1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * 6 * This file is part of the SCTP kernel implementation 7 * 8 * These functions work with the state functions in sctp_sm_statefuns.c 9 * to implement that state operations. These functions implement the 10 * steps which require modifying existing data structures. 11 * 12 * This SCTP implementation is free software; 13 * you can redistribute it and/or modify it under the terms of 14 * the GNU General Public License as published by 15 * the Free Software Foundation; either version 2, or (at your option) 16 * any later version. 17 * 18 * This SCTP implementation is distributed in the hope that it 19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 20 * ************************ 21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 22 * See the GNU General Public License for more details. 23 * 24 * You should have received a copy of the GNU General Public License 25 * along with GNU CC; see the file COPYING. If not, see 26 * <http://www.gnu.org/licenses/>. 27 * 28 * Please send any bug reports or fixes you make to the 29 * email address(es): 30 * lksctp developers <linux-sctp@vger.kernel.org> 31 * 32 * Written or modified by: 33 * La Monte H.P. Yarroll <piggy@acm.org> 34 * Karl Knutson <karl@athena.chicago.il.us> 35 * Jon Grimm <jgrimm@austin.ibm.com> 36 * Hui Huang <hui.huang@nokia.com> 37 * Dajiang Zhang <dajiang.zhang@nokia.com> 38 * Daisy Chang <daisyc@us.ibm.com> 39 * Sridhar Samudrala <sri@us.ibm.com> 40 * Ardelle Fan <ardelle.fan@intel.com> 41 */ 42 43 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 44 45 #include <linux/skbuff.h> 46 #include <linux/types.h> 47 #include <linux/socket.h> 48 #include <linux/ip.h> 49 #include <linux/gfp.h> 50 #include <net/sock.h> 51 #include <net/sctp/sctp.h> 52 #include <net/sctp/sm.h> 53 54 static int sctp_cmd_interpreter(sctp_event_t event_type, 55 sctp_subtype_t subtype, 56 sctp_state_t state, 57 struct sctp_endpoint *ep, 58 struct sctp_association *asoc, 59 void *event_arg, 60 sctp_disposition_t status, 61 sctp_cmd_seq_t *commands, 62 gfp_t gfp); 63 static int sctp_side_effects(sctp_event_t event_type, sctp_subtype_t subtype, 64 sctp_state_t state, 65 struct sctp_endpoint *ep, 66 struct sctp_association **asoc, 67 void *event_arg, 68 sctp_disposition_t status, 69 sctp_cmd_seq_t *commands, 70 gfp_t gfp); 71 72 /******************************************************************** 73 * Helper functions 74 ********************************************************************/ 75 76 /* A helper function for delayed processing of INET ECN CE bit. */ 77 static void sctp_do_ecn_ce_work(struct sctp_association *asoc, 78 __u32 lowest_tsn) 79 { 80 /* Save the TSN away for comparison when we receive CWR */ 81 82 asoc->last_ecne_tsn = lowest_tsn; 83 asoc->need_ecne = 1; 84 } 85 86 /* Helper function for delayed processing of SCTP ECNE chunk. */ 87 /* RFC 2960 Appendix A 88 * 89 * RFC 2481 details a specific bit for a sender to send in 90 * the header of its next outbound TCP segment to indicate to 91 * its peer that it has reduced its congestion window. This 92 * is termed the CWR bit. For SCTP the same indication is made 93 * by including the CWR chunk. This chunk contains one data 94 * element, i.e. the TSN number that was sent in the ECNE chunk. 95 * This element represents the lowest TSN number in the datagram 96 * that was originally marked with the CE bit. 97 */ 98 static struct sctp_chunk *sctp_do_ecn_ecne_work(struct sctp_association *asoc, 99 __u32 lowest_tsn, 100 struct sctp_chunk *chunk) 101 { 102 struct sctp_chunk *repl; 103 104 /* Our previously transmitted packet ran into some congestion 105 * so we should take action by reducing cwnd and ssthresh 106 * and then ACK our peer that we we've done so by 107 * sending a CWR. 108 */ 109 110 /* First, try to determine if we want to actually lower 111 * our cwnd variables. Only lower them if the ECNE looks more 112 * recent than the last response. 113 */ 114 if (TSN_lt(asoc->last_cwr_tsn, lowest_tsn)) { 115 struct sctp_transport *transport; 116 117 /* Find which transport's congestion variables 118 * need to be adjusted. 119 */ 120 transport = sctp_assoc_lookup_tsn(asoc, lowest_tsn); 121 122 /* Update the congestion variables. */ 123 if (transport) 124 sctp_transport_lower_cwnd(transport, 125 SCTP_LOWER_CWND_ECNE); 126 asoc->last_cwr_tsn = lowest_tsn; 127 } 128 129 /* Always try to quiet the other end. In case of lost CWR, 130 * resend last_cwr_tsn. 131 */ 132 repl = sctp_make_cwr(asoc, asoc->last_cwr_tsn, chunk); 133 134 /* If we run out of memory, it will look like a lost CWR. We'll 135 * get back in sync eventually. 136 */ 137 return repl; 138 } 139 140 /* Helper function to do delayed processing of ECN CWR chunk. */ 141 static void sctp_do_ecn_cwr_work(struct sctp_association *asoc, 142 __u32 lowest_tsn) 143 { 144 /* Turn off ECNE getting auto-prepended to every outgoing 145 * packet 146 */ 147 asoc->need_ecne = 0; 148 } 149 150 /* Generate SACK if necessary. We call this at the end of a packet. */ 151 static int sctp_gen_sack(struct sctp_association *asoc, int force, 152 sctp_cmd_seq_t *commands) 153 { 154 __u32 ctsn, max_tsn_seen; 155 struct sctp_chunk *sack; 156 struct sctp_transport *trans = asoc->peer.last_data_from; 157 int error = 0; 158 159 if (force || 160 (!trans && (asoc->param_flags & SPP_SACKDELAY_DISABLE)) || 161 (trans && (trans->param_flags & SPP_SACKDELAY_DISABLE))) 162 asoc->peer.sack_needed = 1; 163 164 ctsn = sctp_tsnmap_get_ctsn(&asoc->peer.tsn_map); 165 max_tsn_seen = sctp_tsnmap_get_max_tsn_seen(&asoc->peer.tsn_map); 166 167 /* From 12.2 Parameters necessary per association (i.e. the TCB): 168 * 169 * Ack State : This flag indicates if the next received packet 170 * : is to be responded to with a SACK. ... 171 * : When DATA chunks are out of order, SACK's 172 * : are not delayed (see Section 6). 173 * 174 * [This is actually not mentioned in Section 6, but we 175 * implement it here anyway. --piggy] 176 */ 177 if (max_tsn_seen != ctsn) 178 asoc->peer.sack_needed = 1; 179 180 /* From 6.2 Acknowledgement on Reception of DATA Chunks: 181 * 182 * Section 4.2 of [RFC2581] SHOULD be followed. Specifically, 183 * an acknowledgement SHOULD be generated for at least every 184 * second packet (not every second DATA chunk) received, and 185 * SHOULD be generated within 200 ms of the arrival of any 186 * unacknowledged DATA chunk. ... 187 */ 188 if (!asoc->peer.sack_needed) { 189 asoc->peer.sack_cnt++; 190 191 /* Set the SACK delay timeout based on the 192 * SACK delay for the last transport 193 * data was received from, or the default 194 * for the association. 195 */ 196 if (trans) { 197 /* We will need a SACK for the next packet. */ 198 if (asoc->peer.sack_cnt >= trans->sackfreq - 1) 199 asoc->peer.sack_needed = 1; 200 201 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = 202 trans->sackdelay; 203 } else { 204 /* We will need a SACK for the next packet. */ 205 if (asoc->peer.sack_cnt >= asoc->sackfreq - 1) 206 asoc->peer.sack_needed = 1; 207 208 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = 209 asoc->sackdelay; 210 } 211 212 /* Restart the SACK timer. */ 213 sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART, 214 SCTP_TO(SCTP_EVENT_TIMEOUT_SACK)); 215 } else { 216 __u32 old_a_rwnd = asoc->a_rwnd; 217 218 asoc->a_rwnd = asoc->rwnd; 219 sack = sctp_make_sack(asoc); 220 if (!sack) { 221 asoc->a_rwnd = old_a_rwnd; 222 goto nomem; 223 } 224 225 asoc->peer.sack_needed = 0; 226 asoc->peer.sack_cnt = 0; 227 228 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(sack)); 229 230 /* Stop the SACK timer. */ 231 sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP, 232 SCTP_TO(SCTP_EVENT_TIMEOUT_SACK)); 233 } 234 235 return error; 236 nomem: 237 error = -ENOMEM; 238 return error; 239 } 240 241 /* When the T3-RTX timer expires, it calls this function to create the 242 * relevant state machine event. 243 */ 244 void sctp_generate_t3_rtx_event(unsigned long peer) 245 { 246 int error; 247 struct sctp_transport *transport = (struct sctp_transport *) peer; 248 struct sctp_association *asoc = transport->asoc; 249 struct sock *sk = asoc->base.sk; 250 struct net *net = sock_net(sk); 251 252 /* Check whether a task is in the sock. */ 253 254 bh_lock_sock(sk); 255 if (sock_owned_by_user(sk)) { 256 pr_debug("%s: sock is busy\n", __func__); 257 258 /* Try again later. */ 259 if (!mod_timer(&transport->T3_rtx_timer, jiffies + (HZ/20))) 260 sctp_transport_hold(transport); 261 goto out_unlock; 262 } 263 264 /* Run through the state machine. */ 265 error = sctp_do_sm(net, SCTP_EVENT_T_TIMEOUT, 266 SCTP_ST_TIMEOUT(SCTP_EVENT_TIMEOUT_T3_RTX), 267 asoc->state, 268 asoc->ep, asoc, 269 transport, GFP_ATOMIC); 270 271 if (error) 272 sk->sk_err = -error; 273 274 out_unlock: 275 bh_unlock_sock(sk); 276 sctp_transport_put(transport); 277 } 278 279 /* This is a sa interface for producing timeout events. It works 280 * for timeouts which use the association as their parameter. 281 */ 282 static void sctp_generate_timeout_event(struct sctp_association *asoc, 283 sctp_event_timeout_t timeout_type) 284 { 285 struct sock *sk = asoc->base.sk; 286 struct net *net = sock_net(sk); 287 int error = 0; 288 289 bh_lock_sock(sk); 290 if (sock_owned_by_user(sk)) { 291 pr_debug("%s: sock is busy: timer %d\n", __func__, 292 timeout_type); 293 294 /* Try again later. */ 295 if (!mod_timer(&asoc->timers[timeout_type], jiffies + (HZ/20))) 296 sctp_association_hold(asoc); 297 goto out_unlock; 298 } 299 300 /* Is this association really dead and just waiting around for 301 * the timer to let go of the reference? 302 */ 303 if (asoc->base.dead) 304 goto out_unlock; 305 306 /* Run through the state machine. */ 307 error = sctp_do_sm(net, SCTP_EVENT_T_TIMEOUT, 308 SCTP_ST_TIMEOUT(timeout_type), 309 asoc->state, asoc->ep, asoc, 310 (void *)timeout_type, GFP_ATOMIC); 311 312 if (error) 313 sk->sk_err = -error; 314 315 out_unlock: 316 bh_unlock_sock(sk); 317 sctp_association_put(asoc); 318 } 319 320 static void sctp_generate_t1_cookie_event(unsigned long data) 321 { 322 struct sctp_association *asoc = (struct sctp_association *) data; 323 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T1_COOKIE); 324 } 325 326 static void sctp_generate_t1_init_event(unsigned long data) 327 { 328 struct sctp_association *asoc = (struct sctp_association *) data; 329 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T1_INIT); 330 } 331 332 static void sctp_generate_t2_shutdown_event(unsigned long data) 333 { 334 struct sctp_association *asoc = (struct sctp_association *) data; 335 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T2_SHUTDOWN); 336 } 337 338 static void sctp_generate_t4_rto_event(unsigned long data) 339 { 340 struct sctp_association *asoc = (struct sctp_association *) data; 341 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T4_RTO); 342 } 343 344 static void sctp_generate_t5_shutdown_guard_event(unsigned long data) 345 { 346 struct sctp_association *asoc = (struct sctp_association *)data; 347 sctp_generate_timeout_event(asoc, 348 SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD); 349 350 } /* sctp_generate_t5_shutdown_guard_event() */ 351 352 static void sctp_generate_autoclose_event(unsigned long data) 353 { 354 struct sctp_association *asoc = (struct sctp_association *) data; 355 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_AUTOCLOSE); 356 } 357 358 /* Generate a heart beat event. If the sock is busy, reschedule. Make 359 * sure that the transport is still valid. 360 */ 361 void sctp_generate_heartbeat_event(unsigned long data) 362 { 363 int error = 0; 364 struct sctp_transport *transport = (struct sctp_transport *) data; 365 struct sctp_association *asoc = transport->asoc; 366 struct sock *sk = asoc->base.sk; 367 struct net *net = sock_net(sk); 368 u32 elapsed, timeout; 369 370 bh_lock_sock(sk); 371 if (sock_owned_by_user(sk)) { 372 pr_debug("%s: sock is busy\n", __func__); 373 374 /* Try again later. */ 375 if (!mod_timer(&transport->hb_timer, jiffies + (HZ/20))) 376 sctp_transport_hold(transport); 377 goto out_unlock; 378 } 379 380 /* Check if we should still send the heartbeat or reschedule */ 381 elapsed = jiffies - transport->last_time_sent; 382 timeout = sctp_transport_timeout(transport); 383 if (elapsed < timeout) { 384 elapsed = timeout - elapsed; 385 if (!mod_timer(&transport->hb_timer, jiffies + elapsed)) 386 sctp_transport_hold(transport); 387 goto out_unlock; 388 } 389 390 error = sctp_do_sm(net, SCTP_EVENT_T_TIMEOUT, 391 SCTP_ST_TIMEOUT(SCTP_EVENT_TIMEOUT_HEARTBEAT), 392 asoc->state, asoc->ep, asoc, 393 transport, GFP_ATOMIC); 394 395 if (error) 396 sk->sk_err = -error; 397 398 out_unlock: 399 bh_unlock_sock(sk); 400 sctp_transport_put(transport); 401 } 402 403 /* Handle the timeout of the ICMP protocol unreachable timer. Trigger 404 * the correct state machine transition that will close the association. 405 */ 406 void sctp_generate_proto_unreach_event(unsigned long data) 407 { 408 struct sctp_transport *transport = (struct sctp_transport *) data; 409 struct sctp_association *asoc = transport->asoc; 410 struct sock *sk = asoc->base.sk; 411 struct net *net = sock_net(sk); 412 413 bh_lock_sock(sk); 414 if (sock_owned_by_user(sk)) { 415 pr_debug("%s: sock is busy\n", __func__); 416 417 /* Try again later. */ 418 if (!mod_timer(&transport->proto_unreach_timer, 419 jiffies + (HZ/20))) 420 sctp_association_hold(asoc); 421 goto out_unlock; 422 } 423 424 /* Is this structure just waiting around for us to actually 425 * get destroyed? 426 */ 427 if (asoc->base.dead) 428 goto out_unlock; 429 430 sctp_do_sm(net, SCTP_EVENT_T_OTHER, 431 SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH), 432 asoc->state, asoc->ep, asoc, transport, GFP_ATOMIC); 433 434 out_unlock: 435 bh_unlock_sock(sk); 436 sctp_association_put(asoc); 437 } 438 439 /* Handle the timeout of the RE-CONFIG timer. */ 440 void sctp_generate_reconf_event(unsigned long data) 441 { 442 struct sctp_transport *transport = (struct sctp_transport *)data; 443 struct sctp_association *asoc = transport->asoc; 444 struct sock *sk = asoc->base.sk; 445 struct net *net = sock_net(sk); 446 int error = 0; 447 448 bh_lock_sock(sk); 449 if (sock_owned_by_user(sk)) { 450 pr_debug("%s: sock is busy\n", __func__); 451 452 /* Try again later. */ 453 if (!mod_timer(&transport->reconf_timer, jiffies + (HZ / 20))) 454 sctp_transport_hold(transport); 455 goto out_unlock; 456 } 457 458 error = sctp_do_sm(net, SCTP_EVENT_T_TIMEOUT, 459 SCTP_ST_TIMEOUT(SCTP_EVENT_TIMEOUT_RECONF), 460 asoc->state, asoc->ep, asoc, 461 transport, GFP_ATOMIC); 462 463 if (error) 464 sk->sk_err = -error; 465 466 out_unlock: 467 bh_unlock_sock(sk); 468 sctp_transport_put(transport); 469 } 470 471 /* Inject a SACK Timeout event into the state machine. */ 472 static void sctp_generate_sack_event(unsigned long data) 473 { 474 struct sctp_association *asoc = (struct sctp_association *) data; 475 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_SACK); 476 } 477 478 sctp_timer_event_t *sctp_timer_events[SCTP_NUM_TIMEOUT_TYPES] = { 479 NULL, 480 sctp_generate_t1_cookie_event, 481 sctp_generate_t1_init_event, 482 sctp_generate_t2_shutdown_event, 483 NULL, 484 sctp_generate_t4_rto_event, 485 sctp_generate_t5_shutdown_guard_event, 486 NULL, 487 NULL, 488 sctp_generate_sack_event, 489 sctp_generate_autoclose_event, 490 }; 491 492 493 /* RFC 2960 8.2 Path Failure Detection 494 * 495 * When its peer endpoint is multi-homed, an endpoint should keep a 496 * error counter for each of the destination transport addresses of the 497 * peer endpoint. 498 * 499 * Each time the T3-rtx timer expires on any address, or when a 500 * HEARTBEAT sent to an idle address is not acknowledged within a RTO, 501 * the error counter of that destination address will be incremented. 502 * When the value in the error counter exceeds the protocol parameter 503 * 'Path.Max.Retrans' of that destination address, the endpoint should 504 * mark the destination transport address as inactive, and a 505 * notification SHOULD be sent to the upper layer. 506 * 507 */ 508 static void sctp_do_8_2_transport_strike(sctp_cmd_seq_t *commands, 509 struct sctp_association *asoc, 510 struct sctp_transport *transport, 511 int is_hb) 512 { 513 struct net *net = sock_net(asoc->base.sk); 514 515 /* The check for association's overall error counter exceeding the 516 * threshold is done in the state function. 517 */ 518 /* We are here due to a timer expiration. If the timer was 519 * not a HEARTBEAT, then normal error tracking is done. 520 * If the timer was a heartbeat, we only increment error counts 521 * when we already have an outstanding HEARTBEAT that has not 522 * been acknowledged. 523 * Additionally, some tranport states inhibit error increments. 524 */ 525 if (!is_hb) { 526 asoc->overall_error_count++; 527 if (transport->state != SCTP_INACTIVE) 528 transport->error_count++; 529 } else if (transport->hb_sent) { 530 if (transport->state != SCTP_UNCONFIRMED) 531 asoc->overall_error_count++; 532 if (transport->state != SCTP_INACTIVE) 533 transport->error_count++; 534 } 535 536 /* If the transport error count is greater than the pf_retrans 537 * threshold, and less than pathmaxrtx, and if the current state 538 * is SCTP_ACTIVE, then mark this transport as Partially Failed, 539 * see SCTP Quick Failover Draft, section 5.1 540 */ 541 if (net->sctp.pf_enable && 542 (transport->state == SCTP_ACTIVE) && 543 (asoc->pf_retrans < transport->pathmaxrxt) && 544 (transport->error_count > asoc->pf_retrans)) { 545 546 sctp_assoc_control_transport(asoc, transport, 547 SCTP_TRANSPORT_PF, 548 0); 549 550 /* Update the hb timer to resend a heartbeat every rto */ 551 sctp_transport_reset_hb_timer(transport); 552 } 553 554 if (transport->state != SCTP_INACTIVE && 555 (transport->error_count > transport->pathmaxrxt)) { 556 pr_debug("%s: association:%p transport addr:%pISpc failed\n", 557 __func__, asoc, &transport->ipaddr.sa); 558 559 sctp_assoc_control_transport(asoc, transport, 560 SCTP_TRANSPORT_DOWN, 561 SCTP_FAILED_THRESHOLD); 562 } 563 564 /* E2) For the destination address for which the timer 565 * expires, set RTO <- RTO * 2 ("back off the timer"). The 566 * maximum value discussed in rule C7 above (RTO.max) may be 567 * used to provide an upper bound to this doubling operation. 568 * 569 * Special Case: the first HB doesn't trigger exponential backoff. 570 * The first unacknowledged HB triggers it. We do this with a flag 571 * that indicates that we have an outstanding HB. 572 */ 573 if (!is_hb || transport->hb_sent) { 574 transport->rto = min((transport->rto * 2), transport->asoc->rto_max); 575 sctp_max_rto(asoc, transport); 576 } 577 } 578 579 /* Worker routine to handle INIT command failure. */ 580 static void sctp_cmd_init_failed(sctp_cmd_seq_t *commands, 581 struct sctp_association *asoc, 582 unsigned int error) 583 { 584 struct sctp_ulpevent *event; 585 586 event = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_CANT_STR_ASSOC, 587 (__u16)error, 0, 0, NULL, 588 GFP_ATOMIC); 589 590 if (event) 591 sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP, 592 SCTP_ULPEVENT(event)); 593 594 sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE, 595 SCTP_STATE(SCTP_STATE_CLOSED)); 596 597 /* SEND_FAILED sent later when cleaning up the association. */ 598 asoc->outqueue.error = error; 599 sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL()); 600 } 601 602 /* Worker routine to handle SCTP_CMD_ASSOC_FAILED. */ 603 static void sctp_cmd_assoc_failed(sctp_cmd_seq_t *commands, 604 struct sctp_association *asoc, 605 sctp_event_t event_type, 606 sctp_subtype_t subtype, 607 struct sctp_chunk *chunk, 608 unsigned int error) 609 { 610 struct sctp_ulpevent *event; 611 struct sctp_chunk *abort; 612 /* Cancel any partial delivery in progress. */ 613 sctp_ulpq_abort_pd(&asoc->ulpq, GFP_ATOMIC); 614 615 if (event_type == SCTP_EVENT_T_CHUNK && subtype.chunk == SCTP_CID_ABORT) 616 event = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_COMM_LOST, 617 (__u16)error, 0, 0, chunk, 618 GFP_ATOMIC); 619 else 620 event = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_COMM_LOST, 621 (__u16)error, 0, 0, NULL, 622 GFP_ATOMIC); 623 if (event) 624 sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP, 625 SCTP_ULPEVENT(event)); 626 627 if (asoc->overall_error_count >= asoc->max_retrans) { 628 abort = sctp_make_violation_max_retrans(asoc, chunk); 629 if (abort) 630 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, 631 SCTP_CHUNK(abort)); 632 } 633 634 sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE, 635 SCTP_STATE(SCTP_STATE_CLOSED)); 636 637 /* SEND_FAILED sent later when cleaning up the association. */ 638 asoc->outqueue.error = error; 639 sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL()); 640 } 641 642 /* Process an init chunk (may be real INIT/INIT-ACK or an embedded INIT 643 * inside the cookie. In reality, this is only used for INIT-ACK processing 644 * since all other cases use "temporary" associations and can do all 645 * their work in statefuns directly. 646 */ 647 static int sctp_cmd_process_init(sctp_cmd_seq_t *commands, 648 struct sctp_association *asoc, 649 struct sctp_chunk *chunk, 650 sctp_init_chunk_t *peer_init, 651 gfp_t gfp) 652 { 653 int error; 654 655 /* We only process the init as a sideeffect in a single 656 * case. This is when we process the INIT-ACK. If we 657 * fail during INIT processing (due to malloc problems), 658 * just return the error and stop processing the stack. 659 */ 660 if (!sctp_process_init(asoc, chunk, sctp_source(chunk), peer_init, gfp)) 661 error = -ENOMEM; 662 else 663 error = 0; 664 665 return error; 666 } 667 668 /* Helper function to break out starting up of heartbeat timers. */ 669 static void sctp_cmd_hb_timers_start(sctp_cmd_seq_t *cmds, 670 struct sctp_association *asoc) 671 { 672 struct sctp_transport *t; 673 674 /* Start a heartbeat timer for each transport on the association. 675 * hold a reference on the transport to make sure none of 676 * the needed data structures go away. 677 */ 678 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) 679 sctp_transport_reset_hb_timer(t); 680 } 681 682 static void sctp_cmd_hb_timers_stop(sctp_cmd_seq_t *cmds, 683 struct sctp_association *asoc) 684 { 685 struct sctp_transport *t; 686 687 /* Stop all heartbeat timers. */ 688 689 list_for_each_entry(t, &asoc->peer.transport_addr_list, 690 transports) { 691 if (del_timer(&t->hb_timer)) 692 sctp_transport_put(t); 693 } 694 } 695 696 /* Helper function to stop any pending T3-RTX timers */ 697 static void sctp_cmd_t3_rtx_timers_stop(sctp_cmd_seq_t *cmds, 698 struct sctp_association *asoc) 699 { 700 struct sctp_transport *t; 701 702 list_for_each_entry(t, &asoc->peer.transport_addr_list, 703 transports) { 704 if (del_timer(&t->T3_rtx_timer)) 705 sctp_transport_put(t); 706 } 707 } 708 709 710 /* Helper function to handle the reception of an HEARTBEAT ACK. */ 711 static void sctp_cmd_transport_on(sctp_cmd_seq_t *cmds, 712 struct sctp_association *asoc, 713 struct sctp_transport *t, 714 struct sctp_chunk *chunk) 715 { 716 sctp_sender_hb_info_t *hbinfo; 717 int was_unconfirmed = 0; 718 719 /* 8.3 Upon the receipt of the HEARTBEAT ACK, the sender of the 720 * HEARTBEAT should clear the error counter of the destination 721 * transport address to which the HEARTBEAT was sent. 722 */ 723 t->error_count = 0; 724 725 /* 726 * Although RFC4960 specifies that the overall error count must 727 * be cleared when a HEARTBEAT ACK is received, we make an 728 * exception while in SHUTDOWN PENDING. If the peer keeps its 729 * window shut forever, we may never be able to transmit our 730 * outstanding data and rely on the retransmission limit be reached 731 * to shutdown the association. 732 */ 733 if (t->asoc->state < SCTP_STATE_SHUTDOWN_PENDING) 734 t->asoc->overall_error_count = 0; 735 736 /* Clear the hb_sent flag to signal that we had a good 737 * acknowledgement. 738 */ 739 t->hb_sent = 0; 740 741 /* Mark the destination transport address as active if it is not so 742 * marked. 743 */ 744 if ((t->state == SCTP_INACTIVE) || (t->state == SCTP_UNCONFIRMED)) { 745 was_unconfirmed = 1; 746 sctp_assoc_control_transport(asoc, t, SCTP_TRANSPORT_UP, 747 SCTP_HEARTBEAT_SUCCESS); 748 } 749 750 if (t->state == SCTP_PF) 751 sctp_assoc_control_transport(asoc, t, SCTP_TRANSPORT_UP, 752 SCTP_HEARTBEAT_SUCCESS); 753 754 /* HB-ACK was received for a the proper HB. Consider this 755 * forward progress. 756 */ 757 if (t->dst) 758 sctp_transport_dst_confirm(t); 759 760 /* The receiver of the HEARTBEAT ACK should also perform an 761 * RTT measurement for that destination transport address 762 * using the time value carried in the HEARTBEAT ACK chunk. 763 * If the transport's rto_pending variable has been cleared, 764 * it was most likely due to a retransmit. However, we want 765 * to re-enable it to properly update the rto. 766 */ 767 if (t->rto_pending == 0) 768 t->rto_pending = 1; 769 770 hbinfo = (sctp_sender_hb_info_t *) chunk->skb->data; 771 sctp_transport_update_rto(t, (jiffies - hbinfo->sent_at)); 772 773 /* Update the heartbeat timer. */ 774 sctp_transport_reset_hb_timer(t); 775 776 if (was_unconfirmed && asoc->peer.transport_count == 1) 777 sctp_transport_immediate_rtx(t); 778 } 779 780 781 /* Helper function to process the process SACK command. */ 782 static int sctp_cmd_process_sack(sctp_cmd_seq_t *cmds, 783 struct sctp_association *asoc, 784 struct sctp_chunk *chunk) 785 { 786 int err = 0; 787 788 if (sctp_outq_sack(&asoc->outqueue, chunk)) { 789 struct net *net = sock_net(asoc->base.sk); 790 791 /* There are no more TSNs awaiting SACK. */ 792 err = sctp_do_sm(net, SCTP_EVENT_T_OTHER, 793 SCTP_ST_OTHER(SCTP_EVENT_NO_PENDING_TSN), 794 asoc->state, asoc->ep, asoc, NULL, 795 GFP_ATOMIC); 796 } 797 798 return err; 799 } 800 801 /* Helper function to set the timeout value for T2-SHUTDOWN timer and to set 802 * the transport for a shutdown chunk. 803 */ 804 static void sctp_cmd_setup_t2(sctp_cmd_seq_t *cmds, 805 struct sctp_association *asoc, 806 struct sctp_chunk *chunk) 807 { 808 struct sctp_transport *t; 809 810 if (chunk->transport) 811 t = chunk->transport; 812 else { 813 t = sctp_assoc_choose_alter_transport(asoc, 814 asoc->shutdown_last_sent_to); 815 chunk->transport = t; 816 } 817 asoc->shutdown_last_sent_to = t; 818 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = t->rto; 819 } 820 821 /* Helper function to change the state of an association. */ 822 static void sctp_cmd_new_state(sctp_cmd_seq_t *cmds, 823 struct sctp_association *asoc, 824 sctp_state_t state) 825 { 826 struct sock *sk = asoc->base.sk; 827 828 asoc->state = state; 829 830 pr_debug("%s: asoc:%p[%s]\n", __func__, asoc, sctp_state_tbl[state]); 831 832 if (sctp_style(sk, TCP)) { 833 /* Change the sk->sk_state of a TCP-style socket that has 834 * successfully completed a connect() call. 835 */ 836 if (sctp_state(asoc, ESTABLISHED) && sctp_sstate(sk, CLOSED)) 837 sk->sk_state = SCTP_SS_ESTABLISHED; 838 839 /* Set the RCV_SHUTDOWN flag when a SHUTDOWN is received. */ 840 if (sctp_state(asoc, SHUTDOWN_RECEIVED) && 841 sctp_sstate(sk, ESTABLISHED)) { 842 sk->sk_state = SCTP_SS_CLOSING; 843 sk->sk_shutdown |= RCV_SHUTDOWN; 844 } 845 } 846 847 if (sctp_state(asoc, COOKIE_WAIT)) { 848 /* Reset init timeouts since they may have been 849 * increased due to timer expirations. 850 */ 851 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = 852 asoc->rto_initial; 853 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = 854 asoc->rto_initial; 855 } 856 857 if (sctp_state(asoc, ESTABLISHED) || 858 sctp_state(asoc, CLOSED) || 859 sctp_state(asoc, SHUTDOWN_RECEIVED)) { 860 /* Wake up any processes waiting in the asoc's wait queue in 861 * sctp_wait_for_connect() or sctp_wait_for_sndbuf(). 862 */ 863 if (waitqueue_active(&asoc->wait)) 864 wake_up_interruptible(&asoc->wait); 865 866 /* Wake up any processes waiting in the sk's sleep queue of 867 * a TCP-style or UDP-style peeled-off socket in 868 * sctp_wait_for_accept() or sctp_wait_for_packet(). 869 * For a UDP-style socket, the waiters are woken up by the 870 * notifications. 871 */ 872 if (!sctp_style(sk, UDP)) 873 sk->sk_state_change(sk); 874 } 875 876 if (sctp_state(asoc, SHUTDOWN_PENDING) && 877 !sctp_outq_is_empty(&asoc->outqueue)) 878 sctp_outq_uncork(&asoc->outqueue, GFP_ATOMIC); 879 } 880 881 /* Helper function to delete an association. */ 882 static void sctp_cmd_delete_tcb(sctp_cmd_seq_t *cmds, 883 struct sctp_association *asoc) 884 { 885 struct sock *sk = asoc->base.sk; 886 887 /* If it is a non-temporary association belonging to a TCP-style 888 * listening socket that is not closed, do not free it so that accept() 889 * can pick it up later. 890 */ 891 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING) && 892 (!asoc->temp) && (sk->sk_shutdown != SHUTDOWN_MASK)) 893 return; 894 895 sctp_association_free(asoc); 896 } 897 898 /* 899 * ADDIP Section 4.1 ASCONF Chunk Procedures 900 * A4) Start a T-4 RTO timer, using the RTO value of the selected 901 * destination address (we use active path instead of primary path just 902 * because primary path may be inactive. 903 */ 904 static void sctp_cmd_setup_t4(sctp_cmd_seq_t *cmds, 905 struct sctp_association *asoc, 906 struct sctp_chunk *chunk) 907 { 908 struct sctp_transport *t; 909 910 t = sctp_assoc_choose_alter_transport(asoc, chunk->transport); 911 asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = t->rto; 912 chunk->transport = t; 913 } 914 915 /* Process an incoming Operation Error Chunk. */ 916 static void sctp_cmd_process_operr(sctp_cmd_seq_t *cmds, 917 struct sctp_association *asoc, 918 struct sctp_chunk *chunk) 919 { 920 struct sctp_errhdr *err_hdr; 921 struct sctp_ulpevent *ev; 922 923 while (chunk->chunk_end > chunk->skb->data) { 924 err_hdr = (struct sctp_errhdr *)(chunk->skb->data); 925 926 ev = sctp_ulpevent_make_remote_error(asoc, chunk, 0, 927 GFP_ATOMIC); 928 if (!ev) 929 return; 930 931 sctp_ulpq_tail_event(&asoc->ulpq, ev); 932 933 switch (err_hdr->cause) { 934 case SCTP_ERROR_UNKNOWN_CHUNK: 935 { 936 sctp_chunkhdr_t *unk_chunk_hdr; 937 938 unk_chunk_hdr = (sctp_chunkhdr_t *)err_hdr->variable; 939 switch (unk_chunk_hdr->type) { 940 /* ADDIP 4.1 A9) If the peer responds to an ASCONF with 941 * an ERROR chunk reporting that it did not recognized 942 * the ASCONF chunk type, the sender of the ASCONF MUST 943 * NOT send any further ASCONF chunks and MUST stop its 944 * T-4 timer. 945 */ 946 case SCTP_CID_ASCONF: 947 if (asoc->peer.asconf_capable == 0) 948 break; 949 950 asoc->peer.asconf_capable = 0; 951 sctp_add_cmd_sf(cmds, SCTP_CMD_TIMER_STOP, 952 SCTP_TO(SCTP_EVENT_TIMEOUT_T4_RTO)); 953 break; 954 default: 955 break; 956 } 957 break; 958 } 959 default: 960 break; 961 } 962 } 963 } 964 965 /* Process variable FWDTSN chunk information. */ 966 static void sctp_cmd_process_fwdtsn(struct sctp_ulpq *ulpq, 967 struct sctp_chunk *chunk) 968 { 969 struct sctp_fwdtsn_skip *skip; 970 /* Walk through all the skipped SSNs */ 971 sctp_walk_fwdtsn(skip, chunk) { 972 sctp_ulpq_skip(ulpq, ntohs(skip->stream), ntohs(skip->ssn)); 973 } 974 } 975 976 /* Helper function to remove the association non-primary peer 977 * transports. 978 */ 979 static void sctp_cmd_del_non_primary(struct sctp_association *asoc) 980 { 981 struct sctp_transport *t; 982 struct list_head *pos; 983 struct list_head *temp; 984 985 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 986 t = list_entry(pos, struct sctp_transport, transports); 987 if (!sctp_cmp_addr_exact(&t->ipaddr, 988 &asoc->peer.primary_addr)) { 989 sctp_assoc_rm_peer(asoc, t); 990 } 991 } 992 } 993 994 /* Helper function to set sk_err on a 1-1 style socket. */ 995 static void sctp_cmd_set_sk_err(struct sctp_association *asoc, int error) 996 { 997 struct sock *sk = asoc->base.sk; 998 999 if (!sctp_style(sk, UDP)) 1000 sk->sk_err = error; 1001 } 1002 1003 /* Helper function to generate an association change event */ 1004 static void sctp_cmd_assoc_change(sctp_cmd_seq_t *commands, 1005 struct sctp_association *asoc, 1006 u8 state) 1007 { 1008 struct sctp_ulpevent *ev; 1009 1010 ev = sctp_ulpevent_make_assoc_change(asoc, 0, state, 0, 1011 asoc->c.sinit_num_ostreams, 1012 asoc->c.sinit_max_instreams, 1013 NULL, GFP_ATOMIC); 1014 if (ev) 1015 sctp_ulpq_tail_event(&asoc->ulpq, ev); 1016 } 1017 1018 /* Helper function to generate an adaptation indication event */ 1019 static void sctp_cmd_adaptation_ind(sctp_cmd_seq_t *commands, 1020 struct sctp_association *asoc) 1021 { 1022 struct sctp_ulpevent *ev; 1023 1024 ev = sctp_ulpevent_make_adaptation_indication(asoc, GFP_ATOMIC); 1025 1026 if (ev) 1027 sctp_ulpq_tail_event(&asoc->ulpq, ev); 1028 } 1029 1030 1031 static void sctp_cmd_t1_timer_update(struct sctp_association *asoc, 1032 sctp_event_timeout_t timer, 1033 char *name) 1034 { 1035 struct sctp_transport *t; 1036 1037 t = asoc->init_last_sent_to; 1038 asoc->init_err_counter++; 1039 1040 if (t->init_sent_count > (asoc->init_cycle + 1)) { 1041 asoc->timeouts[timer] *= 2; 1042 if (asoc->timeouts[timer] > asoc->max_init_timeo) { 1043 asoc->timeouts[timer] = asoc->max_init_timeo; 1044 } 1045 asoc->init_cycle++; 1046 1047 pr_debug("%s: T1[%s] timeout adjustment init_err_counter:%d" 1048 " cycle:%d timeout:%ld\n", __func__, name, 1049 asoc->init_err_counter, asoc->init_cycle, 1050 asoc->timeouts[timer]); 1051 } 1052 1053 } 1054 1055 /* Send the whole message, chunk by chunk, to the outqueue. 1056 * This way the whole message is queued up and bundling if 1057 * encouraged for small fragments. 1058 */ 1059 static void sctp_cmd_send_msg(struct sctp_association *asoc, 1060 struct sctp_datamsg *msg, gfp_t gfp) 1061 { 1062 struct sctp_chunk *chunk; 1063 1064 list_for_each_entry(chunk, &msg->chunks, frag_list) 1065 sctp_outq_tail(&asoc->outqueue, chunk, gfp); 1066 } 1067 1068 1069 /* Sent the next ASCONF packet currently stored in the association. 1070 * This happens after the ASCONF_ACK was succeffully processed. 1071 */ 1072 static void sctp_cmd_send_asconf(struct sctp_association *asoc) 1073 { 1074 struct net *net = sock_net(asoc->base.sk); 1075 1076 /* Send the next asconf chunk from the addip chunk 1077 * queue. 1078 */ 1079 if (!list_empty(&asoc->addip_chunk_list)) { 1080 struct list_head *entry = asoc->addip_chunk_list.next; 1081 struct sctp_chunk *asconf = list_entry(entry, 1082 struct sctp_chunk, list); 1083 list_del_init(entry); 1084 1085 /* Hold the chunk until an ASCONF_ACK is received. */ 1086 sctp_chunk_hold(asconf); 1087 if (sctp_primitive_ASCONF(net, asoc, asconf)) 1088 sctp_chunk_free(asconf); 1089 else 1090 asoc->addip_last_asconf = asconf; 1091 } 1092 } 1093 1094 1095 /* These three macros allow us to pull the debugging code out of the 1096 * main flow of sctp_do_sm() to keep attention focused on the real 1097 * functionality there. 1098 */ 1099 #define debug_pre_sfn() \ 1100 pr_debug("%s[pre-fn]: ep:%p, %s, %s, asoc:%p[%s], %s\n", __func__, \ 1101 ep, sctp_evttype_tbl[event_type], (*debug_fn)(subtype), \ 1102 asoc, sctp_state_tbl[state], state_fn->name) 1103 1104 #define debug_post_sfn() \ 1105 pr_debug("%s[post-fn]: asoc:%p, status:%s\n", __func__, asoc, \ 1106 sctp_status_tbl[status]) 1107 1108 #define debug_post_sfx() \ 1109 pr_debug("%s[post-sfx]: error:%d, asoc:%p[%s]\n", __func__, error, \ 1110 asoc, sctp_state_tbl[(asoc && sctp_id2assoc(ep->base.sk, \ 1111 sctp_assoc2id(asoc))) ? asoc->state : SCTP_STATE_CLOSED]) 1112 1113 /* 1114 * This is the master state machine processing function. 1115 * 1116 * If you want to understand all of lksctp, this is a 1117 * good place to start. 1118 */ 1119 int sctp_do_sm(struct net *net, sctp_event_t event_type, sctp_subtype_t subtype, 1120 sctp_state_t state, 1121 struct sctp_endpoint *ep, 1122 struct sctp_association *asoc, 1123 void *event_arg, 1124 gfp_t gfp) 1125 { 1126 sctp_cmd_seq_t commands; 1127 const sctp_sm_table_entry_t *state_fn; 1128 sctp_disposition_t status; 1129 int error = 0; 1130 typedef const char *(printfn_t)(sctp_subtype_t); 1131 static printfn_t *table[] = { 1132 NULL, sctp_cname, sctp_tname, sctp_oname, sctp_pname, 1133 }; 1134 printfn_t *debug_fn __attribute__ ((unused)) = table[event_type]; 1135 1136 /* Look up the state function, run it, and then process the 1137 * side effects. These three steps are the heart of lksctp. 1138 */ 1139 state_fn = sctp_sm_lookup_event(net, event_type, state, subtype); 1140 1141 sctp_init_cmd_seq(&commands); 1142 1143 debug_pre_sfn(); 1144 status = state_fn->fn(net, ep, asoc, subtype, event_arg, &commands); 1145 debug_post_sfn(); 1146 1147 error = sctp_side_effects(event_type, subtype, state, 1148 ep, &asoc, event_arg, status, 1149 &commands, gfp); 1150 debug_post_sfx(); 1151 1152 return error; 1153 } 1154 1155 /***************************************************************** 1156 * This the master state function side effect processing function. 1157 *****************************************************************/ 1158 static int sctp_side_effects(sctp_event_t event_type, sctp_subtype_t subtype, 1159 sctp_state_t state, 1160 struct sctp_endpoint *ep, 1161 struct sctp_association **asoc, 1162 void *event_arg, 1163 sctp_disposition_t status, 1164 sctp_cmd_seq_t *commands, 1165 gfp_t gfp) 1166 { 1167 int error; 1168 1169 /* FIXME - Most of the dispositions left today would be categorized 1170 * as "exceptional" dispositions. For those dispositions, it 1171 * may not be proper to run through any of the commands at all. 1172 * For example, the command interpreter might be run only with 1173 * disposition SCTP_DISPOSITION_CONSUME. 1174 */ 1175 if (0 != (error = sctp_cmd_interpreter(event_type, subtype, state, 1176 ep, *asoc, 1177 event_arg, status, 1178 commands, gfp))) 1179 goto bail; 1180 1181 switch (status) { 1182 case SCTP_DISPOSITION_DISCARD: 1183 pr_debug("%s: ignored sctp protocol event - state:%d, " 1184 "event_type:%d, event_id:%d\n", __func__, state, 1185 event_type, subtype.chunk); 1186 break; 1187 1188 case SCTP_DISPOSITION_NOMEM: 1189 /* We ran out of memory, so we need to discard this 1190 * packet. 1191 */ 1192 /* BUG--we should now recover some memory, probably by 1193 * reneging... 1194 */ 1195 error = -ENOMEM; 1196 break; 1197 1198 case SCTP_DISPOSITION_DELETE_TCB: 1199 case SCTP_DISPOSITION_ABORT: 1200 /* This should now be a command. */ 1201 *asoc = NULL; 1202 break; 1203 1204 case SCTP_DISPOSITION_CONSUME: 1205 /* 1206 * We should no longer have much work to do here as the 1207 * real work has been done as explicit commands above. 1208 */ 1209 break; 1210 1211 case SCTP_DISPOSITION_VIOLATION: 1212 net_err_ratelimited("protocol violation state %d chunkid %d\n", 1213 state, subtype.chunk); 1214 break; 1215 1216 case SCTP_DISPOSITION_NOT_IMPL: 1217 pr_warn("unimplemented feature in state %d, event_type %d, event_id %d\n", 1218 state, event_type, subtype.chunk); 1219 break; 1220 1221 case SCTP_DISPOSITION_BUG: 1222 pr_err("bug in state %d, event_type %d, event_id %d\n", 1223 state, event_type, subtype.chunk); 1224 BUG(); 1225 break; 1226 1227 default: 1228 pr_err("impossible disposition %d in state %d, event_type %d, event_id %d\n", 1229 status, state, event_type, subtype.chunk); 1230 BUG(); 1231 break; 1232 } 1233 1234 bail: 1235 return error; 1236 } 1237 1238 /******************************************************************** 1239 * 2nd Level Abstractions 1240 ********************************************************************/ 1241 1242 /* This is the side-effect interpreter. */ 1243 static int sctp_cmd_interpreter(sctp_event_t event_type, 1244 sctp_subtype_t subtype, 1245 sctp_state_t state, 1246 struct sctp_endpoint *ep, 1247 struct sctp_association *asoc, 1248 void *event_arg, 1249 sctp_disposition_t status, 1250 sctp_cmd_seq_t *commands, 1251 gfp_t gfp) 1252 { 1253 struct sock *sk = ep->base.sk; 1254 struct sctp_sock *sp = sctp_sk(sk); 1255 int error = 0; 1256 int force; 1257 sctp_cmd_t *cmd; 1258 struct sctp_chunk *new_obj; 1259 struct sctp_chunk *chunk = NULL; 1260 struct sctp_packet *packet; 1261 struct timer_list *timer; 1262 unsigned long timeout; 1263 struct sctp_transport *t; 1264 struct sctp_sackhdr sackh; 1265 int local_cork = 0; 1266 1267 if (SCTP_EVENT_T_TIMEOUT != event_type) 1268 chunk = event_arg; 1269 1270 /* Note: This whole file is a huge candidate for rework. 1271 * For example, each command could either have its own handler, so 1272 * the loop would look like: 1273 * while (cmds) 1274 * cmd->handle(x, y, z) 1275 * --jgrimm 1276 */ 1277 while (NULL != (cmd = sctp_next_cmd(commands))) { 1278 switch (cmd->verb) { 1279 case SCTP_CMD_NOP: 1280 /* Do nothing. */ 1281 break; 1282 1283 case SCTP_CMD_NEW_ASOC: 1284 /* Register a new association. */ 1285 if (local_cork) { 1286 sctp_outq_uncork(&asoc->outqueue, gfp); 1287 local_cork = 0; 1288 } 1289 1290 /* Register with the endpoint. */ 1291 asoc = cmd->obj.asoc; 1292 BUG_ON(asoc->peer.primary_path == NULL); 1293 sctp_endpoint_add_asoc(ep, asoc); 1294 break; 1295 1296 case SCTP_CMD_UPDATE_ASSOC: 1297 sctp_assoc_update(asoc, cmd->obj.asoc); 1298 break; 1299 1300 case SCTP_CMD_PURGE_OUTQUEUE: 1301 sctp_outq_teardown(&asoc->outqueue); 1302 break; 1303 1304 case SCTP_CMD_DELETE_TCB: 1305 if (local_cork) { 1306 sctp_outq_uncork(&asoc->outqueue, gfp); 1307 local_cork = 0; 1308 } 1309 /* Delete the current association. */ 1310 sctp_cmd_delete_tcb(commands, asoc); 1311 asoc = NULL; 1312 break; 1313 1314 case SCTP_CMD_NEW_STATE: 1315 /* Enter a new state. */ 1316 sctp_cmd_new_state(commands, asoc, cmd->obj.state); 1317 break; 1318 1319 case SCTP_CMD_REPORT_TSN: 1320 /* Record the arrival of a TSN. */ 1321 error = sctp_tsnmap_mark(&asoc->peer.tsn_map, 1322 cmd->obj.u32, NULL); 1323 break; 1324 1325 case SCTP_CMD_REPORT_FWDTSN: 1326 /* Move the Cumulattive TSN Ack ahead. */ 1327 sctp_tsnmap_skip(&asoc->peer.tsn_map, cmd->obj.u32); 1328 1329 /* purge the fragmentation queue */ 1330 sctp_ulpq_reasm_flushtsn(&asoc->ulpq, cmd->obj.u32); 1331 1332 /* Abort any in progress partial delivery. */ 1333 sctp_ulpq_abort_pd(&asoc->ulpq, GFP_ATOMIC); 1334 break; 1335 1336 case SCTP_CMD_PROCESS_FWDTSN: 1337 sctp_cmd_process_fwdtsn(&asoc->ulpq, cmd->obj.chunk); 1338 break; 1339 1340 case SCTP_CMD_GEN_SACK: 1341 /* Generate a Selective ACK. 1342 * The argument tells us whether to just count 1343 * the packet and MAYBE generate a SACK, or 1344 * force a SACK out. 1345 */ 1346 force = cmd->obj.i32; 1347 error = sctp_gen_sack(asoc, force, commands); 1348 break; 1349 1350 case SCTP_CMD_PROCESS_SACK: 1351 /* Process an inbound SACK. */ 1352 error = sctp_cmd_process_sack(commands, asoc, 1353 cmd->obj.chunk); 1354 break; 1355 1356 case SCTP_CMD_GEN_INIT_ACK: 1357 /* Generate an INIT ACK chunk. */ 1358 new_obj = sctp_make_init_ack(asoc, chunk, GFP_ATOMIC, 1359 0); 1360 if (!new_obj) 1361 goto nomem; 1362 1363 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, 1364 SCTP_CHUNK(new_obj)); 1365 break; 1366 1367 case SCTP_CMD_PEER_INIT: 1368 /* Process a unified INIT from the peer. 1369 * Note: Only used during INIT-ACK processing. If 1370 * there is an error just return to the outter 1371 * layer which will bail. 1372 */ 1373 error = sctp_cmd_process_init(commands, asoc, chunk, 1374 cmd->obj.init, gfp); 1375 break; 1376 1377 case SCTP_CMD_GEN_COOKIE_ECHO: 1378 /* Generate a COOKIE ECHO chunk. */ 1379 new_obj = sctp_make_cookie_echo(asoc, chunk); 1380 if (!new_obj) { 1381 if (cmd->obj.chunk) 1382 sctp_chunk_free(cmd->obj.chunk); 1383 goto nomem; 1384 } 1385 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, 1386 SCTP_CHUNK(new_obj)); 1387 1388 /* If there is an ERROR chunk to be sent along with 1389 * the COOKIE_ECHO, send it, too. 1390 */ 1391 if (cmd->obj.chunk) 1392 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, 1393 SCTP_CHUNK(cmd->obj.chunk)); 1394 1395 if (new_obj->transport) { 1396 new_obj->transport->init_sent_count++; 1397 asoc->init_last_sent_to = new_obj->transport; 1398 } 1399 1400 /* FIXME - Eventually come up with a cleaner way to 1401 * enabling COOKIE-ECHO + DATA bundling during 1402 * multihoming stale cookie scenarios, the following 1403 * command plays with asoc->peer.retran_path to 1404 * avoid the problem of sending the COOKIE-ECHO and 1405 * DATA in different paths, which could result 1406 * in the association being ABORTed if the DATA chunk 1407 * is processed first by the server. Checking the 1408 * init error counter simply causes this command 1409 * to be executed only during failed attempts of 1410 * association establishment. 1411 */ 1412 if ((asoc->peer.retran_path != 1413 asoc->peer.primary_path) && 1414 (asoc->init_err_counter > 0)) { 1415 sctp_add_cmd_sf(commands, 1416 SCTP_CMD_FORCE_PRIM_RETRAN, 1417 SCTP_NULL()); 1418 } 1419 1420 break; 1421 1422 case SCTP_CMD_GEN_SHUTDOWN: 1423 /* Generate SHUTDOWN when in SHUTDOWN_SENT state. 1424 * Reset error counts. 1425 */ 1426 asoc->overall_error_count = 0; 1427 1428 /* Generate a SHUTDOWN chunk. */ 1429 new_obj = sctp_make_shutdown(asoc, chunk); 1430 if (!new_obj) 1431 goto nomem; 1432 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, 1433 SCTP_CHUNK(new_obj)); 1434 break; 1435 1436 case SCTP_CMD_CHUNK_ULP: 1437 /* Send a chunk to the sockets layer. */ 1438 pr_debug("%s: sm_sideff: chunk_up:%p, ulpq:%p\n", 1439 __func__, cmd->obj.chunk, &asoc->ulpq); 1440 1441 sctp_ulpq_tail_data(&asoc->ulpq, cmd->obj.chunk, 1442 GFP_ATOMIC); 1443 break; 1444 1445 case SCTP_CMD_EVENT_ULP: 1446 /* Send a notification to the sockets layer. */ 1447 pr_debug("%s: sm_sideff: event_up:%p, ulpq:%p\n", 1448 __func__, cmd->obj.ulpevent, &asoc->ulpq); 1449 1450 sctp_ulpq_tail_event(&asoc->ulpq, cmd->obj.ulpevent); 1451 break; 1452 1453 case SCTP_CMD_REPLY: 1454 /* If an caller has not already corked, do cork. */ 1455 if (!asoc->outqueue.cork) { 1456 sctp_outq_cork(&asoc->outqueue); 1457 local_cork = 1; 1458 } 1459 /* Send a chunk to our peer. */ 1460 sctp_outq_tail(&asoc->outqueue, cmd->obj.chunk, gfp); 1461 break; 1462 1463 case SCTP_CMD_SEND_PKT: 1464 /* Send a full packet to our peer. */ 1465 packet = cmd->obj.packet; 1466 sctp_packet_transmit(packet, gfp); 1467 sctp_ootb_pkt_free(packet); 1468 break; 1469 1470 case SCTP_CMD_T1_RETRAN: 1471 /* Mark a transport for retransmission. */ 1472 sctp_retransmit(&asoc->outqueue, cmd->obj.transport, 1473 SCTP_RTXR_T1_RTX); 1474 break; 1475 1476 case SCTP_CMD_RETRAN: 1477 /* Mark a transport for retransmission. */ 1478 sctp_retransmit(&asoc->outqueue, cmd->obj.transport, 1479 SCTP_RTXR_T3_RTX); 1480 break; 1481 1482 case SCTP_CMD_ECN_CE: 1483 /* Do delayed CE processing. */ 1484 sctp_do_ecn_ce_work(asoc, cmd->obj.u32); 1485 break; 1486 1487 case SCTP_CMD_ECN_ECNE: 1488 /* Do delayed ECNE processing. */ 1489 new_obj = sctp_do_ecn_ecne_work(asoc, cmd->obj.u32, 1490 chunk); 1491 if (new_obj) 1492 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, 1493 SCTP_CHUNK(new_obj)); 1494 break; 1495 1496 case SCTP_CMD_ECN_CWR: 1497 /* Do delayed CWR processing. */ 1498 sctp_do_ecn_cwr_work(asoc, cmd->obj.u32); 1499 break; 1500 1501 case SCTP_CMD_SETUP_T2: 1502 sctp_cmd_setup_t2(commands, asoc, cmd->obj.chunk); 1503 break; 1504 1505 case SCTP_CMD_TIMER_START_ONCE: 1506 timer = &asoc->timers[cmd->obj.to]; 1507 1508 if (timer_pending(timer)) 1509 break; 1510 /* fall through */ 1511 1512 case SCTP_CMD_TIMER_START: 1513 timer = &asoc->timers[cmd->obj.to]; 1514 timeout = asoc->timeouts[cmd->obj.to]; 1515 BUG_ON(!timeout); 1516 1517 timer->expires = jiffies + timeout; 1518 sctp_association_hold(asoc); 1519 add_timer(timer); 1520 break; 1521 1522 case SCTP_CMD_TIMER_RESTART: 1523 timer = &asoc->timers[cmd->obj.to]; 1524 timeout = asoc->timeouts[cmd->obj.to]; 1525 if (!mod_timer(timer, jiffies + timeout)) 1526 sctp_association_hold(asoc); 1527 break; 1528 1529 case SCTP_CMD_TIMER_STOP: 1530 timer = &asoc->timers[cmd->obj.to]; 1531 if (del_timer(timer)) 1532 sctp_association_put(asoc); 1533 break; 1534 1535 case SCTP_CMD_INIT_CHOOSE_TRANSPORT: 1536 chunk = cmd->obj.chunk; 1537 t = sctp_assoc_choose_alter_transport(asoc, 1538 asoc->init_last_sent_to); 1539 asoc->init_last_sent_to = t; 1540 chunk->transport = t; 1541 t->init_sent_count++; 1542 /* Set the new transport as primary */ 1543 sctp_assoc_set_primary(asoc, t); 1544 break; 1545 1546 case SCTP_CMD_INIT_RESTART: 1547 /* Do the needed accounting and updates 1548 * associated with restarting an initialization 1549 * timer. Only multiply the timeout by two if 1550 * all transports have been tried at the current 1551 * timeout. 1552 */ 1553 sctp_cmd_t1_timer_update(asoc, 1554 SCTP_EVENT_TIMEOUT_T1_INIT, 1555 "INIT"); 1556 1557 sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART, 1558 SCTP_TO(SCTP_EVENT_TIMEOUT_T1_INIT)); 1559 break; 1560 1561 case SCTP_CMD_COOKIEECHO_RESTART: 1562 /* Do the needed accounting and updates 1563 * associated with restarting an initialization 1564 * timer. Only multiply the timeout by two if 1565 * all transports have been tried at the current 1566 * timeout. 1567 */ 1568 sctp_cmd_t1_timer_update(asoc, 1569 SCTP_EVENT_TIMEOUT_T1_COOKIE, 1570 "COOKIE"); 1571 1572 /* If we've sent any data bundled with 1573 * COOKIE-ECHO we need to resend. 1574 */ 1575 list_for_each_entry(t, &asoc->peer.transport_addr_list, 1576 transports) { 1577 sctp_retransmit_mark(&asoc->outqueue, t, 1578 SCTP_RTXR_T1_RTX); 1579 } 1580 1581 sctp_add_cmd_sf(commands, 1582 SCTP_CMD_TIMER_RESTART, 1583 SCTP_TO(SCTP_EVENT_TIMEOUT_T1_COOKIE)); 1584 break; 1585 1586 case SCTP_CMD_INIT_FAILED: 1587 sctp_cmd_init_failed(commands, asoc, cmd->obj.err); 1588 break; 1589 1590 case SCTP_CMD_ASSOC_FAILED: 1591 sctp_cmd_assoc_failed(commands, asoc, event_type, 1592 subtype, chunk, cmd->obj.err); 1593 break; 1594 1595 case SCTP_CMD_INIT_COUNTER_INC: 1596 asoc->init_err_counter++; 1597 break; 1598 1599 case SCTP_CMD_INIT_COUNTER_RESET: 1600 asoc->init_err_counter = 0; 1601 asoc->init_cycle = 0; 1602 list_for_each_entry(t, &asoc->peer.transport_addr_list, 1603 transports) { 1604 t->init_sent_count = 0; 1605 } 1606 break; 1607 1608 case SCTP_CMD_REPORT_DUP: 1609 sctp_tsnmap_mark_dup(&asoc->peer.tsn_map, 1610 cmd->obj.u32); 1611 break; 1612 1613 case SCTP_CMD_REPORT_BAD_TAG: 1614 pr_debug("%s: vtag mismatch!\n", __func__); 1615 break; 1616 1617 case SCTP_CMD_STRIKE: 1618 /* Mark one strike against a transport. */ 1619 sctp_do_8_2_transport_strike(commands, asoc, 1620 cmd->obj.transport, 0); 1621 break; 1622 1623 case SCTP_CMD_TRANSPORT_IDLE: 1624 t = cmd->obj.transport; 1625 sctp_transport_lower_cwnd(t, SCTP_LOWER_CWND_INACTIVE); 1626 break; 1627 1628 case SCTP_CMD_TRANSPORT_HB_SENT: 1629 t = cmd->obj.transport; 1630 sctp_do_8_2_transport_strike(commands, asoc, 1631 t, 1); 1632 t->hb_sent = 1; 1633 break; 1634 1635 case SCTP_CMD_TRANSPORT_ON: 1636 t = cmd->obj.transport; 1637 sctp_cmd_transport_on(commands, asoc, t, chunk); 1638 break; 1639 1640 case SCTP_CMD_HB_TIMERS_START: 1641 sctp_cmd_hb_timers_start(commands, asoc); 1642 break; 1643 1644 case SCTP_CMD_HB_TIMER_UPDATE: 1645 t = cmd->obj.transport; 1646 sctp_transport_reset_hb_timer(t); 1647 break; 1648 1649 case SCTP_CMD_HB_TIMERS_STOP: 1650 sctp_cmd_hb_timers_stop(commands, asoc); 1651 break; 1652 1653 case SCTP_CMD_REPORT_ERROR: 1654 error = cmd->obj.error; 1655 break; 1656 1657 case SCTP_CMD_PROCESS_CTSN: 1658 /* Dummy up a SACK for processing. */ 1659 sackh.cum_tsn_ack = cmd->obj.be32; 1660 sackh.a_rwnd = asoc->peer.rwnd + 1661 asoc->outqueue.outstanding_bytes; 1662 sackh.num_gap_ack_blocks = 0; 1663 sackh.num_dup_tsns = 0; 1664 chunk->subh.sack_hdr = &sackh; 1665 sctp_add_cmd_sf(commands, SCTP_CMD_PROCESS_SACK, 1666 SCTP_CHUNK(chunk)); 1667 break; 1668 1669 case SCTP_CMD_DISCARD_PACKET: 1670 /* We need to discard the whole packet. 1671 * Uncork the queue since there might be 1672 * responses pending 1673 */ 1674 chunk->pdiscard = 1; 1675 if (asoc) { 1676 sctp_outq_uncork(&asoc->outqueue, gfp); 1677 local_cork = 0; 1678 } 1679 break; 1680 1681 case SCTP_CMD_RTO_PENDING: 1682 t = cmd->obj.transport; 1683 t->rto_pending = 1; 1684 break; 1685 1686 case SCTP_CMD_PART_DELIVER: 1687 sctp_ulpq_partial_delivery(&asoc->ulpq, GFP_ATOMIC); 1688 break; 1689 1690 case SCTP_CMD_RENEGE: 1691 sctp_ulpq_renege(&asoc->ulpq, cmd->obj.chunk, 1692 GFP_ATOMIC); 1693 break; 1694 1695 case SCTP_CMD_SETUP_T4: 1696 sctp_cmd_setup_t4(commands, asoc, cmd->obj.chunk); 1697 break; 1698 1699 case SCTP_CMD_PROCESS_OPERR: 1700 sctp_cmd_process_operr(commands, asoc, chunk); 1701 break; 1702 case SCTP_CMD_CLEAR_INIT_TAG: 1703 asoc->peer.i.init_tag = 0; 1704 break; 1705 case SCTP_CMD_DEL_NON_PRIMARY: 1706 sctp_cmd_del_non_primary(asoc); 1707 break; 1708 case SCTP_CMD_T3_RTX_TIMERS_STOP: 1709 sctp_cmd_t3_rtx_timers_stop(commands, asoc); 1710 break; 1711 case SCTP_CMD_FORCE_PRIM_RETRAN: 1712 t = asoc->peer.retran_path; 1713 asoc->peer.retran_path = asoc->peer.primary_path; 1714 sctp_outq_uncork(&asoc->outqueue, gfp); 1715 local_cork = 0; 1716 asoc->peer.retran_path = t; 1717 break; 1718 case SCTP_CMD_SET_SK_ERR: 1719 sctp_cmd_set_sk_err(asoc, cmd->obj.error); 1720 break; 1721 case SCTP_CMD_ASSOC_CHANGE: 1722 sctp_cmd_assoc_change(commands, asoc, 1723 cmd->obj.u8); 1724 break; 1725 case SCTP_CMD_ADAPTATION_IND: 1726 sctp_cmd_adaptation_ind(commands, asoc); 1727 break; 1728 1729 case SCTP_CMD_ASSOC_SHKEY: 1730 error = sctp_auth_asoc_init_active_key(asoc, 1731 GFP_ATOMIC); 1732 break; 1733 case SCTP_CMD_UPDATE_INITTAG: 1734 asoc->peer.i.init_tag = cmd->obj.u32; 1735 break; 1736 case SCTP_CMD_SEND_MSG: 1737 if (!asoc->outqueue.cork) { 1738 sctp_outq_cork(&asoc->outqueue); 1739 local_cork = 1; 1740 } 1741 sctp_cmd_send_msg(asoc, cmd->obj.msg, gfp); 1742 break; 1743 case SCTP_CMD_SEND_NEXT_ASCONF: 1744 sctp_cmd_send_asconf(asoc); 1745 break; 1746 case SCTP_CMD_PURGE_ASCONF_QUEUE: 1747 sctp_asconf_queue_teardown(asoc); 1748 break; 1749 1750 case SCTP_CMD_SET_ASOC: 1751 asoc = cmd->obj.asoc; 1752 break; 1753 1754 default: 1755 pr_warn("Impossible command: %u\n", 1756 cmd->verb); 1757 break; 1758 } 1759 1760 if (error) 1761 break; 1762 } 1763 1764 out: 1765 /* If this is in response to a received chunk, wait until 1766 * we are done with the packet to open the queue so that we don't 1767 * send multiple packets in response to a single request. 1768 */ 1769 if (asoc && SCTP_EVENT_T_CHUNK == event_type && chunk) { 1770 if (chunk->end_of_packet || chunk->singleton) 1771 sctp_outq_uncork(&asoc->outqueue, gfp); 1772 } else if (local_cork) 1773 sctp_outq_uncork(&asoc->outqueue, gfp); 1774 1775 if (sp->data_ready_signalled) 1776 sp->data_ready_signalled = 0; 1777 1778 return error; 1779 nomem: 1780 error = -ENOMEM; 1781 goto out; 1782 } 1783 1784