1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * 6 * This file is part of the SCTP kernel implementation 7 * 8 * These functions work with the state functions in sctp_sm_statefuns.c 9 * to implement that state operations. These functions implement the 10 * steps which require modifying existing data structures. 11 * 12 * This SCTP implementation is free software; 13 * you can redistribute it and/or modify it under the terms of 14 * the GNU General Public License as published by 15 * the Free Software Foundation; either version 2, or (at your option) 16 * any later version. 17 * 18 * This SCTP implementation is distributed in the hope that it 19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 20 * ************************ 21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 22 * See the GNU General Public License for more details. 23 * 24 * You should have received a copy of the GNU General Public License 25 * along with GNU CC; see the file COPYING. If not, write to 26 * the Free Software Foundation, 59 Temple Place - Suite 330, 27 * Boston, MA 02111-1307, USA. 28 * 29 * Please send any bug reports or fixes you make to the 30 * email address(es): 31 * lksctp developers <lksctp-developers@lists.sourceforge.net> 32 * 33 * Or submit a bug report through the following website: 34 * http://www.sf.net/projects/lksctp 35 * 36 * Written or modified by: 37 * La Monte H.P. Yarroll <piggy@acm.org> 38 * Karl Knutson <karl@athena.chicago.il.us> 39 * Jon Grimm <jgrimm@austin.ibm.com> 40 * Hui Huang <hui.huang@nokia.com> 41 * Dajiang Zhang <dajiang.zhang@nokia.com> 42 * Daisy Chang <daisyc@us.ibm.com> 43 * Sridhar Samudrala <sri@us.ibm.com> 44 * Ardelle Fan <ardelle.fan@intel.com> 45 * 46 * Any bugs reported given to us we will try to fix... any fixes shared will 47 * be incorporated into the next SCTP release. 48 */ 49 50 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 51 52 #include <linux/skbuff.h> 53 #include <linux/types.h> 54 #include <linux/socket.h> 55 #include <linux/ip.h> 56 #include <linux/gfp.h> 57 #include <net/sock.h> 58 #include <net/sctp/sctp.h> 59 #include <net/sctp/sm.h> 60 61 static int sctp_cmd_interpreter(sctp_event_t event_type, 62 sctp_subtype_t subtype, 63 sctp_state_t state, 64 struct sctp_endpoint *ep, 65 struct sctp_association *asoc, 66 void *event_arg, 67 sctp_disposition_t status, 68 sctp_cmd_seq_t *commands, 69 gfp_t gfp); 70 static int sctp_side_effects(sctp_event_t event_type, sctp_subtype_t subtype, 71 sctp_state_t state, 72 struct sctp_endpoint *ep, 73 struct sctp_association *asoc, 74 void *event_arg, 75 sctp_disposition_t status, 76 sctp_cmd_seq_t *commands, 77 gfp_t gfp); 78 79 static void sctp_cmd_hb_timer_update(sctp_cmd_seq_t *cmds, 80 struct sctp_transport *t); 81 /******************************************************************** 82 * Helper functions 83 ********************************************************************/ 84 85 /* A helper function for delayed processing of INET ECN CE bit. */ 86 static void sctp_do_ecn_ce_work(struct sctp_association *asoc, 87 __u32 lowest_tsn) 88 { 89 /* Save the TSN away for comparison when we receive CWR */ 90 91 asoc->last_ecne_tsn = lowest_tsn; 92 asoc->need_ecne = 1; 93 } 94 95 /* Helper function for delayed processing of SCTP ECNE chunk. */ 96 /* RFC 2960 Appendix A 97 * 98 * RFC 2481 details a specific bit for a sender to send in 99 * the header of its next outbound TCP segment to indicate to 100 * its peer that it has reduced its congestion window. This 101 * is termed the CWR bit. For SCTP the same indication is made 102 * by including the CWR chunk. This chunk contains one data 103 * element, i.e. the TSN number that was sent in the ECNE chunk. 104 * This element represents the lowest TSN number in the datagram 105 * that was originally marked with the CE bit. 106 */ 107 static struct sctp_chunk *sctp_do_ecn_ecne_work(struct sctp_association *asoc, 108 __u32 lowest_tsn, 109 struct sctp_chunk *chunk) 110 { 111 struct sctp_chunk *repl; 112 113 /* Our previously transmitted packet ran into some congestion 114 * so we should take action by reducing cwnd and ssthresh 115 * and then ACK our peer that we we've done so by 116 * sending a CWR. 117 */ 118 119 /* First, try to determine if we want to actually lower 120 * our cwnd variables. Only lower them if the ECNE looks more 121 * recent than the last response. 122 */ 123 if (TSN_lt(asoc->last_cwr_tsn, lowest_tsn)) { 124 struct sctp_transport *transport; 125 126 /* Find which transport's congestion variables 127 * need to be adjusted. 128 */ 129 transport = sctp_assoc_lookup_tsn(asoc, lowest_tsn); 130 131 /* Update the congestion variables. */ 132 if (transport) 133 sctp_transport_lower_cwnd(transport, 134 SCTP_LOWER_CWND_ECNE); 135 asoc->last_cwr_tsn = lowest_tsn; 136 } 137 138 /* Always try to quiet the other end. In case of lost CWR, 139 * resend last_cwr_tsn. 140 */ 141 repl = sctp_make_cwr(asoc, asoc->last_cwr_tsn, chunk); 142 143 /* If we run out of memory, it will look like a lost CWR. We'll 144 * get back in sync eventually. 145 */ 146 return repl; 147 } 148 149 /* Helper function to do delayed processing of ECN CWR chunk. */ 150 static void sctp_do_ecn_cwr_work(struct sctp_association *asoc, 151 __u32 lowest_tsn) 152 { 153 /* Turn off ECNE getting auto-prepended to every outgoing 154 * packet 155 */ 156 asoc->need_ecne = 0; 157 } 158 159 /* Generate SACK if necessary. We call this at the end of a packet. */ 160 static int sctp_gen_sack(struct sctp_association *asoc, int force, 161 sctp_cmd_seq_t *commands) 162 { 163 __u32 ctsn, max_tsn_seen; 164 struct sctp_chunk *sack; 165 struct sctp_transport *trans = asoc->peer.last_data_from; 166 int error = 0; 167 168 if (force || 169 (!trans && (asoc->param_flags & SPP_SACKDELAY_DISABLE)) || 170 (trans && (trans->param_flags & SPP_SACKDELAY_DISABLE))) 171 asoc->peer.sack_needed = 1; 172 173 ctsn = sctp_tsnmap_get_ctsn(&asoc->peer.tsn_map); 174 max_tsn_seen = sctp_tsnmap_get_max_tsn_seen(&asoc->peer.tsn_map); 175 176 /* From 12.2 Parameters necessary per association (i.e. the TCB): 177 * 178 * Ack State : This flag indicates if the next received packet 179 * : is to be responded to with a SACK. ... 180 * : When DATA chunks are out of order, SACK's 181 * : are not delayed (see Section 6). 182 * 183 * [This is actually not mentioned in Section 6, but we 184 * implement it here anyway. --piggy] 185 */ 186 if (max_tsn_seen != ctsn) 187 asoc->peer.sack_needed = 1; 188 189 /* From 6.2 Acknowledgement on Reception of DATA Chunks: 190 * 191 * Section 4.2 of [RFC2581] SHOULD be followed. Specifically, 192 * an acknowledgement SHOULD be generated for at least every 193 * second packet (not every second DATA chunk) received, and 194 * SHOULD be generated within 200 ms of the arrival of any 195 * unacknowledged DATA chunk. ... 196 */ 197 if (!asoc->peer.sack_needed) { 198 asoc->peer.sack_cnt++; 199 200 /* Set the SACK delay timeout based on the 201 * SACK delay for the last transport 202 * data was received from, or the default 203 * for the association. 204 */ 205 if (trans) { 206 /* We will need a SACK for the next packet. */ 207 if (asoc->peer.sack_cnt >= trans->sackfreq - 1) 208 asoc->peer.sack_needed = 1; 209 210 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = 211 trans->sackdelay; 212 } else { 213 /* We will need a SACK for the next packet. */ 214 if (asoc->peer.sack_cnt >= asoc->sackfreq - 1) 215 asoc->peer.sack_needed = 1; 216 217 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = 218 asoc->sackdelay; 219 } 220 221 /* Restart the SACK timer. */ 222 sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART, 223 SCTP_TO(SCTP_EVENT_TIMEOUT_SACK)); 224 } else { 225 asoc->a_rwnd = asoc->rwnd; 226 sack = sctp_make_sack(asoc); 227 if (!sack) 228 goto nomem; 229 230 asoc->peer.sack_needed = 0; 231 asoc->peer.sack_cnt = 0; 232 233 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(sack)); 234 235 /* Stop the SACK timer. */ 236 sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP, 237 SCTP_TO(SCTP_EVENT_TIMEOUT_SACK)); 238 } 239 240 return error; 241 nomem: 242 error = -ENOMEM; 243 return error; 244 } 245 246 /* When the T3-RTX timer expires, it calls this function to create the 247 * relevant state machine event. 248 */ 249 void sctp_generate_t3_rtx_event(unsigned long peer) 250 { 251 int error; 252 struct sctp_transport *transport = (struct sctp_transport *) peer; 253 struct sctp_association *asoc = transport->asoc; 254 struct net *net = sock_net(asoc->base.sk); 255 256 /* Check whether a task is in the sock. */ 257 258 sctp_bh_lock_sock(asoc->base.sk); 259 if (sock_owned_by_user(asoc->base.sk)) { 260 pr_debug("%s: sock is busy\n", __func__); 261 262 /* Try again later. */ 263 if (!mod_timer(&transport->T3_rtx_timer, jiffies + (HZ/20))) 264 sctp_transport_hold(transport); 265 goto out_unlock; 266 } 267 268 /* Is this transport really dead and just waiting around for 269 * the timer to let go of the reference? 270 */ 271 if (transport->dead) 272 goto out_unlock; 273 274 /* Run through the state machine. */ 275 error = sctp_do_sm(net, SCTP_EVENT_T_TIMEOUT, 276 SCTP_ST_TIMEOUT(SCTP_EVENT_TIMEOUT_T3_RTX), 277 asoc->state, 278 asoc->ep, asoc, 279 transport, GFP_ATOMIC); 280 281 if (error) 282 asoc->base.sk->sk_err = -error; 283 284 out_unlock: 285 sctp_bh_unlock_sock(asoc->base.sk); 286 sctp_transport_put(transport); 287 } 288 289 /* This is a sa interface for producing timeout events. It works 290 * for timeouts which use the association as their parameter. 291 */ 292 static void sctp_generate_timeout_event(struct sctp_association *asoc, 293 sctp_event_timeout_t timeout_type) 294 { 295 struct net *net = sock_net(asoc->base.sk); 296 int error = 0; 297 298 sctp_bh_lock_sock(asoc->base.sk); 299 if (sock_owned_by_user(asoc->base.sk)) { 300 pr_debug("%s: sock is busy: timer %d\n", __func__, 301 timeout_type); 302 303 /* Try again later. */ 304 if (!mod_timer(&asoc->timers[timeout_type], jiffies + (HZ/20))) 305 sctp_association_hold(asoc); 306 goto out_unlock; 307 } 308 309 /* Is this association really dead and just waiting around for 310 * the timer to let go of the reference? 311 */ 312 if (asoc->base.dead) 313 goto out_unlock; 314 315 /* Run through the state machine. */ 316 error = sctp_do_sm(net, SCTP_EVENT_T_TIMEOUT, 317 SCTP_ST_TIMEOUT(timeout_type), 318 asoc->state, asoc->ep, asoc, 319 (void *)timeout_type, GFP_ATOMIC); 320 321 if (error) 322 asoc->base.sk->sk_err = -error; 323 324 out_unlock: 325 sctp_bh_unlock_sock(asoc->base.sk); 326 sctp_association_put(asoc); 327 } 328 329 static void sctp_generate_t1_cookie_event(unsigned long data) 330 { 331 struct sctp_association *asoc = (struct sctp_association *) data; 332 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T1_COOKIE); 333 } 334 335 static void sctp_generate_t1_init_event(unsigned long data) 336 { 337 struct sctp_association *asoc = (struct sctp_association *) data; 338 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T1_INIT); 339 } 340 341 static void sctp_generate_t2_shutdown_event(unsigned long data) 342 { 343 struct sctp_association *asoc = (struct sctp_association *) data; 344 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T2_SHUTDOWN); 345 } 346 347 static void sctp_generate_t4_rto_event(unsigned long data) 348 { 349 struct sctp_association *asoc = (struct sctp_association *) data; 350 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T4_RTO); 351 } 352 353 static void sctp_generate_t5_shutdown_guard_event(unsigned long data) 354 { 355 struct sctp_association *asoc = (struct sctp_association *)data; 356 sctp_generate_timeout_event(asoc, 357 SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD); 358 359 } /* sctp_generate_t5_shutdown_guard_event() */ 360 361 static void sctp_generate_autoclose_event(unsigned long data) 362 { 363 struct sctp_association *asoc = (struct sctp_association *) data; 364 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_AUTOCLOSE); 365 } 366 367 /* Generate a heart beat event. If the sock is busy, reschedule. Make 368 * sure that the transport is still valid. 369 */ 370 void sctp_generate_heartbeat_event(unsigned long data) 371 { 372 int error = 0; 373 struct sctp_transport *transport = (struct sctp_transport *) data; 374 struct sctp_association *asoc = transport->asoc; 375 struct net *net = sock_net(asoc->base.sk); 376 377 sctp_bh_lock_sock(asoc->base.sk); 378 if (sock_owned_by_user(asoc->base.sk)) { 379 pr_debug("%s: sock is busy\n", __func__); 380 381 /* Try again later. */ 382 if (!mod_timer(&transport->hb_timer, jiffies + (HZ/20))) 383 sctp_transport_hold(transport); 384 goto out_unlock; 385 } 386 387 /* Is this structure just waiting around for us to actually 388 * get destroyed? 389 */ 390 if (transport->dead) 391 goto out_unlock; 392 393 error = sctp_do_sm(net, SCTP_EVENT_T_TIMEOUT, 394 SCTP_ST_TIMEOUT(SCTP_EVENT_TIMEOUT_HEARTBEAT), 395 asoc->state, asoc->ep, asoc, 396 transport, GFP_ATOMIC); 397 398 if (error) 399 asoc->base.sk->sk_err = -error; 400 401 out_unlock: 402 sctp_bh_unlock_sock(asoc->base.sk); 403 sctp_transport_put(transport); 404 } 405 406 /* Handle the timeout of the ICMP protocol unreachable timer. Trigger 407 * the correct state machine transition that will close the association. 408 */ 409 void sctp_generate_proto_unreach_event(unsigned long data) 410 { 411 struct sctp_transport *transport = (struct sctp_transport *) data; 412 struct sctp_association *asoc = transport->asoc; 413 struct net *net = sock_net(asoc->base.sk); 414 415 sctp_bh_lock_sock(asoc->base.sk); 416 if (sock_owned_by_user(asoc->base.sk)) { 417 pr_debug("%s: sock is busy\n", __func__); 418 419 /* Try again later. */ 420 if (!mod_timer(&transport->proto_unreach_timer, 421 jiffies + (HZ/20))) 422 sctp_association_hold(asoc); 423 goto out_unlock; 424 } 425 426 /* Is this structure just waiting around for us to actually 427 * get destroyed? 428 */ 429 if (asoc->base.dead) 430 goto out_unlock; 431 432 sctp_do_sm(net, SCTP_EVENT_T_OTHER, 433 SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH), 434 asoc->state, asoc->ep, asoc, transport, GFP_ATOMIC); 435 436 out_unlock: 437 sctp_bh_unlock_sock(asoc->base.sk); 438 sctp_association_put(asoc); 439 } 440 441 442 /* Inject a SACK Timeout event into the state machine. */ 443 static void sctp_generate_sack_event(unsigned long data) 444 { 445 struct sctp_association *asoc = (struct sctp_association *) data; 446 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_SACK); 447 } 448 449 sctp_timer_event_t *sctp_timer_events[SCTP_NUM_TIMEOUT_TYPES] = { 450 NULL, 451 sctp_generate_t1_cookie_event, 452 sctp_generate_t1_init_event, 453 sctp_generate_t2_shutdown_event, 454 NULL, 455 sctp_generate_t4_rto_event, 456 sctp_generate_t5_shutdown_guard_event, 457 NULL, 458 sctp_generate_sack_event, 459 sctp_generate_autoclose_event, 460 }; 461 462 463 /* RFC 2960 8.2 Path Failure Detection 464 * 465 * When its peer endpoint is multi-homed, an endpoint should keep a 466 * error counter for each of the destination transport addresses of the 467 * peer endpoint. 468 * 469 * Each time the T3-rtx timer expires on any address, or when a 470 * HEARTBEAT sent to an idle address is not acknowledged within a RTO, 471 * the error counter of that destination address will be incremented. 472 * When the value in the error counter exceeds the protocol parameter 473 * 'Path.Max.Retrans' of that destination address, the endpoint should 474 * mark the destination transport address as inactive, and a 475 * notification SHOULD be sent to the upper layer. 476 * 477 */ 478 static void sctp_do_8_2_transport_strike(sctp_cmd_seq_t *commands, 479 struct sctp_association *asoc, 480 struct sctp_transport *transport, 481 int is_hb) 482 { 483 /* The check for association's overall error counter exceeding the 484 * threshold is done in the state function. 485 */ 486 /* We are here due to a timer expiration. If the timer was 487 * not a HEARTBEAT, then normal error tracking is done. 488 * If the timer was a heartbeat, we only increment error counts 489 * when we already have an outstanding HEARTBEAT that has not 490 * been acknowledged. 491 * Additionally, some tranport states inhibit error increments. 492 */ 493 if (!is_hb) { 494 asoc->overall_error_count++; 495 if (transport->state != SCTP_INACTIVE) 496 transport->error_count++; 497 } else if (transport->hb_sent) { 498 if (transport->state != SCTP_UNCONFIRMED) 499 asoc->overall_error_count++; 500 if (transport->state != SCTP_INACTIVE) 501 transport->error_count++; 502 } 503 504 /* If the transport error count is greater than the pf_retrans 505 * threshold, and less than pathmaxrtx, then mark this transport 506 * as Partially Failed, ee SCTP Quick Failover Draft, secon 5.1, 507 * point 1 508 */ 509 if ((transport->state != SCTP_PF) && 510 (asoc->pf_retrans < transport->pathmaxrxt) && 511 (transport->error_count > asoc->pf_retrans)) { 512 513 sctp_assoc_control_transport(asoc, transport, 514 SCTP_TRANSPORT_PF, 515 0); 516 517 /* Update the hb timer to resend a heartbeat every rto */ 518 sctp_cmd_hb_timer_update(commands, transport); 519 } 520 521 if (transport->state != SCTP_INACTIVE && 522 (transport->error_count > transport->pathmaxrxt)) { 523 pr_debug("%s: association:%p transport addr:%pISpc failed\n", 524 __func__, asoc, &transport->ipaddr.sa); 525 526 sctp_assoc_control_transport(asoc, transport, 527 SCTP_TRANSPORT_DOWN, 528 SCTP_FAILED_THRESHOLD); 529 } 530 531 /* E2) For the destination address for which the timer 532 * expires, set RTO <- RTO * 2 ("back off the timer"). The 533 * maximum value discussed in rule C7 above (RTO.max) may be 534 * used to provide an upper bound to this doubling operation. 535 * 536 * Special Case: the first HB doesn't trigger exponential backoff. 537 * The first unacknowledged HB triggers it. We do this with a flag 538 * that indicates that we have an outstanding HB. 539 */ 540 if (!is_hb || transport->hb_sent) { 541 transport->rto = min((transport->rto * 2), transport->asoc->rto_max); 542 sctp_max_rto(asoc, transport); 543 } 544 } 545 546 /* Worker routine to handle INIT command failure. */ 547 static void sctp_cmd_init_failed(sctp_cmd_seq_t *commands, 548 struct sctp_association *asoc, 549 unsigned int error) 550 { 551 struct sctp_ulpevent *event; 552 553 event = sctp_ulpevent_make_assoc_change(asoc,0, SCTP_CANT_STR_ASSOC, 554 (__u16)error, 0, 0, NULL, 555 GFP_ATOMIC); 556 557 if (event) 558 sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP, 559 SCTP_ULPEVENT(event)); 560 561 sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE, 562 SCTP_STATE(SCTP_STATE_CLOSED)); 563 564 /* SEND_FAILED sent later when cleaning up the association. */ 565 asoc->outqueue.error = error; 566 sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL()); 567 } 568 569 /* Worker routine to handle SCTP_CMD_ASSOC_FAILED. */ 570 static void sctp_cmd_assoc_failed(sctp_cmd_seq_t *commands, 571 struct sctp_association *asoc, 572 sctp_event_t event_type, 573 sctp_subtype_t subtype, 574 struct sctp_chunk *chunk, 575 unsigned int error) 576 { 577 struct sctp_ulpevent *event; 578 struct sctp_chunk *abort; 579 /* Cancel any partial delivery in progress. */ 580 sctp_ulpq_abort_pd(&asoc->ulpq, GFP_ATOMIC); 581 582 if (event_type == SCTP_EVENT_T_CHUNK && subtype.chunk == SCTP_CID_ABORT) 583 event = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_COMM_LOST, 584 (__u16)error, 0, 0, chunk, 585 GFP_ATOMIC); 586 else 587 event = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_COMM_LOST, 588 (__u16)error, 0, 0, NULL, 589 GFP_ATOMIC); 590 if (event) 591 sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP, 592 SCTP_ULPEVENT(event)); 593 594 if (asoc->overall_error_count >= asoc->max_retrans) { 595 abort = sctp_make_violation_max_retrans(asoc, chunk); 596 if (abort) 597 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, 598 SCTP_CHUNK(abort)); 599 } 600 601 sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE, 602 SCTP_STATE(SCTP_STATE_CLOSED)); 603 604 /* SEND_FAILED sent later when cleaning up the association. */ 605 asoc->outqueue.error = error; 606 sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL()); 607 } 608 609 /* Process an init chunk (may be real INIT/INIT-ACK or an embedded INIT 610 * inside the cookie. In reality, this is only used for INIT-ACK processing 611 * since all other cases use "temporary" associations and can do all 612 * their work in statefuns directly. 613 */ 614 static int sctp_cmd_process_init(sctp_cmd_seq_t *commands, 615 struct sctp_association *asoc, 616 struct sctp_chunk *chunk, 617 sctp_init_chunk_t *peer_init, 618 gfp_t gfp) 619 { 620 int error; 621 622 /* We only process the init as a sideeffect in a single 623 * case. This is when we process the INIT-ACK. If we 624 * fail during INIT processing (due to malloc problems), 625 * just return the error and stop processing the stack. 626 */ 627 if (!sctp_process_init(asoc, chunk, sctp_source(chunk), peer_init, gfp)) 628 error = -ENOMEM; 629 else 630 error = 0; 631 632 return error; 633 } 634 635 /* Helper function to break out starting up of heartbeat timers. */ 636 static void sctp_cmd_hb_timers_start(sctp_cmd_seq_t *cmds, 637 struct sctp_association *asoc) 638 { 639 struct sctp_transport *t; 640 641 /* Start a heartbeat timer for each transport on the association. 642 * hold a reference on the transport to make sure none of 643 * the needed data structures go away. 644 */ 645 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) { 646 647 if (!mod_timer(&t->hb_timer, sctp_transport_timeout(t))) 648 sctp_transport_hold(t); 649 } 650 } 651 652 static void sctp_cmd_hb_timers_stop(sctp_cmd_seq_t *cmds, 653 struct sctp_association *asoc) 654 { 655 struct sctp_transport *t; 656 657 /* Stop all heartbeat timers. */ 658 659 list_for_each_entry(t, &asoc->peer.transport_addr_list, 660 transports) { 661 if (del_timer(&t->hb_timer)) 662 sctp_transport_put(t); 663 } 664 } 665 666 /* Helper function to stop any pending T3-RTX timers */ 667 static void sctp_cmd_t3_rtx_timers_stop(sctp_cmd_seq_t *cmds, 668 struct sctp_association *asoc) 669 { 670 struct sctp_transport *t; 671 672 list_for_each_entry(t, &asoc->peer.transport_addr_list, 673 transports) { 674 if (del_timer(&t->T3_rtx_timer)) 675 sctp_transport_put(t); 676 } 677 } 678 679 680 /* Helper function to update the heartbeat timer. */ 681 static void sctp_cmd_hb_timer_update(sctp_cmd_seq_t *cmds, 682 struct sctp_transport *t) 683 { 684 /* Update the heartbeat timer. */ 685 if (!mod_timer(&t->hb_timer, sctp_transport_timeout(t))) 686 sctp_transport_hold(t); 687 } 688 689 /* Helper function to handle the reception of an HEARTBEAT ACK. */ 690 static void sctp_cmd_transport_on(sctp_cmd_seq_t *cmds, 691 struct sctp_association *asoc, 692 struct sctp_transport *t, 693 struct sctp_chunk *chunk) 694 { 695 sctp_sender_hb_info_t *hbinfo; 696 int was_unconfirmed = 0; 697 698 /* 8.3 Upon the receipt of the HEARTBEAT ACK, the sender of the 699 * HEARTBEAT should clear the error counter of the destination 700 * transport address to which the HEARTBEAT was sent. 701 */ 702 t->error_count = 0; 703 704 /* 705 * Although RFC4960 specifies that the overall error count must 706 * be cleared when a HEARTBEAT ACK is received, we make an 707 * exception while in SHUTDOWN PENDING. If the peer keeps its 708 * window shut forever, we may never be able to transmit our 709 * outstanding data and rely on the retransmission limit be reached 710 * to shutdown the association. 711 */ 712 if (t->asoc->state != SCTP_STATE_SHUTDOWN_PENDING) 713 t->asoc->overall_error_count = 0; 714 715 /* Clear the hb_sent flag to signal that we had a good 716 * acknowledgement. 717 */ 718 t->hb_sent = 0; 719 720 /* Mark the destination transport address as active if it is not so 721 * marked. 722 */ 723 if ((t->state == SCTP_INACTIVE) || (t->state == SCTP_UNCONFIRMED)) { 724 was_unconfirmed = 1; 725 sctp_assoc_control_transport(asoc, t, SCTP_TRANSPORT_UP, 726 SCTP_HEARTBEAT_SUCCESS); 727 } 728 729 if (t->state == SCTP_PF) 730 sctp_assoc_control_transport(asoc, t, SCTP_TRANSPORT_UP, 731 SCTP_HEARTBEAT_SUCCESS); 732 733 /* HB-ACK was received for a the proper HB. Consider this 734 * forward progress. 735 */ 736 if (t->dst) 737 dst_confirm(t->dst); 738 739 /* The receiver of the HEARTBEAT ACK should also perform an 740 * RTT measurement for that destination transport address 741 * using the time value carried in the HEARTBEAT ACK chunk. 742 * If the transport's rto_pending variable has been cleared, 743 * it was most likely due to a retransmit. However, we want 744 * to re-enable it to properly update the rto. 745 */ 746 if (t->rto_pending == 0) 747 t->rto_pending = 1; 748 749 hbinfo = (sctp_sender_hb_info_t *) chunk->skb->data; 750 sctp_transport_update_rto(t, (jiffies - hbinfo->sent_at)); 751 752 /* Update the heartbeat timer. */ 753 if (!mod_timer(&t->hb_timer, sctp_transport_timeout(t))) 754 sctp_transport_hold(t); 755 756 if (was_unconfirmed && asoc->peer.transport_count == 1) 757 sctp_transport_immediate_rtx(t); 758 } 759 760 761 /* Helper function to process the process SACK command. */ 762 static int sctp_cmd_process_sack(sctp_cmd_seq_t *cmds, 763 struct sctp_association *asoc, 764 struct sctp_chunk *chunk) 765 { 766 int err = 0; 767 768 if (sctp_outq_sack(&asoc->outqueue, chunk)) { 769 struct net *net = sock_net(asoc->base.sk); 770 771 /* There are no more TSNs awaiting SACK. */ 772 err = sctp_do_sm(net, SCTP_EVENT_T_OTHER, 773 SCTP_ST_OTHER(SCTP_EVENT_NO_PENDING_TSN), 774 asoc->state, asoc->ep, asoc, NULL, 775 GFP_ATOMIC); 776 } 777 778 return err; 779 } 780 781 /* Helper function to set the timeout value for T2-SHUTDOWN timer and to set 782 * the transport for a shutdown chunk. 783 */ 784 static void sctp_cmd_setup_t2(sctp_cmd_seq_t *cmds, 785 struct sctp_association *asoc, 786 struct sctp_chunk *chunk) 787 { 788 struct sctp_transport *t; 789 790 if (chunk->transport) 791 t = chunk->transport; 792 else { 793 t = sctp_assoc_choose_alter_transport(asoc, 794 asoc->shutdown_last_sent_to); 795 chunk->transport = t; 796 } 797 asoc->shutdown_last_sent_to = t; 798 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = t->rto; 799 } 800 801 /* Helper function to change the state of an association. */ 802 static void sctp_cmd_new_state(sctp_cmd_seq_t *cmds, 803 struct sctp_association *asoc, 804 sctp_state_t state) 805 { 806 struct sock *sk = asoc->base.sk; 807 808 asoc->state = state; 809 810 pr_debug("%s: asoc:%p[%s]\n", __func__, asoc, sctp_state_tbl[state]); 811 812 if (sctp_style(sk, TCP)) { 813 /* Change the sk->sk_state of a TCP-style socket that has 814 * successfully completed a connect() call. 815 */ 816 if (sctp_state(asoc, ESTABLISHED) && sctp_sstate(sk, CLOSED)) 817 sk->sk_state = SCTP_SS_ESTABLISHED; 818 819 /* Set the RCV_SHUTDOWN flag when a SHUTDOWN is received. */ 820 if (sctp_state(asoc, SHUTDOWN_RECEIVED) && 821 sctp_sstate(sk, ESTABLISHED)) 822 sk->sk_shutdown |= RCV_SHUTDOWN; 823 } 824 825 if (sctp_state(asoc, COOKIE_WAIT)) { 826 /* Reset init timeouts since they may have been 827 * increased due to timer expirations. 828 */ 829 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = 830 asoc->rto_initial; 831 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = 832 asoc->rto_initial; 833 } 834 835 if (sctp_state(asoc, ESTABLISHED) || 836 sctp_state(asoc, CLOSED) || 837 sctp_state(asoc, SHUTDOWN_RECEIVED)) { 838 /* Wake up any processes waiting in the asoc's wait queue in 839 * sctp_wait_for_connect() or sctp_wait_for_sndbuf(). 840 */ 841 if (waitqueue_active(&asoc->wait)) 842 wake_up_interruptible(&asoc->wait); 843 844 /* Wake up any processes waiting in the sk's sleep queue of 845 * a TCP-style or UDP-style peeled-off socket in 846 * sctp_wait_for_accept() or sctp_wait_for_packet(). 847 * For a UDP-style socket, the waiters are woken up by the 848 * notifications. 849 */ 850 if (!sctp_style(sk, UDP)) 851 sk->sk_state_change(sk); 852 } 853 } 854 855 /* Helper function to delete an association. */ 856 static void sctp_cmd_delete_tcb(sctp_cmd_seq_t *cmds, 857 struct sctp_association *asoc) 858 { 859 struct sock *sk = asoc->base.sk; 860 861 /* If it is a non-temporary association belonging to a TCP-style 862 * listening socket that is not closed, do not free it so that accept() 863 * can pick it up later. 864 */ 865 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING) && 866 (!asoc->temp) && (sk->sk_shutdown != SHUTDOWN_MASK)) 867 return; 868 869 BUG_ON(asoc->peer.primary_path == NULL); 870 sctp_unhash_established(asoc); 871 sctp_association_free(asoc); 872 } 873 874 /* 875 * ADDIP Section 4.1 ASCONF Chunk Procedures 876 * A4) Start a T-4 RTO timer, using the RTO value of the selected 877 * destination address (we use active path instead of primary path just 878 * because primary path may be inactive. 879 */ 880 static void sctp_cmd_setup_t4(sctp_cmd_seq_t *cmds, 881 struct sctp_association *asoc, 882 struct sctp_chunk *chunk) 883 { 884 struct sctp_transport *t; 885 886 t = sctp_assoc_choose_alter_transport(asoc, chunk->transport); 887 asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = t->rto; 888 chunk->transport = t; 889 } 890 891 /* Process an incoming Operation Error Chunk. */ 892 static void sctp_cmd_process_operr(sctp_cmd_seq_t *cmds, 893 struct sctp_association *asoc, 894 struct sctp_chunk *chunk) 895 { 896 struct sctp_errhdr *err_hdr; 897 struct sctp_ulpevent *ev; 898 899 while (chunk->chunk_end > chunk->skb->data) { 900 err_hdr = (struct sctp_errhdr *)(chunk->skb->data); 901 902 ev = sctp_ulpevent_make_remote_error(asoc, chunk, 0, 903 GFP_ATOMIC); 904 if (!ev) 905 return; 906 907 sctp_ulpq_tail_event(&asoc->ulpq, ev); 908 909 switch (err_hdr->cause) { 910 case SCTP_ERROR_UNKNOWN_CHUNK: 911 { 912 sctp_chunkhdr_t *unk_chunk_hdr; 913 914 unk_chunk_hdr = (sctp_chunkhdr_t *)err_hdr->variable; 915 switch (unk_chunk_hdr->type) { 916 /* ADDIP 4.1 A9) If the peer responds to an ASCONF with 917 * an ERROR chunk reporting that it did not recognized 918 * the ASCONF chunk type, the sender of the ASCONF MUST 919 * NOT send any further ASCONF chunks and MUST stop its 920 * T-4 timer. 921 */ 922 case SCTP_CID_ASCONF: 923 if (asoc->peer.asconf_capable == 0) 924 break; 925 926 asoc->peer.asconf_capable = 0; 927 sctp_add_cmd_sf(cmds, SCTP_CMD_TIMER_STOP, 928 SCTP_TO(SCTP_EVENT_TIMEOUT_T4_RTO)); 929 break; 930 default: 931 break; 932 } 933 break; 934 } 935 default: 936 break; 937 } 938 } 939 } 940 941 /* Process variable FWDTSN chunk information. */ 942 static void sctp_cmd_process_fwdtsn(struct sctp_ulpq *ulpq, 943 struct sctp_chunk *chunk) 944 { 945 struct sctp_fwdtsn_skip *skip; 946 /* Walk through all the skipped SSNs */ 947 sctp_walk_fwdtsn(skip, chunk) { 948 sctp_ulpq_skip(ulpq, ntohs(skip->stream), ntohs(skip->ssn)); 949 } 950 } 951 952 /* Helper function to remove the association non-primary peer 953 * transports. 954 */ 955 static void sctp_cmd_del_non_primary(struct sctp_association *asoc) 956 { 957 struct sctp_transport *t; 958 struct list_head *pos; 959 struct list_head *temp; 960 961 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 962 t = list_entry(pos, struct sctp_transport, transports); 963 if (!sctp_cmp_addr_exact(&t->ipaddr, 964 &asoc->peer.primary_addr)) { 965 sctp_assoc_del_peer(asoc, &t->ipaddr); 966 } 967 } 968 } 969 970 /* Helper function to set sk_err on a 1-1 style socket. */ 971 static void sctp_cmd_set_sk_err(struct sctp_association *asoc, int error) 972 { 973 struct sock *sk = asoc->base.sk; 974 975 if (!sctp_style(sk, UDP)) 976 sk->sk_err = error; 977 } 978 979 /* Helper function to generate an association change event */ 980 static void sctp_cmd_assoc_change(sctp_cmd_seq_t *commands, 981 struct sctp_association *asoc, 982 u8 state) 983 { 984 struct sctp_ulpevent *ev; 985 986 ev = sctp_ulpevent_make_assoc_change(asoc, 0, state, 0, 987 asoc->c.sinit_num_ostreams, 988 asoc->c.sinit_max_instreams, 989 NULL, GFP_ATOMIC); 990 if (ev) 991 sctp_ulpq_tail_event(&asoc->ulpq, ev); 992 } 993 994 /* Helper function to generate an adaptation indication event */ 995 static void sctp_cmd_adaptation_ind(sctp_cmd_seq_t *commands, 996 struct sctp_association *asoc) 997 { 998 struct sctp_ulpevent *ev; 999 1000 ev = sctp_ulpevent_make_adaptation_indication(asoc, GFP_ATOMIC); 1001 1002 if (ev) 1003 sctp_ulpq_tail_event(&asoc->ulpq, ev); 1004 } 1005 1006 1007 static void sctp_cmd_t1_timer_update(struct sctp_association *asoc, 1008 sctp_event_timeout_t timer, 1009 char *name) 1010 { 1011 struct sctp_transport *t; 1012 1013 t = asoc->init_last_sent_to; 1014 asoc->init_err_counter++; 1015 1016 if (t->init_sent_count > (asoc->init_cycle + 1)) { 1017 asoc->timeouts[timer] *= 2; 1018 if (asoc->timeouts[timer] > asoc->max_init_timeo) { 1019 asoc->timeouts[timer] = asoc->max_init_timeo; 1020 } 1021 asoc->init_cycle++; 1022 1023 pr_debug("%s: T1[%s] timeout adjustment init_err_counter:%d" 1024 " cycle:%d timeout:%ld\n", __func__, name, 1025 asoc->init_err_counter, asoc->init_cycle, 1026 asoc->timeouts[timer]); 1027 } 1028 1029 } 1030 1031 /* Send the whole message, chunk by chunk, to the outqueue. 1032 * This way the whole message is queued up and bundling if 1033 * encouraged for small fragments. 1034 */ 1035 static int sctp_cmd_send_msg(struct sctp_association *asoc, 1036 struct sctp_datamsg *msg) 1037 { 1038 struct sctp_chunk *chunk; 1039 int error = 0; 1040 1041 list_for_each_entry(chunk, &msg->chunks, frag_list) { 1042 error = sctp_outq_tail(&asoc->outqueue, chunk); 1043 if (error) 1044 break; 1045 } 1046 1047 return error; 1048 } 1049 1050 1051 /* Sent the next ASCONF packet currently stored in the association. 1052 * This happens after the ASCONF_ACK was succeffully processed. 1053 */ 1054 static void sctp_cmd_send_asconf(struct sctp_association *asoc) 1055 { 1056 struct net *net = sock_net(asoc->base.sk); 1057 1058 /* Send the next asconf chunk from the addip chunk 1059 * queue. 1060 */ 1061 if (!list_empty(&asoc->addip_chunk_list)) { 1062 struct list_head *entry = asoc->addip_chunk_list.next; 1063 struct sctp_chunk *asconf = list_entry(entry, 1064 struct sctp_chunk, list); 1065 list_del_init(entry); 1066 1067 /* Hold the chunk until an ASCONF_ACK is received. */ 1068 sctp_chunk_hold(asconf); 1069 if (sctp_primitive_ASCONF(net, asoc, asconf)) 1070 sctp_chunk_free(asconf); 1071 else 1072 asoc->addip_last_asconf = asconf; 1073 } 1074 } 1075 1076 1077 /* These three macros allow us to pull the debugging code out of the 1078 * main flow of sctp_do_sm() to keep attention focused on the real 1079 * functionality there. 1080 */ 1081 #define debug_pre_sfn() \ 1082 pr_debug("%s[pre-fn]: ep:%p, %s, %s, asoc:%p[%s], %s\n", __func__, \ 1083 ep, sctp_evttype_tbl[event_type], (*debug_fn)(subtype), \ 1084 asoc, sctp_state_tbl[state], state_fn->name) 1085 1086 #define debug_post_sfn() \ 1087 pr_debug("%s[post-fn]: asoc:%p, status:%s\n", __func__, asoc, \ 1088 sctp_status_tbl[status]) 1089 1090 #define debug_post_sfx() \ 1091 pr_debug("%s[post-sfx]: error:%d, asoc:%p[%s]\n", __func__, error, \ 1092 asoc, sctp_state_tbl[(asoc && sctp_id2assoc(ep->base.sk, \ 1093 sctp_assoc2id(asoc))) ? asoc->state : SCTP_STATE_CLOSED]) 1094 1095 /* 1096 * This is the master state machine processing function. 1097 * 1098 * If you want to understand all of lksctp, this is a 1099 * good place to start. 1100 */ 1101 int sctp_do_sm(struct net *net, sctp_event_t event_type, sctp_subtype_t subtype, 1102 sctp_state_t state, 1103 struct sctp_endpoint *ep, 1104 struct sctp_association *asoc, 1105 void *event_arg, 1106 gfp_t gfp) 1107 { 1108 sctp_cmd_seq_t commands; 1109 const sctp_sm_table_entry_t *state_fn; 1110 sctp_disposition_t status; 1111 int error = 0; 1112 typedef const char *(printfn_t)(sctp_subtype_t); 1113 static printfn_t *table[] = { 1114 NULL, sctp_cname, sctp_tname, sctp_oname, sctp_pname, 1115 }; 1116 printfn_t *debug_fn __attribute__ ((unused)) = table[event_type]; 1117 1118 /* Look up the state function, run it, and then process the 1119 * side effects. These three steps are the heart of lksctp. 1120 */ 1121 state_fn = sctp_sm_lookup_event(net, event_type, state, subtype); 1122 1123 sctp_init_cmd_seq(&commands); 1124 1125 debug_pre_sfn(); 1126 status = (*state_fn->fn)(net, ep, asoc, subtype, event_arg, &commands); 1127 debug_post_sfn(); 1128 1129 error = sctp_side_effects(event_type, subtype, state, 1130 ep, asoc, event_arg, status, 1131 &commands, gfp); 1132 debug_post_sfx(); 1133 1134 return error; 1135 } 1136 1137 /***************************************************************** 1138 * This the master state function side effect processing function. 1139 *****************************************************************/ 1140 static int sctp_side_effects(sctp_event_t event_type, sctp_subtype_t subtype, 1141 sctp_state_t state, 1142 struct sctp_endpoint *ep, 1143 struct sctp_association *asoc, 1144 void *event_arg, 1145 sctp_disposition_t status, 1146 sctp_cmd_seq_t *commands, 1147 gfp_t gfp) 1148 { 1149 int error; 1150 1151 /* FIXME - Most of the dispositions left today would be categorized 1152 * as "exceptional" dispositions. For those dispositions, it 1153 * may not be proper to run through any of the commands at all. 1154 * For example, the command interpreter might be run only with 1155 * disposition SCTP_DISPOSITION_CONSUME. 1156 */ 1157 if (0 != (error = sctp_cmd_interpreter(event_type, subtype, state, 1158 ep, asoc, 1159 event_arg, status, 1160 commands, gfp))) 1161 goto bail; 1162 1163 switch (status) { 1164 case SCTP_DISPOSITION_DISCARD: 1165 pr_debug("%s: ignored sctp protocol event - state:%d, " 1166 "event_type:%d, event_id:%d\n", __func__, state, 1167 event_type, subtype.chunk); 1168 break; 1169 1170 case SCTP_DISPOSITION_NOMEM: 1171 /* We ran out of memory, so we need to discard this 1172 * packet. 1173 */ 1174 /* BUG--we should now recover some memory, probably by 1175 * reneging... 1176 */ 1177 error = -ENOMEM; 1178 break; 1179 1180 case SCTP_DISPOSITION_DELETE_TCB: 1181 /* This should now be a command. */ 1182 break; 1183 1184 case SCTP_DISPOSITION_CONSUME: 1185 case SCTP_DISPOSITION_ABORT: 1186 /* 1187 * We should no longer have much work to do here as the 1188 * real work has been done as explicit commands above. 1189 */ 1190 break; 1191 1192 case SCTP_DISPOSITION_VIOLATION: 1193 net_err_ratelimited("protocol violation state %d chunkid %d\n", 1194 state, subtype.chunk); 1195 break; 1196 1197 case SCTP_DISPOSITION_NOT_IMPL: 1198 pr_warn("unimplemented feature in state %d, event_type %d, event_id %d\n", 1199 state, event_type, subtype.chunk); 1200 break; 1201 1202 case SCTP_DISPOSITION_BUG: 1203 pr_err("bug in state %d, event_type %d, event_id %d\n", 1204 state, event_type, subtype.chunk); 1205 BUG(); 1206 break; 1207 1208 default: 1209 pr_err("impossible disposition %d in state %d, event_type %d, event_id %d\n", 1210 status, state, event_type, subtype.chunk); 1211 BUG(); 1212 break; 1213 } 1214 1215 bail: 1216 return error; 1217 } 1218 1219 /******************************************************************** 1220 * 2nd Level Abstractions 1221 ********************************************************************/ 1222 1223 /* This is the side-effect interpreter. */ 1224 static int sctp_cmd_interpreter(sctp_event_t event_type, 1225 sctp_subtype_t subtype, 1226 sctp_state_t state, 1227 struct sctp_endpoint *ep, 1228 struct sctp_association *asoc, 1229 void *event_arg, 1230 sctp_disposition_t status, 1231 sctp_cmd_seq_t *commands, 1232 gfp_t gfp) 1233 { 1234 int error = 0; 1235 int force; 1236 sctp_cmd_t *cmd; 1237 struct sctp_chunk *new_obj; 1238 struct sctp_chunk *chunk = NULL; 1239 struct sctp_packet *packet; 1240 struct timer_list *timer; 1241 unsigned long timeout; 1242 struct sctp_transport *t; 1243 struct sctp_sackhdr sackh; 1244 int local_cork = 0; 1245 1246 if (SCTP_EVENT_T_TIMEOUT != event_type) 1247 chunk = event_arg; 1248 1249 /* Note: This whole file is a huge candidate for rework. 1250 * For example, each command could either have its own handler, so 1251 * the loop would look like: 1252 * while (cmds) 1253 * cmd->handle(x, y, z) 1254 * --jgrimm 1255 */ 1256 while (NULL != (cmd = sctp_next_cmd(commands))) { 1257 switch (cmd->verb) { 1258 case SCTP_CMD_NOP: 1259 /* Do nothing. */ 1260 break; 1261 1262 case SCTP_CMD_NEW_ASOC: 1263 /* Register a new association. */ 1264 if (local_cork) { 1265 sctp_outq_uncork(&asoc->outqueue); 1266 local_cork = 0; 1267 } 1268 1269 /* Register with the endpoint. */ 1270 asoc = cmd->obj.asoc; 1271 BUG_ON(asoc->peer.primary_path == NULL); 1272 sctp_endpoint_add_asoc(ep, asoc); 1273 sctp_hash_established(asoc); 1274 break; 1275 1276 case SCTP_CMD_UPDATE_ASSOC: 1277 sctp_assoc_update(asoc, cmd->obj.asoc); 1278 break; 1279 1280 case SCTP_CMD_PURGE_OUTQUEUE: 1281 sctp_outq_teardown(&asoc->outqueue); 1282 break; 1283 1284 case SCTP_CMD_DELETE_TCB: 1285 if (local_cork) { 1286 sctp_outq_uncork(&asoc->outqueue); 1287 local_cork = 0; 1288 } 1289 /* Delete the current association. */ 1290 sctp_cmd_delete_tcb(commands, asoc); 1291 asoc = NULL; 1292 break; 1293 1294 case SCTP_CMD_NEW_STATE: 1295 /* Enter a new state. */ 1296 sctp_cmd_new_state(commands, asoc, cmd->obj.state); 1297 break; 1298 1299 case SCTP_CMD_REPORT_TSN: 1300 /* Record the arrival of a TSN. */ 1301 error = sctp_tsnmap_mark(&asoc->peer.tsn_map, 1302 cmd->obj.u32, NULL); 1303 break; 1304 1305 case SCTP_CMD_REPORT_FWDTSN: 1306 /* Move the Cumulattive TSN Ack ahead. */ 1307 sctp_tsnmap_skip(&asoc->peer.tsn_map, cmd->obj.u32); 1308 1309 /* purge the fragmentation queue */ 1310 sctp_ulpq_reasm_flushtsn(&asoc->ulpq, cmd->obj.u32); 1311 1312 /* Abort any in progress partial delivery. */ 1313 sctp_ulpq_abort_pd(&asoc->ulpq, GFP_ATOMIC); 1314 break; 1315 1316 case SCTP_CMD_PROCESS_FWDTSN: 1317 sctp_cmd_process_fwdtsn(&asoc->ulpq, cmd->obj.chunk); 1318 break; 1319 1320 case SCTP_CMD_GEN_SACK: 1321 /* Generate a Selective ACK. 1322 * The argument tells us whether to just count 1323 * the packet and MAYBE generate a SACK, or 1324 * force a SACK out. 1325 */ 1326 force = cmd->obj.i32; 1327 error = sctp_gen_sack(asoc, force, commands); 1328 break; 1329 1330 case SCTP_CMD_PROCESS_SACK: 1331 /* Process an inbound SACK. */ 1332 error = sctp_cmd_process_sack(commands, asoc, 1333 cmd->obj.chunk); 1334 break; 1335 1336 case SCTP_CMD_GEN_INIT_ACK: 1337 /* Generate an INIT ACK chunk. */ 1338 new_obj = sctp_make_init_ack(asoc, chunk, GFP_ATOMIC, 1339 0); 1340 if (!new_obj) 1341 goto nomem; 1342 1343 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, 1344 SCTP_CHUNK(new_obj)); 1345 break; 1346 1347 case SCTP_CMD_PEER_INIT: 1348 /* Process a unified INIT from the peer. 1349 * Note: Only used during INIT-ACK processing. If 1350 * there is an error just return to the outter 1351 * layer which will bail. 1352 */ 1353 error = sctp_cmd_process_init(commands, asoc, chunk, 1354 cmd->obj.init, gfp); 1355 break; 1356 1357 case SCTP_CMD_GEN_COOKIE_ECHO: 1358 /* Generate a COOKIE ECHO chunk. */ 1359 new_obj = sctp_make_cookie_echo(asoc, chunk); 1360 if (!new_obj) { 1361 if (cmd->obj.chunk) 1362 sctp_chunk_free(cmd->obj.chunk); 1363 goto nomem; 1364 } 1365 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, 1366 SCTP_CHUNK(new_obj)); 1367 1368 /* If there is an ERROR chunk to be sent along with 1369 * the COOKIE_ECHO, send it, too. 1370 */ 1371 if (cmd->obj.chunk) 1372 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, 1373 SCTP_CHUNK(cmd->obj.chunk)); 1374 1375 if (new_obj->transport) { 1376 new_obj->transport->init_sent_count++; 1377 asoc->init_last_sent_to = new_obj->transport; 1378 } 1379 1380 /* FIXME - Eventually come up with a cleaner way to 1381 * enabling COOKIE-ECHO + DATA bundling during 1382 * multihoming stale cookie scenarios, the following 1383 * command plays with asoc->peer.retran_path to 1384 * avoid the problem of sending the COOKIE-ECHO and 1385 * DATA in different paths, which could result 1386 * in the association being ABORTed if the DATA chunk 1387 * is processed first by the server. Checking the 1388 * init error counter simply causes this command 1389 * to be executed only during failed attempts of 1390 * association establishment. 1391 */ 1392 if ((asoc->peer.retran_path != 1393 asoc->peer.primary_path) && 1394 (asoc->init_err_counter > 0)) { 1395 sctp_add_cmd_sf(commands, 1396 SCTP_CMD_FORCE_PRIM_RETRAN, 1397 SCTP_NULL()); 1398 } 1399 1400 break; 1401 1402 case SCTP_CMD_GEN_SHUTDOWN: 1403 /* Generate SHUTDOWN when in SHUTDOWN_SENT state. 1404 * Reset error counts. 1405 */ 1406 asoc->overall_error_count = 0; 1407 1408 /* Generate a SHUTDOWN chunk. */ 1409 new_obj = sctp_make_shutdown(asoc, chunk); 1410 if (!new_obj) 1411 goto nomem; 1412 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, 1413 SCTP_CHUNK(new_obj)); 1414 break; 1415 1416 case SCTP_CMD_CHUNK_ULP: 1417 /* Send a chunk to the sockets layer. */ 1418 pr_debug("%s: sm_sideff: chunk_up:%p, ulpq:%p\n", 1419 __func__, cmd->obj.chunk, &asoc->ulpq); 1420 1421 sctp_ulpq_tail_data(&asoc->ulpq, cmd->obj.chunk, 1422 GFP_ATOMIC); 1423 break; 1424 1425 case SCTP_CMD_EVENT_ULP: 1426 /* Send a notification to the sockets layer. */ 1427 pr_debug("%s: sm_sideff: event_up:%p, ulpq:%p\n", 1428 __func__, cmd->obj.ulpevent, &asoc->ulpq); 1429 1430 sctp_ulpq_tail_event(&asoc->ulpq, cmd->obj.ulpevent); 1431 break; 1432 1433 case SCTP_CMD_REPLY: 1434 /* If an caller has not already corked, do cork. */ 1435 if (!asoc->outqueue.cork) { 1436 sctp_outq_cork(&asoc->outqueue); 1437 local_cork = 1; 1438 } 1439 /* Send a chunk to our peer. */ 1440 error = sctp_outq_tail(&asoc->outqueue, cmd->obj.chunk); 1441 break; 1442 1443 case SCTP_CMD_SEND_PKT: 1444 /* Send a full packet to our peer. */ 1445 packet = cmd->obj.packet; 1446 sctp_packet_transmit(packet); 1447 sctp_ootb_pkt_free(packet); 1448 break; 1449 1450 case SCTP_CMD_T1_RETRAN: 1451 /* Mark a transport for retransmission. */ 1452 sctp_retransmit(&asoc->outqueue, cmd->obj.transport, 1453 SCTP_RTXR_T1_RTX); 1454 break; 1455 1456 case SCTP_CMD_RETRAN: 1457 /* Mark a transport for retransmission. */ 1458 sctp_retransmit(&asoc->outqueue, cmd->obj.transport, 1459 SCTP_RTXR_T3_RTX); 1460 break; 1461 1462 case SCTP_CMD_ECN_CE: 1463 /* Do delayed CE processing. */ 1464 sctp_do_ecn_ce_work(asoc, cmd->obj.u32); 1465 break; 1466 1467 case SCTP_CMD_ECN_ECNE: 1468 /* Do delayed ECNE processing. */ 1469 new_obj = sctp_do_ecn_ecne_work(asoc, cmd->obj.u32, 1470 chunk); 1471 if (new_obj) 1472 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, 1473 SCTP_CHUNK(new_obj)); 1474 break; 1475 1476 case SCTP_CMD_ECN_CWR: 1477 /* Do delayed CWR processing. */ 1478 sctp_do_ecn_cwr_work(asoc, cmd->obj.u32); 1479 break; 1480 1481 case SCTP_CMD_SETUP_T2: 1482 sctp_cmd_setup_t2(commands, asoc, cmd->obj.chunk); 1483 break; 1484 1485 case SCTP_CMD_TIMER_START_ONCE: 1486 timer = &asoc->timers[cmd->obj.to]; 1487 1488 if (timer_pending(timer)) 1489 break; 1490 /* fall through */ 1491 1492 case SCTP_CMD_TIMER_START: 1493 timer = &asoc->timers[cmd->obj.to]; 1494 timeout = asoc->timeouts[cmd->obj.to]; 1495 BUG_ON(!timeout); 1496 1497 timer->expires = jiffies + timeout; 1498 sctp_association_hold(asoc); 1499 add_timer(timer); 1500 break; 1501 1502 case SCTP_CMD_TIMER_RESTART: 1503 timer = &asoc->timers[cmd->obj.to]; 1504 timeout = asoc->timeouts[cmd->obj.to]; 1505 if (!mod_timer(timer, jiffies + timeout)) 1506 sctp_association_hold(asoc); 1507 break; 1508 1509 case SCTP_CMD_TIMER_STOP: 1510 timer = &asoc->timers[cmd->obj.to]; 1511 if (del_timer(timer)) 1512 sctp_association_put(asoc); 1513 break; 1514 1515 case SCTP_CMD_INIT_CHOOSE_TRANSPORT: 1516 chunk = cmd->obj.chunk; 1517 t = sctp_assoc_choose_alter_transport(asoc, 1518 asoc->init_last_sent_to); 1519 asoc->init_last_sent_to = t; 1520 chunk->transport = t; 1521 t->init_sent_count++; 1522 /* Set the new transport as primary */ 1523 sctp_assoc_set_primary(asoc, t); 1524 break; 1525 1526 case SCTP_CMD_INIT_RESTART: 1527 /* Do the needed accounting and updates 1528 * associated with restarting an initialization 1529 * timer. Only multiply the timeout by two if 1530 * all transports have been tried at the current 1531 * timeout. 1532 */ 1533 sctp_cmd_t1_timer_update(asoc, 1534 SCTP_EVENT_TIMEOUT_T1_INIT, 1535 "INIT"); 1536 1537 sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART, 1538 SCTP_TO(SCTP_EVENT_TIMEOUT_T1_INIT)); 1539 break; 1540 1541 case SCTP_CMD_COOKIEECHO_RESTART: 1542 /* Do the needed accounting and updates 1543 * associated with restarting an initialization 1544 * timer. Only multiply the timeout by two if 1545 * all transports have been tried at the current 1546 * timeout. 1547 */ 1548 sctp_cmd_t1_timer_update(asoc, 1549 SCTP_EVENT_TIMEOUT_T1_COOKIE, 1550 "COOKIE"); 1551 1552 /* If we've sent any data bundled with 1553 * COOKIE-ECHO we need to resend. 1554 */ 1555 list_for_each_entry(t, &asoc->peer.transport_addr_list, 1556 transports) { 1557 sctp_retransmit_mark(&asoc->outqueue, t, 1558 SCTP_RTXR_T1_RTX); 1559 } 1560 1561 sctp_add_cmd_sf(commands, 1562 SCTP_CMD_TIMER_RESTART, 1563 SCTP_TO(SCTP_EVENT_TIMEOUT_T1_COOKIE)); 1564 break; 1565 1566 case SCTP_CMD_INIT_FAILED: 1567 sctp_cmd_init_failed(commands, asoc, cmd->obj.err); 1568 break; 1569 1570 case SCTP_CMD_ASSOC_FAILED: 1571 sctp_cmd_assoc_failed(commands, asoc, event_type, 1572 subtype, chunk, cmd->obj.err); 1573 break; 1574 1575 case SCTP_CMD_INIT_COUNTER_INC: 1576 asoc->init_err_counter++; 1577 break; 1578 1579 case SCTP_CMD_INIT_COUNTER_RESET: 1580 asoc->init_err_counter = 0; 1581 asoc->init_cycle = 0; 1582 list_for_each_entry(t, &asoc->peer.transport_addr_list, 1583 transports) { 1584 t->init_sent_count = 0; 1585 } 1586 break; 1587 1588 case SCTP_CMD_REPORT_DUP: 1589 sctp_tsnmap_mark_dup(&asoc->peer.tsn_map, 1590 cmd->obj.u32); 1591 break; 1592 1593 case SCTP_CMD_REPORT_BAD_TAG: 1594 pr_debug("%s: vtag mismatch!\n", __func__); 1595 break; 1596 1597 case SCTP_CMD_STRIKE: 1598 /* Mark one strike against a transport. */ 1599 sctp_do_8_2_transport_strike(commands, asoc, 1600 cmd->obj.transport, 0); 1601 break; 1602 1603 case SCTP_CMD_TRANSPORT_IDLE: 1604 t = cmd->obj.transport; 1605 sctp_transport_lower_cwnd(t, SCTP_LOWER_CWND_INACTIVE); 1606 break; 1607 1608 case SCTP_CMD_TRANSPORT_HB_SENT: 1609 t = cmd->obj.transport; 1610 sctp_do_8_2_transport_strike(commands, asoc, 1611 t, 1); 1612 t->hb_sent = 1; 1613 break; 1614 1615 case SCTP_CMD_TRANSPORT_ON: 1616 t = cmd->obj.transport; 1617 sctp_cmd_transport_on(commands, asoc, t, chunk); 1618 break; 1619 1620 case SCTP_CMD_HB_TIMERS_START: 1621 sctp_cmd_hb_timers_start(commands, asoc); 1622 break; 1623 1624 case SCTP_CMD_HB_TIMER_UPDATE: 1625 t = cmd->obj.transport; 1626 sctp_cmd_hb_timer_update(commands, t); 1627 break; 1628 1629 case SCTP_CMD_HB_TIMERS_STOP: 1630 sctp_cmd_hb_timers_stop(commands, asoc); 1631 break; 1632 1633 case SCTP_CMD_REPORT_ERROR: 1634 error = cmd->obj.error; 1635 break; 1636 1637 case SCTP_CMD_PROCESS_CTSN: 1638 /* Dummy up a SACK for processing. */ 1639 sackh.cum_tsn_ack = cmd->obj.be32; 1640 sackh.a_rwnd = asoc->peer.rwnd + 1641 asoc->outqueue.outstanding_bytes; 1642 sackh.num_gap_ack_blocks = 0; 1643 sackh.num_dup_tsns = 0; 1644 chunk->subh.sack_hdr = &sackh; 1645 sctp_add_cmd_sf(commands, SCTP_CMD_PROCESS_SACK, 1646 SCTP_CHUNK(chunk)); 1647 break; 1648 1649 case SCTP_CMD_DISCARD_PACKET: 1650 /* We need to discard the whole packet. 1651 * Uncork the queue since there might be 1652 * responses pending 1653 */ 1654 chunk->pdiscard = 1; 1655 if (asoc) { 1656 sctp_outq_uncork(&asoc->outqueue); 1657 local_cork = 0; 1658 } 1659 break; 1660 1661 case SCTP_CMD_RTO_PENDING: 1662 t = cmd->obj.transport; 1663 t->rto_pending = 1; 1664 break; 1665 1666 case SCTP_CMD_PART_DELIVER: 1667 sctp_ulpq_partial_delivery(&asoc->ulpq, GFP_ATOMIC); 1668 break; 1669 1670 case SCTP_CMD_RENEGE: 1671 sctp_ulpq_renege(&asoc->ulpq, cmd->obj.chunk, 1672 GFP_ATOMIC); 1673 break; 1674 1675 case SCTP_CMD_SETUP_T4: 1676 sctp_cmd_setup_t4(commands, asoc, cmd->obj.chunk); 1677 break; 1678 1679 case SCTP_CMD_PROCESS_OPERR: 1680 sctp_cmd_process_operr(commands, asoc, chunk); 1681 break; 1682 case SCTP_CMD_CLEAR_INIT_TAG: 1683 asoc->peer.i.init_tag = 0; 1684 break; 1685 case SCTP_CMD_DEL_NON_PRIMARY: 1686 sctp_cmd_del_non_primary(asoc); 1687 break; 1688 case SCTP_CMD_T3_RTX_TIMERS_STOP: 1689 sctp_cmd_t3_rtx_timers_stop(commands, asoc); 1690 break; 1691 case SCTP_CMD_FORCE_PRIM_RETRAN: 1692 t = asoc->peer.retran_path; 1693 asoc->peer.retran_path = asoc->peer.primary_path; 1694 error = sctp_outq_uncork(&asoc->outqueue); 1695 local_cork = 0; 1696 asoc->peer.retran_path = t; 1697 break; 1698 case SCTP_CMD_SET_SK_ERR: 1699 sctp_cmd_set_sk_err(asoc, cmd->obj.error); 1700 break; 1701 case SCTP_CMD_ASSOC_CHANGE: 1702 sctp_cmd_assoc_change(commands, asoc, 1703 cmd->obj.u8); 1704 break; 1705 case SCTP_CMD_ADAPTATION_IND: 1706 sctp_cmd_adaptation_ind(commands, asoc); 1707 break; 1708 1709 case SCTP_CMD_ASSOC_SHKEY: 1710 error = sctp_auth_asoc_init_active_key(asoc, 1711 GFP_ATOMIC); 1712 break; 1713 case SCTP_CMD_UPDATE_INITTAG: 1714 asoc->peer.i.init_tag = cmd->obj.u32; 1715 break; 1716 case SCTP_CMD_SEND_MSG: 1717 if (!asoc->outqueue.cork) { 1718 sctp_outq_cork(&asoc->outqueue); 1719 local_cork = 1; 1720 } 1721 error = sctp_cmd_send_msg(asoc, cmd->obj.msg); 1722 break; 1723 case SCTP_CMD_SEND_NEXT_ASCONF: 1724 sctp_cmd_send_asconf(asoc); 1725 break; 1726 case SCTP_CMD_PURGE_ASCONF_QUEUE: 1727 sctp_asconf_queue_teardown(asoc); 1728 break; 1729 1730 case SCTP_CMD_SET_ASOC: 1731 asoc = cmd->obj.asoc; 1732 break; 1733 1734 default: 1735 pr_warn("Impossible command: %u\n", 1736 cmd->verb); 1737 break; 1738 } 1739 1740 if (error) 1741 break; 1742 } 1743 1744 out: 1745 /* If this is in response to a received chunk, wait until 1746 * we are done with the packet to open the queue so that we don't 1747 * send multiple packets in response to a single request. 1748 */ 1749 if (asoc && SCTP_EVENT_T_CHUNK == event_type && chunk) { 1750 if (chunk->end_of_packet || chunk->singleton) 1751 error = sctp_outq_uncork(&asoc->outqueue); 1752 } else if (local_cork) 1753 error = sctp_outq_uncork(&asoc->outqueue); 1754 return error; 1755 nomem: 1756 error = -ENOMEM; 1757 goto out; 1758 } 1759 1760