1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * 6 * This file is part of the SCTP kernel implementation 7 * 8 * These functions work with the state functions in sctp_sm_statefuns.c 9 * to implement that state operations. These functions implement the 10 * steps which require modifying existing data structures. 11 * 12 * This SCTP implementation is free software; 13 * you can redistribute it and/or modify it under the terms of 14 * the GNU General Public License as published by 15 * the Free Software Foundation; either version 2, or (at your option) 16 * any later version. 17 * 18 * This SCTP implementation is distributed in the hope that it 19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 20 * ************************ 21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 22 * See the GNU General Public License for more details. 23 * 24 * You should have received a copy of the GNU General Public License 25 * along with GNU CC; see the file COPYING. If not, write to 26 * the Free Software Foundation, 59 Temple Place - Suite 330, 27 * Boston, MA 02111-1307, USA. 28 * 29 * Please send any bug reports or fixes you make to the 30 * email address(es): 31 * lksctp developers <lksctp-developers@lists.sourceforge.net> 32 * 33 * Or submit a bug report through the following website: 34 * http://www.sf.net/projects/lksctp 35 * 36 * Written or modified by: 37 * La Monte H.P. Yarroll <piggy@acm.org> 38 * Karl Knutson <karl@athena.chicago.il.us> 39 * Jon Grimm <jgrimm@austin.ibm.com> 40 * Hui Huang <hui.huang@nokia.com> 41 * Dajiang Zhang <dajiang.zhang@nokia.com> 42 * Daisy Chang <daisyc@us.ibm.com> 43 * Sridhar Samudrala <sri@us.ibm.com> 44 * Ardelle Fan <ardelle.fan@intel.com> 45 * 46 * Any bugs reported given to us we will try to fix... any fixes shared will 47 * be incorporated into the next SCTP release. 48 */ 49 50 #include <linux/skbuff.h> 51 #include <linux/types.h> 52 #include <linux/socket.h> 53 #include <linux/ip.h> 54 #include <net/sock.h> 55 #include <net/sctp/sctp.h> 56 #include <net/sctp/sm.h> 57 58 static int sctp_cmd_interpreter(sctp_event_t event_type, 59 sctp_subtype_t subtype, 60 sctp_state_t state, 61 struct sctp_endpoint *ep, 62 struct sctp_association *asoc, 63 void *event_arg, 64 sctp_disposition_t status, 65 sctp_cmd_seq_t *commands, 66 gfp_t gfp); 67 static int sctp_side_effects(sctp_event_t event_type, sctp_subtype_t subtype, 68 sctp_state_t state, 69 struct sctp_endpoint *ep, 70 struct sctp_association *asoc, 71 void *event_arg, 72 sctp_disposition_t status, 73 sctp_cmd_seq_t *commands, 74 gfp_t gfp); 75 76 /******************************************************************** 77 * Helper functions 78 ********************************************************************/ 79 80 /* A helper function for delayed processing of INET ECN CE bit. */ 81 static void sctp_do_ecn_ce_work(struct sctp_association *asoc, 82 __u32 lowest_tsn) 83 { 84 /* Save the TSN away for comparison when we receive CWR */ 85 86 asoc->last_ecne_tsn = lowest_tsn; 87 asoc->need_ecne = 1; 88 } 89 90 /* Helper function for delayed processing of SCTP ECNE chunk. */ 91 /* RFC 2960 Appendix A 92 * 93 * RFC 2481 details a specific bit for a sender to send in 94 * the header of its next outbound TCP segment to indicate to 95 * its peer that it has reduced its congestion window. This 96 * is termed the CWR bit. For SCTP the same indication is made 97 * by including the CWR chunk. This chunk contains one data 98 * element, i.e. the TSN number that was sent in the ECNE chunk. 99 * This element represents the lowest TSN number in the datagram 100 * that was originally marked with the CE bit. 101 */ 102 static struct sctp_chunk *sctp_do_ecn_ecne_work(struct sctp_association *asoc, 103 __u32 lowest_tsn, 104 struct sctp_chunk *chunk) 105 { 106 struct sctp_chunk *repl; 107 108 /* Our previously transmitted packet ran into some congestion 109 * so we should take action by reducing cwnd and ssthresh 110 * and then ACK our peer that we we've done so by 111 * sending a CWR. 112 */ 113 114 /* First, try to determine if we want to actually lower 115 * our cwnd variables. Only lower them if the ECNE looks more 116 * recent than the last response. 117 */ 118 if (TSN_lt(asoc->last_cwr_tsn, lowest_tsn)) { 119 struct sctp_transport *transport; 120 121 /* Find which transport's congestion variables 122 * need to be adjusted. 123 */ 124 transport = sctp_assoc_lookup_tsn(asoc, lowest_tsn); 125 126 /* Update the congestion variables. */ 127 if (transport) 128 sctp_transport_lower_cwnd(transport, 129 SCTP_LOWER_CWND_ECNE); 130 asoc->last_cwr_tsn = lowest_tsn; 131 } 132 133 /* Always try to quiet the other end. In case of lost CWR, 134 * resend last_cwr_tsn. 135 */ 136 repl = sctp_make_cwr(asoc, asoc->last_cwr_tsn, chunk); 137 138 /* If we run out of memory, it will look like a lost CWR. We'll 139 * get back in sync eventually. 140 */ 141 return repl; 142 } 143 144 /* Helper function to do delayed processing of ECN CWR chunk. */ 145 static void sctp_do_ecn_cwr_work(struct sctp_association *asoc, 146 __u32 lowest_tsn) 147 { 148 /* Turn off ECNE getting auto-prepended to every outgoing 149 * packet 150 */ 151 asoc->need_ecne = 0; 152 } 153 154 /* Generate SACK if necessary. We call this at the end of a packet. */ 155 static int sctp_gen_sack(struct sctp_association *asoc, int force, 156 sctp_cmd_seq_t *commands) 157 { 158 __u32 ctsn, max_tsn_seen; 159 struct sctp_chunk *sack; 160 struct sctp_transport *trans = asoc->peer.last_data_from; 161 int error = 0; 162 163 if (force || 164 (!trans && (asoc->param_flags & SPP_SACKDELAY_DISABLE)) || 165 (trans && (trans->param_flags & SPP_SACKDELAY_DISABLE))) 166 asoc->peer.sack_needed = 1; 167 168 ctsn = sctp_tsnmap_get_ctsn(&asoc->peer.tsn_map); 169 max_tsn_seen = sctp_tsnmap_get_max_tsn_seen(&asoc->peer.tsn_map); 170 171 /* From 12.2 Parameters necessary per association (i.e. the TCB): 172 * 173 * Ack State : This flag indicates if the next received packet 174 * : is to be responded to with a SACK. ... 175 * : When DATA chunks are out of order, SACK's 176 * : are not delayed (see Section 6). 177 * 178 * [This is actually not mentioned in Section 6, but we 179 * implement it here anyway. --piggy] 180 */ 181 if (max_tsn_seen != ctsn) 182 asoc->peer.sack_needed = 1; 183 184 /* From 6.2 Acknowledgement on Reception of DATA Chunks: 185 * 186 * Section 4.2 of [RFC2581] SHOULD be followed. Specifically, 187 * an acknowledgement SHOULD be generated for at least every 188 * second packet (not every second DATA chunk) received, and 189 * SHOULD be generated within 200 ms of the arrival of any 190 * unacknowledged DATA chunk. ... 191 */ 192 if (!asoc->peer.sack_needed) { 193 asoc->peer.sack_cnt++; 194 195 /* Set the SACK delay timeout based on the 196 * SACK delay for the last transport 197 * data was received from, or the default 198 * for the association. 199 */ 200 if (trans) { 201 /* We will need a SACK for the next packet. */ 202 if (asoc->peer.sack_cnt >= trans->sackfreq - 1) 203 asoc->peer.sack_needed = 1; 204 205 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = 206 trans->sackdelay; 207 } else { 208 /* We will need a SACK for the next packet. */ 209 if (asoc->peer.sack_cnt >= asoc->sackfreq - 1) 210 asoc->peer.sack_needed = 1; 211 212 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = 213 asoc->sackdelay; 214 } 215 216 /* Restart the SACK timer. */ 217 sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART, 218 SCTP_TO(SCTP_EVENT_TIMEOUT_SACK)); 219 } else { 220 asoc->a_rwnd = asoc->rwnd; 221 sack = sctp_make_sack(asoc); 222 if (!sack) 223 goto nomem; 224 225 asoc->peer.sack_needed = 0; 226 asoc->peer.sack_cnt = 0; 227 228 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(sack)); 229 230 /* Stop the SACK timer. */ 231 sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP, 232 SCTP_TO(SCTP_EVENT_TIMEOUT_SACK)); 233 } 234 235 return error; 236 nomem: 237 error = -ENOMEM; 238 return error; 239 } 240 241 /* When the T3-RTX timer expires, it calls this function to create the 242 * relevant state machine event. 243 */ 244 void sctp_generate_t3_rtx_event(unsigned long peer) 245 { 246 int error; 247 struct sctp_transport *transport = (struct sctp_transport *) peer; 248 struct sctp_association *asoc = transport->asoc; 249 250 /* Check whether a task is in the sock. */ 251 252 sctp_bh_lock_sock(asoc->base.sk); 253 if (sock_owned_by_user(asoc->base.sk)) { 254 SCTP_DEBUG_PRINTK("%s:Sock is busy.\n", __func__); 255 256 /* Try again later. */ 257 if (!mod_timer(&transport->T3_rtx_timer, jiffies + (HZ/20))) 258 sctp_transport_hold(transport); 259 goto out_unlock; 260 } 261 262 /* Is this transport really dead and just waiting around for 263 * the timer to let go of the reference? 264 */ 265 if (transport->dead) 266 goto out_unlock; 267 268 /* Run through the state machine. */ 269 error = sctp_do_sm(SCTP_EVENT_T_TIMEOUT, 270 SCTP_ST_TIMEOUT(SCTP_EVENT_TIMEOUT_T3_RTX), 271 asoc->state, 272 asoc->ep, asoc, 273 transport, GFP_ATOMIC); 274 275 if (error) 276 asoc->base.sk->sk_err = -error; 277 278 out_unlock: 279 sctp_bh_unlock_sock(asoc->base.sk); 280 sctp_transport_put(transport); 281 } 282 283 /* This is a sa interface for producing timeout events. It works 284 * for timeouts which use the association as their parameter. 285 */ 286 static void sctp_generate_timeout_event(struct sctp_association *asoc, 287 sctp_event_timeout_t timeout_type) 288 { 289 int error = 0; 290 291 sctp_bh_lock_sock(asoc->base.sk); 292 if (sock_owned_by_user(asoc->base.sk)) { 293 SCTP_DEBUG_PRINTK("%s:Sock is busy: timer %d\n", 294 __func__, 295 timeout_type); 296 297 /* Try again later. */ 298 if (!mod_timer(&asoc->timers[timeout_type], jiffies + (HZ/20))) 299 sctp_association_hold(asoc); 300 goto out_unlock; 301 } 302 303 /* Is this association really dead and just waiting around for 304 * the timer to let go of the reference? 305 */ 306 if (asoc->base.dead) 307 goto out_unlock; 308 309 /* Run through the state machine. */ 310 error = sctp_do_sm(SCTP_EVENT_T_TIMEOUT, 311 SCTP_ST_TIMEOUT(timeout_type), 312 asoc->state, asoc->ep, asoc, 313 (void *)timeout_type, GFP_ATOMIC); 314 315 if (error) 316 asoc->base.sk->sk_err = -error; 317 318 out_unlock: 319 sctp_bh_unlock_sock(asoc->base.sk); 320 sctp_association_put(asoc); 321 } 322 323 static void sctp_generate_t1_cookie_event(unsigned long data) 324 { 325 struct sctp_association *asoc = (struct sctp_association *) data; 326 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T1_COOKIE); 327 } 328 329 static void sctp_generate_t1_init_event(unsigned long data) 330 { 331 struct sctp_association *asoc = (struct sctp_association *) data; 332 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T1_INIT); 333 } 334 335 static void sctp_generate_t2_shutdown_event(unsigned long data) 336 { 337 struct sctp_association *asoc = (struct sctp_association *) data; 338 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T2_SHUTDOWN); 339 } 340 341 static void sctp_generate_t4_rto_event(unsigned long data) 342 { 343 struct sctp_association *asoc = (struct sctp_association *) data; 344 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T4_RTO); 345 } 346 347 static void sctp_generate_t5_shutdown_guard_event(unsigned long data) 348 { 349 struct sctp_association *asoc = (struct sctp_association *)data; 350 sctp_generate_timeout_event(asoc, 351 SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD); 352 353 } /* sctp_generate_t5_shutdown_guard_event() */ 354 355 static void sctp_generate_autoclose_event(unsigned long data) 356 { 357 struct sctp_association *asoc = (struct sctp_association *) data; 358 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_AUTOCLOSE); 359 } 360 361 /* Generate a heart beat event. If the sock is busy, reschedule. Make 362 * sure that the transport is still valid. 363 */ 364 void sctp_generate_heartbeat_event(unsigned long data) 365 { 366 int error = 0; 367 struct sctp_transport *transport = (struct sctp_transport *) data; 368 struct sctp_association *asoc = transport->asoc; 369 370 sctp_bh_lock_sock(asoc->base.sk); 371 if (sock_owned_by_user(asoc->base.sk)) { 372 SCTP_DEBUG_PRINTK("%s:Sock is busy.\n", __func__); 373 374 /* Try again later. */ 375 if (!mod_timer(&transport->hb_timer, jiffies + (HZ/20))) 376 sctp_transport_hold(transport); 377 goto out_unlock; 378 } 379 380 /* Is this structure just waiting around for us to actually 381 * get destroyed? 382 */ 383 if (transport->dead) 384 goto out_unlock; 385 386 error = sctp_do_sm(SCTP_EVENT_T_TIMEOUT, 387 SCTP_ST_TIMEOUT(SCTP_EVENT_TIMEOUT_HEARTBEAT), 388 asoc->state, asoc->ep, asoc, 389 transport, GFP_ATOMIC); 390 391 if (error) 392 asoc->base.sk->sk_err = -error; 393 394 out_unlock: 395 sctp_bh_unlock_sock(asoc->base.sk); 396 sctp_transport_put(transport); 397 } 398 399 /* Inject a SACK Timeout event into the state machine. */ 400 static void sctp_generate_sack_event(unsigned long data) 401 { 402 struct sctp_association *asoc = (struct sctp_association *) data; 403 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_SACK); 404 } 405 406 sctp_timer_event_t *sctp_timer_events[SCTP_NUM_TIMEOUT_TYPES] = { 407 NULL, 408 sctp_generate_t1_cookie_event, 409 sctp_generate_t1_init_event, 410 sctp_generate_t2_shutdown_event, 411 NULL, 412 sctp_generate_t4_rto_event, 413 sctp_generate_t5_shutdown_guard_event, 414 NULL, 415 sctp_generate_sack_event, 416 sctp_generate_autoclose_event, 417 }; 418 419 420 /* RFC 2960 8.2 Path Failure Detection 421 * 422 * When its peer endpoint is multi-homed, an endpoint should keep a 423 * error counter for each of the destination transport addresses of the 424 * peer endpoint. 425 * 426 * Each time the T3-rtx timer expires on any address, or when a 427 * HEARTBEAT sent to an idle address is not acknowledged within a RTO, 428 * the error counter of that destination address will be incremented. 429 * When the value in the error counter exceeds the protocol parameter 430 * 'Path.Max.Retrans' of that destination address, the endpoint should 431 * mark the destination transport address as inactive, and a 432 * notification SHOULD be sent to the upper layer. 433 * 434 */ 435 static void sctp_do_8_2_transport_strike(struct sctp_association *asoc, 436 struct sctp_transport *transport, 437 int is_hb) 438 { 439 /* The check for association's overall error counter exceeding the 440 * threshold is done in the state function. 441 */ 442 /* We are here due to a timer expiration. If the timer was 443 * not a HEARTBEAT, then normal error tracking is done. 444 * If the timer was a heartbeat, we only increment error counts 445 * when we already have an outstanding HEARTBEAT that has not 446 * been acknowledged. 447 * Additionaly, some tranport states inhibit error increments. 448 */ 449 if (!is_hb) { 450 asoc->overall_error_count++; 451 if (transport->state != SCTP_INACTIVE) 452 transport->error_count++; 453 } else if (transport->hb_sent) { 454 if (transport->state != SCTP_UNCONFIRMED) 455 asoc->overall_error_count++; 456 if (transport->state != SCTP_INACTIVE) 457 transport->error_count++; 458 } 459 460 if (transport->state != SCTP_INACTIVE && 461 (transport->error_count > transport->pathmaxrxt)) { 462 SCTP_DEBUG_PRINTK_IPADDR("transport_strike:association %p", 463 " transport IP: port:%d failed.\n", 464 asoc, 465 (&transport->ipaddr), 466 ntohs(transport->ipaddr.v4.sin_port)); 467 sctp_assoc_control_transport(asoc, transport, 468 SCTP_TRANSPORT_DOWN, 469 SCTP_FAILED_THRESHOLD); 470 } 471 472 /* E2) For the destination address for which the timer 473 * expires, set RTO <- RTO * 2 ("back off the timer"). The 474 * maximum value discussed in rule C7 above (RTO.max) may be 475 * used to provide an upper bound to this doubling operation. 476 * 477 * Special Case: the first HB doesn't trigger exponential backoff. 478 * The first unacknowleged HB triggers it. We do this with a flag 479 * that indicates that we have an outstanding HB. 480 */ 481 if (!is_hb || transport->hb_sent) { 482 transport->rto = min((transport->rto * 2), transport->asoc->rto_max); 483 } 484 } 485 486 /* Worker routine to handle INIT command failure. */ 487 static void sctp_cmd_init_failed(sctp_cmd_seq_t *commands, 488 struct sctp_association *asoc, 489 unsigned error) 490 { 491 struct sctp_ulpevent *event; 492 493 event = sctp_ulpevent_make_assoc_change(asoc,0, SCTP_CANT_STR_ASSOC, 494 (__u16)error, 0, 0, NULL, 495 GFP_ATOMIC); 496 497 if (event) 498 sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP, 499 SCTP_ULPEVENT(event)); 500 501 sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE, 502 SCTP_STATE(SCTP_STATE_CLOSED)); 503 504 /* SEND_FAILED sent later when cleaning up the association. */ 505 asoc->outqueue.error = error; 506 sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL()); 507 } 508 509 /* Worker routine to handle SCTP_CMD_ASSOC_FAILED. */ 510 static void sctp_cmd_assoc_failed(sctp_cmd_seq_t *commands, 511 struct sctp_association *asoc, 512 sctp_event_t event_type, 513 sctp_subtype_t subtype, 514 struct sctp_chunk *chunk, 515 unsigned error) 516 { 517 struct sctp_ulpevent *event; 518 519 /* Cancel any partial delivery in progress. */ 520 sctp_ulpq_abort_pd(&asoc->ulpq, GFP_ATOMIC); 521 522 if (event_type == SCTP_EVENT_T_CHUNK && subtype.chunk == SCTP_CID_ABORT) 523 event = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_COMM_LOST, 524 (__u16)error, 0, 0, chunk, 525 GFP_ATOMIC); 526 else 527 event = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_COMM_LOST, 528 (__u16)error, 0, 0, NULL, 529 GFP_ATOMIC); 530 if (event) 531 sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP, 532 SCTP_ULPEVENT(event)); 533 534 sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE, 535 SCTP_STATE(SCTP_STATE_CLOSED)); 536 537 /* SEND_FAILED sent later when cleaning up the association. */ 538 asoc->outqueue.error = error; 539 sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL()); 540 } 541 542 /* Process an init chunk (may be real INIT/INIT-ACK or an embedded INIT 543 * inside the cookie. In reality, this is only used for INIT-ACK processing 544 * since all other cases use "temporary" associations and can do all 545 * their work in statefuns directly. 546 */ 547 static int sctp_cmd_process_init(sctp_cmd_seq_t *commands, 548 struct sctp_association *asoc, 549 struct sctp_chunk *chunk, 550 sctp_init_chunk_t *peer_init, 551 gfp_t gfp) 552 { 553 int error; 554 555 /* We only process the init as a sideeffect in a single 556 * case. This is when we process the INIT-ACK. If we 557 * fail during INIT processing (due to malloc problems), 558 * just return the error and stop processing the stack. 559 */ 560 if (!sctp_process_init(asoc, chunk->chunk_hdr->type, 561 sctp_source(chunk), peer_init, gfp)) 562 error = -ENOMEM; 563 else 564 error = 0; 565 566 return error; 567 } 568 569 /* Helper function to break out starting up of heartbeat timers. */ 570 static void sctp_cmd_hb_timers_start(sctp_cmd_seq_t *cmds, 571 struct sctp_association *asoc) 572 { 573 struct sctp_transport *t; 574 575 /* Start a heartbeat timer for each transport on the association. 576 * hold a reference on the transport to make sure none of 577 * the needed data structures go away. 578 */ 579 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) { 580 581 if (!mod_timer(&t->hb_timer, sctp_transport_timeout(t))) 582 sctp_transport_hold(t); 583 } 584 } 585 586 static void sctp_cmd_hb_timers_stop(sctp_cmd_seq_t *cmds, 587 struct sctp_association *asoc) 588 { 589 struct sctp_transport *t; 590 591 /* Stop all heartbeat timers. */ 592 593 list_for_each_entry(t, &asoc->peer.transport_addr_list, 594 transports) { 595 if (del_timer(&t->hb_timer)) 596 sctp_transport_put(t); 597 } 598 } 599 600 /* Helper function to stop any pending T3-RTX timers */ 601 static void sctp_cmd_t3_rtx_timers_stop(sctp_cmd_seq_t *cmds, 602 struct sctp_association *asoc) 603 { 604 struct sctp_transport *t; 605 606 list_for_each_entry(t, &asoc->peer.transport_addr_list, 607 transports) { 608 if (timer_pending(&t->T3_rtx_timer) && 609 del_timer(&t->T3_rtx_timer)) { 610 sctp_transport_put(t); 611 } 612 } 613 } 614 615 616 /* Helper function to update the heartbeat timer. */ 617 static void sctp_cmd_hb_timer_update(sctp_cmd_seq_t *cmds, 618 struct sctp_transport *t) 619 { 620 /* Update the heartbeat timer. */ 621 if (!mod_timer(&t->hb_timer, sctp_transport_timeout(t))) 622 sctp_transport_hold(t); 623 } 624 625 /* Helper function to handle the reception of an HEARTBEAT ACK. */ 626 static void sctp_cmd_transport_on(sctp_cmd_seq_t *cmds, 627 struct sctp_association *asoc, 628 struct sctp_transport *t, 629 struct sctp_chunk *chunk) 630 { 631 sctp_sender_hb_info_t *hbinfo; 632 633 /* 8.3 Upon the receipt of the HEARTBEAT ACK, the sender of the 634 * HEARTBEAT should clear the error counter of the destination 635 * transport address to which the HEARTBEAT was sent. 636 * The association's overall error count is also cleared. 637 */ 638 t->error_count = 0; 639 t->asoc->overall_error_count = 0; 640 641 /* Clear the hb_sent flag to signal that we had a good 642 * acknowledgement. 643 */ 644 t->hb_sent = 0; 645 646 /* Mark the destination transport address as active if it is not so 647 * marked. 648 */ 649 if ((t->state == SCTP_INACTIVE) || (t->state == SCTP_UNCONFIRMED)) 650 sctp_assoc_control_transport(asoc, t, SCTP_TRANSPORT_UP, 651 SCTP_HEARTBEAT_SUCCESS); 652 653 /* The receiver of the HEARTBEAT ACK should also perform an 654 * RTT measurement for that destination transport address 655 * using the time value carried in the HEARTBEAT ACK chunk. 656 * If the transport's rto_pending variable has been cleared, 657 * it was most likely due to a retransmit. However, we want 658 * to re-enable it to properly update the rto. 659 */ 660 if (t->rto_pending == 0) 661 t->rto_pending = 1; 662 663 hbinfo = (sctp_sender_hb_info_t *) chunk->skb->data; 664 sctp_transport_update_rto(t, (jiffies - hbinfo->sent_at)); 665 666 /* Update the heartbeat timer. */ 667 if (!mod_timer(&t->hb_timer, sctp_transport_timeout(t))) 668 sctp_transport_hold(t); 669 } 670 671 672 /* Helper function to process the process SACK command. */ 673 static int sctp_cmd_process_sack(sctp_cmd_seq_t *cmds, 674 struct sctp_association *asoc, 675 struct sctp_sackhdr *sackh) 676 { 677 int err = 0; 678 679 if (sctp_outq_sack(&asoc->outqueue, sackh)) { 680 /* There are no more TSNs awaiting SACK. */ 681 err = sctp_do_sm(SCTP_EVENT_T_OTHER, 682 SCTP_ST_OTHER(SCTP_EVENT_NO_PENDING_TSN), 683 asoc->state, asoc->ep, asoc, NULL, 684 GFP_ATOMIC); 685 } 686 687 return err; 688 } 689 690 /* Helper function to set the timeout value for T2-SHUTDOWN timer and to set 691 * the transport for a shutdown chunk. 692 */ 693 static void sctp_cmd_setup_t2(sctp_cmd_seq_t *cmds, 694 struct sctp_association *asoc, 695 struct sctp_chunk *chunk) 696 { 697 struct sctp_transport *t; 698 699 t = sctp_assoc_choose_alter_transport(asoc, 700 asoc->shutdown_last_sent_to); 701 asoc->shutdown_last_sent_to = t; 702 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = t->rto; 703 chunk->transport = t; 704 } 705 706 /* Helper function to change the state of an association. */ 707 static void sctp_cmd_new_state(sctp_cmd_seq_t *cmds, 708 struct sctp_association *asoc, 709 sctp_state_t state) 710 { 711 struct sock *sk = asoc->base.sk; 712 713 asoc->state = state; 714 715 SCTP_DEBUG_PRINTK("sctp_cmd_new_state: asoc %p[%s]\n", 716 asoc, sctp_state_tbl[state]); 717 718 if (sctp_style(sk, TCP)) { 719 /* Change the sk->sk_state of a TCP-style socket that has 720 * successfully completed a connect() call. 721 */ 722 if (sctp_state(asoc, ESTABLISHED) && sctp_sstate(sk, CLOSED)) 723 sk->sk_state = SCTP_SS_ESTABLISHED; 724 725 /* Set the RCV_SHUTDOWN flag when a SHUTDOWN is received. */ 726 if (sctp_state(asoc, SHUTDOWN_RECEIVED) && 727 sctp_sstate(sk, ESTABLISHED)) 728 sk->sk_shutdown |= RCV_SHUTDOWN; 729 } 730 731 if (sctp_state(asoc, COOKIE_WAIT)) { 732 /* Reset init timeouts since they may have been 733 * increased due to timer expirations. 734 */ 735 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = 736 asoc->rto_initial; 737 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = 738 asoc->rto_initial; 739 } 740 741 if (sctp_state(asoc, ESTABLISHED) || 742 sctp_state(asoc, CLOSED) || 743 sctp_state(asoc, SHUTDOWN_RECEIVED)) { 744 /* Wake up any processes waiting in the asoc's wait queue in 745 * sctp_wait_for_connect() or sctp_wait_for_sndbuf(). 746 */ 747 if (waitqueue_active(&asoc->wait)) 748 wake_up_interruptible(&asoc->wait); 749 750 /* Wake up any processes waiting in the sk's sleep queue of 751 * a TCP-style or UDP-style peeled-off socket in 752 * sctp_wait_for_accept() or sctp_wait_for_packet(). 753 * For a UDP-style socket, the waiters are woken up by the 754 * notifications. 755 */ 756 if (!sctp_style(sk, UDP)) 757 sk->sk_state_change(sk); 758 } 759 } 760 761 /* Helper function to delete an association. */ 762 static void sctp_cmd_delete_tcb(sctp_cmd_seq_t *cmds, 763 struct sctp_association *asoc) 764 { 765 struct sock *sk = asoc->base.sk; 766 767 /* If it is a non-temporary association belonging to a TCP-style 768 * listening socket that is not closed, do not free it so that accept() 769 * can pick it up later. 770 */ 771 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING) && 772 (!asoc->temp) && (sk->sk_shutdown != SHUTDOWN_MASK)) 773 return; 774 775 sctp_unhash_established(asoc); 776 sctp_association_free(asoc); 777 } 778 779 /* 780 * ADDIP Section 4.1 ASCONF Chunk Procedures 781 * A4) Start a T-4 RTO timer, using the RTO value of the selected 782 * destination address (we use active path instead of primary path just 783 * because primary path may be inactive. 784 */ 785 static void sctp_cmd_setup_t4(sctp_cmd_seq_t *cmds, 786 struct sctp_association *asoc, 787 struct sctp_chunk *chunk) 788 { 789 struct sctp_transport *t; 790 791 t = sctp_assoc_choose_alter_transport(asoc, chunk->transport); 792 asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = t->rto; 793 chunk->transport = t; 794 } 795 796 /* Process an incoming Operation Error Chunk. */ 797 static void sctp_cmd_process_operr(sctp_cmd_seq_t *cmds, 798 struct sctp_association *asoc, 799 struct sctp_chunk *chunk) 800 { 801 struct sctp_errhdr *err_hdr; 802 struct sctp_ulpevent *ev; 803 804 while (chunk->chunk_end > chunk->skb->data) { 805 err_hdr = (struct sctp_errhdr *)(chunk->skb->data); 806 807 ev = sctp_ulpevent_make_remote_error(asoc, chunk, 0, 808 GFP_ATOMIC); 809 if (!ev) 810 return; 811 812 sctp_ulpq_tail_event(&asoc->ulpq, ev); 813 814 switch (err_hdr->cause) { 815 case SCTP_ERROR_UNKNOWN_CHUNK: 816 { 817 sctp_chunkhdr_t *unk_chunk_hdr; 818 819 unk_chunk_hdr = (sctp_chunkhdr_t *)err_hdr->variable; 820 switch (unk_chunk_hdr->type) { 821 /* ADDIP 4.1 A9) If the peer responds to an ASCONF with 822 * an ERROR chunk reporting that it did not recognized 823 * the ASCONF chunk type, the sender of the ASCONF MUST 824 * NOT send any further ASCONF chunks and MUST stop its 825 * T-4 timer. 826 */ 827 case SCTP_CID_ASCONF: 828 if (asoc->peer.asconf_capable == 0) 829 break; 830 831 asoc->peer.asconf_capable = 0; 832 sctp_add_cmd_sf(cmds, SCTP_CMD_TIMER_STOP, 833 SCTP_TO(SCTP_EVENT_TIMEOUT_T4_RTO)); 834 break; 835 default: 836 break; 837 } 838 break; 839 } 840 default: 841 break; 842 } 843 } 844 } 845 846 /* Process variable FWDTSN chunk information. */ 847 static void sctp_cmd_process_fwdtsn(struct sctp_ulpq *ulpq, 848 struct sctp_chunk *chunk) 849 { 850 struct sctp_fwdtsn_skip *skip; 851 /* Walk through all the skipped SSNs */ 852 sctp_walk_fwdtsn(skip, chunk) { 853 sctp_ulpq_skip(ulpq, ntohs(skip->stream), ntohs(skip->ssn)); 854 } 855 856 return; 857 } 858 859 /* Helper function to remove the association non-primary peer 860 * transports. 861 */ 862 static void sctp_cmd_del_non_primary(struct sctp_association *asoc) 863 { 864 struct sctp_transport *t; 865 struct list_head *pos; 866 struct list_head *temp; 867 868 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 869 t = list_entry(pos, struct sctp_transport, transports); 870 if (!sctp_cmp_addr_exact(&t->ipaddr, 871 &asoc->peer.primary_addr)) { 872 sctp_assoc_del_peer(asoc, &t->ipaddr); 873 } 874 } 875 876 return; 877 } 878 879 /* Helper function to set sk_err on a 1-1 style socket. */ 880 static void sctp_cmd_set_sk_err(struct sctp_association *asoc, int error) 881 { 882 struct sock *sk = asoc->base.sk; 883 884 if (!sctp_style(sk, UDP)) 885 sk->sk_err = error; 886 } 887 888 /* Helper function to generate an association change event */ 889 static void sctp_cmd_assoc_change(sctp_cmd_seq_t *commands, 890 struct sctp_association *asoc, 891 u8 state) 892 { 893 struct sctp_ulpevent *ev; 894 895 ev = sctp_ulpevent_make_assoc_change(asoc, 0, state, 0, 896 asoc->c.sinit_num_ostreams, 897 asoc->c.sinit_max_instreams, 898 NULL, GFP_ATOMIC); 899 if (ev) 900 sctp_ulpq_tail_event(&asoc->ulpq, ev); 901 } 902 903 /* Helper function to generate an adaptation indication event */ 904 static void sctp_cmd_adaptation_ind(sctp_cmd_seq_t *commands, 905 struct sctp_association *asoc) 906 { 907 struct sctp_ulpevent *ev; 908 909 ev = sctp_ulpevent_make_adaptation_indication(asoc, GFP_ATOMIC); 910 911 if (ev) 912 sctp_ulpq_tail_event(&asoc->ulpq, ev); 913 } 914 915 916 static void sctp_cmd_t1_timer_update(struct sctp_association *asoc, 917 sctp_event_timeout_t timer, 918 char *name) 919 { 920 struct sctp_transport *t; 921 922 t = asoc->init_last_sent_to; 923 asoc->init_err_counter++; 924 925 if (t->init_sent_count > (asoc->init_cycle + 1)) { 926 asoc->timeouts[timer] *= 2; 927 if (asoc->timeouts[timer] > asoc->max_init_timeo) { 928 asoc->timeouts[timer] = asoc->max_init_timeo; 929 } 930 asoc->init_cycle++; 931 SCTP_DEBUG_PRINTK( 932 "T1 %s Timeout adjustment" 933 " init_err_counter: %d" 934 " cycle: %d" 935 " timeout: %ld\n", 936 name, 937 asoc->init_err_counter, 938 asoc->init_cycle, 939 asoc->timeouts[timer]); 940 } 941 942 } 943 944 /* Send the whole message, chunk by chunk, to the outqueue. 945 * This way the whole message is queued up and bundling if 946 * encouraged for small fragments. 947 */ 948 static int sctp_cmd_send_msg(struct sctp_association *asoc, 949 struct sctp_datamsg *msg) 950 { 951 struct sctp_chunk *chunk; 952 int error = 0; 953 954 list_for_each_entry(chunk, &msg->chunks, frag_list) { 955 error = sctp_outq_tail(&asoc->outqueue, chunk); 956 if (error) 957 break; 958 } 959 960 return error; 961 } 962 963 964 965 /* These three macros allow us to pull the debugging code out of the 966 * main flow of sctp_do_sm() to keep attention focused on the real 967 * functionality there. 968 */ 969 #define DEBUG_PRE \ 970 SCTP_DEBUG_PRINTK("sctp_do_sm prefn: " \ 971 "ep %p, %s, %s, asoc %p[%s], %s\n", \ 972 ep, sctp_evttype_tbl[event_type], \ 973 (*debug_fn)(subtype), asoc, \ 974 sctp_state_tbl[state], state_fn->name) 975 976 #define DEBUG_POST \ 977 SCTP_DEBUG_PRINTK("sctp_do_sm postfn: " \ 978 "asoc %p, status: %s\n", \ 979 asoc, sctp_status_tbl[status]) 980 981 #define DEBUG_POST_SFX \ 982 SCTP_DEBUG_PRINTK("sctp_do_sm post sfx: error %d, asoc %p[%s]\n", \ 983 error, asoc, \ 984 sctp_state_tbl[(asoc && sctp_id2assoc(ep->base.sk, \ 985 sctp_assoc2id(asoc)))?asoc->state:SCTP_STATE_CLOSED]) 986 987 /* 988 * This is the master state machine processing function. 989 * 990 * If you want to understand all of lksctp, this is a 991 * good place to start. 992 */ 993 int sctp_do_sm(sctp_event_t event_type, sctp_subtype_t subtype, 994 sctp_state_t state, 995 struct sctp_endpoint *ep, 996 struct sctp_association *asoc, 997 void *event_arg, 998 gfp_t gfp) 999 { 1000 sctp_cmd_seq_t commands; 1001 const sctp_sm_table_entry_t *state_fn; 1002 sctp_disposition_t status; 1003 int error = 0; 1004 typedef const char *(printfn_t)(sctp_subtype_t); 1005 1006 static printfn_t *table[] = { 1007 NULL, sctp_cname, sctp_tname, sctp_oname, sctp_pname, 1008 }; 1009 printfn_t *debug_fn __attribute__ ((unused)) = table[event_type]; 1010 1011 /* Look up the state function, run it, and then process the 1012 * side effects. These three steps are the heart of lksctp. 1013 */ 1014 state_fn = sctp_sm_lookup_event(event_type, state, subtype); 1015 1016 sctp_init_cmd_seq(&commands); 1017 1018 DEBUG_PRE; 1019 status = (*state_fn->fn)(ep, asoc, subtype, event_arg, &commands); 1020 DEBUG_POST; 1021 1022 error = sctp_side_effects(event_type, subtype, state, 1023 ep, asoc, event_arg, status, 1024 &commands, gfp); 1025 DEBUG_POST_SFX; 1026 1027 return error; 1028 } 1029 1030 #undef DEBUG_PRE 1031 #undef DEBUG_POST 1032 1033 /***************************************************************** 1034 * This the master state function side effect processing function. 1035 *****************************************************************/ 1036 static int sctp_side_effects(sctp_event_t event_type, sctp_subtype_t subtype, 1037 sctp_state_t state, 1038 struct sctp_endpoint *ep, 1039 struct sctp_association *asoc, 1040 void *event_arg, 1041 sctp_disposition_t status, 1042 sctp_cmd_seq_t *commands, 1043 gfp_t gfp) 1044 { 1045 int error; 1046 1047 /* FIXME - Most of the dispositions left today would be categorized 1048 * as "exceptional" dispositions. For those dispositions, it 1049 * may not be proper to run through any of the commands at all. 1050 * For example, the command interpreter might be run only with 1051 * disposition SCTP_DISPOSITION_CONSUME. 1052 */ 1053 if (0 != (error = sctp_cmd_interpreter(event_type, subtype, state, 1054 ep, asoc, 1055 event_arg, status, 1056 commands, gfp))) 1057 goto bail; 1058 1059 switch (status) { 1060 case SCTP_DISPOSITION_DISCARD: 1061 SCTP_DEBUG_PRINTK("Ignored sctp protocol event - state %d, " 1062 "event_type %d, event_id %d\n", 1063 state, event_type, subtype.chunk); 1064 break; 1065 1066 case SCTP_DISPOSITION_NOMEM: 1067 /* We ran out of memory, so we need to discard this 1068 * packet. 1069 */ 1070 /* BUG--we should now recover some memory, probably by 1071 * reneging... 1072 */ 1073 error = -ENOMEM; 1074 break; 1075 1076 case SCTP_DISPOSITION_DELETE_TCB: 1077 /* This should now be a command. */ 1078 break; 1079 1080 case SCTP_DISPOSITION_CONSUME: 1081 case SCTP_DISPOSITION_ABORT: 1082 /* 1083 * We should no longer have much work to do here as the 1084 * real work has been done as explicit commands above. 1085 */ 1086 break; 1087 1088 case SCTP_DISPOSITION_VIOLATION: 1089 if (net_ratelimit()) 1090 printk(KERN_ERR "sctp protocol violation state %d " 1091 "chunkid %d\n", state, subtype.chunk); 1092 break; 1093 1094 case SCTP_DISPOSITION_NOT_IMPL: 1095 printk(KERN_WARNING "sctp unimplemented feature in state %d, " 1096 "event_type %d, event_id %d\n", 1097 state, event_type, subtype.chunk); 1098 break; 1099 1100 case SCTP_DISPOSITION_BUG: 1101 printk(KERN_ERR "sctp bug in state %d, " 1102 "event_type %d, event_id %d\n", 1103 state, event_type, subtype.chunk); 1104 BUG(); 1105 break; 1106 1107 default: 1108 printk(KERN_ERR "sctp impossible disposition %d " 1109 "in state %d, event_type %d, event_id %d\n", 1110 status, state, event_type, subtype.chunk); 1111 BUG(); 1112 break; 1113 } 1114 1115 bail: 1116 return error; 1117 } 1118 1119 /******************************************************************** 1120 * 2nd Level Abstractions 1121 ********************************************************************/ 1122 1123 /* This is the side-effect interpreter. */ 1124 static int sctp_cmd_interpreter(sctp_event_t event_type, 1125 sctp_subtype_t subtype, 1126 sctp_state_t state, 1127 struct sctp_endpoint *ep, 1128 struct sctp_association *asoc, 1129 void *event_arg, 1130 sctp_disposition_t status, 1131 sctp_cmd_seq_t *commands, 1132 gfp_t gfp) 1133 { 1134 int error = 0; 1135 int force; 1136 sctp_cmd_t *cmd; 1137 struct sctp_chunk *new_obj; 1138 struct sctp_chunk *chunk = NULL; 1139 struct sctp_packet *packet; 1140 struct timer_list *timer; 1141 unsigned long timeout; 1142 struct sctp_transport *t; 1143 struct sctp_sackhdr sackh; 1144 int local_cork = 0; 1145 1146 if (SCTP_EVENT_T_TIMEOUT != event_type) 1147 chunk = (struct sctp_chunk *) event_arg; 1148 1149 /* Note: This whole file is a huge candidate for rework. 1150 * For example, each command could either have its own handler, so 1151 * the loop would look like: 1152 * while (cmds) 1153 * cmd->handle(x, y, z) 1154 * --jgrimm 1155 */ 1156 while (NULL != (cmd = sctp_next_cmd(commands))) { 1157 switch (cmd->verb) { 1158 case SCTP_CMD_NOP: 1159 /* Do nothing. */ 1160 break; 1161 1162 case SCTP_CMD_NEW_ASOC: 1163 /* Register a new association. */ 1164 if (local_cork) { 1165 sctp_outq_uncork(&asoc->outqueue); 1166 local_cork = 0; 1167 } 1168 asoc = cmd->obj.ptr; 1169 /* Register with the endpoint. */ 1170 sctp_endpoint_add_asoc(ep, asoc); 1171 sctp_hash_established(asoc); 1172 break; 1173 1174 case SCTP_CMD_UPDATE_ASSOC: 1175 sctp_assoc_update(asoc, cmd->obj.ptr); 1176 break; 1177 1178 case SCTP_CMD_PURGE_OUTQUEUE: 1179 sctp_outq_teardown(&asoc->outqueue); 1180 break; 1181 1182 case SCTP_CMD_DELETE_TCB: 1183 if (local_cork) { 1184 sctp_outq_uncork(&asoc->outqueue); 1185 local_cork = 0; 1186 } 1187 /* Delete the current association. */ 1188 sctp_cmd_delete_tcb(commands, asoc); 1189 asoc = NULL; 1190 break; 1191 1192 case SCTP_CMD_NEW_STATE: 1193 /* Enter a new state. */ 1194 sctp_cmd_new_state(commands, asoc, cmd->obj.state); 1195 break; 1196 1197 case SCTP_CMD_REPORT_TSN: 1198 /* Record the arrival of a TSN. */ 1199 error = sctp_tsnmap_mark(&asoc->peer.tsn_map, 1200 cmd->obj.u32); 1201 break; 1202 1203 case SCTP_CMD_REPORT_FWDTSN: 1204 /* Move the Cumulattive TSN Ack ahead. */ 1205 sctp_tsnmap_skip(&asoc->peer.tsn_map, cmd->obj.u32); 1206 1207 /* purge the fragmentation queue */ 1208 sctp_ulpq_reasm_flushtsn(&asoc->ulpq, cmd->obj.u32); 1209 1210 /* Abort any in progress partial delivery. */ 1211 sctp_ulpq_abort_pd(&asoc->ulpq, GFP_ATOMIC); 1212 break; 1213 1214 case SCTP_CMD_PROCESS_FWDTSN: 1215 sctp_cmd_process_fwdtsn(&asoc->ulpq, cmd->obj.ptr); 1216 break; 1217 1218 case SCTP_CMD_GEN_SACK: 1219 /* Generate a Selective ACK. 1220 * The argument tells us whether to just count 1221 * the packet and MAYBE generate a SACK, or 1222 * force a SACK out. 1223 */ 1224 force = cmd->obj.i32; 1225 error = sctp_gen_sack(asoc, force, commands); 1226 break; 1227 1228 case SCTP_CMD_PROCESS_SACK: 1229 /* Process an inbound SACK. */ 1230 error = sctp_cmd_process_sack(commands, asoc, 1231 cmd->obj.ptr); 1232 break; 1233 1234 case SCTP_CMD_GEN_INIT_ACK: 1235 /* Generate an INIT ACK chunk. */ 1236 new_obj = sctp_make_init_ack(asoc, chunk, GFP_ATOMIC, 1237 0); 1238 if (!new_obj) 1239 goto nomem; 1240 1241 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, 1242 SCTP_CHUNK(new_obj)); 1243 break; 1244 1245 case SCTP_CMD_PEER_INIT: 1246 /* Process a unified INIT from the peer. 1247 * Note: Only used during INIT-ACK processing. If 1248 * there is an error just return to the outter 1249 * layer which will bail. 1250 */ 1251 error = sctp_cmd_process_init(commands, asoc, chunk, 1252 cmd->obj.ptr, gfp); 1253 break; 1254 1255 case SCTP_CMD_GEN_COOKIE_ECHO: 1256 /* Generate a COOKIE ECHO chunk. */ 1257 new_obj = sctp_make_cookie_echo(asoc, chunk); 1258 if (!new_obj) { 1259 if (cmd->obj.ptr) 1260 sctp_chunk_free(cmd->obj.ptr); 1261 goto nomem; 1262 } 1263 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, 1264 SCTP_CHUNK(new_obj)); 1265 1266 /* If there is an ERROR chunk to be sent along with 1267 * the COOKIE_ECHO, send it, too. 1268 */ 1269 if (cmd->obj.ptr) 1270 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, 1271 SCTP_CHUNK(cmd->obj.ptr)); 1272 1273 if (new_obj->transport) { 1274 new_obj->transport->init_sent_count++; 1275 asoc->init_last_sent_to = new_obj->transport; 1276 } 1277 1278 /* FIXME - Eventually come up with a cleaner way to 1279 * enabling COOKIE-ECHO + DATA bundling during 1280 * multihoming stale cookie scenarios, the following 1281 * command plays with asoc->peer.retran_path to 1282 * avoid the problem of sending the COOKIE-ECHO and 1283 * DATA in different paths, which could result 1284 * in the association being ABORTed if the DATA chunk 1285 * is processed first by the server. Checking the 1286 * init error counter simply causes this command 1287 * to be executed only during failed attempts of 1288 * association establishment. 1289 */ 1290 if ((asoc->peer.retran_path != 1291 asoc->peer.primary_path) && 1292 (asoc->init_err_counter > 0)) { 1293 sctp_add_cmd_sf(commands, 1294 SCTP_CMD_FORCE_PRIM_RETRAN, 1295 SCTP_NULL()); 1296 } 1297 1298 break; 1299 1300 case SCTP_CMD_GEN_SHUTDOWN: 1301 /* Generate SHUTDOWN when in SHUTDOWN_SENT state. 1302 * Reset error counts. 1303 */ 1304 asoc->overall_error_count = 0; 1305 1306 /* Generate a SHUTDOWN chunk. */ 1307 new_obj = sctp_make_shutdown(asoc, chunk); 1308 if (!new_obj) 1309 goto nomem; 1310 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, 1311 SCTP_CHUNK(new_obj)); 1312 break; 1313 1314 case SCTP_CMD_CHUNK_ULP: 1315 /* Send a chunk to the sockets layer. */ 1316 SCTP_DEBUG_PRINTK("sm_sideff: %s %p, %s %p.\n", 1317 "chunk_up:", cmd->obj.ptr, 1318 "ulpq:", &asoc->ulpq); 1319 sctp_ulpq_tail_data(&asoc->ulpq, cmd->obj.ptr, 1320 GFP_ATOMIC); 1321 break; 1322 1323 case SCTP_CMD_EVENT_ULP: 1324 /* Send a notification to the sockets layer. */ 1325 SCTP_DEBUG_PRINTK("sm_sideff: %s %p, %s %p.\n", 1326 "event_up:",cmd->obj.ptr, 1327 "ulpq:",&asoc->ulpq); 1328 sctp_ulpq_tail_event(&asoc->ulpq, cmd->obj.ptr); 1329 break; 1330 1331 case SCTP_CMD_REPLY: 1332 /* If an caller has not already corked, do cork. */ 1333 if (!asoc->outqueue.cork) { 1334 sctp_outq_cork(&asoc->outqueue); 1335 local_cork = 1; 1336 } 1337 /* Send a chunk to our peer. */ 1338 error = sctp_outq_tail(&asoc->outqueue, cmd->obj.ptr); 1339 break; 1340 1341 case SCTP_CMD_SEND_PKT: 1342 /* Send a full packet to our peer. */ 1343 packet = cmd->obj.ptr; 1344 sctp_packet_transmit(packet); 1345 sctp_ootb_pkt_free(packet); 1346 break; 1347 1348 case SCTP_CMD_T1_RETRAN: 1349 /* Mark a transport for retransmission. */ 1350 sctp_retransmit(&asoc->outqueue, cmd->obj.transport, 1351 SCTP_RTXR_T1_RTX); 1352 break; 1353 1354 case SCTP_CMD_RETRAN: 1355 /* Mark a transport for retransmission. */ 1356 sctp_retransmit(&asoc->outqueue, cmd->obj.transport, 1357 SCTP_RTXR_T3_RTX); 1358 break; 1359 1360 case SCTP_CMD_TRANSMIT: 1361 /* Kick start transmission. */ 1362 error = sctp_outq_uncork(&asoc->outqueue); 1363 local_cork = 0; 1364 break; 1365 1366 case SCTP_CMD_ECN_CE: 1367 /* Do delayed CE processing. */ 1368 sctp_do_ecn_ce_work(asoc, cmd->obj.u32); 1369 break; 1370 1371 case SCTP_CMD_ECN_ECNE: 1372 /* Do delayed ECNE processing. */ 1373 new_obj = sctp_do_ecn_ecne_work(asoc, cmd->obj.u32, 1374 chunk); 1375 if (new_obj) 1376 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, 1377 SCTP_CHUNK(new_obj)); 1378 break; 1379 1380 case SCTP_CMD_ECN_CWR: 1381 /* Do delayed CWR processing. */ 1382 sctp_do_ecn_cwr_work(asoc, cmd->obj.u32); 1383 break; 1384 1385 case SCTP_CMD_SETUP_T2: 1386 sctp_cmd_setup_t2(commands, asoc, cmd->obj.ptr); 1387 break; 1388 1389 case SCTP_CMD_TIMER_START: 1390 timer = &asoc->timers[cmd->obj.to]; 1391 timeout = asoc->timeouts[cmd->obj.to]; 1392 BUG_ON(!timeout); 1393 1394 timer->expires = jiffies + timeout; 1395 sctp_association_hold(asoc); 1396 add_timer(timer); 1397 break; 1398 1399 case SCTP_CMD_TIMER_RESTART: 1400 timer = &asoc->timers[cmd->obj.to]; 1401 timeout = asoc->timeouts[cmd->obj.to]; 1402 if (!mod_timer(timer, jiffies + timeout)) 1403 sctp_association_hold(asoc); 1404 break; 1405 1406 case SCTP_CMD_TIMER_STOP: 1407 timer = &asoc->timers[cmd->obj.to]; 1408 if (timer_pending(timer) && del_timer(timer)) 1409 sctp_association_put(asoc); 1410 break; 1411 1412 case SCTP_CMD_INIT_CHOOSE_TRANSPORT: 1413 chunk = cmd->obj.ptr; 1414 t = sctp_assoc_choose_alter_transport(asoc, 1415 asoc->init_last_sent_to); 1416 asoc->init_last_sent_to = t; 1417 chunk->transport = t; 1418 t->init_sent_count++; 1419 /* Set the new transport as primary */ 1420 sctp_assoc_set_primary(asoc, t); 1421 break; 1422 1423 case SCTP_CMD_INIT_RESTART: 1424 /* Do the needed accounting and updates 1425 * associated with restarting an initialization 1426 * timer. Only multiply the timeout by two if 1427 * all transports have been tried at the current 1428 * timeout. 1429 */ 1430 sctp_cmd_t1_timer_update(asoc, 1431 SCTP_EVENT_TIMEOUT_T1_INIT, 1432 "INIT"); 1433 1434 sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART, 1435 SCTP_TO(SCTP_EVENT_TIMEOUT_T1_INIT)); 1436 break; 1437 1438 case SCTP_CMD_COOKIEECHO_RESTART: 1439 /* Do the needed accounting and updates 1440 * associated with restarting an initialization 1441 * timer. Only multiply the timeout by two if 1442 * all transports have been tried at the current 1443 * timeout. 1444 */ 1445 sctp_cmd_t1_timer_update(asoc, 1446 SCTP_EVENT_TIMEOUT_T1_COOKIE, 1447 "COOKIE"); 1448 1449 /* If we've sent any data bundled with 1450 * COOKIE-ECHO we need to resend. 1451 */ 1452 list_for_each_entry(t, &asoc->peer.transport_addr_list, 1453 transports) { 1454 sctp_retransmit_mark(&asoc->outqueue, t, 1455 SCTP_RTXR_T1_RTX); 1456 } 1457 1458 sctp_add_cmd_sf(commands, 1459 SCTP_CMD_TIMER_RESTART, 1460 SCTP_TO(SCTP_EVENT_TIMEOUT_T1_COOKIE)); 1461 break; 1462 1463 case SCTP_CMD_INIT_FAILED: 1464 sctp_cmd_init_failed(commands, asoc, cmd->obj.err); 1465 break; 1466 1467 case SCTP_CMD_ASSOC_FAILED: 1468 sctp_cmd_assoc_failed(commands, asoc, event_type, 1469 subtype, chunk, cmd->obj.err); 1470 break; 1471 1472 case SCTP_CMD_INIT_COUNTER_INC: 1473 asoc->init_err_counter++; 1474 break; 1475 1476 case SCTP_CMD_INIT_COUNTER_RESET: 1477 asoc->init_err_counter = 0; 1478 asoc->init_cycle = 0; 1479 list_for_each_entry(t, &asoc->peer.transport_addr_list, 1480 transports) { 1481 t->init_sent_count = 0; 1482 } 1483 break; 1484 1485 case SCTP_CMD_REPORT_DUP: 1486 sctp_tsnmap_mark_dup(&asoc->peer.tsn_map, 1487 cmd->obj.u32); 1488 break; 1489 1490 case SCTP_CMD_REPORT_BAD_TAG: 1491 SCTP_DEBUG_PRINTK("vtag mismatch!\n"); 1492 break; 1493 1494 case SCTP_CMD_STRIKE: 1495 /* Mark one strike against a transport. */ 1496 sctp_do_8_2_transport_strike(asoc, cmd->obj.transport, 1497 0); 1498 break; 1499 1500 case SCTP_CMD_TRANSPORT_IDLE: 1501 t = cmd->obj.transport; 1502 sctp_transport_lower_cwnd(t, SCTP_LOWER_CWND_INACTIVE); 1503 break; 1504 1505 case SCTP_CMD_TRANSPORT_HB_SENT: 1506 t = cmd->obj.transport; 1507 sctp_do_8_2_transport_strike(asoc, t, 1); 1508 t->hb_sent = 1; 1509 break; 1510 1511 case SCTP_CMD_TRANSPORT_ON: 1512 t = cmd->obj.transport; 1513 sctp_cmd_transport_on(commands, asoc, t, chunk); 1514 break; 1515 1516 case SCTP_CMD_HB_TIMERS_START: 1517 sctp_cmd_hb_timers_start(commands, asoc); 1518 break; 1519 1520 case SCTP_CMD_HB_TIMER_UPDATE: 1521 t = cmd->obj.transport; 1522 sctp_cmd_hb_timer_update(commands, t); 1523 break; 1524 1525 case SCTP_CMD_HB_TIMERS_STOP: 1526 sctp_cmd_hb_timers_stop(commands, asoc); 1527 break; 1528 1529 case SCTP_CMD_REPORT_ERROR: 1530 error = cmd->obj.error; 1531 break; 1532 1533 case SCTP_CMD_PROCESS_CTSN: 1534 /* Dummy up a SACK for processing. */ 1535 sackh.cum_tsn_ack = cmd->obj.be32; 1536 sackh.a_rwnd = asoc->peer.rwnd + 1537 asoc->outqueue.outstanding_bytes; 1538 sackh.num_gap_ack_blocks = 0; 1539 sackh.num_dup_tsns = 0; 1540 sctp_add_cmd_sf(commands, SCTP_CMD_PROCESS_SACK, 1541 SCTP_SACKH(&sackh)); 1542 break; 1543 1544 case SCTP_CMD_DISCARD_PACKET: 1545 /* We need to discard the whole packet. 1546 * Uncork the queue since there might be 1547 * responses pending 1548 */ 1549 chunk->pdiscard = 1; 1550 if (asoc) { 1551 sctp_outq_uncork(&asoc->outqueue); 1552 local_cork = 0; 1553 } 1554 break; 1555 1556 case SCTP_CMD_RTO_PENDING: 1557 t = cmd->obj.transport; 1558 t->rto_pending = 1; 1559 break; 1560 1561 case SCTP_CMD_PART_DELIVER: 1562 sctp_ulpq_partial_delivery(&asoc->ulpq, cmd->obj.ptr, 1563 GFP_ATOMIC); 1564 break; 1565 1566 case SCTP_CMD_RENEGE: 1567 sctp_ulpq_renege(&asoc->ulpq, cmd->obj.ptr, 1568 GFP_ATOMIC); 1569 break; 1570 1571 case SCTP_CMD_SETUP_T4: 1572 sctp_cmd_setup_t4(commands, asoc, cmd->obj.ptr); 1573 break; 1574 1575 case SCTP_CMD_PROCESS_OPERR: 1576 sctp_cmd_process_operr(commands, asoc, chunk); 1577 break; 1578 case SCTP_CMD_CLEAR_INIT_TAG: 1579 asoc->peer.i.init_tag = 0; 1580 break; 1581 case SCTP_CMD_DEL_NON_PRIMARY: 1582 sctp_cmd_del_non_primary(asoc); 1583 break; 1584 case SCTP_CMD_T3_RTX_TIMERS_STOP: 1585 sctp_cmd_t3_rtx_timers_stop(commands, asoc); 1586 break; 1587 case SCTP_CMD_FORCE_PRIM_RETRAN: 1588 t = asoc->peer.retran_path; 1589 asoc->peer.retran_path = asoc->peer.primary_path; 1590 error = sctp_outq_uncork(&asoc->outqueue); 1591 local_cork = 0; 1592 asoc->peer.retran_path = t; 1593 break; 1594 case SCTP_CMD_SET_SK_ERR: 1595 sctp_cmd_set_sk_err(asoc, cmd->obj.error); 1596 break; 1597 case SCTP_CMD_ASSOC_CHANGE: 1598 sctp_cmd_assoc_change(commands, asoc, 1599 cmd->obj.u8); 1600 break; 1601 case SCTP_CMD_ADAPTATION_IND: 1602 sctp_cmd_adaptation_ind(commands, asoc); 1603 break; 1604 1605 case SCTP_CMD_ASSOC_SHKEY: 1606 error = sctp_auth_asoc_init_active_key(asoc, 1607 GFP_ATOMIC); 1608 break; 1609 case SCTP_CMD_UPDATE_INITTAG: 1610 asoc->peer.i.init_tag = cmd->obj.u32; 1611 break; 1612 case SCTP_CMD_SEND_MSG: 1613 if (!asoc->outqueue.cork) { 1614 sctp_outq_cork(&asoc->outqueue); 1615 local_cork = 1; 1616 } 1617 error = sctp_cmd_send_msg(asoc, cmd->obj.msg); 1618 break; 1619 default: 1620 printk(KERN_WARNING "Impossible command: %u, %p\n", 1621 cmd->verb, cmd->obj.ptr); 1622 break; 1623 } 1624 1625 if (error) 1626 break; 1627 } 1628 1629 out: 1630 /* If this is in response to a received chunk, wait until 1631 * we are done with the packet to open the queue so that we don't 1632 * send multiple packets in response to a single request. 1633 */ 1634 if (asoc && SCTP_EVENT_T_CHUNK == event_type && chunk) { 1635 if (chunk->end_of_packet || chunk->singleton) 1636 error = sctp_outq_uncork(&asoc->outqueue); 1637 } else if (local_cork) 1638 error = sctp_outq_uncork(&asoc->outqueue); 1639 return error; 1640 nomem: 1641 error = -ENOMEM; 1642 goto out; 1643 } 1644 1645