xref: /openbmc/linux/net/sctp/sm_sideeffect.c (revision c62d3cd0ddd629606a3830aa22e9dcc6c2a0d3bf)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  *
6  * This file is part of the SCTP kernel implementation
7  *
8  * These functions work with the state functions in sctp_sm_statefuns.c
9  * to implement that state operations.  These functions implement the
10  * steps which require modifying existing data structures.
11  *
12  * This SCTP implementation is free software;
13  * you can redistribute it and/or modify it under the terms of
14  * the GNU General Public License as published by
15  * the Free Software Foundation; either version 2, or (at your option)
16  * any later version.
17  *
18  * This SCTP implementation is distributed in the hope that it
19  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20  *                 ************************
21  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22  * See the GNU General Public License for more details.
23  *
24  * You should have received a copy of the GNU General Public License
25  * along with GNU CC; see the file COPYING.  If not, see
26  * <http://www.gnu.org/licenses/>.
27  *
28  * Please send any bug reports or fixes you make to the
29  * email address(es):
30  *    lksctp developers <linux-sctp@vger.kernel.org>
31  *
32  * Written or modified by:
33  *    La Monte H.P. Yarroll <piggy@acm.org>
34  *    Karl Knutson          <karl@athena.chicago.il.us>
35  *    Jon Grimm             <jgrimm@austin.ibm.com>
36  *    Hui Huang		    <hui.huang@nokia.com>
37  *    Dajiang Zhang	    <dajiang.zhang@nokia.com>
38  *    Daisy Chang	    <daisyc@us.ibm.com>
39  *    Sridhar Samudrala	    <sri@us.ibm.com>
40  *    Ardelle Fan	    <ardelle.fan@intel.com>
41  */
42 
43 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
44 
45 #include <linux/skbuff.h>
46 #include <linux/types.h>
47 #include <linux/socket.h>
48 #include <linux/ip.h>
49 #include <linux/gfp.h>
50 #include <net/sock.h>
51 #include <net/sctp/sctp.h>
52 #include <net/sctp/sm.h>
53 #include <net/sctp/stream_sched.h>
54 
55 static int sctp_cmd_interpreter(enum sctp_event event_type,
56 				union sctp_subtype subtype,
57 				enum sctp_state state,
58 				struct sctp_endpoint *ep,
59 				struct sctp_association *asoc,
60 				void *event_arg,
61 				enum sctp_disposition status,
62 				struct sctp_cmd_seq *commands,
63 				gfp_t gfp);
64 static int sctp_side_effects(enum sctp_event event_type,
65 			     union sctp_subtype subtype,
66 			     enum sctp_state state,
67 			     struct sctp_endpoint *ep,
68 			     struct sctp_association **asoc,
69 			     void *event_arg,
70 			     enum sctp_disposition status,
71 			     struct sctp_cmd_seq *commands,
72 			     gfp_t gfp);
73 
74 /********************************************************************
75  * Helper functions
76  ********************************************************************/
77 
78 /* A helper function for delayed processing of INET ECN CE bit. */
79 static void sctp_do_ecn_ce_work(struct sctp_association *asoc,
80 				__u32 lowest_tsn)
81 {
82 	/* Save the TSN away for comparison when we receive CWR */
83 
84 	asoc->last_ecne_tsn = lowest_tsn;
85 	asoc->need_ecne = 1;
86 }
87 
88 /* Helper function for delayed processing of SCTP ECNE chunk.  */
89 /* RFC 2960 Appendix A
90  *
91  * RFC 2481 details a specific bit for a sender to send in
92  * the header of its next outbound TCP segment to indicate to
93  * its peer that it has reduced its congestion window.  This
94  * is termed the CWR bit.  For SCTP the same indication is made
95  * by including the CWR chunk.  This chunk contains one data
96  * element, i.e. the TSN number that was sent in the ECNE chunk.
97  * This element represents the lowest TSN number in the datagram
98  * that was originally marked with the CE bit.
99  */
100 static struct sctp_chunk *sctp_do_ecn_ecne_work(struct sctp_association *asoc,
101 						__u32 lowest_tsn,
102 						struct sctp_chunk *chunk)
103 {
104 	struct sctp_chunk *repl;
105 
106 	/* Our previously transmitted packet ran into some congestion
107 	 * so we should take action by reducing cwnd and ssthresh
108 	 * and then ACK our peer that we we've done so by
109 	 * sending a CWR.
110 	 */
111 
112 	/* First, try to determine if we want to actually lower
113 	 * our cwnd variables.  Only lower them if the ECNE looks more
114 	 * recent than the last response.
115 	 */
116 	if (TSN_lt(asoc->last_cwr_tsn, lowest_tsn)) {
117 		struct sctp_transport *transport;
118 
119 		/* Find which transport's congestion variables
120 		 * need to be adjusted.
121 		 */
122 		transport = sctp_assoc_lookup_tsn(asoc, lowest_tsn);
123 
124 		/* Update the congestion variables. */
125 		if (transport)
126 			sctp_transport_lower_cwnd(transport,
127 						  SCTP_LOWER_CWND_ECNE);
128 		asoc->last_cwr_tsn = lowest_tsn;
129 	}
130 
131 	/* Always try to quiet the other end.  In case of lost CWR,
132 	 * resend last_cwr_tsn.
133 	 */
134 	repl = sctp_make_cwr(asoc, asoc->last_cwr_tsn, chunk);
135 
136 	/* If we run out of memory, it will look like a lost CWR.  We'll
137 	 * get back in sync eventually.
138 	 */
139 	return repl;
140 }
141 
142 /* Helper function to do delayed processing of ECN CWR chunk.  */
143 static void sctp_do_ecn_cwr_work(struct sctp_association *asoc,
144 				 __u32 lowest_tsn)
145 {
146 	/* Turn off ECNE getting auto-prepended to every outgoing
147 	 * packet
148 	 */
149 	asoc->need_ecne = 0;
150 }
151 
152 /* Generate SACK if necessary.  We call this at the end of a packet.  */
153 static int sctp_gen_sack(struct sctp_association *asoc, int force,
154 			 struct sctp_cmd_seq *commands)
155 {
156 	struct sctp_transport *trans = asoc->peer.last_data_from;
157 	__u32 ctsn, max_tsn_seen;
158 	struct sctp_chunk *sack;
159 	int error = 0;
160 
161 	if (force ||
162 	    (!trans && (asoc->param_flags & SPP_SACKDELAY_DISABLE)) ||
163 	    (trans && (trans->param_flags & SPP_SACKDELAY_DISABLE)))
164 		asoc->peer.sack_needed = 1;
165 
166 	ctsn = sctp_tsnmap_get_ctsn(&asoc->peer.tsn_map);
167 	max_tsn_seen = sctp_tsnmap_get_max_tsn_seen(&asoc->peer.tsn_map);
168 
169 	/* From 12.2 Parameters necessary per association (i.e. the TCB):
170 	 *
171 	 * Ack State : This flag indicates if the next received packet
172 	 * 	     : is to be responded to with a SACK. ...
173 	 *	     : When DATA chunks are out of order, SACK's
174 	 *           : are not delayed (see Section 6).
175 	 *
176 	 * [This is actually not mentioned in Section 6, but we
177 	 * implement it here anyway. --piggy]
178 	 */
179 	if (max_tsn_seen != ctsn)
180 		asoc->peer.sack_needed = 1;
181 
182 	/* From 6.2  Acknowledgement on Reception of DATA Chunks:
183 	 *
184 	 * Section 4.2 of [RFC2581] SHOULD be followed. Specifically,
185 	 * an acknowledgement SHOULD be generated for at least every
186 	 * second packet (not every second DATA chunk) received, and
187 	 * SHOULD be generated within 200 ms of the arrival of any
188 	 * unacknowledged DATA chunk. ...
189 	 */
190 	if (!asoc->peer.sack_needed) {
191 		asoc->peer.sack_cnt++;
192 
193 		/* Set the SACK delay timeout based on the
194 		 * SACK delay for the last transport
195 		 * data was received from, or the default
196 		 * for the association.
197 		 */
198 		if (trans) {
199 			/* We will need a SACK for the next packet.  */
200 			if (asoc->peer.sack_cnt >= trans->sackfreq - 1)
201 				asoc->peer.sack_needed = 1;
202 
203 			asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] =
204 				trans->sackdelay;
205 		} else {
206 			/* We will need a SACK for the next packet.  */
207 			if (asoc->peer.sack_cnt >= asoc->sackfreq - 1)
208 				asoc->peer.sack_needed = 1;
209 
210 			asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] =
211 				asoc->sackdelay;
212 		}
213 
214 		/* Restart the SACK timer. */
215 		sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART,
216 				SCTP_TO(SCTP_EVENT_TIMEOUT_SACK));
217 	} else {
218 		__u32 old_a_rwnd = asoc->a_rwnd;
219 
220 		asoc->a_rwnd = asoc->rwnd;
221 		sack = sctp_make_sack(asoc);
222 		if (!sack) {
223 			asoc->a_rwnd = old_a_rwnd;
224 			goto nomem;
225 		}
226 
227 		asoc->peer.sack_needed = 0;
228 		asoc->peer.sack_cnt = 0;
229 
230 		sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(sack));
231 
232 		/* Stop the SACK timer.  */
233 		sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP,
234 				SCTP_TO(SCTP_EVENT_TIMEOUT_SACK));
235 	}
236 
237 	return error;
238 nomem:
239 	error = -ENOMEM;
240 	return error;
241 }
242 
243 /* When the T3-RTX timer expires, it calls this function to create the
244  * relevant state machine event.
245  */
246 void sctp_generate_t3_rtx_event(struct timer_list *t)
247 {
248 	struct sctp_transport *transport =
249 		from_timer(transport, t, T3_rtx_timer);
250 	struct sctp_association *asoc = transport->asoc;
251 	struct sock *sk = asoc->base.sk;
252 	struct net *net = sock_net(sk);
253 	int error;
254 
255 	/* Check whether a task is in the sock.  */
256 
257 	bh_lock_sock(sk);
258 	if (sock_owned_by_user(sk)) {
259 		pr_debug("%s: sock is busy\n", __func__);
260 
261 		/* Try again later.  */
262 		if (!mod_timer(&transport->T3_rtx_timer, jiffies + (HZ/20)))
263 			sctp_transport_hold(transport);
264 		goto out_unlock;
265 	}
266 
267 	/* Run through the state machine.  */
268 	error = sctp_do_sm(net, SCTP_EVENT_T_TIMEOUT,
269 			   SCTP_ST_TIMEOUT(SCTP_EVENT_TIMEOUT_T3_RTX),
270 			   asoc->state,
271 			   asoc->ep, asoc,
272 			   transport, GFP_ATOMIC);
273 
274 	if (error)
275 		sk->sk_err = -error;
276 
277 out_unlock:
278 	bh_unlock_sock(sk);
279 	sctp_transport_put(transport);
280 }
281 
282 /* This is a sa interface for producing timeout events.  It works
283  * for timeouts which use the association as their parameter.
284  */
285 static void sctp_generate_timeout_event(struct sctp_association *asoc,
286 					enum sctp_event_timeout timeout_type)
287 {
288 	struct sock *sk = asoc->base.sk;
289 	struct net *net = sock_net(sk);
290 	int error = 0;
291 
292 	bh_lock_sock(sk);
293 	if (sock_owned_by_user(sk)) {
294 		pr_debug("%s: sock is busy: timer %d\n", __func__,
295 			 timeout_type);
296 
297 		/* Try again later.  */
298 		if (!mod_timer(&asoc->timers[timeout_type], jiffies + (HZ/20)))
299 			sctp_association_hold(asoc);
300 		goto out_unlock;
301 	}
302 
303 	/* Is this association really dead and just waiting around for
304 	 * the timer to let go of the reference?
305 	 */
306 	if (asoc->base.dead)
307 		goto out_unlock;
308 
309 	/* Run through the state machine.  */
310 	error = sctp_do_sm(net, SCTP_EVENT_T_TIMEOUT,
311 			   SCTP_ST_TIMEOUT(timeout_type),
312 			   asoc->state, asoc->ep, asoc,
313 			   (void *)timeout_type, GFP_ATOMIC);
314 
315 	if (error)
316 		sk->sk_err = -error;
317 
318 out_unlock:
319 	bh_unlock_sock(sk);
320 	sctp_association_put(asoc);
321 }
322 
323 static void sctp_generate_t1_cookie_event(struct timer_list *t)
324 {
325 	struct sctp_association *asoc =
326 		from_timer(asoc, t, timers[SCTP_EVENT_TIMEOUT_T1_COOKIE]);
327 
328 	sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T1_COOKIE);
329 }
330 
331 static void sctp_generate_t1_init_event(struct timer_list *t)
332 {
333 	struct sctp_association *asoc =
334 		from_timer(asoc, t, timers[SCTP_EVENT_TIMEOUT_T1_INIT]);
335 
336 	sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T1_INIT);
337 }
338 
339 static void sctp_generate_t2_shutdown_event(struct timer_list *t)
340 {
341 	struct sctp_association *asoc =
342 		from_timer(asoc, t, timers[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN]);
343 
344 	sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T2_SHUTDOWN);
345 }
346 
347 static void sctp_generate_t4_rto_event(struct timer_list *t)
348 {
349 	struct sctp_association *asoc =
350 		from_timer(asoc, t, timers[SCTP_EVENT_TIMEOUT_T4_RTO]);
351 
352 	sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T4_RTO);
353 }
354 
355 static void sctp_generate_t5_shutdown_guard_event(struct timer_list *t)
356 {
357 	struct sctp_association *asoc =
358 		from_timer(asoc, t,
359 			   timers[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]);
360 
361 	sctp_generate_timeout_event(asoc,
362 				    SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD);
363 
364 } /* sctp_generate_t5_shutdown_guard_event() */
365 
366 static void sctp_generate_autoclose_event(struct timer_list *t)
367 {
368 	struct sctp_association *asoc =
369 		from_timer(asoc, t, timers[SCTP_EVENT_TIMEOUT_AUTOCLOSE]);
370 
371 	sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_AUTOCLOSE);
372 }
373 
374 /* Generate a heart beat event.  If the sock is busy, reschedule.   Make
375  * sure that the transport is still valid.
376  */
377 void sctp_generate_heartbeat_event(struct timer_list *t)
378 {
379 	struct sctp_transport *transport = from_timer(transport, t, hb_timer);
380 	struct sctp_association *asoc = transport->asoc;
381 	struct sock *sk = asoc->base.sk;
382 	struct net *net = sock_net(sk);
383 	u32 elapsed, timeout;
384 	int error = 0;
385 
386 	bh_lock_sock(sk);
387 	if (sock_owned_by_user(sk)) {
388 		pr_debug("%s: sock is busy\n", __func__);
389 
390 		/* Try again later.  */
391 		if (!mod_timer(&transport->hb_timer, jiffies + (HZ/20)))
392 			sctp_transport_hold(transport);
393 		goto out_unlock;
394 	}
395 
396 	/* Check if we should still send the heartbeat or reschedule */
397 	elapsed = jiffies - transport->last_time_sent;
398 	timeout = sctp_transport_timeout(transport);
399 	if (elapsed < timeout) {
400 		elapsed = timeout - elapsed;
401 		if (!mod_timer(&transport->hb_timer, jiffies + elapsed))
402 			sctp_transport_hold(transport);
403 		goto out_unlock;
404 	}
405 
406 	error = sctp_do_sm(net, SCTP_EVENT_T_TIMEOUT,
407 			   SCTP_ST_TIMEOUT(SCTP_EVENT_TIMEOUT_HEARTBEAT),
408 			   asoc->state, asoc->ep, asoc,
409 			   transport, GFP_ATOMIC);
410 
411 	if (error)
412 		sk->sk_err = -error;
413 
414 out_unlock:
415 	bh_unlock_sock(sk);
416 	sctp_transport_put(transport);
417 }
418 
419 /* Handle the timeout of the ICMP protocol unreachable timer.  Trigger
420  * the correct state machine transition that will close the association.
421  */
422 void sctp_generate_proto_unreach_event(struct timer_list *t)
423 {
424 	struct sctp_transport *transport =
425 		from_timer(transport, t, proto_unreach_timer);
426 	struct sctp_association *asoc = transport->asoc;
427 	struct sock *sk = asoc->base.sk;
428 	struct net *net = sock_net(sk);
429 
430 	bh_lock_sock(sk);
431 	if (sock_owned_by_user(sk)) {
432 		pr_debug("%s: sock is busy\n", __func__);
433 
434 		/* Try again later.  */
435 		if (!mod_timer(&transport->proto_unreach_timer,
436 				jiffies + (HZ/20)))
437 			sctp_association_hold(asoc);
438 		goto out_unlock;
439 	}
440 
441 	/* Is this structure just waiting around for us to actually
442 	 * get destroyed?
443 	 */
444 	if (asoc->base.dead)
445 		goto out_unlock;
446 
447 	sctp_do_sm(net, SCTP_EVENT_T_OTHER,
448 		   SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
449 		   asoc->state, asoc->ep, asoc, transport, GFP_ATOMIC);
450 
451 out_unlock:
452 	bh_unlock_sock(sk);
453 	sctp_association_put(asoc);
454 }
455 
456  /* Handle the timeout of the RE-CONFIG timer. */
457 void sctp_generate_reconf_event(struct timer_list *t)
458 {
459 	struct sctp_transport *transport =
460 		from_timer(transport, t, reconf_timer);
461 	struct sctp_association *asoc = transport->asoc;
462 	struct sock *sk = asoc->base.sk;
463 	struct net *net = sock_net(sk);
464 	int error = 0;
465 
466 	bh_lock_sock(sk);
467 	if (sock_owned_by_user(sk)) {
468 		pr_debug("%s: sock is busy\n", __func__);
469 
470 		/* Try again later.  */
471 		if (!mod_timer(&transport->reconf_timer, jiffies + (HZ / 20)))
472 			sctp_transport_hold(transport);
473 		goto out_unlock;
474 	}
475 
476 	error = sctp_do_sm(net, SCTP_EVENT_T_TIMEOUT,
477 			   SCTP_ST_TIMEOUT(SCTP_EVENT_TIMEOUT_RECONF),
478 			   asoc->state, asoc->ep, asoc,
479 			   transport, GFP_ATOMIC);
480 
481 	if (error)
482 		sk->sk_err = -error;
483 
484 out_unlock:
485 	bh_unlock_sock(sk);
486 	sctp_transport_put(transport);
487 }
488 
489 /* Inject a SACK Timeout event into the state machine.  */
490 static void sctp_generate_sack_event(struct timer_list *t)
491 {
492 	struct sctp_association *asoc =
493 		from_timer(asoc, t, timers[SCTP_EVENT_TIMEOUT_SACK]);
494 
495 	sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_SACK);
496 }
497 
498 sctp_timer_event_t *sctp_timer_events[SCTP_NUM_TIMEOUT_TYPES] = {
499 	[SCTP_EVENT_TIMEOUT_NONE] =		NULL,
500 	[SCTP_EVENT_TIMEOUT_T1_COOKIE] =	sctp_generate_t1_cookie_event,
501 	[SCTP_EVENT_TIMEOUT_T1_INIT] =		sctp_generate_t1_init_event,
502 	[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] =	sctp_generate_t2_shutdown_event,
503 	[SCTP_EVENT_TIMEOUT_T3_RTX] =		NULL,
504 	[SCTP_EVENT_TIMEOUT_T4_RTO] =		sctp_generate_t4_rto_event,
505 	[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD] =
506 					sctp_generate_t5_shutdown_guard_event,
507 	[SCTP_EVENT_TIMEOUT_HEARTBEAT] =	NULL,
508 	[SCTP_EVENT_TIMEOUT_RECONF] =		NULL,
509 	[SCTP_EVENT_TIMEOUT_SACK] =		sctp_generate_sack_event,
510 	[SCTP_EVENT_TIMEOUT_AUTOCLOSE] =	sctp_generate_autoclose_event,
511 };
512 
513 
514 /* RFC 2960 8.2 Path Failure Detection
515  *
516  * When its peer endpoint is multi-homed, an endpoint should keep a
517  * error counter for each of the destination transport addresses of the
518  * peer endpoint.
519  *
520  * Each time the T3-rtx timer expires on any address, or when a
521  * HEARTBEAT sent to an idle address is not acknowledged within a RTO,
522  * the error counter of that destination address will be incremented.
523  * When the value in the error counter exceeds the protocol parameter
524  * 'Path.Max.Retrans' of that destination address, the endpoint should
525  * mark the destination transport address as inactive, and a
526  * notification SHOULD be sent to the upper layer.
527  *
528  */
529 static void sctp_do_8_2_transport_strike(struct sctp_cmd_seq *commands,
530 					 struct sctp_association *asoc,
531 					 struct sctp_transport *transport,
532 					 int is_hb)
533 {
534 	struct net *net = sock_net(asoc->base.sk);
535 
536 	/* The check for association's overall error counter exceeding the
537 	 * threshold is done in the state function.
538 	 */
539 	/* We are here due to a timer expiration.  If the timer was
540 	 * not a HEARTBEAT, then normal error tracking is done.
541 	 * If the timer was a heartbeat, we only increment error counts
542 	 * when we already have an outstanding HEARTBEAT that has not
543 	 * been acknowledged.
544 	 * Additionally, some tranport states inhibit error increments.
545 	 */
546 	if (!is_hb) {
547 		asoc->overall_error_count++;
548 		if (transport->state != SCTP_INACTIVE)
549 			transport->error_count++;
550 	 } else if (transport->hb_sent) {
551 		if (transport->state != SCTP_UNCONFIRMED)
552 			asoc->overall_error_count++;
553 		if (transport->state != SCTP_INACTIVE)
554 			transport->error_count++;
555 	}
556 
557 	/* If the transport error count is greater than the pf_retrans
558 	 * threshold, and less than pathmaxrtx, and if the current state
559 	 * is SCTP_ACTIVE, then mark this transport as Partially Failed,
560 	 * see SCTP Quick Failover Draft, section 5.1
561 	 */
562 	if (net->sctp.pf_enable &&
563 	   (transport->state == SCTP_ACTIVE) &&
564 	   (asoc->pf_retrans < transport->pathmaxrxt) &&
565 	   (transport->error_count > asoc->pf_retrans)) {
566 
567 		sctp_assoc_control_transport(asoc, transport,
568 					     SCTP_TRANSPORT_PF,
569 					     0);
570 
571 		/* Update the hb timer to resend a heartbeat every rto */
572 		sctp_transport_reset_hb_timer(transport);
573 	}
574 
575 	if (transport->state != SCTP_INACTIVE &&
576 	    (transport->error_count > transport->pathmaxrxt)) {
577 		pr_debug("%s: association:%p transport addr:%pISpc failed\n",
578 			 __func__, asoc, &transport->ipaddr.sa);
579 
580 		sctp_assoc_control_transport(asoc, transport,
581 					     SCTP_TRANSPORT_DOWN,
582 					     SCTP_FAILED_THRESHOLD);
583 	}
584 
585 	/* E2) For the destination address for which the timer
586 	 * expires, set RTO <- RTO * 2 ("back off the timer").  The
587 	 * maximum value discussed in rule C7 above (RTO.max) may be
588 	 * used to provide an upper bound to this doubling operation.
589 	 *
590 	 * Special Case:  the first HB doesn't trigger exponential backoff.
591 	 * The first unacknowledged HB triggers it.  We do this with a flag
592 	 * that indicates that we have an outstanding HB.
593 	 */
594 	if (!is_hb || transport->hb_sent) {
595 		transport->rto = min((transport->rto * 2), transport->asoc->rto_max);
596 		sctp_max_rto(asoc, transport);
597 	}
598 }
599 
600 /* Worker routine to handle INIT command failure.  */
601 static void sctp_cmd_init_failed(struct sctp_cmd_seq *commands,
602 				 struct sctp_association *asoc,
603 				 unsigned int error)
604 {
605 	struct sctp_ulpevent *event;
606 
607 	event = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_CANT_STR_ASSOC,
608 						(__u16)error, 0, 0, NULL,
609 						GFP_ATOMIC);
610 
611 	if (event)
612 		sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP,
613 				SCTP_ULPEVENT(event));
614 
615 	sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE,
616 			SCTP_STATE(SCTP_STATE_CLOSED));
617 
618 	/* SEND_FAILED sent later when cleaning up the association. */
619 	asoc->outqueue.error = error;
620 	sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL());
621 }
622 
623 /* Worker routine to handle SCTP_CMD_ASSOC_FAILED.  */
624 static void sctp_cmd_assoc_failed(struct sctp_cmd_seq *commands,
625 				  struct sctp_association *asoc,
626 				  enum sctp_event event_type,
627 				  union sctp_subtype subtype,
628 				  struct sctp_chunk *chunk,
629 				  unsigned int error)
630 {
631 	struct sctp_ulpevent *event;
632 	struct sctp_chunk *abort;
633 
634 	/* Cancel any partial delivery in progress. */
635 	asoc->stream.si->abort_pd(&asoc->ulpq, GFP_ATOMIC);
636 
637 	if (event_type == SCTP_EVENT_T_CHUNK && subtype.chunk == SCTP_CID_ABORT)
638 		event = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_COMM_LOST,
639 						(__u16)error, 0, 0, chunk,
640 						GFP_ATOMIC);
641 	else
642 		event = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_COMM_LOST,
643 						(__u16)error, 0, 0, NULL,
644 						GFP_ATOMIC);
645 	if (event)
646 		sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP,
647 				SCTP_ULPEVENT(event));
648 
649 	if (asoc->overall_error_count >= asoc->max_retrans) {
650 		abort = sctp_make_violation_max_retrans(asoc, chunk);
651 		if (abort)
652 			sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
653 					SCTP_CHUNK(abort));
654 	}
655 
656 	sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE,
657 			SCTP_STATE(SCTP_STATE_CLOSED));
658 
659 	/* SEND_FAILED sent later when cleaning up the association. */
660 	asoc->outqueue.error = error;
661 	sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL());
662 }
663 
664 /* Process an init chunk (may be real INIT/INIT-ACK or an embedded INIT
665  * inside the cookie.  In reality, this is only used for INIT-ACK processing
666  * since all other cases use "temporary" associations and can do all
667  * their work in statefuns directly.
668  */
669 static int sctp_cmd_process_init(struct sctp_cmd_seq *commands,
670 				 struct sctp_association *asoc,
671 				 struct sctp_chunk *chunk,
672 				 struct sctp_init_chunk *peer_init,
673 				 gfp_t gfp)
674 {
675 	int error;
676 
677 	/* We only process the init as a sideeffect in a single
678 	 * case.   This is when we process the INIT-ACK.   If we
679 	 * fail during INIT processing (due to malloc problems),
680 	 * just return the error and stop processing the stack.
681 	 */
682 	if (!sctp_process_init(asoc, chunk, sctp_source(chunk), peer_init, gfp))
683 		error = -ENOMEM;
684 	else
685 		error = 0;
686 
687 	return error;
688 }
689 
690 /* Helper function to break out starting up of heartbeat timers.  */
691 static void sctp_cmd_hb_timers_start(struct sctp_cmd_seq *cmds,
692 				     struct sctp_association *asoc)
693 {
694 	struct sctp_transport *t;
695 
696 	/* Start a heartbeat timer for each transport on the association.
697 	 * hold a reference on the transport to make sure none of
698 	 * the needed data structures go away.
699 	 */
700 	list_for_each_entry(t, &asoc->peer.transport_addr_list, transports)
701 		sctp_transport_reset_hb_timer(t);
702 }
703 
704 static void sctp_cmd_hb_timers_stop(struct sctp_cmd_seq *cmds,
705 				    struct sctp_association *asoc)
706 {
707 	struct sctp_transport *t;
708 
709 	/* Stop all heartbeat timers. */
710 
711 	list_for_each_entry(t, &asoc->peer.transport_addr_list,
712 			transports) {
713 		if (del_timer(&t->hb_timer))
714 			sctp_transport_put(t);
715 	}
716 }
717 
718 /* Helper function to stop any pending T3-RTX timers */
719 static void sctp_cmd_t3_rtx_timers_stop(struct sctp_cmd_seq *cmds,
720 					struct sctp_association *asoc)
721 {
722 	struct sctp_transport *t;
723 
724 	list_for_each_entry(t, &asoc->peer.transport_addr_list,
725 			transports) {
726 		if (del_timer(&t->T3_rtx_timer))
727 			sctp_transport_put(t);
728 	}
729 }
730 
731 
732 /* Helper function to handle the reception of an HEARTBEAT ACK.  */
733 static void sctp_cmd_transport_on(struct sctp_cmd_seq *cmds,
734 				  struct sctp_association *asoc,
735 				  struct sctp_transport *t,
736 				  struct sctp_chunk *chunk)
737 {
738 	struct sctp_sender_hb_info *hbinfo;
739 	int was_unconfirmed = 0;
740 
741 	/* 8.3 Upon the receipt of the HEARTBEAT ACK, the sender of the
742 	 * HEARTBEAT should clear the error counter of the destination
743 	 * transport address to which the HEARTBEAT was sent.
744 	 */
745 	t->error_count = 0;
746 
747 	/*
748 	 * Although RFC4960 specifies that the overall error count must
749 	 * be cleared when a HEARTBEAT ACK is received, we make an
750 	 * exception while in SHUTDOWN PENDING. If the peer keeps its
751 	 * window shut forever, we may never be able to transmit our
752 	 * outstanding data and rely on the retransmission limit be reached
753 	 * to shutdown the association.
754 	 */
755 	if (t->asoc->state < SCTP_STATE_SHUTDOWN_PENDING)
756 		t->asoc->overall_error_count = 0;
757 
758 	/* Clear the hb_sent flag to signal that we had a good
759 	 * acknowledgement.
760 	 */
761 	t->hb_sent = 0;
762 
763 	/* Mark the destination transport address as active if it is not so
764 	 * marked.
765 	 */
766 	if ((t->state == SCTP_INACTIVE) || (t->state == SCTP_UNCONFIRMED)) {
767 		was_unconfirmed = 1;
768 		sctp_assoc_control_transport(asoc, t, SCTP_TRANSPORT_UP,
769 					     SCTP_HEARTBEAT_SUCCESS);
770 	}
771 
772 	if (t->state == SCTP_PF)
773 		sctp_assoc_control_transport(asoc, t, SCTP_TRANSPORT_UP,
774 					     SCTP_HEARTBEAT_SUCCESS);
775 
776 	/* HB-ACK was received for a the proper HB.  Consider this
777 	 * forward progress.
778 	 */
779 	if (t->dst)
780 		sctp_transport_dst_confirm(t);
781 
782 	/* The receiver of the HEARTBEAT ACK should also perform an
783 	 * RTT measurement for that destination transport address
784 	 * using the time value carried in the HEARTBEAT ACK chunk.
785 	 * If the transport's rto_pending variable has been cleared,
786 	 * it was most likely due to a retransmit.  However, we want
787 	 * to re-enable it to properly update the rto.
788 	 */
789 	if (t->rto_pending == 0)
790 		t->rto_pending = 1;
791 
792 	hbinfo = (struct sctp_sender_hb_info *)chunk->skb->data;
793 	sctp_transport_update_rto(t, (jiffies - hbinfo->sent_at));
794 
795 	/* Update the heartbeat timer.  */
796 	sctp_transport_reset_hb_timer(t);
797 
798 	if (was_unconfirmed && asoc->peer.transport_count == 1)
799 		sctp_transport_immediate_rtx(t);
800 }
801 
802 
803 /* Helper function to process the process SACK command.  */
804 static int sctp_cmd_process_sack(struct sctp_cmd_seq *cmds,
805 				 struct sctp_association *asoc,
806 				 struct sctp_chunk *chunk)
807 {
808 	int err = 0;
809 
810 	if (sctp_outq_sack(&asoc->outqueue, chunk)) {
811 		struct net *net = sock_net(asoc->base.sk);
812 
813 		/* There are no more TSNs awaiting SACK.  */
814 		err = sctp_do_sm(net, SCTP_EVENT_T_OTHER,
815 				 SCTP_ST_OTHER(SCTP_EVENT_NO_PENDING_TSN),
816 				 asoc->state, asoc->ep, asoc, NULL,
817 				 GFP_ATOMIC);
818 	}
819 
820 	return err;
821 }
822 
823 /* Helper function to set the timeout value for T2-SHUTDOWN timer and to set
824  * the transport for a shutdown chunk.
825  */
826 static void sctp_cmd_setup_t2(struct sctp_cmd_seq *cmds,
827 			      struct sctp_association *asoc,
828 			      struct sctp_chunk *chunk)
829 {
830 	struct sctp_transport *t;
831 
832 	if (chunk->transport)
833 		t = chunk->transport;
834 	else {
835 		t = sctp_assoc_choose_alter_transport(asoc,
836 					      asoc->shutdown_last_sent_to);
837 		chunk->transport = t;
838 	}
839 	asoc->shutdown_last_sent_to = t;
840 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = t->rto;
841 }
842 
843 static void sctp_cmd_assoc_update(struct sctp_cmd_seq *cmds,
844 				  struct sctp_association *asoc,
845 				  struct sctp_association *new)
846 {
847 	struct net *net = sock_net(asoc->base.sk);
848 	struct sctp_chunk *abort;
849 
850 	if (!sctp_assoc_update(asoc, new))
851 		return;
852 
853 	abort = sctp_make_abort(asoc, NULL, sizeof(struct sctp_errhdr));
854 	if (abort) {
855 		sctp_init_cause(abort, SCTP_ERROR_RSRC_LOW, 0);
856 		sctp_add_cmd_sf(cmds, SCTP_CMD_REPLY, SCTP_CHUNK(abort));
857 	}
858 	sctp_add_cmd_sf(cmds, SCTP_CMD_SET_SK_ERR, SCTP_ERROR(ECONNABORTED));
859 	sctp_add_cmd_sf(cmds, SCTP_CMD_ASSOC_FAILED,
860 			SCTP_PERR(SCTP_ERROR_RSRC_LOW));
861 	SCTP_INC_STATS(net, SCTP_MIB_ABORTEDS);
862 	SCTP_DEC_STATS(net, SCTP_MIB_CURRESTAB);
863 }
864 
865 /* Helper function to change the state of an association. */
866 static void sctp_cmd_new_state(struct sctp_cmd_seq *cmds,
867 			       struct sctp_association *asoc,
868 			       enum sctp_state state)
869 {
870 	struct sock *sk = asoc->base.sk;
871 
872 	asoc->state = state;
873 
874 	pr_debug("%s: asoc:%p[%s]\n", __func__, asoc, sctp_state_tbl[state]);
875 
876 	if (sctp_style(sk, TCP)) {
877 		/* Change the sk->sk_state of a TCP-style socket that has
878 		 * successfully completed a connect() call.
879 		 */
880 		if (sctp_state(asoc, ESTABLISHED) && sctp_sstate(sk, CLOSED))
881 			inet_sk_set_state(sk, SCTP_SS_ESTABLISHED);
882 
883 		/* Set the RCV_SHUTDOWN flag when a SHUTDOWN is received. */
884 		if (sctp_state(asoc, SHUTDOWN_RECEIVED) &&
885 		    sctp_sstate(sk, ESTABLISHED)) {
886 			inet_sk_set_state(sk, SCTP_SS_CLOSING);
887 			sk->sk_shutdown |= RCV_SHUTDOWN;
888 		}
889 	}
890 
891 	if (sctp_state(asoc, COOKIE_WAIT)) {
892 		/* Reset init timeouts since they may have been
893 		 * increased due to timer expirations.
894 		 */
895 		asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] =
896 						asoc->rto_initial;
897 		asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] =
898 						asoc->rto_initial;
899 	}
900 
901 	if (sctp_state(asoc, ESTABLISHED) ||
902 	    sctp_state(asoc, CLOSED) ||
903 	    sctp_state(asoc, SHUTDOWN_RECEIVED)) {
904 		/* Wake up any processes waiting in the asoc's wait queue in
905 		 * sctp_wait_for_connect() or sctp_wait_for_sndbuf().
906 		 */
907 		if (waitqueue_active(&asoc->wait))
908 			wake_up_interruptible(&asoc->wait);
909 
910 		/* Wake up any processes waiting in the sk's sleep queue of
911 		 * a TCP-style or UDP-style peeled-off socket in
912 		 * sctp_wait_for_accept() or sctp_wait_for_packet().
913 		 * For a UDP-style socket, the waiters are woken up by the
914 		 * notifications.
915 		 */
916 		if (!sctp_style(sk, UDP))
917 			sk->sk_state_change(sk);
918 	}
919 
920 	if (sctp_state(asoc, SHUTDOWN_PENDING) &&
921 	    !sctp_outq_is_empty(&asoc->outqueue))
922 		sctp_outq_uncork(&asoc->outqueue, GFP_ATOMIC);
923 }
924 
925 /* Helper function to delete an association. */
926 static void sctp_cmd_delete_tcb(struct sctp_cmd_seq *cmds,
927 				struct sctp_association *asoc)
928 {
929 	struct sock *sk = asoc->base.sk;
930 
931 	/* If it is a non-temporary association belonging to a TCP-style
932 	 * listening socket that is not closed, do not free it so that accept()
933 	 * can pick it up later.
934 	 */
935 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING) &&
936 	    (!asoc->temp) && (sk->sk_shutdown != SHUTDOWN_MASK))
937 		return;
938 
939 	sctp_association_free(asoc);
940 }
941 
942 /*
943  * ADDIP Section 4.1 ASCONF Chunk Procedures
944  * A4) Start a T-4 RTO timer, using the RTO value of the selected
945  * destination address (we use active path instead of primary path just
946  * because primary path may be inactive.
947  */
948 static void sctp_cmd_setup_t4(struct sctp_cmd_seq *cmds,
949 			      struct sctp_association *asoc,
950 			      struct sctp_chunk *chunk)
951 {
952 	struct sctp_transport *t;
953 
954 	t = sctp_assoc_choose_alter_transport(asoc, chunk->transport);
955 	asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = t->rto;
956 	chunk->transport = t;
957 }
958 
959 /* Process an incoming Operation Error Chunk. */
960 static void sctp_cmd_process_operr(struct sctp_cmd_seq *cmds,
961 				   struct sctp_association *asoc,
962 				   struct sctp_chunk *chunk)
963 {
964 	struct sctp_errhdr *err_hdr;
965 	struct sctp_ulpevent *ev;
966 
967 	while (chunk->chunk_end > chunk->skb->data) {
968 		err_hdr = (struct sctp_errhdr *)(chunk->skb->data);
969 
970 		ev = sctp_ulpevent_make_remote_error(asoc, chunk, 0,
971 						     GFP_ATOMIC);
972 		if (!ev)
973 			return;
974 
975 		asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
976 
977 		switch (err_hdr->cause) {
978 		case SCTP_ERROR_UNKNOWN_CHUNK:
979 		{
980 			struct sctp_chunkhdr *unk_chunk_hdr;
981 
982 			unk_chunk_hdr = (struct sctp_chunkhdr *)
983 							err_hdr->variable;
984 			switch (unk_chunk_hdr->type) {
985 			/* ADDIP 4.1 A9) If the peer responds to an ASCONF with
986 			 * an ERROR chunk reporting that it did not recognized
987 			 * the ASCONF chunk type, the sender of the ASCONF MUST
988 			 * NOT send any further ASCONF chunks and MUST stop its
989 			 * T-4 timer.
990 			 */
991 			case SCTP_CID_ASCONF:
992 				if (asoc->peer.asconf_capable == 0)
993 					break;
994 
995 				asoc->peer.asconf_capable = 0;
996 				sctp_add_cmd_sf(cmds, SCTP_CMD_TIMER_STOP,
997 					SCTP_TO(SCTP_EVENT_TIMEOUT_T4_RTO));
998 				break;
999 			default:
1000 				break;
1001 			}
1002 			break;
1003 		}
1004 		default:
1005 			break;
1006 		}
1007 	}
1008 }
1009 
1010 /* Helper function to remove the association non-primary peer
1011  * transports.
1012  */
1013 static void sctp_cmd_del_non_primary(struct sctp_association *asoc)
1014 {
1015 	struct sctp_transport *t;
1016 	struct list_head *temp;
1017 	struct list_head *pos;
1018 
1019 	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1020 		t = list_entry(pos, struct sctp_transport, transports);
1021 		if (!sctp_cmp_addr_exact(&t->ipaddr,
1022 					 &asoc->peer.primary_addr)) {
1023 			sctp_assoc_rm_peer(asoc, t);
1024 		}
1025 	}
1026 }
1027 
1028 /* Helper function to set sk_err on a 1-1 style socket. */
1029 static void sctp_cmd_set_sk_err(struct sctp_association *asoc, int error)
1030 {
1031 	struct sock *sk = asoc->base.sk;
1032 
1033 	if (!sctp_style(sk, UDP))
1034 		sk->sk_err = error;
1035 }
1036 
1037 /* Helper function to generate an association change event */
1038 static void sctp_cmd_assoc_change(struct sctp_cmd_seq *commands,
1039 				  struct sctp_association *asoc,
1040 				  u8 state)
1041 {
1042 	struct sctp_ulpevent *ev;
1043 
1044 	ev = sctp_ulpevent_make_assoc_change(asoc, 0, state, 0,
1045 					    asoc->c.sinit_num_ostreams,
1046 					    asoc->c.sinit_max_instreams,
1047 					    NULL, GFP_ATOMIC);
1048 	if (ev)
1049 		asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
1050 }
1051 
1052 static void sctp_cmd_peer_no_auth(struct sctp_cmd_seq *commands,
1053 				  struct sctp_association *asoc)
1054 {
1055 	struct sctp_ulpevent *ev;
1056 
1057 	ev = sctp_ulpevent_make_authkey(asoc, 0, SCTP_AUTH_NO_AUTH, GFP_ATOMIC);
1058 	if (ev)
1059 		asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
1060 }
1061 
1062 /* Helper function to generate an adaptation indication event */
1063 static void sctp_cmd_adaptation_ind(struct sctp_cmd_seq *commands,
1064 				    struct sctp_association *asoc)
1065 {
1066 	struct sctp_ulpevent *ev;
1067 
1068 	ev = sctp_ulpevent_make_adaptation_indication(asoc, GFP_ATOMIC);
1069 
1070 	if (ev)
1071 		asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
1072 }
1073 
1074 
1075 static void sctp_cmd_t1_timer_update(struct sctp_association *asoc,
1076 				     enum sctp_event_timeout timer,
1077 				     char *name)
1078 {
1079 	struct sctp_transport *t;
1080 
1081 	t = asoc->init_last_sent_to;
1082 	asoc->init_err_counter++;
1083 
1084 	if (t->init_sent_count > (asoc->init_cycle + 1)) {
1085 		asoc->timeouts[timer] *= 2;
1086 		if (asoc->timeouts[timer] > asoc->max_init_timeo) {
1087 			asoc->timeouts[timer] = asoc->max_init_timeo;
1088 		}
1089 		asoc->init_cycle++;
1090 
1091 		pr_debug("%s: T1[%s] timeout adjustment init_err_counter:%d"
1092 			 " cycle:%d timeout:%ld\n", __func__, name,
1093 			 asoc->init_err_counter, asoc->init_cycle,
1094 			 asoc->timeouts[timer]);
1095 	}
1096 
1097 }
1098 
1099 /* Send the whole message, chunk by chunk, to the outqueue.
1100  * This way the whole message is queued up and bundling if
1101  * encouraged for small fragments.
1102  */
1103 static void sctp_cmd_send_msg(struct sctp_association *asoc,
1104 			      struct sctp_datamsg *msg, gfp_t gfp)
1105 {
1106 	struct sctp_chunk *chunk;
1107 
1108 	list_for_each_entry(chunk, &msg->chunks, frag_list)
1109 		sctp_outq_tail(&asoc->outqueue, chunk, gfp);
1110 
1111 	asoc->outqueue.sched->enqueue(&asoc->outqueue, msg);
1112 }
1113 
1114 
1115 /* Sent the next ASCONF packet currently stored in the association.
1116  * This happens after the ASCONF_ACK was succeffully processed.
1117  */
1118 static void sctp_cmd_send_asconf(struct sctp_association *asoc)
1119 {
1120 	struct net *net = sock_net(asoc->base.sk);
1121 
1122 	/* Send the next asconf chunk from the addip chunk
1123 	 * queue.
1124 	 */
1125 	if (!list_empty(&asoc->addip_chunk_list)) {
1126 		struct list_head *entry = asoc->addip_chunk_list.next;
1127 		struct sctp_chunk *asconf = list_entry(entry,
1128 						struct sctp_chunk, list);
1129 		list_del_init(entry);
1130 
1131 		/* Hold the chunk until an ASCONF_ACK is received. */
1132 		sctp_chunk_hold(asconf);
1133 		if (sctp_primitive_ASCONF(net, asoc, asconf))
1134 			sctp_chunk_free(asconf);
1135 		else
1136 			asoc->addip_last_asconf = asconf;
1137 	}
1138 }
1139 
1140 
1141 /* These three macros allow us to pull the debugging code out of the
1142  * main flow of sctp_do_sm() to keep attention focused on the real
1143  * functionality there.
1144  */
1145 #define debug_pre_sfn() \
1146 	pr_debug("%s[pre-fn]: ep:%p, %s, %s, asoc:%p[%s], %s\n", __func__, \
1147 		 ep, sctp_evttype_tbl[event_type], (*debug_fn)(subtype),   \
1148 		 asoc, sctp_state_tbl[state], state_fn->name)
1149 
1150 #define debug_post_sfn() \
1151 	pr_debug("%s[post-fn]: asoc:%p, status:%s\n", __func__, asoc, \
1152 		 sctp_status_tbl[status])
1153 
1154 #define debug_post_sfx() \
1155 	pr_debug("%s[post-sfx]: error:%d, asoc:%p[%s]\n", __func__, error, \
1156 		 asoc, sctp_state_tbl[(asoc && sctp_id2assoc(ep->base.sk, \
1157 		 sctp_assoc2id(asoc))) ? asoc->state : SCTP_STATE_CLOSED])
1158 
1159 /*
1160  * This is the master state machine processing function.
1161  *
1162  * If you want to understand all of lksctp, this is a
1163  * good place to start.
1164  */
1165 int sctp_do_sm(struct net *net, enum sctp_event event_type,
1166 	       union sctp_subtype subtype, enum sctp_state state,
1167 	       struct sctp_endpoint *ep, struct sctp_association *asoc,
1168 	       void *event_arg, gfp_t gfp)
1169 {
1170 	typedef const char *(printfn_t)(union sctp_subtype);
1171 	static printfn_t *table[] = {
1172 		NULL, sctp_cname, sctp_tname, sctp_oname, sctp_pname,
1173 	};
1174 	printfn_t *debug_fn  __attribute__ ((unused)) = table[event_type];
1175 	const struct sctp_sm_table_entry *state_fn;
1176 	struct sctp_cmd_seq commands;
1177 	enum sctp_disposition status;
1178 	int error = 0;
1179 
1180 	/* Look up the state function, run it, and then process the
1181 	 * side effects.  These three steps are the heart of lksctp.
1182 	 */
1183 	state_fn = sctp_sm_lookup_event(net, event_type, state, subtype);
1184 
1185 	sctp_init_cmd_seq(&commands);
1186 
1187 	debug_pre_sfn();
1188 	status = state_fn->fn(net, ep, asoc, subtype, event_arg, &commands);
1189 	debug_post_sfn();
1190 
1191 	error = sctp_side_effects(event_type, subtype, state,
1192 				  ep, &asoc, event_arg, status,
1193 				  &commands, gfp);
1194 	debug_post_sfx();
1195 
1196 	return error;
1197 }
1198 
1199 /*****************************************************************
1200  * This the master state function side effect processing function.
1201  *****************************************************************/
1202 static int sctp_side_effects(enum sctp_event event_type,
1203 			     union sctp_subtype subtype,
1204 			     enum sctp_state state,
1205 			     struct sctp_endpoint *ep,
1206 			     struct sctp_association **asoc,
1207 			     void *event_arg,
1208 			     enum sctp_disposition status,
1209 			     struct sctp_cmd_seq *commands,
1210 			     gfp_t gfp)
1211 {
1212 	int error;
1213 
1214 	/* FIXME - Most of the dispositions left today would be categorized
1215 	 * as "exceptional" dispositions.  For those dispositions, it
1216 	 * may not be proper to run through any of the commands at all.
1217 	 * For example, the command interpreter might be run only with
1218 	 * disposition SCTP_DISPOSITION_CONSUME.
1219 	 */
1220 	if (0 != (error = sctp_cmd_interpreter(event_type, subtype, state,
1221 					       ep, *asoc,
1222 					       event_arg, status,
1223 					       commands, gfp)))
1224 		goto bail;
1225 
1226 	switch (status) {
1227 	case SCTP_DISPOSITION_DISCARD:
1228 		pr_debug("%s: ignored sctp protocol event - state:%d, "
1229 			 "event_type:%d, event_id:%d\n", __func__, state,
1230 			 event_type, subtype.chunk);
1231 		break;
1232 
1233 	case SCTP_DISPOSITION_NOMEM:
1234 		/* We ran out of memory, so we need to discard this
1235 		 * packet.
1236 		 */
1237 		/* BUG--we should now recover some memory, probably by
1238 		 * reneging...
1239 		 */
1240 		error = -ENOMEM;
1241 		break;
1242 
1243 	case SCTP_DISPOSITION_DELETE_TCB:
1244 	case SCTP_DISPOSITION_ABORT:
1245 		/* This should now be a command. */
1246 		*asoc = NULL;
1247 		break;
1248 
1249 	case SCTP_DISPOSITION_CONSUME:
1250 		/*
1251 		 * We should no longer have much work to do here as the
1252 		 * real work has been done as explicit commands above.
1253 		 */
1254 		break;
1255 
1256 	case SCTP_DISPOSITION_VIOLATION:
1257 		net_err_ratelimited("protocol violation state %d chunkid %d\n",
1258 				    state, subtype.chunk);
1259 		break;
1260 
1261 	case SCTP_DISPOSITION_NOT_IMPL:
1262 		pr_warn("unimplemented feature in state %d, event_type %d, event_id %d\n",
1263 			state, event_type, subtype.chunk);
1264 		break;
1265 
1266 	case SCTP_DISPOSITION_BUG:
1267 		pr_err("bug in state %d, event_type %d, event_id %d\n",
1268 		       state, event_type, subtype.chunk);
1269 		BUG();
1270 		break;
1271 
1272 	default:
1273 		pr_err("impossible disposition %d in state %d, event_type %d, event_id %d\n",
1274 		       status, state, event_type, subtype.chunk);
1275 		BUG();
1276 		break;
1277 	}
1278 
1279 bail:
1280 	return error;
1281 }
1282 
1283 /********************************************************************
1284  * 2nd Level Abstractions
1285  ********************************************************************/
1286 
1287 /* This is the side-effect interpreter.  */
1288 static int sctp_cmd_interpreter(enum sctp_event event_type,
1289 				union sctp_subtype subtype,
1290 				enum sctp_state state,
1291 				struct sctp_endpoint *ep,
1292 				struct sctp_association *asoc,
1293 				void *event_arg,
1294 				enum sctp_disposition status,
1295 				struct sctp_cmd_seq *commands,
1296 				gfp_t gfp)
1297 {
1298 	struct sctp_sock *sp = sctp_sk(ep->base.sk);
1299 	struct sctp_chunk *chunk = NULL, *new_obj;
1300 	struct sctp_packet *packet;
1301 	struct sctp_sackhdr sackh;
1302 	struct timer_list *timer;
1303 	struct sctp_transport *t;
1304 	unsigned long timeout;
1305 	struct sctp_cmd *cmd;
1306 	int local_cork = 0;
1307 	int error = 0;
1308 	int force;
1309 
1310 	if (SCTP_EVENT_T_TIMEOUT != event_type)
1311 		chunk = event_arg;
1312 
1313 	/* Note:  This whole file is a huge candidate for rework.
1314 	 * For example, each command could either have its own handler, so
1315 	 * the loop would look like:
1316 	 *     while (cmds)
1317 	 *         cmd->handle(x, y, z)
1318 	 * --jgrimm
1319 	 */
1320 	while (NULL != (cmd = sctp_next_cmd(commands))) {
1321 		switch (cmd->verb) {
1322 		case SCTP_CMD_NOP:
1323 			/* Do nothing. */
1324 			break;
1325 
1326 		case SCTP_CMD_NEW_ASOC:
1327 			/* Register a new association.  */
1328 			if (local_cork) {
1329 				sctp_outq_uncork(&asoc->outqueue, gfp);
1330 				local_cork = 0;
1331 			}
1332 
1333 			/* Register with the endpoint.  */
1334 			asoc = cmd->obj.asoc;
1335 			BUG_ON(asoc->peer.primary_path == NULL);
1336 			sctp_endpoint_add_asoc(ep, asoc);
1337 			break;
1338 
1339 		case SCTP_CMD_UPDATE_ASSOC:
1340 		       sctp_cmd_assoc_update(commands, asoc, cmd->obj.asoc);
1341 		       break;
1342 
1343 		case SCTP_CMD_PURGE_OUTQUEUE:
1344 		       sctp_outq_teardown(&asoc->outqueue);
1345 		       break;
1346 
1347 		case SCTP_CMD_DELETE_TCB:
1348 			if (local_cork) {
1349 				sctp_outq_uncork(&asoc->outqueue, gfp);
1350 				local_cork = 0;
1351 			}
1352 			/* Delete the current association.  */
1353 			sctp_cmd_delete_tcb(commands, asoc);
1354 			asoc = NULL;
1355 			break;
1356 
1357 		case SCTP_CMD_NEW_STATE:
1358 			/* Enter a new state.  */
1359 			sctp_cmd_new_state(commands, asoc, cmd->obj.state);
1360 			break;
1361 
1362 		case SCTP_CMD_REPORT_TSN:
1363 			/* Record the arrival of a TSN.  */
1364 			error = sctp_tsnmap_mark(&asoc->peer.tsn_map,
1365 						 cmd->obj.u32, NULL);
1366 			break;
1367 
1368 		case SCTP_CMD_REPORT_FWDTSN:
1369 			asoc->stream.si->report_ftsn(&asoc->ulpq, cmd->obj.u32);
1370 			break;
1371 
1372 		case SCTP_CMD_PROCESS_FWDTSN:
1373 			asoc->stream.si->handle_ftsn(&asoc->ulpq,
1374 						     cmd->obj.chunk);
1375 			break;
1376 
1377 		case SCTP_CMD_GEN_SACK:
1378 			/* Generate a Selective ACK.
1379 			 * The argument tells us whether to just count
1380 			 * the packet and MAYBE generate a SACK, or
1381 			 * force a SACK out.
1382 			 */
1383 			force = cmd->obj.i32;
1384 			error = sctp_gen_sack(asoc, force, commands);
1385 			break;
1386 
1387 		case SCTP_CMD_PROCESS_SACK:
1388 			/* Process an inbound SACK.  */
1389 			error = sctp_cmd_process_sack(commands, asoc,
1390 						      cmd->obj.chunk);
1391 			break;
1392 
1393 		case SCTP_CMD_GEN_INIT_ACK:
1394 			/* Generate an INIT ACK chunk.  */
1395 			new_obj = sctp_make_init_ack(asoc, chunk, GFP_ATOMIC,
1396 						     0);
1397 			if (!new_obj)
1398 				goto nomem;
1399 
1400 			sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
1401 					SCTP_CHUNK(new_obj));
1402 			break;
1403 
1404 		case SCTP_CMD_PEER_INIT:
1405 			/* Process a unified INIT from the peer.
1406 			 * Note: Only used during INIT-ACK processing.  If
1407 			 * there is an error just return to the outter
1408 			 * layer which will bail.
1409 			 */
1410 			error = sctp_cmd_process_init(commands, asoc, chunk,
1411 						      cmd->obj.init, gfp);
1412 			break;
1413 
1414 		case SCTP_CMD_GEN_COOKIE_ECHO:
1415 			/* Generate a COOKIE ECHO chunk.  */
1416 			new_obj = sctp_make_cookie_echo(asoc, chunk);
1417 			if (!new_obj) {
1418 				if (cmd->obj.chunk)
1419 					sctp_chunk_free(cmd->obj.chunk);
1420 				goto nomem;
1421 			}
1422 			sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
1423 					SCTP_CHUNK(new_obj));
1424 
1425 			/* If there is an ERROR chunk to be sent along with
1426 			 * the COOKIE_ECHO, send it, too.
1427 			 */
1428 			if (cmd->obj.chunk)
1429 				sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
1430 						SCTP_CHUNK(cmd->obj.chunk));
1431 
1432 			if (new_obj->transport) {
1433 				new_obj->transport->init_sent_count++;
1434 				asoc->init_last_sent_to = new_obj->transport;
1435 			}
1436 
1437 			/* FIXME - Eventually come up with a cleaner way to
1438 			 * enabling COOKIE-ECHO + DATA bundling during
1439 			 * multihoming stale cookie scenarios, the following
1440 			 * command plays with asoc->peer.retran_path to
1441 			 * avoid the problem of sending the COOKIE-ECHO and
1442 			 * DATA in different paths, which could result
1443 			 * in the association being ABORTed if the DATA chunk
1444 			 * is processed first by the server.  Checking the
1445 			 * init error counter simply causes this command
1446 			 * to be executed only during failed attempts of
1447 			 * association establishment.
1448 			 */
1449 			if ((asoc->peer.retran_path !=
1450 			     asoc->peer.primary_path) &&
1451 			    (asoc->init_err_counter > 0)) {
1452 				sctp_add_cmd_sf(commands,
1453 						SCTP_CMD_FORCE_PRIM_RETRAN,
1454 						SCTP_NULL());
1455 			}
1456 
1457 			break;
1458 
1459 		case SCTP_CMD_GEN_SHUTDOWN:
1460 			/* Generate SHUTDOWN when in SHUTDOWN_SENT state.
1461 			 * Reset error counts.
1462 			 */
1463 			asoc->overall_error_count = 0;
1464 
1465 			/* Generate a SHUTDOWN chunk.  */
1466 			new_obj = sctp_make_shutdown(asoc, chunk);
1467 			if (!new_obj)
1468 				goto nomem;
1469 			sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
1470 					SCTP_CHUNK(new_obj));
1471 			break;
1472 
1473 		case SCTP_CMD_CHUNK_ULP:
1474 			/* Send a chunk to the sockets layer.  */
1475 			pr_debug("%s: sm_sideff: chunk_up:%p, ulpq:%p\n",
1476 				 __func__, cmd->obj.chunk, &asoc->ulpq);
1477 
1478 			asoc->stream.si->ulpevent_data(&asoc->ulpq,
1479 						       cmd->obj.chunk,
1480 						       GFP_ATOMIC);
1481 			break;
1482 
1483 		case SCTP_CMD_EVENT_ULP:
1484 			/* Send a notification to the sockets layer.  */
1485 			pr_debug("%s: sm_sideff: event_up:%p, ulpq:%p\n",
1486 				 __func__, cmd->obj.ulpevent, &asoc->ulpq);
1487 
1488 			asoc->stream.si->enqueue_event(&asoc->ulpq,
1489 						       cmd->obj.ulpevent);
1490 			break;
1491 
1492 		case SCTP_CMD_REPLY:
1493 			/* If an caller has not already corked, do cork. */
1494 			if (!asoc->outqueue.cork) {
1495 				sctp_outq_cork(&asoc->outqueue);
1496 				local_cork = 1;
1497 			}
1498 			/* Send a chunk to our peer.  */
1499 			sctp_outq_tail(&asoc->outqueue, cmd->obj.chunk, gfp);
1500 			break;
1501 
1502 		case SCTP_CMD_SEND_PKT:
1503 			/* Send a full packet to our peer.  */
1504 			packet = cmd->obj.packet;
1505 			sctp_packet_transmit(packet, gfp);
1506 			sctp_ootb_pkt_free(packet);
1507 			break;
1508 
1509 		case SCTP_CMD_T1_RETRAN:
1510 			/* Mark a transport for retransmission.  */
1511 			sctp_retransmit(&asoc->outqueue, cmd->obj.transport,
1512 					SCTP_RTXR_T1_RTX);
1513 			break;
1514 
1515 		case SCTP_CMD_RETRAN:
1516 			/* Mark a transport for retransmission.  */
1517 			sctp_retransmit(&asoc->outqueue, cmd->obj.transport,
1518 					SCTP_RTXR_T3_RTX);
1519 			break;
1520 
1521 		case SCTP_CMD_ECN_CE:
1522 			/* Do delayed CE processing.   */
1523 			sctp_do_ecn_ce_work(asoc, cmd->obj.u32);
1524 			break;
1525 
1526 		case SCTP_CMD_ECN_ECNE:
1527 			/* Do delayed ECNE processing. */
1528 			new_obj = sctp_do_ecn_ecne_work(asoc, cmd->obj.u32,
1529 							chunk);
1530 			if (new_obj)
1531 				sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
1532 						SCTP_CHUNK(new_obj));
1533 			break;
1534 
1535 		case SCTP_CMD_ECN_CWR:
1536 			/* Do delayed CWR processing.  */
1537 			sctp_do_ecn_cwr_work(asoc, cmd->obj.u32);
1538 			break;
1539 
1540 		case SCTP_CMD_SETUP_T2:
1541 			sctp_cmd_setup_t2(commands, asoc, cmd->obj.chunk);
1542 			break;
1543 
1544 		case SCTP_CMD_TIMER_START_ONCE:
1545 			timer = &asoc->timers[cmd->obj.to];
1546 
1547 			if (timer_pending(timer))
1548 				break;
1549 			/* fall through */
1550 
1551 		case SCTP_CMD_TIMER_START:
1552 			timer = &asoc->timers[cmd->obj.to];
1553 			timeout = asoc->timeouts[cmd->obj.to];
1554 			BUG_ON(!timeout);
1555 
1556 			timer->expires = jiffies + timeout;
1557 			sctp_association_hold(asoc);
1558 			add_timer(timer);
1559 			break;
1560 
1561 		case SCTP_CMD_TIMER_RESTART:
1562 			timer = &asoc->timers[cmd->obj.to];
1563 			timeout = asoc->timeouts[cmd->obj.to];
1564 			if (!mod_timer(timer, jiffies + timeout))
1565 				sctp_association_hold(asoc);
1566 			break;
1567 
1568 		case SCTP_CMD_TIMER_STOP:
1569 			timer = &asoc->timers[cmd->obj.to];
1570 			if (del_timer(timer))
1571 				sctp_association_put(asoc);
1572 			break;
1573 
1574 		case SCTP_CMD_INIT_CHOOSE_TRANSPORT:
1575 			chunk = cmd->obj.chunk;
1576 			t = sctp_assoc_choose_alter_transport(asoc,
1577 						asoc->init_last_sent_to);
1578 			asoc->init_last_sent_to = t;
1579 			chunk->transport = t;
1580 			t->init_sent_count++;
1581 			/* Set the new transport as primary */
1582 			sctp_assoc_set_primary(asoc, t);
1583 			break;
1584 
1585 		case SCTP_CMD_INIT_RESTART:
1586 			/* Do the needed accounting and updates
1587 			 * associated with restarting an initialization
1588 			 * timer. Only multiply the timeout by two if
1589 			 * all transports have been tried at the current
1590 			 * timeout.
1591 			 */
1592 			sctp_cmd_t1_timer_update(asoc,
1593 						SCTP_EVENT_TIMEOUT_T1_INIT,
1594 						"INIT");
1595 
1596 			sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART,
1597 					SCTP_TO(SCTP_EVENT_TIMEOUT_T1_INIT));
1598 			break;
1599 
1600 		case SCTP_CMD_COOKIEECHO_RESTART:
1601 			/* Do the needed accounting and updates
1602 			 * associated with restarting an initialization
1603 			 * timer. Only multiply the timeout by two if
1604 			 * all transports have been tried at the current
1605 			 * timeout.
1606 			 */
1607 			sctp_cmd_t1_timer_update(asoc,
1608 						SCTP_EVENT_TIMEOUT_T1_COOKIE,
1609 						"COOKIE");
1610 
1611 			/* If we've sent any data bundled with
1612 			 * COOKIE-ECHO we need to resend.
1613 			 */
1614 			list_for_each_entry(t, &asoc->peer.transport_addr_list,
1615 					transports) {
1616 				sctp_retransmit_mark(&asoc->outqueue, t,
1617 					    SCTP_RTXR_T1_RTX);
1618 			}
1619 
1620 			sctp_add_cmd_sf(commands,
1621 					SCTP_CMD_TIMER_RESTART,
1622 					SCTP_TO(SCTP_EVENT_TIMEOUT_T1_COOKIE));
1623 			break;
1624 
1625 		case SCTP_CMD_INIT_FAILED:
1626 			sctp_cmd_init_failed(commands, asoc, cmd->obj.u32);
1627 			break;
1628 
1629 		case SCTP_CMD_ASSOC_FAILED:
1630 			sctp_cmd_assoc_failed(commands, asoc, event_type,
1631 					      subtype, chunk, cmd->obj.u32);
1632 			break;
1633 
1634 		case SCTP_CMD_INIT_COUNTER_INC:
1635 			asoc->init_err_counter++;
1636 			break;
1637 
1638 		case SCTP_CMD_INIT_COUNTER_RESET:
1639 			asoc->init_err_counter = 0;
1640 			asoc->init_cycle = 0;
1641 			list_for_each_entry(t, &asoc->peer.transport_addr_list,
1642 					    transports) {
1643 				t->init_sent_count = 0;
1644 			}
1645 			break;
1646 
1647 		case SCTP_CMD_REPORT_DUP:
1648 			sctp_tsnmap_mark_dup(&asoc->peer.tsn_map,
1649 					     cmd->obj.u32);
1650 			break;
1651 
1652 		case SCTP_CMD_REPORT_BAD_TAG:
1653 			pr_debug("%s: vtag mismatch!\n", __func__);
1654 			break;
1655 
1656 		case SCTP_CMD_STRIKE:
1657 			/* Mark one strike against a transport.  */
1658 			sctp_do_8_2_transport_strike(commands, asoc,
1659 						    cmd->obj.transport, 0);
1660 			break;
1661 
1662 		case SCTP_CMD_TRANSPORT_IDLE:
1663 			t = cmd->obj.transport;
1664 			sctp_transport_lower_cwnd(t, SCTP_LOWER_CWND_INACTIVE);
1665 			break;
1666 
1667 		case SCTP_CMD_TRANSPORT_HB_SENT:
1668 			t = cmd->obj.transport;
1669 			sctp_do_8_2_transport_strike(commands, asoc,
1670 						     t, 1);
1671 			t->hb_sent = 1;
1672 			break;
1673 
1674 		case SCTP_CMD_TRANSPORT_ON:
1675 			t = cmd->obj.transport;
1676 			sctp_cmd_transport_on(commands, asoc, t, chunk);
1677 			break;
1678 
1679 		case SCTP_CMD_HB_TIMERS_START:
1680 			sctp_cmd_hb_timers_start(commands, asoc);
1681 			break;
1682 
1683 		case SCTP_CMD_HB_TIMER_UPDATE:
1684 			t = cmd->obj.transport;
1685 			sctp_transport_reset_hb_timer(t);
1686 			break;
1687 
1688 		case SCTP_CMD_HB_TIMERS_STOP:
1689 			sctp_cmd_hb_timers_stop(commands, asoc);
1690 			break;
1691 
1692 		case SCTP_CMD_REPORT_ERROR:
1693 			error = cmd->obj.error;
1694 			break;
1695 
1696 		case SCTP_CMD_PROCESS_CTSN:
1697 			/* Dummy up a SACK for processing. */
1698 			sackh.cum_tsn_ack = cmd->obj.be32;
1699 			sackh.a_rwnd = htonl(asoc->peer.rwnd +
1700 					     asoc->outqueue.outstanding_bytes);
1701 			sackh.num_gap_ack_blocks = 0;
1702 			sackh.num_dup_tsns = 0;
1703 			chunk->subh.sack_hdr = &sackh;
1704 			sctp_add_cmd_sf(commands, SCTP_CMD_PROCESS_SACK,
1705 					SCTP_CHUNK(chunk));
1706 			break;
1707 
1708 		case SCTP_CMD_DISCARD_PACKET:
1709 			/* We need to discard the whole packet.
1710 			 * Uncork the queue since there might be
1711 			 * responses pending
1712 			 */
1713 			chunk->pdiscard = 1;
1714 			if (asoc) {
1715 				sctp_outq_uncork(&asoc->outqueue, gfp);
1716 				local_cork = 0;
1717 			}
1718 			break;
1719 
1720 		case SCTP_CMD_RTO_PENDING:
1721 			t = cmd->obj.transport;
1722 			t->rto_pending = 1;
1723 			break;
1724 
1725 		case SCTP_CMD_PART_DELIVER:
1726 			asoc->stream.si->start_pd(&asoc->ulpq, GFP_ATOMIC);
1727 			break;
1728 
1729 		case SCTP_CMD_RENEGE:
1730 			asoc->stream.si->renege_events(&asoc->ulpq,
1731 						       cmd->obj.chunk,
1732 						       GFP_ATOMIC);
1733 			break;
1734 
1735 		case SCTP_CMD_SETUP_T4:
1736 			sctp_cmd_setup_t4(commands, asoc, cmd->obj.chunk);
1737 			break;
1738 
1739 		case SCTP_CMD_PROCESS_OPERR:
1740 			sctp_cmd_process_operr(commands, asoc, chunk);
1741 			break;
1742 		case SCTP_CMD_CLEAR_INIT_TAG:
1743 			asoc->peer.i.init_tag = 0;
1744 			break;
1745 		case SCTP_CMD_DEL_NON_PRIMARY:
1746 			sctp_cmd_del_non_primary(asoc);
1747 			break;
1748 		case SCTP_CMD_T3_RTX_TIMERS_STOP:
1749 			sctp_cmd_t3_rtx_timers_stop(commands, asoc);
1750 			break;
1751 		case SCTP_CMD_FORCE_PRIM_RETRAN:
1752 			t = asoc->peer.retran_path;
1753 			asoc->peer.retran_path = asoc->peer.primary_path;
1754 			sctp_outq_uncork(&asoc->outqueue, gfp);
1755 			local_cork = 0;
1756 			asoc->peer.retran_path = t;
1757 			break;
1758 		case SCTP_CMD_SET_SK_ERR:
1759 			sctp_cmd_set_sk_err(asoc, cmd->obj.error);
1760 			break;
1761 		case SCTP_CMD_ASSOC_CHANGE:
1762 			sctp_cmd_assoc_change(commands, asoc,
1763 					      cmd->obj.u8);
1764 			break;
1765 		case SCTP_CMD_ADAPTATION_IND:
1766 			sctp_cmd_adaptation_ind(commands, asoc);
1767 			break;
1768 		case SCTP_CMD_PEER_NO_AUTH:
1769 			sctp_cmd_peer_no_auth(commands, asoc);
1770 			break;
1771 
1772 		case SCTP_CMD_ASSOC_SHKEY:
1773 			error = sctp_auth_asoc_init_active_key(asoc,
1774 						GFP_ATOMIC);
1775 			break;
1776 		case SCTP_CMD_UPDATE_INITTAG:
1777 			asoc->peer.i.init_tag = cmd->obj.u32;
1778 			break;
1779 		case SCTP_CMD_SEND_MSG:
1780 			if (!asoc->outqueue.cork) {
1781 				sctp_outq_cork(&asoc->outqueue);
1782 				local_cork = 1;
1783 			}
1784 			sctp_cmd_send_msg(asoc, cmd->obj.msg, gfp);
1785 			break;
1786 		case SCTP_CMD_SEND_NEXT_ASCONF:
1787 			sctp_cmd_send_asconf(asoc);
1788 			break;
1789 		case SCTP_CMD_PURGE_ASCONF_QUEUE:
1790 			sctp_asconf_queue_teardown(asoc);
1791 			break;
1792 
1793 		case SCTP_CMD_SET_ASOC:
1794 			if (asoc && local_cork) {
1795 				sctp_outq_uncork(&asoc->outqueue, gfp);
1796 				local_cork = 0;
1797 			}
1798 			asoc = cmd->obj.asoc;
1799 			break;
1800 
1801 		default:
1802 			pr_warn("Impossible command: %u\n",
1803 				cmd->verb);
1804 			break;
1805 		}
1806 
1807 		if (error)
1808 			break;
1809 	}
1810 
1811 out:
1812 	/* If this is in response to a received chunk, wait until
1813 	 * we are done with the packet to open the queue so that we don't
1814 	 * send multiple packets in response to a single request.
1815 	 */
1816 	if (asoc && SCTP_EVENT_T_CHUNK == event_type && chunk) {
1817 		if (chunk->end_of_packet || chunk->singleton)
1818 			sctp_outq_uncork(&asoc->outqueue, gfp);
1819 	} else if (local_cork)
1820 		sctp_outq_uncork(&asoc->outqueue, gfp);
1821 
1822 	if (sp->data_ready_signalled)
1823 		sp->data_ready_signalled = 0;
1824 
1825 	return error;
1826 nomem:
1827 	error = -ENOMEM;
1828 	goto out;
1829 }
1830