transport *transport =
410 		from_timer(transport, t, proto_unreach_timer);
411 	struct sctp_association *asoc = transport->asoc;
412 	struct sock *sk = asoc->base.sk;
413 	struct net *net = sock_net(sk);
414 
415 	bh_lock_sock(sk);
416 	if (sock_owned_by_user(sk)) {
417 		pr_debug("%s: sock is busy\n", __func__);
418 
419 		/* Try again later.  */
420 		if (!mod_timer(&transport->proto_unreach_timer,
421 				jiffies + (HZ/20)))
422 			sctp_transport_hold(transport);
423 		goto out_unlock;
424 	}
425 
426 	/* Is this structure just waiting around for us to actually
427 	 * get destroyed?
428 	 */
429 	if (asoc->base.dead)
430 		goto out_unlock;
431 
432 	sctp_do_sm(net, SCTP_EVENT_T_OTHER,
433 		   SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
434 		   asoc->state, asoc->ep, asoc, transport, GFP_ATOMIC);
435 
436 out_unlock:
437 	bh_unlock_sock(sk);
438 	sctp_transport_put(transport);
439 }
440 
441  /* Handle the timeout of the RE-CONFIG timer. */
442 void sctp_generate_reconf_event(struct timer_list *t)
443 {
444 	struct sctp_transport *transport =
445 		from_timer(transport, t, reconf_timer);
446 	struct sctp_association *asoc = transport->asoc;
447 	struct sock *sk = asoc->base.sk;
448 	struct net *net = sock_net(sk);
449 	int error = 0;
450 
451 	bh_lock_sock(sk);
452 	if (sock_owned_by_user(sk)) {
453 		pr_debug("%s: sock is busy\n", __func__);
454 
455 		/* Try again later.  */
456 		if (!mod_timer(&transport->reconf_timer, jiffies + (HZ / 20)))
457 			sctp_transport_hold(transport);
458 		goto out_unlock;
459 	}
460 
461 	error = sctp_do_sm(net, SCTP_EVENT_T_TIMEOUT,
462 			   SCTP_ST_TIMEOUT(SCTP_EVENT_TIMEOUT_RECONF),
463 			   asoc->state, asoc->ep, asoc,
464 			   transport, GFP_ATOMIC);
465 
466 	if (error)
467 		sk->sk_err = -error;
468 
469 out_unlock:
470 	bh_unlock_sock(sk);
471 	sctp_transport_put(transport);
472 }
473 
474 /* Inject a SACK Timeout event into the state machine.  */
475 static void sctp_generate_sack_event(struct timer_list *t)
476 {
477 	struct sctp_association *asoc =
478 		from_timer(asoc, t, timers[SCTP_EVENT_TIMEOUT_SACK]);
479 
480 	sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_SACK);
481 }
482 
483 sctp_timer_event_t *sctp_timer_events[SCTP_NUM_TIMEOUT_TYPES] = {
484 	[SCTP_EVENT_TIMEOUT_NONE] =		NULL,
485 	[SCTP_EVENT_TIMEOUT_T1_COOKIE] =	sctp_generate_t1_cookie_event,
486 	[SCTP_EVENT_TIMEOUT_T1_INIT] =		sctp_generate_t1_init_event,
487 	[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] =	sctp_generate_t2_shutdown_event,
488 	[SCTP_EVENT_TIMEOUT_T3_RTX] =		NULL,
489 	[SCTP_EVENT_TIMEOUT_T4_RTO] =		sctp_generate_t4_rto_event,
490 	[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD] =
491 					sctp_generate_t5_shutdown_guard_event,
492 	[SCTP_EVENT_TIMEOUT_HEARTBEAT] =	NULL,
493 	[SCTP_EVENT_TIMEOUT_RECONF] =		NULL,
494 	[SCTP_EVENT_TIMEOUT_SACK] =		sctp_generate_sack_event,
495 	[SCTP_EVENT_TIMEOUT_AUTOCLOSE] =	sctp_generate_autoclose_event,
496 };
497 
498 
499 /* RFC 2960 8.2 Path Failure Detection
500  *
501  * When its peer endpoint is multi-homed, an endpoint should keep a
502  * error counter for each of the destination transport addresses of the
503  * peer endpoint.
504  *
505  * Each time the T3-rtx timer expires on any address, or when a
506  * HEARTBEAT sent to an idle address is not acknowledged within a RTO,
507  * the error counter of that destination address will be incremented.
508  * When the value in the error counter exceeds the protocol parameter
509  * 'Path.Max.Retrans' of that destination address, the endpoint should
510  * mark the destination transport address as inactive, and a
511  * notification SHOULD be sent to the upper layer.
512  *
513  */
514 static void sctp_do_8_2_transport_strike(struct sctp_cmd_seq *commands,
515 					 struct sctp_association *asoc,
516 					 struct sctp_transport *transport,
517 					 int is_hb)
518 {
519 	/* The check for association's overall error counter exceeding the
520 	 * threshold is done in the state function.
521 	 */
522 	/* We are here due to a timer expiration.  If the timer was
523 	 * not a HEARTBEAT, then normal error tracking is done.
524 	 * If the timer was a heartbeat, we only increment error counts
525 	 * when we already have an outstanding HEARTBEAT that has not
526 	 * been acknowledged.
527 	 * Additionally, some tranport states inhibit error increments.
528 	 */
529 	if (!is_hb) {
530 		asoc->overall_error_count++;
531 		if (transport->state != SCTP_INACTIVE)
532 			transport->error_count++;
533 	 } else if (transport->hb_sent) {
534 		if (transport->state != SCTP_UNCONFIRMED)
535 			asoc->overall_error_count++;
536 		if (transport->state != SCTP_INACTIVE)
537 			transport->error_count++;
538 	}
539 
540 	/* If the transport error count is greater than the pf_retrans
541 	 * threshold, and less than pathmaxrtx, and if the current state
542 	 * is SCTP_ACTIVE, then mark this transport as Partially Failed,
543 	 * see SCTP Quick Failover Draft, section 5.1
544 	 */
545 	if (asoc->base.net->sctp.pf_enable &&
546 	    transport->state == SCTP_ACTIVE &&
547 	    transport->error_count < transport->pathmaxrxt &&
548 	    transport->error_count > transport->pf_retrans) {
549 
550 		sctp_assoc_control_transport(asoc, transport,
551 					     SCTP_TRANSPORT_PF,
552 					     0);
553 
554 		/* Update the hb timer to resend a heartbeat every rto */
555 		sctp_transport_reset_hb_timer(transport);
556 	}
557 
558 	if (transport->state != SCTP_INACTIVE &&
559 	    (transport->error_count > transport->pathmaxrxt)) {
560 		pr_debug("%s: association:%p transport addr:%pISpc failed\n",
561 			 __func__, asoc, &transport->ipaddr.sa);
562 
563 		sctp_assoc_control_transport(asoc, transport,
564 					     SCTP_TRANSPORT_DOWN,
565 					     SCTP_FAILED_THRESHOLD);
566 	}
567 
568 	if (transport->error_count > transport->ps_retrans &&
569 	    asoc->peer.primary_path == transport &&
570 	    asoc->peer.active_path != transport)
571 		sctp_assoc_set_primary(asoc, asoc->peer.active_path);
572 
573 	/* E2) For the destination address for which the timer
574 	 * expires, set RTO <- RTO * 2 ("back off the timer").  The
575 	 * maximum value discussed in rule C7 above (RTO.max) may be
576 	 * used to provide an upper bound to this doubling operation.
577 	 *
578 	 * Special Case:  the first HB doesn't trigger exponential backoff.
579 	 * The first unacknowledged HB triggers it.  We do this with a flag
580 	 * that indicates that we have an outstanding HB.
581 	 */
582 	if (!is_hb || transport->hb_sent) {
583 		transport->rto = min((transport->rto * 2), transport->asoc->rto_max);
584 		sctp_max_rto(asoc, transport);
585 	}
586 }
587 
588 /* Worker routine to handle INIT command failure.  */
589 static void sctp_cmd_init_failed(struct sctp_cmd_seq *commands,
590 				 struct sctp_association *asoc,
591 				 unsigned int error)
592 {
593 	struct sctp_ulpevent *event;
594 
595 	event = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_CANT_STR_ASSOC,
596 						(__u16)error, 0, 0, NULL,
597 						GFP_ATOMIC);
598 
599 	if (event)
600 		sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP,
601 				SCTP_ULPEVENT(event));
602 
603 	sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE,
604 			SCTP_STATE(SCTP_STATE_CLOSED));
605 
606 	/* SEND_FAILED sent later when cleaning up the association. */
607 	asoc->outqueue.error = error;
608 	sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL());
609 }
610 
611 /* Worker routine to handle SCTP_CMD_ASSOC_FAILED.  */
612 static void sctp_cmd_assoc_failed(struct sctp_cmd_seq *commands,
613 				  struct sctp_association *asoc,
614 				  enum sctp_event_type event_type,
615 				  union sctp_subtype subtype,
616 				  struct sctp_chunk *chunk,
617 				  unsigned int error)
618 {
619 	struct sctp_ulpevent *event;
620 	struct sctp_chunk *abort;
621 
622 	/* Cancel any partial delivery in progress. */
623 	asoc->stream.si->abort_pd(&asoc->ulpq, GFP_ATOMIC);
624 
625 	if (event_type == SCTP_EVENT_T_CHUNK && subtype.chunk == SCTP_CID_ABORT)
626 		event = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_COMM_LOST,
627 						(__u16)error, 0, 0, chunk,
628 						GFP_ATOMIC);
629 	else
630 		event = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_COMM_LOST,
631 						(__u16)error, 0, 0, NULL,
632 						GFP_ATOMIC);
633 	if (event)
634 		sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP,
635 				SCTP_ULPEVENT(event));
636 
637 	if (asoc->overall_error_count >= asoc->max_retrans) {
638 		abort = sctp_make_violation_max_retrans(asoc, chunk);
639 		if (abort)
640 			sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
641 					SCTP_CHUNK(abort));
642 	}
643 
644 	sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE,
645 			SCTP_STATE(SCTP_STATE_CLOSED));
646 
647 	/* SEND_FAILED sent later when cleaning up the association. */
648 	asoc->outqueue.error = error;
649 	sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL());
650 }
651 
652 /* Process an init chunk (may be real INIT/INIT-ACK or an embedded INIT
653  * inside the cookie.  In reality, this is only used for INIT-ACK processing
654  * since all other cases use "temporary" associations and can do all
655  * their work in statefuns directly.
656  */
657 static int sctp_cmd_process_init(struct sctp_cmd_seq *commands,
658 				 struct sctp_association *asoc,
659 				 struct sctp_chunk *chunk,
660 				 struct sctp_init_chunk *peer_init,
661 				 gfp_t gfp)
662 {
663 	int error;
664 
665 	/* We only process the init as a sideeffect in a single
666 	 * case.   This is when we process the INIT-ACK.   If we
667 	 * fail during INIT processing (due to malloc problems),
668 	 * just return the error and stop processing the stack.
669 	 */
670 	if (!sctp_process_init(asoc, chunk, sctp_source(chunk), peer_init, gfp))
671 		error = -ENOMEM;
672 	else
673 		error = 0;
674 
675 	return error;
676 }
677 
678 /* Helper function to break out starting up of heartbeat timers.  */
679 static void sctp_cmd_hb_timers_start(struct sctp_cmd_seq *cmds,
680 				     struct sctp_association *asoc)
681 {
682 	struct sctp_transport *t;
683 
684 	/* Start a heartbeat timer for each transport on the association.
685 	 * hold a reference on the transport to make sure none of
686 	 * the needed data structures go away.
687 	 */
688 	list_for_each_entry(t, &asoc->peer.transport_addr_list, transports)
689 		sctp_transport_reset_hb_timer(t);
690 }
691 
692 static void sctp_cmd_hb_timers_stop(struct sctp_cmd_seq *cmds,
693 				    struct sctp_association *asoc)
694 {
695 	struct sctp_transport *t;
696 
697 	/* Stop all heartbeat timers. */
698 
699 	list_for_each_entry(t, &asoc->peer.transport_addr_list,
700 			transports) {
701 		if (del_timer(&t->hb_timer))
702 			sctp_transport_put(t);
703 	}
704 }
705 
706 /* Helper function to stop any pending T3-RTX timers */
707 static void sctp_cmd_t3_rtx_timers_stop(struct sctp_cmd_seq *cmds,
708 					struct sctp_association *asoc)
709 {
710 	struct sctp_transport *t;
711 
712 	list_for_each_entry(t, &asoc->peer.transport_addr_list,
713 			transports) {
714 		if (del_timer(&t->T3_rtx_timer))
715 			sctp_transport_put(t);
716 	}
717 }
718 
719 
720 /* Helper function to handle the reception of an HEARTBEAT ACK.  */
721 static void sctp_cmd_transport_on(struct sctp_cmd_seq *cmds,
722 				  struct sctp_association *asoc,
723 				  struct sctp_transport *t,
724 				  struct sctp_chunk *chunk)
725 {
726 	struct sctp_sender_hb_info *hbinfo;
727 	int was_unconfirmed = 0;
728 
729 	/* 8.3 Upon the receipt of the HEARTBEAT ACK, the sender of the
730 	 * HEARTBEAT should clear the error counter of the destination
731 	 * transport address to which the HEARTBEAT was sent.
732 	 */
733 	t->error_count = 0;
734 
735 	/*
736 	 * Although RFC4960 specifies that the overall error count must
737 	 * be cleared when a HEARTBEAT ACK is received, we make an
738 	 * exception while in SHUTDOWN PENDING. If the peer keeps its
739 	 * window shut forever, we may never be able to transmit our
740 	 * outstanding data and rely on the retransmission limit be reached
741 	 * to shutdown the association.
742 	 */
743 	if (t->asoc->state < SCTP_STATE_SHUTDOWN_PENDING)
744 		t->asoc->overall_error_count = 0;
745 
746 	/* Clear the hb_sent flag to signal that we had a good
747 	 * acknowledgement.
748 	 */
749 	t->hb_sent = 0;
750 
751 	/* Mark the destination transport address as active if it is not so
752 	 * marked.
753 	 */
754 	if ((t->state == SCTP_INACTIVE) || (t->state == SCTP_UNCONFIRMED)) {
755 		was_unconfirmed = 1;
756 		sctp_assoc_control_transport(asoc, t, SCTP_TRANSPORT_UP,
757 					     SCTP_HEARTBEAT_SUCCESS);
758 	}
759 
760 	if (t->state == SCTP_PF)
761 		sctp_assoc_control_transport(asoc, t, SCTP_TRANSPORT_UP,
762 					     SCTP_HEARTBEAT_SUCCESS);
763 
764 	/* HB-ACK was received for a the proper HB.  Consider this
765 	 * forward progress.
766 	 */
767 	if (t->dst)
768 		sctp_transport_dst_confirm(t);
769 
770 	/* The receiver of the HEARTBEAT ACK should also perform an
771 	 * RTT measurement for that destination transport address
772 	 * using the time value carried in the HEARTBEAT ACK chunk.
773 	 * If the transport's rto_pending variable has been cleared,
774 	 * it was most likely due to a retransmit.  However, we want
775 	 * to re-enable it to properly update the rto.
776 	 */
777 	if (t->rto_pending == 0)
778 		t->rto_pending = 1;
779 
780 	hbinfo = (struct sctp_sender_hb_info *)chunk->skb->data;
781 	sctp_transport_update_rto(t, (jiffies - hbinfo->sent_at));
782 
783 	/* Update the heartbeat timer.  */
784 	sctp_transport_reset_hb_timer(t);
785 
786 	if (was_unconfirmed && asoc->peer.transport_count == 1)
787 		sctp_transport_immediate_rtx(t);
788 }
789 
790 
791 /* Helper function to process the process SACK command.  */
792 static int sctp_cmd_process_sack(struct sctp_cmd_seq *cmds,
793 				 struct sctp_association *asoc,
794 				 struct sctp_chunk *chunk)
795 {
796 	int err = 0;
797 
798 	if (sctp_outq_sack(&asoc->outqueue, chunk)) {
799 		/* There are no more TSNs awaiting SACK.  */
800 		err = sctp_do_sm(asoc->base.net, SCTP_EVENT_T_OTHER,
801 				 SCTP_ST_OTHER(SCTP_EVENT_NO_PENDING_TSN),
802 				 asoc->state, asoc->ep, asoc, NULL,
803 				 GFP_ATOMIC);
804 	}
805 
806 	return err;
807 }
808 
809 /* Helper function to set the timeout value for T2-SHUTDOWN timer and to set
810  * the transport for a shutdown chunk.
811  */
812 static void sctp_cmd_setup_t2(struct sctp_cmd_seq *cmds,
813 			      struct sctp_association *asoc,
814 			      struct sctp_chunk *chunk)
815 {
816 	struct sctp_transport *t;
817 
818 	if (chunk->transport)
819 		t = chunk->transport;
820 	else {
821 		t = sctp_assoc_choose_alter_transport(asoc,
822 					      asoc->shutdown_last_sent_to);
823 		chunk->transport = t;
824 	}
825 	asoc->shutdown_last_sent_to = t;
826 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = t->rto;
827 }
828 
829 /* Helper function to change the state of an association. */
830 static void sctp_cmd_new_state(struct sctp_cmd_seq *cmds,
831 			       struct sctp_association *asoc,
832 			       enum sctp_state state)
833 {
834 	struct sock *sk = asoc->base.sk;
835 
836 	asoc->state = state;
837 
838 	pr_debug("%s: asoc:%p[%s]\n", __func__, asoc, sctp_state_tbl[state]);
839 
840 	if (sctp_style(sk, TCP)) {
841 		/* Change the sk->sk_state of a TCP-style socket that has
842 		 * successfully completed a connect() call.
843 		 */
844 		if (sctp_state(asoc, ESTABLISHED) && sctp_sstate(sk, CLOSED))
845 			inet_sk_set_state(sk, SCTP_SS_ESTABLISHED);
846 
847 		/* Set the RCV_SHUTDOWN flag when a SHUTDOWN is received. */
848 		if (sctp_state(asoc, SHUTDOWN_RECEIVED) &&
849 		    sctp_sstate(sk, ESTABLISHED)) {
850 			inet_sk_set_state(sk, SCTP_SS_CLOSING);
851 			sk->sk_shutdown |= RCV_SHUTDOWN;
852 		}
853 	}
854 
855 	if (sctp_state(asoc, COOKIE_WAIT)) {
856 		/* Reset init timeouts since they may have been
857 		 * increased due to timer expirations.
858 		 */
859 		asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] =
860 						asoc->rto_initial;
861 		asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] =
862 						asoc->rto_initial;
863 	}
864 
865 	if (sctp_state(asoc, ESTABLISHED)) {
866 		kfree(asoc->peer.cookie);
867 		asoc->peer.cookie = NULL;
868 	}
869 
870 	if (sctp_state(asoc, ESTABLISHED) ||
871 	    sctp_state(asoc, CLOSED) ||
872 	    sctp_state(asoc, SHUTDOWN_RECEIVED)) {
873 		/* Wake up any processes waiting in the asoc's wait queue in
874 		 * sctp_wait_for_connect() or sctp_wait_for_sndbuf().
875 		 */
876 		if (waitqueue_active(&asoc->wait))
877 			wake_up_interruptible(&asoc->wait);
878 
879 		/* Wake up any processes waiting in the sk's sleep queue of
880 		 * a TCP-style or UDP-style peeled-off socket in
881 		 * sctp_wait_for_accept() or sctp_wait_for_packet().
882 		 * For a UDP-style socket, the waiters are woken up by the
883 		 * notifications.
884 		 */
885 		if (!sctp_style(sk, UDP))
886 			sk->sk_state_change(sk);
887 	}
888 
889 	if (sctp_state(asoc, SHUTDOWN_PENDING) &&
890 	    !sctp_outq_is_empty(&asoc->outqueue))
891 		sctp_outq_uncork(&asoc->outqueue, GFP_ATOMIC);
892 }
893 
894 /* Helper function to delete an association. */
895 static void sctp_cmd_delete_tcb(struct sctp_cmd_seq *cmds,
896 				struct sctp_association *asoc)
897 {
898 	struct sock *sk = asoc->base.sk;
899 
900 	/* If it is a non-temporary association belonging to a TCP-style
901 	 * listening socket that is not closed, do not free it so that accept()
902 	 * can pick it up later.
903 	 */
904 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING) &&
905 	    (!asoc->temp) && (sk->sk_shutdown != SHUTDOWN_MASK))
906 		return;
907 
908 	sctp_association_free(asoc);
909 }
910 
911 /*
912  * ADDIP Section 4.1 ASCONF Chunk Procedures
913  * A4) Start a T-4 RTO timer, using the RTO value of the selected
914  * destination address (we use active path instead of primary path just
915  * because primary path may be inactive.
916  */
917 static void sctp_cmd_setup_t4(struct sctp_cmd_seq *cmds,
918 			      struct sctp_association *asoc,
919 			      struct sctp_chunk *chunk)
920 {
921 	struct sctp_transport *t;
922 
923 	t = sctp_assoc_choose_alter_transport(asoc, chunk->transport);
924 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = t->rto;
925 	chunk->transport = t;
926 }
927 
928 /* Process an incoming Operation Error Chunk. */
929 static void sctp_cmd_process_operr(struct sctp_cmd_seq *cmds,
930 				   struct sctp_association *asoc,
931 				   struct sctp_chunk *chunk)
932 {
933 	struct sctp_errhdr *err_hdr;
934 	struct sctp_ulpevent *ev;
935 
936 	while (chunk->chunk_end > chunk->skb->data) {
937 		err_hdr = (struct sctp_errhdr *)(chunk->skb->data);
938 
939 		ev = sctp_ulpevent_make_remote_error(asoc, chunk, 0,
940 						     GFP_ATOMIC);
941 		if (!ev)
942 			return;
943 
944 		asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
945 
946 		switch (err_hdr->cause) {
947 		case SCTP_ERROR_UNKNOWN_CHUNK:
948 		{
949 			struct sctp_chunkhdr *unk_chunk_hdr;
950 
951 			unk_chunk_hdr = (struct sctp_chunkhdr *)
952 							err_hdr->variable;
953 			switch (unk_chunk_hdr->type) {
954 			/* ADDIP 4.1 A9) If the peer responds to an ASCONF with
955 			 * an ERROR chunk reporting that it did not recognized
956 			 * the ASCONF chunk type, the sender of the ASCONF MUST
957 			 * NOT send any further ASCONF chunks and MUST stop its
958 			 * T-4 timer.
959 			 */
960 			case SCTP_CID_ASCONF:
961 				if (asoc->peer.asconf_capable == 0)
962 					break;
963 
964 				asoc->peer.asconf_capable = 0;
965 				sctp_add_cmd_sf(cmds, SCTP_CMD_TIMER_STOP,
966 					SCTP_TO(SCTP_EVENT_TIMEOUT_T4_RTO));
967 				break;
968 			default:
969 				break;
970 			}
971 			break;
972 		}
973 		default:
974 			break;
975 		}
976 	}
977 }
978 
979 /* Helper function to remove the association non-primary peer
980  * transports.
981  */
982 static void sctp_cmd_del_non_primary(struct sctp_association *asoc)
983 {
984 	struct sctp_transport *t;
985 	struct list_head *temp;
986 	struct list_head *pos;
987 
988 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
989 		t = list_entry(pos, struct sctp_transport, transports);
990 		if (!sctp_cmp_addr_exact(&t->ipaddr,
991 					 &asoc->peer.primary_addr)) {
992 			sctp_assoc_rm_peer(asoc, t);
993 		}
994 	}
995 }
996 
997 /* Helper function to set sk_err on a 1-1 style socket. */
998 static void sctp_cmd_set_sk_err(struct sctp_association *asoc, int error)
999 {
1000 	struct sock *sk = asoc->base.sk;
1001 
1002 	if (!sctp_style(sk, UDP))
1003 		sk->sk_err = error;
1004 }
1005 
1006 /* Helper function to generate an association change event */
1007 static void sctp_cmd_assoc_change(struct sctp_cmd_seq *commands,
1008 				  struct sctp_association *asoc,
1009 				  u8 state)
1010 {
1011 	struct sctp_ulpevent *ev;
1012 
1013 	ev = sctp_ulpevent_make_assoc_change(asoc, 0, state, 0,
1014 					    asoc->c.sinit_num_ostreams,
1015 					    asoc->c.sinit_max_instreams,
1016 					    NULL, GFP_ATOMIC);
1017 	if (ev)
1018 		asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
1019 }
1020 
1021 static void sctp_cmd_peer_no_auth(struct sctp_cmd_seq *commands,
1022 				  struct sctp_association *asoc)
1023 {
1024 	struct sctp_ulpevent *ev;
1025 
1026 	ev = sctp_ulpevent_make_authkey(asoc, 0, SCTP_AUTH_NO_AUTH, GFP_ATOMIC);
1027 	if (ev)
1028 		asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
1029 }
1030 
1031 /* Helper function to generate an adaptation indication event */
1032 static void sctp_cmd_adaptation_ind(struct sctp_cmd_seq *commands,
1033 				    struct sctp_association *asoc)
1034 {
1035 	struct sctp_ulpevent *ev;
1036 
1037 	ev = sctp_ulpevent_make_adaptation_indication(asoc, GFP_ATOMIC);
1038 
1039 	if (ev)
1040 		asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
1041 }
1042 
1043 
1044 static void sctp_cmd_t1_timer_update(struct sctp_association *asoc,
1045 				     enum sctp_event_timeout timer,
1046 				     char *name)
1047 {
1048 	struct sctp_transport *t;
1049 
1050 	t = asoc->init_last_sent_to;
1051 	asoc->init_err_counter++;
1052 
1053 	if (t->init_sent_count > (asoc->init_cycle + 1)) {
1054 		asoc->timeouts[timer] *= 2;
1055 		if (asoc->timeouts[timer] > asoc->max_init_timeo) {
1056 			asoc->timeouts[timer] = asoc->max_init_timeo;
1057 		}
1058 		asoc->init_cycle++;
1059 
1060 		pr_debug("%s: T1[%s] timeout adjustment init_err_counter:%d"
1061 			 " cycle:%d timeout:%ld\n", __func__, name,
1062 			 asoc->init_err_counter, asoc->init_cycle,
1063 			 asoc->timeouts[timer]);
1064 	}
1065 
1066 }
1067 
1068 /* Send the whole message, chunk by chunk, to the outqueue.
1069  * This way the whole message is queued up and bundling if
1070  * encouraged for small fragments.
1071  */
1072 static void sctp_cmd_send_msg(struct sctp_association *asoc,
1073 			      struct sctp_datamsg *msg, gfp_t gfp)
1074 {
1075 	struct sctp_chunk *chunk;
1076 
1077 	list_for_each_entry(chunk, &msg->chunks, frag_list)
1078 		sctp_outq_tail(&asoc->outqueue, chunk, gfp);
1079 
1080 	asoc->outqueue.sched->enqueue(&asoc->outqueue, msg);
1081 }
1082 
1083 
1084 /* These three macros allow us to pull the debugging code out of the
1085  * main flow of sctp_do_sm() to keep attention focused on the real
1086  * functionality there.
1087  */
1088 #define debug_pre_sfn() \
1089 	pr_debug("%s[pre-fn]: ep:%p, %s, %s, asoc:%p[%s], %s\n", __func__, \
1090 		 ep, sctp_evttype_tbl[event_type], (*debug_fn)(subtype),   \
1091 		 asoc, sctp_state_tbl[state], state_fn->name)
1092 
1093 #define debug_post_sfn() \
1094 	pr_debug("%s[post-fn]: asoc:%p, status:%s\n", __func__, asoc, \
1095 		 sctp_status_tbl[status])
1096 
1097 #define debug_post_sfx() \
1098 	pr_debug("%s[post-sfx]: error:%d, asoc:%p[%s]\n", __func__, error, \
1099 		 asoc, sctp_state_tbl[(asoc && sctp_id2assoc(ep->base.sk, \
1100 		 sctp_assoc2id(asoc))) ? asoc->state : SCTP_STATE_CLOSED])
1101 
1102 /*
1103  * This is the master state machine processing function.
1104  *
1105  * If you want to understand all of lksctp, this is a
1106  * good place to start.
1107  */
1108 int sctp_do_sm(struct net *net, enum sctp_event_type event_type,
1109 	       union sctp_subtype subtype, enum sctp_state state,
1110 	       struct sctp_endpoint *ep, struct sctp_association *asoc,
1111 	       void *event_arg, gfp_t gfp)
1112 {
1113 	typedef const char *(printfn_t)(union sctp_subtype);
1114 	static printfn_t *table[] = {
1115 		NULL, sctp_cname, sctp_tname, sctp_oname, sctp_pname,
1116 	};
1117 	printfn_t *debug_fn  __attribute__ ((unused)) = table[event_type];
1118 	const struct sctp_sm_table_entry *state_fn;
1119 	struct sctp_cmd_seq commands;
1120 	enum sctp_disposition status;
1121 	int error = 0;
1122 
1123 	/* Look up the state function, run it, and then process the
1124 	 * side effects.  These three steps are the heart of lksctp.
1125 	 */
1126 	state_fn = sctp_sm_lookup_event(net, event_type, state, subtype);
1127 
1128 	sctp_init_cmd_seq(&commands);
1129 
1130 	debug_pre_sfn();
1131 	status = state_fn->fn(net, ep, asoc, subtype, event_arg, &commands);
1132 	debug_post_sfn();
1133 
1134 	error = sctp_side_effects(event_type, subtype, state,
1135 				  ep, &asoc, event_arg, status,
1136 				  &commands, gfp);
1137 	debug_post_sfx();
1138 
1139 	return error;
1140 }
1141 
1142 /*****************************************************************
1143  * This the master state function side effect processing function.
1144  *****************************************************************/
1145 static int sctp_side_effects(enum sctp_event_type event_type,
1146 			     union sctp_subtype subtype,
1147 			     enum sctp_state state,
1148 			     struct sctp_endpoint *ep,
1149 			     struct sctp_association **asoc,
1150 			     void *event_arg,
1151 			     enum sctp_disposition status,
1152 			     struct sctp_cmd_seq *commands,
1153 			     gfp_t gfp)
1154 {
1155 	int error;
1156 
1157 	/* FIXME - Most of the dispositions left today would be categorized
1158 	 * as "exceptional" dispositions.  For those dispositions, it
1159 	 * may not be proper to run through any of the commands at all.
1160 	 * For example, the command interpreter might be run only with
1161 	 * disposition SCTP_DISPOSITION_CONSUME.
1162 	 */
1163 	if (0 != (error = sctp_cmd_interpreter(event_type, subtype, state,
1164 					       ep, *asoc,
1165 					       event_arg, status,
1166 					       commands, gfp)))
1167 		goto bail;
1168 
1169 	switch (status) {
1170 	case SCTP_DISPOSITION_DISCARD:
1171 		pr_debug("%s: ignored sctp protocol event - state:%d, "
1172 			 "event_type:%d, event_id:%d\n", __func__, state,
1173 			 event_type, subtype.chunk);
1174 		break;
1175 
1176 	case SCTP_DISPOSITION_NOMEM:
1177 		/* We ran out of memory, so we need to discard this
1178 		 * packet.
1179 		 */
1180 		/* BUG--we should now recover some memory, probably by
1181 		 * reneging...
1182 		 */
1183 		error = -ENOMEM;
1184 		break;
1185 
1186 	case SCTP_DISPOSITION_DELETE_TCB:
1187 	case SCTP_DISPOSITION_ABORT:
1188 		/* This should now be a command. */
1189 		*asoc = NULL;
1190 		break;
1191 
1192 	case SCTP_DISPOSITION_CONSUME:
1193 		/*
1194 		 * We should no longer have much work to do here as the
1195 		 * real work has been done as explicit commands above.
1196 		 */
1197 		break;
1198 
1199 	case SCTP_DISPOSITION_VIOLATION:
1200 		net_err_ratelimited("protocol violation state %d chunkid %d\n",
1201 				    state, subtype.chunk);
1202 		break;
1203 
1204 	case SCTP_DISPOSITION_NOT_IMPL:
1205 		pr_warn("unimplemented feature in state %d, event_type %d, event_id %d\n",
1206 			state, event_type, subtype.chunk);
1207 		break;
1208 
1209 	case SCTP_DISPOSITION_BUG:
1210 		pr_err("bug in state %d, event_type %d, event_id %d\n",
1211 		       state, event_type, subtype.chunk);
1212 		BUG();
1213 		break;
1214 
1215 	default:
1216 		pr_err("impossible disposition %d in state %d, event_type %d, event_id %d\n",
1217 		       status, state, event_type, subtype.chunk);
1218 		BUG();
1219 		break;
1220 	}
1221 
1222 bail:
1223 	return error;
1224 }
1225 
1226 /********************************************************************
1227  * 2nd Level Abstractions
1228  ********************************************************************/
1229 
1230 /* This is the side-effect interpreter.  */
1231 static int sctp_cmd_interpreter(enum sctp_event_type event_type,
1232 				union sctp_subtype subtype,
1233 				enum sctp_state state,
1234 				struct sctp_endpoint *ep,
1235 				struct sctp_association *asoc,
1236 				void *event_arg,
1237 				enum sctp_disposition status,
1238 				struct sctp_cmd_seq *commands,
1239 				gfp_t gfp)
1240 {
1241 	struct sctp_sock *sp = sctp_sk(ep->base.sk);
1242 	struct sctp_chunk *chunk = NULL, *new_obj;
1243 	struct sctp_packet *packet;
1244 	struct sctp_sackhdr sackh;
1245 	struct timer_list *timer;
1246 	struct sctp_transport *t;
1247 	unsigned long timeout;
1248 	struct sctp_cmd *cmd;
1249 	int local_cork = 0;
1250 	int error = 0;
1251 	int force;
1252 
1253 	if (SCTP_EVENT_T_TIMEOUT != event_type)
1254 		chunk = event_arg;
1255 
1256 	/* Note:  This whole file is a huge candidate for rework.
1257 	 * For example, each command could either have its own handler, so
1258 	 * the loop would look like:
1259 	 *     while (cmds)
1260 	 *         cmd->handle(x, y, z)
1261 	 * --jgrimm
1262 	 */
1263 	while (NULL != (cmd = sctp_next_cmd(commands))) {
1264 		switch (cmd->verb) {
1265 		case SCTP_CMD_NOP:
1266 			/* Do nothing. */
1267 			break;
1268 
1269 		case SCTP_CMD_NEW_ASOC:
1270 			/* Register a new association.  */
1271 			if (local_cork) {
1272 				sctp_outq_uncork(&asoc->outqueue, gfp);
1273 				local_cork = 0;
1274 			}
1275 
1276 			/* Register with the endpoint.  */
1277 			asoc = cmd->obj.asoc;
1278 			BUG_ON(asoc->peer.primary_path == NULL);
1279 			sctp_endpoint_add_asoc(ep, asoc);
1280 			break;
1281 
1282 		case SCTP_CMD_PURGE_OUTQUEUE:
1283 		       sctp_outq_teardown(&asoc->outqueue);
1284 		       break;
1285 
1286 		case SCTP_CMD_DELETE_TCB:
1287 			if (local_cork) {
1288 				sctp_outq_uncork(&asoc->outqueue, gfp);
1289 				local_cork = 0;
1290 			}
1291 			/* Delete the current association.  */
1292 			sctp_cmd_delete_tcb(commands, asoc);
1293 			asoc = NULL;
1294 			break;
1295 
1296 		case SCTP_CMD_NEW_STATE:
1297 			/* Enter a new state.  */
1298 			sctp_cmd_new_state(commands, asoc, cmd->obj.state);
1299 			break;
1300 
1301 		case SCTP_CMD_REPORT_TSN:
1302 			/* Record the arrival of a TSN.  */
1303 			error = sctp_tsnmap_mark(&asoc->peer.tsn_map,
1304 						 cmd->obj.u32, NULL);
1305 			break;
1306 
1307 		case SCTP_CMD_REPORT_FWDTSN:
1308 			asoc->stream.si->report_ftsn(&asoc->ulpq, cmd->obj.u32);
1309 			break;
1310 
1311 		case SCTP_CMD_PROCESS_FWDTSN:
1312 			asoc->stream.si->handle_ftsn(&asoc->ulpq,
1313 						     cmd->obj.chunk);
1314 			break;
1315 
1316 		case SCTP_CMD_GEN_SACK:
1317 			/* Generate a Selective ACK.
1318 			 * The argument tells us whether to just count
1319 			 * the packet and MAYBE generate a SACK, or
1320 			 * force a SACK out.
1321 			 */
1322 			force = cmd->obj.i32;
1323 			error = sctp_gen_sack(asoc, force, commands);
1324 			break;
1325 
1326 		case SCTP_CMD_PROCESS_SACK:
1327 			/* Process an inbound SACK.  */
1328 			error = sctp_cmd_process_sack(commands, asoc,
1329 						      cmd->obj.chunk);
1330 			break;
1331 
1332 		case SCTP_CMD_GEN_INIT_ACK:
1333 			/* Generate an INIT ACK chunk.  */
1334 			new_obj = sctp_make_init_ack(asoc, chunk, GFP_ATOMIC,
1335 						     0);
1336 			if (!new_obj) {
1337 				error = -ENOMEM;
1338 				break;
1339 			}
1340 
1341 			sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
1342 					SCTP_CHUNK(new_obj));
1343 			break;
1344 
1345 		case SCTP_CMD_PEER_INIT:
1346 			/* Process a unified INIT from the peer.
1347 			 * Note: Only used during INIT-ACK processing.  If
1348 			 * there is an error just return to the outter
1349 			 * layer which will bail.
1350 			 */
1351 			error = sctp_cmd_process_init(commands, asoc, chunk,
1352 						      cmd->obj.init, gfp);
1353 			break;
1354 
1355 		case SCTP_CMD_GEN_COOKIE_ECHO:
1356 			/* Generate a COOKIE ECHO chunk.  */
1357 			new_obj = sctp_make_cookie_echo(asoc, chunk);
1358 			if (!new_obj) {
1359 				if (cmd->obj.chunk)
1360 					sctp_chunk_free(cmd->obj.chunk);
1361 				error = -ENOMEM;
1362 				break;
1363 			}
1364 			sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
1365 					SCTP_CHUNK(new_obj));
1366 
1367 			/* If there is an ERROR chunk to be sent along with
1368 			 * the COOKIE_ECHO, send it, too.
1369 			 */
1370 			if (cmd->obj.chunk)
1371 				sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
1372 						SCTP_CHUNK(cmd->obj.chunk));
1373 
1374 			if (new_obj->transport) {
1375 				new_obj->transport->init_sent_count++;
1376 				asoc->init_last_sent_to = new_obj->transport;
1377 			}
1378 
1379 			/* FIXME - Eventually come up with a cleaner way to
1380 			 * enabling COOKIE-ECHO + DATA bundling during
1381 			 * multihoming stale cookie scenarios, the following
1382 			 * command plays with asoc->peer.retran_path to
1383 			 * avoid the problem of sending the COOKIE-ECHO and
1384 			 * DATA in different paths, which could result
1385 			 * in the association being ABORTed if the DATA chunk
1386 			 * is processed first by the server.  Checking the
1387 			 * init error counter simply causes this command
1388 			 * to be executed only during failed attempts of
1389 			 * association establishment.
1390 			 */
1391 			if ((asoc->peer.retran_path !=
1392 			     asoc->peer.primary_path) &&
1393 			    (asoc->init_err_counter > 0)) {
1394 				sctp_add_cmd_sf(commands,
1395 						SCTP_CMD_FORCE_PRIM_RETRAN,
1396 						SCTP_NULL());
1397 			}
1398 
1399 			break;
1400 
1401 		case SCTP_CMD_GEN_SHUTDOWN:
1402 			/* Generate SHUTDOWN when in SHUTDOWN_SENT state.
1403 			 * Reset error counts.
1404 			 */
1405 			asoc->overall_error_count = 0;
1406 
1407 			/* Generate a SHUTDOWN chunk.  */
1408 			new_obj = sctp_make_shutdown(asoc, chunk);
1409 			if (!new_obj) {
1410 				error = -ENOMEM;
1411 				break;
1412 			}
1413 			sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
1414 					SCTP_CHUNK(new_obj));
1415 			break;
1416 
1417 		case SCTP_CMD_CHUNK_ULP:
1418 			/* Send a chunk to the sockets layer.  */
1419 			pr_debug("%s: sm_sideff: chunk_up:%p, ulpq:%p\n",
1420 				 __func__, cmd->obj.chunk, &asoc->ulpq);
1421 
1422 			asoc->stream.si->ulpevent_data(&asoc->ulpq,
1423 						       cmd->obj.chunk,
1424 						       GFP_ATOMIC);
1425 			break;
1426 
1427 		case SCTP_CMD_EVENT_ULP:
1428 			/* Send a notification to the sockets layer.  */
1429 			pr_debug("%s: sm_sideff: event_up:%p, ulpq:%p\n",
1430 				 __func__, cmd->obj.ulpevent, &asoc->ulpq);
1431 
1432 			asoc->stream.si->enqueue_event(&asoc->ulpq,
1433 						       cmd->obj.ulpevent);
1434 			break;
1435 
1436 		case SCTP_CMD_REPLY:
1437 			/* If an caller has not already corked, do cork. */
1438 			if (!asoc->outqueue.cork) {
1439 				sctp_outq_cork(&asoc->outqueue);
1440 				local_cork = 1;
1441 			}
1442 			/* Send a chunk to our peer.  */
1443 			sctp_outq_tail(&asoc->outqueue, cmd->obj.chunk, gfp);
1444 			break;
1445 
1446 		case SCTP_CMD_SEND_PKT:
1447 			/* Send a full packet to our peer.  */
1448 			packet = cmd->obj.packet;
1449 			sctp_packet_transmit(packet, gfp);
1450 			sctp_ootb_pkt_free(packet);
1451 			break;
1452 
1453 		case SCTP_CMD_T1_RETRAN:
1454 			/* Mark a transport for retransmission.  */
1455 			sctp_retransmit(&asoc->outqueue, cmd->obj.transport,
1456 					SCTP_RTXR_T1_RTX);
1457 			break;
1458 
1459 		case SCTP_CMD_RETRAN:
1460 			/* Mark a transport for retransmission.  */
1461 			sctp_retransmit(&asoc->outqueue, cmd->obj.transport,
1462 					SCTP_RTXR_T3_RTX);
1463 			break;
1464 
1465 		case SCTP_CMD_ECN_CE:
1466 			/* Do delayed CE processing.   */
1467 			sctp_do_ecn_ce_work(asoc, cmd->obj.u32);
1468 			break;
1469 
1470 		case SCTP_CMD_ECN_ECNE:
1471 			/* Do delayed ECNE processing. */
1472 			new_obj = sctp_do_ecn_ecne_work(asoc, cmd->obj.u32,
1473 							chunk);
1474 			if (new_obj)
1475 				sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
1476 						SCTP_CHUNK(new_obj));
1477 			break;
1478 
1479 		case SCTP_CMD_ECN_CWR:
1480 			/* Do delayed CWR processing.  */
1481 			sctp_do_ecn_cwr_work(asoc, cmd->obj.u32);
1482 			break;
1483 
1484 		case SCTP_CMD_SETUP_T2:
1485 			sctp_cmd_setup_t2(commands, asoc, cmd->obj.chunk);
1486 			break;
1487 
1488 		case SCTP_CMD_TIMER_START_ONCE:
1489 			timer = &asoc->timers[cmd->obj.to];
1490 
1491 			if (timer_pending(timer))
1492 				break;
1493 			fallthrough;
1494 
1495 		case SCTP_CMD_TIMER_START:
1496 			timer = &asoc->timers[cmd->obj.to];
1497 			timeout = asoc->timeouts[cmd->obj.to];
1498 			BUG_ON(!timeout);
1499 
1500 			/*
1501 			 * SCTP has a hard time with timer starts.  Because we process
1502 			 * timer starts as side effects, it can be hard to tell if we
1503 			 * have already started a timer or not, which leads to BUG
1504 			 * halts when we call add_timer. So here, instead of just starting
1505 			 * a timer, if the timer is already started, and just mod
1506 			 * the timer with the shorter of the two expiration times
1507 			 */
1508 			if (!timer_pending(timer))
1509 				sctp_association_hold(asoc);
1510 			timer_reduce(timer, jiffies + timeout);
1511 			break;
1512 
1513 		case SCTP_CMD_TIMER_RESTART:
1514 			timer = &asoc->timers[cmd->obj.to];
1515 			timeout = asoc->timeouts[cmd->obj.to];
1516 			if (!mod_timer(timer, jiffies + timeout))
1517 				sctp_association_hold(asoc);
1518 			break;
1519 
1520 		case SCTP_CMD_TIMER_STOP:
1521 			timer = &asoc->timers[cmd->obj.to];
1522 			if (del_timer(timer))
1523 				sctp_association_put(asoc);
1524 			break;
1525 
1526 		case SCTP_CMD_INIT_CHOOSE_TRANSPORT:
1527 			chunk = cmd->obj.chunk;
1528 			t = sctp_assoc_choose_alter_transport(asoc,
1529 						asoc->init_last_sent_to);
1530 			asoc->init_last_sent_to = t;
1531 			chunk->transport = t;
1532 			t->init_sent_count++;
1533 			/* Set the new transport as primary */
1534 			sctp_assoc_set_primary(asoc, t);
1535 			break;
1536 
1537 		case SCTP_CMD_INIT_RESTART:
1538 			/* Do the needed accounting and updates
1539 			 * associated with restarting an initialization
1540 			 * timer. Only multiply the timeout by two if
1541 			 * all transports have been tried at the current
1542 			 * timeout.
1543 			 */
1544 			sctp_cmd_t1_timer_update(asoc,
1545 						SCTP_EVENT_TIMEOUT_T1_INIT,
1546 						"INIT");
1547 
1548 			sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART,
1549 					SCTP_TO(SCTP_EVENT_TIMEOUT_T1_INIT));
1550 			break;
1551 
1552 		case SCTP_CMD_COOKIEECHO_RESTART:
1553 			/* Do the needed accounting and updates
1554 			 * associated with restarting an initialization
1555 			 * timer. Only multiply the timeout by two if
1556 			 * all transports have been tried at the current
1557 			 * timeout.
1558 			 */
1559 			sctp_cmd_t1_timer_update(asoc,
1560 						SCTP_EVENT_TIMEOUT_T1_COOKIE,
1561 						"COOKIE");
1562 
1563 			/* If we've sent any data bundled with
1564 			 * COOKIE-ECHO we need to resend.
1565 			 */
1566 			list_for_each_entry(t, &asoc->peer.transport_addr_list,
1567 					transports) {
1568 				sctp_retransmit_mark(&asoc->outqueue, t,
1569 					    SCTP_RTXR_T1_RTX);
1570 			}
1571 
1572 			sctp_add_cmd_sf(commands,
1573 					SCTP_CMD_TIMER_RESTART,
1574 					SCTP_TO(SCTP_EVENT_TIMEOUT_T1_COOKIE));
1575 			break;
1576 
1577 		case SCTP_CMD_INIT_FAILED:
1578 			sctp_cmd_init_failed(commands, asoc, cmd->obj.u16);
1579 			break;
1580 
1581 		case SCTP_CMD_ASSOC_FAILED:
1582 			sctp_cmd_assoc_failed(commands, asoc, event_type,
1583 					      subtype, chunk, cmd->obj.u16);
1584 			break;
1585 
1586 		case SCTP_CMD_INIT_COUNTER_INC:
1587 			asoc->init_err_counter++;
1588 			break;
1589 
1590 		case SCTP_CMD_INIT_COUNTER_RESET:
1591 			asoc->init_err_counter = 0;
1592 			asoc->init_cycle = 0;
1593 			list_for_each_entry(t, &asoc->peer.transport_addr_list,
1594 					    transports) {
1595 				t->init_sent_count = 0;
1596 			}
1597 			break;
1598 
1599 		case SCTP_CMD_REPORT_DUP:
1600 			sctp_tsnmap_mark_dup(&asoc->peer.tsn_map,
1601 					     cmd->obj.u32);
1602 			break;
1603 
1604 		case SCTP_CMD_REPORT_BAD_TAG:
1605 			pr_debug("%s: vtag mismatch!\n", __func__);
1606 			break;
1607 
1608 		case SCTP_CMD_STRIKE:
1609 			/* Mark one strike against a transport.  */
1610 			sctp_do_8_2_transport_strike(commands, asoc,
1611 						    cmd->obj.transport, 0);
1612 			break;
1613 
1614 		case SCTP_CMD_TRANSPORT_IDLE:
1615 			t = cmd->obj.transport;
1616 			sctp_transport_lower_cwnd(t, SCTP_LOWER_CWND_INACTIVE);
1617 			break;
1618 
1619 		case SCTP_CMD_TRANSPORT_HB_SENT:
1620 			t = cmd->obj.transport;
1621 			sctp_do_8_2_transport_strike(commands, asoc,
1622 						     t, 1);
1623 			t->hb_sent = 1;
1624 			break;
1625 
1626 		case SCTP_CMD_TRANSPORT_ON:
1627 			t = cmd->obj.transport;
1628 			sctp_cmd_transport_on(commands, asoc, t, chunk);
1629 			break;
1630 
1631 		case SCTP_CMD_HB_TIMERS_START:
1632 			sctp_cmd_hb_timers_start(commands, asoc);
1633 			break;
1634 
1635 		case SCTP_CMD_HB_TIMER_UPDATE:
1636 			t = cmd->obj.transport;
1637 			sctp_transport_reset_hb_timer(t);
1638 			break;
1639 
1640 		case SCTP_CMD_HB_TIMERS_STOP:
1641 			sctp_cmd_hb_timers_stop(commands, asoc);
1642 			break;
1643 
1644 		case SCTP_CMD_REPORT_ERROR:
1645 			error = cmd->obj.error;
1646 			break;
1647 
1648 		case SCTP_CMD_PROCESS_CTSN:
1649 			/* Dummy up a SACK for processing. */
1650 			sackh.cum_tsn_ack = cmd->obj.be32;
1651 			sackh.a_rwnd = htonl(asoc->peer.rwnd +
1652 					     asoc->outqueue.outstanding_bytes);
1653 			sackh.num_gap_ack_blocks = 0;
1654 			sackh.num_dup_tsns = 0;
1655 			chunk->subh.sack_hdr = &sackh;
1656 			sctp_add_cmd_sf(commands, SCTP_CMD_PROCESS_SACK,
1657 					SCTP_CHUNK(chunk));
1658 			break;
1659 
1660 		case SCTP_CMD_DISCARD_PACKET:
1661 			/* We need to discard the whole packet.
1662 			 * Uncork the queue since there might be
1663 			 * responses pending
1664 			 */
1665 			chunk->pdiscard = 1;
1666 			if (asoc) {
1667 				sctp_outq_uncork(&asoc->outqueue, gfp);
1668 				local_cork = 0;
1669 			}
1670 			break;
1671 
1672 		case SCTP_CMD_RTO_PENDING:
1673 			t = cmd->obj.transport;
1674 			t->rto_pending = 1;
1675 			break;
1676 
1677 		case SCTP_CMD_PART_DELIVER:
1678 			asoc->stream.si->start_pd(&asoc->ulpq, GFP_ATOMIC);
1679 			break;
1680 
1681 		case SCTP_CMD_RENEGE:
1682 			asoc->stream.si->renege_events(&asoc->ulpq,
1683 						       cmd->obj.chunk,
1684 						       GFP_ATOMIC);
1685 			break;
1686 
1687 		case SCTP_CMD_SETUP_T4:
1688 			sctp_cmd_setup_t4(commands, asoc, cmd->obj.chunk);
1689 			break;
1690 
1691 		case SCTP_CMD_PROCESS_OPERR:
1692 			sctp_cmd_process_operr(commands, asoc, chunk);
1693 			break;
1694 		case SCTP_CMD_CLEAR_INIT_TAG:
1695 			asoc->peer.i.init_tag = 0;
1696 			break;
1697 		case SCTP_CMD_DEL_NON_PRIMARY:
1698 			sctp_cmd_del_non_primary(asoc);
1699 			break;
1700 		case SCTP_CMD_T3_RTX_TIMERS_STOP:
1701 			sctp_cmd_t3_rtx_timers_stop(commands, asoc);
1702 			break;
1703 		case SCTP_CMD_FORCE_PRIM_RETRAN:
1704 			t = asoc->peer.retran_path;
1705 			asoc->peer.retran_path = asoc->peer.primary_path;
1706 			sctp_outq_uncork(&asoc->outqueue, gfp);
1707 			local_cork = 0;
1708 			asoc->peer.retran_path = t;
1709 			break;
1710 		case SCTP_CMD_SET_SK_ERR:
1711 			sctp_cmd_set_sk_err(asoc, cmd->obj.error);
1712 			break;
1713 		case SCTP_CMD_ASSOC_CHANGE:
1714 			sctp_cmd_assoc_change(commands, asoc,
1715 					      cmd->obj.u8);
1716 			break;
1717 		case SCTP_CMD_ADAPTATION_IND:
1718 			sctp_cmd_adaptation_ind(commands, asoc);
1719 			break;
1720 		case SCTP_CMD_PEER_NO_AUTH:
1721 			sctp_cmd_peer_no_auth(commands, asoc);
1722 			break;
1723 
1724 		case SCTP_CMD_ASSOC_SHKEY:
1725 			error = sctp_auth_asoc_init_active_key(asoc,
1726 						GFP_ATOMIC);
1727 			break;
1728 		case SCTP_CMD_UPDATE_INITTAG:
1729 			asoc->peer.i.init_tag = cmd->obj.u32;
1730 			break;
1731 		case SCTP_CMD_SEND_MSG:
1732 			if (!asoc->outqueue.cork) {
1733 				sctp_outq_cork(&asoc->outqueue);
1734 				local_cork = 1;
1735 			}
1736 			sctp_cmd_send_msg(asoc, cmd->obj.msg, gfp);
1737 			break;
1738 		case SCTP_CMD_PURGE_ASCONF_QUEUE:
1739 			sctp_asconf_queue_teardown(asoc);
1740 			break;
1741 
1742 		case SCTP_CMD_SET_ASOC:
1743 			if (asoc && local_cork) {
1744 				sctp_outq_uncork(&asoc->outqueue, gfp);
1745 				local_cork = 0;
1746 			}
1747 			asoc = cmd->obj.asoc;
1748 			break;
1749 
1750 		default:
1751 			pr_warn("Impossible command: %u\n",
1752 				cmd->verb);
1753 			break;
1754 		}
1755 
1756 		if (error) {
1757 			cmd = sctp_next_cmd(commands);
1758 			while (cmd) {
1759 				if (cmd->verb == SCTP_CMD_REPLY)
1760 					sctp_chunk_free(cmd->obj.chunk);
1761 				cmd = sctp_next_cmd(commands);
1762 			}
1763 			break;
1764 		}
1765 	}
1766 
1767 	/* If this is in response to a received chunk, wait until
1768 	 * we are done with the packet to open the queue so that we don't
1769 	 * send multiple packets in response to a single request.
1770 	 */
1771 	if (asoc && SCTP_EVENT_T_CHUNK == event_type && chunk) {
1772 		if (chunk->end_of_packet || chunk->singleton)
1773 			sctp_outq_uncork(&asoc->outqueue, gfp);
1774 	} else if (local_cork)
1775 		sctp_outq_uncork(&asoc->outqueue, gfp);
1776 
1777 	if (sp->data_ready_signalled)
1778 		sp->data_ready_signalled = 0;
1779 
1780 	return error;
1781 }
1782