1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * 6 * This file is part of the SCTP kernel implementation 7 * 8 * These functions work with the state functions in sctp_sm_statefuns.c 9 * to implement that state operations. These functions implement the 10 * steps which require modifying existing data structures. 11 * 12 * This SCTP implementation is free software; 13 * you can redistribute it and/or modify it under the terms of 14 * the GNU General Public License as published by 15 * the Free Software Foundation; either version 2, or (at your option) 16 * any later version. 17 * 18 * This SCTP implementation is distributed in the hope that it 19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 20 * ************************ 21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 22 * See the GNU General Public License for more details. 23 * 24 * You should have received a copy of the GNU General Public License 25 * along with GNU CC; see the file COPYING. If not, see 26 * <http://www.gnu.org/licenses/>. 27 * 28 * Please send any bug reports or fixes you make to the 29 * email address(es): 30 * lksctp developers <linux-sctp@vger.kernel.org> 31 * 32 * Written or modified by: 33 * La Monte H.P. Yarroll <piggy@acm.org> 34 * Karl Knutson <karl@athena.chicago.il.us> 35 * Jon Grimm <jgrimm@austin.ibm.com> 36 * Hui Huang <hui.huang@nokia.com> 37 * Dajiang Zhang <dajiang.zhang@nokia.com> 38 * Daisy Chang <daisyc@us.ibm.com> 39 * Sridhar Samudrala <sri@us.ibm.com> 40 * Ardelle Fan <ardelle.fan@intel.com> 41 */ 42 43 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 44 45 #include <linux/skbuff.h> 46 #include <linux/types.h> 47 #include <linux/socket.h> 48 #include <linux/ip.h> 49 #include <linux/gfp.h> 50 #include <net/sock.h> 51 #include <net/sctp/sctp.h> 52 #include <net/sctp/sm.h> 53 #include <net/sctp/stream_sched.h> 54 55 static int sctp_cmd_interpreter(enum sctp_event_type event_type, 56 union sctp_subtype subtype, 57 enum sctp_state state, 58 struct sctp_endpoint *ep, 59 struct sctp_association *asoc, 60 void *event_arg, 61 enum sctp_disposition status, 62 struct sctp_cmd_seq *commands, 63 gfp_t gfp); 64 static int sctp_side_effects(enum sctp_event_type event_type, 65 union sctp_subtype subtype, 66 enum sctp_state state, 67 struct sctp_endpoint *ep, 68 struct sctp_association **asoc, 69 void *event_arg, 70 enum sctp_disposition status, 71 struct sctp_cmd_seq *commands, 72 gfp_t gfp); 73 74 /******************************************************************** 75 * Helper functions 76 ********************************************************************/ 77 78 /* A helper function for delayed processing of INET ECN CE bit. */ 79 static void sctp_do_ecn_ce_work(struct sctp_association *asoc, 80 __u32 lowest_tsn) 81 { 82 /* Save the TSN away for comparison when we receive CWR */ 83 84 asoc->last_ecne_tsn = lowest_tsn; 85 asoc->need_ecne = 1; 86 } 87 88 /* Helper function for delayed processing of SCTP ECNE chunk. */ 89 /* RFC 2960 Appendix A 90 * 91 * RFC 2481 details a specific bit for a sender to send in 92 * the header of its next outbound TCP segment to indicate to 93 * its peer that it has reduced its congestion window. This 94 * is termed the CWR bit. For SCTP the same indication is made 95 * by including the CWR chunk. This chunk contains one data 96 * element, i.e. the TSN number that was sent in the ECNE chunk. 97 * This element represents the lowest TSN number in the datagram 98 * that was originally marked with the CE bit. 99 */ 100 static struct sctp_chunk *sctp_do_ecn_ecne_work(struct sctp_association *asoc, 101 __u32 lowest_tsn, 102 struct sctp_chunk *chunk) 103 { 104 struct sctp_chunk *repl; 105 106 /* Our previously transmitted packet ran into some congestion 107 * so we should take action by reducing cwnd and ssthresh 108 * and then ACK our peer that we we've done so by 109 * sending a CWR. 110 */ 111 112 /* First, try to determine if we want to actually lower 113 * our cwnd variables. Only lower them if the ECNE looks more 114 * recent than the last response. 115 */ 116 if (TSN_lt(asoc->last_cwr_tsn, lowest_tsn)) { 117 struct sctp_transport *transport; 118 119 /* Find which transport's congestion variables 120 * need to be adjusted. 121 */ 122 transport = sctp_assoc_lookup_tsn(asoc, lowest_tsn); 123 124 /* Update the congestion variables. */ 125 if (transport) 126 sctp_transport_lower_cwnd(transport, 127 SCTP_LOWER_CWND_ECNE); 128 asoc->last_cwr_tsn = lowest_tsn; 129 } 130 131 /* Always try to quiet the other end. In case of lost CWR, 132 * resend last_cwr_tsn. 133 */ 134 repl = sctp_make_cwr(asoc, asoc->last_cwr_tsn, chunk); 135 136 /* If we run out of memory, it will look like a lost CWR. We'll 137 * get back in sync eventually. 138 */ 139 return repl; 140 } 141 142 /* Helper function to do delayed processing of ECN CWR chunk. */ 143 static void sctp_do_ecn_cwr_work(struct sctp_association *asoc, 144 __u32 lowest_tsn) 145 { 146 /* Turn off ECNE getting auto-prepended to every outgoing 147 * packet 148 */ 149 asoc->need_ecne = 0; 150 } 151 152 /* Generate SACK if necessary. We call this at the end of a packet. */ 153 static int sctp_gen_sack(struct sctp_association *asoc, int force, 154 struct sctp_cmd_seq *commands) 155 { 156 struct sctp_transport *trans = asoc->peer.last_data_from; 157 __u32 ctsn, max_tsn_seen; 158 struct sctp_chunk *sack; 159 int error = 0; 160 161 if (force || 162 (!trans && (asoc->param_flags & SPP_SACKDELAY_DISABLE)) || 163 (trans && (trans->param_flags & SPP_SACKDELAY_DISABLE))) 164 asoc->peer.sack_needed = 1; 165 166 ctsn = sctp_tsnmap_get_ctsn(&asoc->peer.tsn_map); 167 max_tsn_seen = sctp_tsnmap_get_max_tsn_seen(&asoc->peer.tsn_map); 168 169 /* From 12.2 Parameters necessary per association (i.e. the TCB): 170 * 171 * Ack State : This flag indicates if the next received packet 172 * : is to be responded to with a SACK. ... 173 * : When DATA chunks are out of order, SACK's 174 * : are not delayed (see Section 6). 175 * 176 * [This is actually not mentioned in Section 6, but we 177 * implement it here anyway. --piggy] 178 */ 179 if (max_tsn_seen != ctsn) 180 asoc->peer.sack_needed = 1; 181 182 /* From 6.2 Acknowledgement on Reception of DATA Chunks: 183 * 184 * Section 4.2 of [RFC2581] SHOULD be followed. Specifically, 185 * an acknowledgement SHOULD be generated for at least every 186 * second packet (not every second DATA chunk) received, and 187 * SHOULD be generated within 200 ms of the arrival of any 188 * unacknowledged DATA chunk. ... 189 */ 190 if (!asoc->peer.sack_needed) { 191 asoc->peer.sack_cnt++; 192 193 /* Set the SACK delay timeout based on the 194 * SACK delay for the last transport 195 * data was received from, or the default 196 * for the association. 197 */ 198 if (trans) { 199 /* We will need a SACK for the next packet. */ 200 if (asoc->peer.sack_cnt >= trans->sackfreq - 1) 201 asoc->peer.sack_needed = 1; 202 203 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = 204 trans->sackdelay; 205 } else { 206 /* We will need a SACK for the next packet. */ 207 if (asoc->peer.sack_cnt >= asoc->sackfreq - 1) 208 asoc->peer.sack_needed = 1; 209 210 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = 211 asoc->sackdelay; 212 } 213 214 /* Restart the SACK timer. */ 215 sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART, 216 SCTP_TO(SCTP_EVENT_TIMEOUT_SACK)); 217 } else { 218 __u32 old_a_rwnd = asoc->a_rwnd; 219 220 asoc->a_rwnd = asoc->rwnd; 221 sack = sctp_make_sack(asoc); 222 if (!sack) { 223 asoc->a_rwnd = old_a_rwnd; 224 goto nomem; 225 } 226 227 asoc->peer.sack_needed = 0; 228 asoc->peer.sack_cnt = 0; 229 230 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(sack)); 231 232 /* Stop the SACK timer. */ 233 sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP, 234 SCTP_TO(SCTP_EVENT_TIMEOUT_SACK)); 235 } 236 237 return error; 238 nomem: 239 error = -ENOMEM; 240 return error; 241 } 242 243 /* When the T3-RTX timer expires, it calls this function to create the 244 * relevant state machine event. 245 */ 246 void sctp_generate_t3_rtx_event(struct timer_list *t) 247 { 248 struct sctp_transport *transport = 249 from_timer(transport, t, T3_rtx_timer); 250 struct sctp_association *asoc = transport->asoc; 251 struct sock *sk = asoc->base.sk; 252 struct net *net = sock_net(sk); 253 int error; 254 255 /* Check whether a task is in the sock. */ 256 257 bh_lock_sock(sk); 258 if (sock_owned_by_user(sk)) { 259 pr_debug("%s: sock is busy\n", __func__); 260 261 /* Try again later. */ 262 if (!mod_timer(&transport->T3_rtx_timer, jiffies + (HZ/20))) 263 sctp_transport_hold(transport); 264 goto out_unlock; 265 } 266 267 /* Run through the state machine. */ 268 error = sctp_do_sm(net, SCTP_EVENT_T_TIMEOUT, 269 SCTP_ST_TIMEOUT(SCTP_EVENT_TIMEOUT_T3_RTX), 270 asoc->state, 271 asoc->ep, asoc, 272 transport, GFP_ATOMIC); 273 274 if (error) 275 sk->sk_err = -error; 276 277 out_unlock: 278 bh_unlock_sock(sk); 279 sctp_transport_put(transport); 280 } 281 282 /* This is a sa interface for producing timeout events. It works 283 * for timeouts which use the association as their parameter. 284 */ 285 static void sctp_generate_timeout_event(struct sctp_association *asoc, 286 enum sctp_event_timeout timeout_type) 287 { 288 struct sock *sk = asoc->base.sk; 289 struct net *net = sock_net(sk); 290 int error = 0; 291 292 bh_lock_sock(sk); 293 if (sock_owned_by_user(sk)) { 294 pr_debug("%s: sock is busy: timer %d\n", __func__, 295 timeout_type); 296 297 /* Try again later. */ 298 if (!mod_timer(&asoc->timers[timeout_type], jiffies + (HZ/20))) 299 sctp_association_hold(asoc); 300 goto out_unlock; 301 } 302 303 /* Is this association really dead and just waiting around for 304 * the timer to let go of the reference? 305 */ 306 if (asoc->base.dead) 307 goto out_unlock; 308 309 /* Run through the state machine. */ 310 error = sctp_do_sm(net, SCTP_EVENT_T_TIMEOUT, 311 SCTP_ST_TIMEOUT(timeout_type), 312 asoc->state, asoc->ep, asoc, 313 (void *)timeout_type, GFP_ATOMIC); 314 315 if (error) 316 sk->sk_err = -error; 317 318 out_unlock: 319 bh_unlock_sock(sk); 320 sctp_association_put(asoc); 321 } 322 323 static void sctp_generate_t1_cookie_event(struct timer_list *t) 324 { 325 struct sctp_association *asoc = 326 from_timer(asoc, t, timers[SCTP_EVENT_TIMEOUT_T1_COOKIE]); 327 328 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T1_COOKIE); 329 } 330 331 static void sctp_generate_t1_init_event(struct timer_list *t) 332 { 333 struct sctp_association *asoc = 334 from_timer(asoc, t, timers[SCTP_EVENT_TIMEOUT_T1_INIT]); 335 336 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T1_INIT); 337 } 338 339 static void sctp_generate_t2_shutdown_event(struct timer_list *t) 340 { 341 struct sctp_association *asoc = 342 from_timer(asoc, t, timers[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN]); 343 344 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T2_SHUTDOWN); 345 } 346 347 static void sctp_generate_t4_rto_event(struct timer_list *t) 348 { 349 struct sctp_association *asoc = 350 from_timer(asoc, t, timers[SCTP_EVENT_TIMEOUT_T4_RTO]); 351 352 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T4_RTO); 353 } 354 355 static void sctp_generate_t5_shutdown_guard_event(struct timer_list *t) 356 { 357 struct sctp_association *asoc = 358 from_timer(asoc, t, 359 timers[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]); 360 361 sctp_generate_timeout_event(asoc, 362 SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD); 363 364 } /* sctp_generate_t5_shutdown_guard_event() */ 365 366 static void sctp_generate_autoclose_event(struct timer_list *t) 367 { 368 struct sctp_association *asoc = 369 from_timer(asoc, t, timers[SCTP_EVENT_TIMEOUT_AUTOCLOSE]); 370 371 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_AUTOCLOSE); 372 } 373 374 /* Generate a heart beat event. If the sock is busy, reschedule. Make 375 * sure that the transport is still valid. 376 */ 377 void sctp_generate_heartbeat_event(struct timer_list *t) 378 { 379 struct sctp_transport *transport = from_timer(transport, t, hb_timer); 380 struct sctp_association *asoc = transport->asoc; 381 struct sock *sk = asoc->base.sk; 382 struct net *net = sock_net(sk); 383 u32 elapsed, timeout; 384 int error = 0; 385 386 bh_lock_sock(sk); 387 if (sock_owned_by_user(sk)) { 388 pr_debug("%s: sock is busy\n", __func__); 389 390 /* Try again later. */ 391 if (!mod_timer(&transport->hb_timer, jiffies + (HZ/20))) 392 sctp_transport_hold(transport); 393 goto out_unlock; 394 } 395 396 /* Check if we should still send the heartbeat or reschedule */ 397 elapsed = jiffies - transport->last_time_sent; 398 timeout = sctp_transport_timeout(transport); 399 if (elapsed < timeout) { 400 elapsed = timeout - elapsed; 401 if (!mod_timer(&transport->hb_timer, jiffies + elapsed)) 402 sctp_transport_hold(transport); 403 goto out_unlock; 404 } 405 406 error = sctp_do_sm(net, SCTP_EVENT_T_TIMEOUT, 407 SCTP_ST_TIMEOUT(SCTP_EVENT_TIMEOUT_HEARTBEAT), 408 asoc->state, asoc->ep, asoc, 409 transport, GFP_ATOMIC); 410 411 if (error) 412 sk->sk_err = -error; 413 414 out_unlock: 415 bh_unlock_sock(sk); 416 sctp_transport_put(transport); 417 } 418 419 /* Handle the timeout of the ICMP protocol unreachable timer. Trigger 420 * the correct state machine transition that will close the association. 421 */ 422 void sctp_generate_proto_unreach_event(struct timer_list *t) 423 { 424 struct sctp_transport *transport = 425 from_timer(transport, t, proto_unreach_timer); 426 struct sctp_association *asoc = transport->asoc; 427 struct sock *sk = asoc->base.sk; 428 struct net *net = sock_net(sk); 429 430 bh_lock_sock(sk); 431 if (sock_owned_by_user(sk)) { 432 pr_debug("%s: sock is busy\n", __func__); 433 434 /* Try again later. */ 435 if (!mod_timer(&transport->proto_unreach_timer, 436 jiffies + (HZ/20))) 437 sctp_association_hold(asoc); 438 goto out_unlock; 439 } 440 441 /* Is this structure just waiting around for us to actually 442 * get destroyed? 443 */ 444 if (asoc->base.dead) 445 goto out_unlock; 446 447 sctp_do_sm(net, SCTP_EVENT_T_OTHER, 448 SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH), 449 asoc->state, asoc->ep, asoc, transport, GFP_ATOMIC); 450 451 out_unlock: 452 bh_unlock_sock(sk); 453 sctp_association_put(asoc); 454 } 455 456 /* Handle the timeout of the RE-CONFIG timer. */ 457 void sctp_generate_reconf_event(struct timer_list *t) 458 { 459 struct sctp_transport *transport = 460 from_timer(transport, t, reconf_timer); 461 struct sctp_association *asoc = transport->asoc; 462 struct sock *sk = asoc->base.sk; 463 struct net *net = sock_net(sk); 464 int error = 0; 465 466 bh_lock_sock(sk); 467 if (sock_owned_by_user(sk)) { 468 pr_debug("%s: sock is busy\n", __func__); 469 470 /* Try again later. */ 471 if (!mod_timer(&transport->reconf_timer, jiffies + (HZ / 20))) 472 sctp_transport_hold(transport); 473 goto out_unlock; 474 } 475 476 error = sctp_do_sm(net, SCTP_EVENT_T_TIMEOUT, 477 SCTP_ST_TIMEOUT(SCTP_EVENT_TIMEOUT_RECONF), 478 asoc->state, asoc->ep, asoc, 479 transport, GFP_ATOMIC); 480 481 if (error) 482 sk->sk_err = -error; 483 484 out_unlock: 485 bh_unlock_sock(sk); 486 sctp_transport_put(transport); 487 } 488 489 /* Inject a SACK Timeout event into the state machine. */ 490 static void sctp_generate_sack_event(struct timer_list *t) 491 { 492 struct sctp_association *asoc = 493 from_timer(asoc, t, timers[SCTP_EVENT_TIMEOUT_SACK]); 494 495 sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_SACK); 496 } 497 498 sctp_timer_event_t *sctp_timer_events[SCTP_NUM_TIMEOUT_TYPES] = { 499 [SCTP_EVENT_TIMEOUT_NONE] = NULL, 500 [SCTP_EVENT_TIMEOUT_T1_COOKIE] = sctp_generate_t1_cookie_event, 501 [SCTP_EVENT_TIMEOUT_T1_INIT] = sctp_generate_t1_init_event, 502 [SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = sctp_generate_t2_shutdown_event, 503 [SCTP_EVENT_TIMEOUT_T3_RTX] = NULL, 504 [SCTP_EVENT_TIMEOUT_T4_RTO] = sctp_generate_t4_rto_event, 505 [SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD] = 506 sctp_generate_t5_shutdown_guard_event, 507 [SCTP_EVENT_TIMEOUT_HEARTBEAT] = NULL, 508 [SCTP_EVENT_TIMEOUT_RECONF] = NULL, 509 [SCTP_EVENT_TIMEOUT_SACK] = sctp_generate_sack_event, 510 [SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sctp_generate_autoclose_event, 511 }; 512 513 514 /* RFC 2960 8.2 Path Failure Detection 515 * 516 * When its peer endpoint is multi-homed, an endpoint should keep a 517 * error counter for each of the destination transport addresses of the 518 * peer endpoint. 519 * 520 * Each time the T3-rtx timer expires on any address, or when a 521 * HEARTBEAT sent to an idle address is not acknowledged within a RTO, 522 * the error counter of that destination address will be incremented. 523 * When the value in the error counter exceeds the protocol parameter 524 * 'Path.Max.Retrans' of that destination address, the endpoint should 525 * mark the destination transport address as inactive, and a 526 * notification SHOULD be sent to the upper layer. 527 * 528 */ 529 static void sctp_do_8_2_transport_strike(struct sctp_cmd_seq *commands, 530 struct sctp_association *asoc, 531 struct sctp_transport *transport, 532 int is_hb) 533 { 534 struct net *net = sock_net(asoc->base.sk); 535 536 /* The check for association's overall error counter exceeding the 537 * threshold is done in the state function. 538 */ 539 /* We are here due to a timer expiration. If the timer was 540 * not a HEARTBEAT, then normal error tracking is done. 541 * If the timer was a heartbeat, we only increment error counts 542 * when we already have an outstanding HEARTBEAT that has not 543 * been acknowledged. 544 * Additionally, some tranport states inhibit error increments. 545 */ 546 if (!is_hb) { 547 asoc->overall_error_count++; 548 if (transport->state != SCTP_INACTIVE) 549 transport->error_count++; 550 } else if (transport->hb_sent) { 551 if (transport->state != SCTP_UNCONFIRMED) 552 asoc->overall_error_count++; 553 if (transport->state != SCTP_INACTIVE) 554 transport->error_count++; 555 } 556 557 /* If the transport error count is greater than the pf_retrans 558 * threshold, and less than pathmaxrtx, and if the current state 559 * is SCTP_ACTIVE, then mark this transport as Partially Failed, 560 * see SCTP Quick Failover Draft, section 5.1 561 */ 562 if (net->sctp.pf_enable && 563 (transport->state == SCTP_ACTIVE) && 564 (asoc->pf_retrans < transport->pathmaxrxt) && 565 (transport->error_count > asoc->pf_retrans)) { 566 567 sctp_assoc_control_transport(asoc, transport, 568 SCTP_TRANSPORT_PF, 569 0); 570 571 /* Update the hb timer to resend a heartbeat every rto */ 572 sctp_transport_reset_hb_timer(transport); 573 } 574 575 if (transport->state != SCTP_INACTIVE && 576 (transport->error_count > transport->pathmaxrxt)) { 577 pr_debug("%s: association:%p transport addr:%pISpc failed\n", 578 __func__, asoc, &transport->ipaddr.sa); 579 580 sctp_assoc_control_transport(asoc, transport, 581 SCTP_TRANSPORT_DOWN, 582 SCTP_FAILED_THRESHOLD); 583 } 584 585 /* E2) For the destination address for which the timer 586 * expires, set RTO <- RTO * 2 ("back off the timer"). The 587 * maximum value discussed in rule C7 above (RTO.max) may be 588 * used to provide an upper bound to this doubling operation. 589 * 590 * Special Case: the first HB doesn't trigger exponential backoff. 591 * The first unacknowledged HB triggers it. We do this with a flag 592 * that indicates that we have an outstanding HB. 593 */ 594 if (!is_hb || transport->hb_sent) { 595 transport->rto = min((transport->rto * 2), transport->asoc->rto_max); 596 sctp_max_rto(asoc, transport); 597 } 598 } 599 600 /* Worker routine to handle INIT command failure. */ 601 static void sctp_cmd_init_failed(struct sctp_cmd_seq *commands, 602 struct sctp_association *asoc, 603 unsigned int error) 604 { 605 struct sctp_ulpevent *event; 606 607 event = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_CANT_STR_ASSOC, 608 (__u16)error, 0, 0, NULL, 609 GFP_ATOMIC); 610 611 if (event) 612 sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP, 613 SCTP_ULPEVENT(event)); 614 615 sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE, 616 SCTP_STATE(SCTP_STATE_CLOSED)); 617 618 /* SEND_FAILED sent later when cleaning up the association. */ 619 asoc->outqueue.error = error; 620 sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL()); 621 } 622 623 /* Worker routine to handle SCTP_CMD_ASSOC_FAILED. */ 624 static void sctp_cmd_assoc_failed(struct sctp_cmd_seq *commands, 625 struct sctp_association *asoc, 626 enum sctp_event_type event_type, 627 union sctp_subtype subtype, 628 struct sctp_chunk *chunk, 629 unsigned int error) 630 { 631 struct sctp_ulpevent *event; 632 struct sctp_chunk *abort; 633 634 /* Cancel any partial delivery in progress. */ 635 asoc->stream.si->abort_pd(&asoc->ulpq, GFP_ATOMIC); 636 637 if (event_type == SCTP_EVENT_T_CHUNK && subtype.chunk == SCTP_CID_ABORT) 638 event = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_COMM_LOST, 639 (__u16)error, 0, 0, chunk, 640 GFP_ATOMIC); 641 else 642 event = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_COMM_LOST, 643 (__u16)error, 0, 0, NULL, 644 GFP_ATOMIC); 645 if (event) 646 sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP, 647 SCTP_ULPEVENT(event)); 648 649 if (asoc->overall_error_count >= asoc->max_retrans) { 650 abort = sctp_make_violation_max_retrans(asoc, chunk); 651 if (abort) 652 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, 653 SCTP_CHUNK(abort)); 654 } 655 656 sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE, 657 SCTP_STATE(SCTP_STATE_CLOSED)); 658 659 /* SEND_FAILED sent later when cleaning up the association. */ 660 asoc->outqueue.error = error; 661 sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL()); 662 } 663 664 /* Process an init chunk (may be real INIT/INIT-ACK or an embedded INIT 665 * inside the cookie. In reality, this is only used for INIT-ACK processing 666 * since all other cases use "temporary" associations and can do all 667 * their work in statefuns directly. 668 */ 669 static int sctp_cmd_process_init(struct sctp_cmd_seq *commands, 670 struct sctp_association *asoc, 671 struct sctp_chunk *chunk, 672 struct sctp_init_chunk *peer_init, 673 gfp_t gfp) 674 { 675 int error; 676 677 /* We only process the init as a sideeffect in a single 678 * case. This is when we process the INIT-ACK. If we 679 * fail during INIT processing (due to malloc problems), 680 * just return the error and stop processing the stack. 681 */ 682 if (!sctp_process_init(asoc, chunk, sctp_source(chunk), peer_init, gfp)) 683 error = -ENOMEM; 684 else 685 error = 0; 686 687 return error; 688 } 689 690 /* Helper function to break out starting up of heartbeat timers. */ 691 static void sctp_cmd_hb_timers_start(struct sctp_cmd_seq *cmds, 692 struct sctp_association *asoc) 693 { 694 struct sctp_transport *t; 695 696 /* Start a heartbeat timer for each transport on the association. 697 * hold a reference on the transport to make sure none of 698 * the needed data structures go away. 699 */ 700 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) 701 sctp_transport_reset_hb_timer(t); 702 } 703 704 static void sctp_cmd_hb_timers_stop(struct sctp_cmd_seq *cmds, 705 struct sctp_association *asoc) 706 { 707 struct sctp_transport *t; 708 709 /* Stop all heartbeat timers. */ 710 711 list_for_each_entry(t, &asoc->peer.transport_addr_list, 712 transports) { 713 if (del_timer(&t->hb_timer)) 714 sctp_transport_put(t); 715 } 716 } 717 718 /* Helper function to stop any pending T3-RTX timers */ 719 static void sctp_cmd_t3_rtx_timers_stop(struct sctp_cmd_seq *cmds, 720 struct sctp_association *asoc) 721 { 722 struct sctp_transport *t; 723 724 list_for_each_entry(t, &asoc->peer.transport_addr_list, 725 transports) { 726 if (del_timer(&t->T3_rtx_timer)) 727 sctp_transport_put(t); 728 } 729 } 730 731 732 /* Helper function to handle the reception of an HEARTBEAT ACK. */ 733 static void sctp_cmd_transport_on(struct sctp_cmd_seq *cmds, 734 struct sctp_association *asoc, 735 struct sctp_transport *t, 736 struct sctp_chunk *chunk) 737 { 738 struct sctp_sender_hb_info *hbinfo; 739 int was_unconfirmed = 0; 740 741 /* 8.3 Upon the receipt of the HEARTBEAT ACK, the sender of the 742 * HEARTBEAT should clear the error counter of the destination 743 * transport address to which the HEARTBEAT was sent. 744 */ 745 t->error_count = 0; 746 747 /* 748 * Although RFC4960 specifies that the overall error count must 749 * be cleared when a HEARTBEAT ACK is received, we make an 750 * exception while in SHUTDOWN PENDING. If the peer keeps its 751 * window shut forever, we may never be able to transmit our 752 * outstanding data and rely on the retransmission limit be reached 753 * to shutdown the association. 754 */ 755 if (t->asoc->state < SCTP_STATE_SHUTDOWN_PENDING) 756 t->asoc->overall_error_count = 0; 757 758 /* Clear the hb_sent flag to signal that we had a good 759 * acknowledgement. 760 */ 761 t->hb_sent = 0; 762 763 /* Mark the destination transport address as active if it is not so 764 * marked. 765 */ 766 if ((t->state == SCTP_INACTIVE) || (t->state == SCTP_UNCONFIRMED)) { 767 was_unconfirmed = 1; 768 sctp_assoc_control_transport(asoc, t, SCTP_TRANSPORT_UP, 769 SCTP_HEARTBEAT_SUCCESS); 770 } 771 772 if (t->state == SCTP_PF) 773 sctp_assoc_control_transport(asoc, t, SCTP_TRANSPORT_UP, 774 SCTP_HEARTBEAT_SUCCESS); 775 776 /* HB-ACK was received for a the proper HB. Consider this 777 * forward progress. 778 */ 779 if (t->dst) 780 sctp_transport_dst_confirm(t); 781 782 /* The receiver of the HEARTBEAT ACK should also perform an 783 * RTT measurement for that destination transport address 784 * using the time value carried in the HEARTBEAT ACK chunk. 785 * If the transport's rto_pending variable has been cleared, 786 * it was most likely due to a retransmit. However, we want 787 * to re-enable it to properly update the rto. 788 */ 789 if (t->rto_pending == 0) 790 t->rto_pending = 1; 791 792 hbinfo = (struct sctp_sender_hb_info *)chunk->skb->data; 793 sctp_transport_update_rto(t, (jiffies - hbinfo->sent_at)); 794 795 /* Update the heartbeat timer. */ 796 sctp_transport_reset_hb_timer(t); 797 798 if (was_unconfirmed && asoc->peer.transport_count == 1) 799 sctp_transport_immediate_rtx(t); 800 } 801 802 803 /* Helper function to process the process SACK command. */ 804 static int sctp_cmd_process_sack(struct sctp_cmd_seq *cmds, 805 struct sctp_association *asoc, 806 struct sctp_chunk *chunk) 807 { 808 int err = 0; 809 810 if (sctp_outq_sack(&asoc->outqueue, chunk)) { 811 struct net *net = sock_net(asoc->base.sk); 812 813 /* There are no more TSNs awaiting SACK. */ 814 err = sctp_do_sm(net, SCTP_EVENT_T_OTHER, 815 SCTP_ST_OTHER(SCTP_EVENT_NO_PENDING_TSN), 816 asoc->state, asoc->ep, asoc, NULL, 817 GFP_ATOMIC); 818 } 819 820 return err; 821 } 822 823 /* Helper function to set the timeout value for T2-SHUTDOWN timer and to set 824 * the transport for a shutdown chunk. 825 */ 826 static void sctp_cmd_setup_t2(struct sctp_cmd_seq *cmds, 827 struct sctp_association *asoc, 828 struct sctp_chunk *chunk) 829 { 830 struct sctp_transport *t; 831 832 if (chunk->transport) 833 t = chunk->transport; 834 else { 835 t = sctp_assoc_choose_alter_transport(asoc, 836 asoc->shutdown_last_sent_to); 837 chunk->transport = t; 838 } 839 asoc->shutdown_last_sent_to = t; 840 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = t->rto; 841 } 842 843 static void sctp_cmd_assoc_update(struct sctp_cmd_seq *cmds, 844 struct sctp_association *asoc, 845 struct sctp_association *new) 846 { 847 struct net *net = sock_net(asoc->base.sk); 848 struct sctp_chunk *abort; 849 850 if (!sctp_assoc_update(asoc, new)) 851 return; 852 853 abort = sctp_make_abort(asoc, NULL, sizeof(struct sctp_errhdr)); 854 if (abort) { 855 sctp_init_cause(abort, SCTP_ERROR_RSRC_LOW, 0); 856 sctp_add_cmd_sf(cmds, SCTP_CMD_REPLY, SCTP_CHUNK(abort)); 857 } 858 sctp_add_cmd_sf(cmds, SCTP_CMD_SET_SK_ERR, SCTP_ERROR(ECONNABORTED)); 859 sctp_add_cmd_sf(cmds, SCTP_CMD_ASSOC_FAILED, 860 SCTP_PERR(SCTP_ERROR_RSRC_LOW)); 861 SCTP_INC_STATS(net, SCTP_MIB_ABORTEDS); 862 SCTP_DEC_STATS(net, SCTP_MIB_CURRESTAB); 863 } 864 865 /* Helper function to change the state of an association. */ 866 static void sctp_cmd_new_state(struct sctp_cmd_seq *cmds, 867 struct sctp_association *asoc, 868 enum sctp_state state) 869 { 870 struct sock *sk = asoc->base.sk; 871 872 asoc->state = state; 873 874 pr_debug("%s: asoc:%p[%s]\n", __func__, asoc, sctp_state_tbl[state]); 875 876 if (sctp_style(sk, TCP)) { 877 /* Change the sk->sk_state of a TCP-style socket that has 878 * successfully completed a connect() call. 879 */ 880 if (sctp_state(asoc, ESTABLISHED) && sctp_sstate(sk, CLOSED)) 881 inet_sk_set_state(sk, SCTP_SS_ESTABLISHED); 882 883 /* Set the RCV_SHUTDOWN flag when a SHUTDOWN is received. */ 884 if (sctp_state(asoc, SHUTDOWN_RECEIVED) && 885 sctp_sstate(sk, ESTABLISHED)) { 886 inet_sk_set_state(sk, SCTP_SS_CLOSING); 887 sk->sk_shutdown |= RCV_SHUTDOWN; 888 } 889 } 890 891 if (sctp_state(asoc, COOKIE_WAIT)) { 892 /* Reset init timeouts since they may have been 893 * increased due to timer expirations. 894 */ 895 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = 896 asoc->rto_initial; 897 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = 898 asoc->rto_initial; 899 } 900 901 if (sctp_state(asoc, ESTABLISHED) || 902 sctp_state(asoc, CLOSED) || 903 sctp_state(asoc, SHUTDOWN_RECEIVED)) { 904 /* Wake up any processes waiting in the asoc's wait queue in 905 * sctp_wait_for_connect() or sctp_wait_for_sndbuf(). 906 */ 907 if (waitqueue_active(&asoc->wait)) 908 wake_up_interruptible(&asoc->wait); 909 910 /* Wake up any processes waiting in the sk's sleep queue of 911 * a TCP-style or UDP-style peeled-off socket in 912 * sctp_wait_for_accept() or sctp_wait_for_packet(). 913 * For a UDP-style socket, the waiters are woken up by the 914 * notifications. 915 */ 916 if (!sctp_style(sk, UDP)) 917 sk->sk_state_change(sk); 918 } 919 920 if (sctp_state(asoc, SHUTDOWN_PENDING) && 921 !sctp_outq_is_empty(&asoc->outqueue)) 922 sctp_outq_uncork(&asoc->outqueue, GFP_ATOMIC); 923 } 924 925 /* Helper function to delete an association. */ 926 static void sctp_cmd_delete_tcb(struct sctp_cmd_seq *cmds, 927 struct sctp_association *asoc) 928 { 929 struct sock *sk = asoc->base.sk; 930 931 /* If it is a non-temporary association belonging to a TCP-style 932 * listening socket that is not closed, do not free it so that accept() 933 * can pick it up later. 934 */ 935 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING) && 936 (!asoc->temp) && (sk->sk_shutdown != SHUTDOWN_MASK)) 937 return; 938 939 sctp_association_free(asoc); 940 } 941 942 /* 943 * ADDIP Section 4.1 ASCONF Chunk Procedures 944 * A4) Start a T-4 RTO timer, using the RTO value of the selected 945 * destination address (we use active path instead of primary path just 946 * because primary path may be inactive. 947 */ 948 static void sctp_cmd_setup_t4(struct sctp_cmd_seq *cmds, 949 struct sctp_association *asoc, 950 struct sctp_chunk *chunk) 951 { 952 struct sctp_transport *t; 953 954 t = sctp_assoc_choose_alter_transport(asoc, chunk->transport); 955 asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = t->rto; 956 chunk->transport = t; 957 } 958 959 /* Process an incoming Operation Error Chunk. */ 960 static void sctp_cmd_process_operr(struct sctp_cmd_seq *cmds, 961 struct sctp_association *asoc, 962 struct sctp_chunk *chunk) 963 { 964 struct sctp_errhdr *err_hdr; 965 struct sctp_ulpevent *ev; 966 967 while (chunk->chunk_end > chunk->skb->data) { 968 err_hdr = (struct sctp_errhdr *)(chunk->skb->data); 969 970 ev = sctp_ulpevent_make_remote_error(asoc, chunk, 0, 971 GFP_ATOMIC); 972 if (!ev) 973 return; 974 975 asoc->stream.si->enqueue_event(&asoc->ulpq, ev); 976 977 switch (err_hdr->cause) { 978 case SCTP_ERROR_UNKNOWN_CHUNK: 979 { 980 struct sctp_chunkhdr *unk_chunk_hdr; 981 982 unk_chunk_hdr = (struct sctp_chunkhdr *) 983 err_hdr->variable; 984 switch (unk_chunk_hdr->type) { 985 /* ADDIP 4.1 A9) If the peer responds to an ASCONF with 986 * an ERROR chunk reporting that it did not recognized 987 * the ASCONF chunk type, the sender of the ASCONF MUST 988 * NOT send any further ASCONF chunks and MUST stop its 989 * T-4 timer. 990 */ 991 case SCTP_CID_ASCONF: 992 if (asoc->peer.asconf_capable == 0) 993 break; 994 995 asoc->peer.asconf_capable = 0; 996 sctp_add_cmd_sf(cmds, SCTP_CMD_TIMER_STOP, 997 SCTP_TO(SCTP_EVENT_TIMEOUT_T4_RTO)); 998 break; 999 default: 1000 break; 1001 } 1002 break; 1003 } 1004 default: 1005 break; 1006 } 1007 } 1008 } 1009 1010 /* Helper function to remove the association non-primary peer 1011 * transports. 1012 */ 1013 static void sctp_cmd_del_non_primary(struct sctp_association *asoc) 1014 { 1015 struct sctp_transport *t; 1016 struct list_head *temp; 1017 struct list_head *pos; 1018 1019 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 1020 t = list_entry(pos, struct sctp_transport, transports); 1021 if (!sctp_cmp_addr_exact(&t->ipaddr, 1022 &asoc->peer.primary_addr)) { 1023 sctp_assoc_rm_peer(asoc, t); 1024 } 1025 } 1026 } 1027 1028 /* Helper function to set sk_err on a 1-1 style socket. */ 1029 static void sctp_cmd_set_sk_err(struct sctp_association *asoc, int error) 1030 { 1031 struct sock *sk = asoc->base.sk; 1032 1033 if (!sctp_style(sk, UDP)) 1034 sk->sk_err = error; 1035 } 1036 1037 /* Helper function to generate an association change event */ 1038 static void sctp_cmd_assoc_change(struct sctp_cmd_seq *commands, 1039 struct sctp_association *asoc, 1040 u8 state) 1041 { 1042 struct sctp_ulpevent *ev; 1043 1044 ev = sctp_ulpevent_make_assoc_change(asoc, 0, state, 0, 1045 asoc->c.sinit_num_ostreams, 1046 asoc->c.sinit_max_instreams, 1047 NULL, GFP_ATOMIC); 1048 if (ev) 1049 asoc->stream.si->enqueue_event(&asoc->ulpq, ev); 1050 } 1051 1052 static void sctp_cmd_peer_no_auth(struct sctp_cmd_seq *commands, 1053 struct sctp_association *asoc) 1054 { 1055 struct sctp_ulpevent *ev; 1056 1057 ev = sctp_ulpevent_make_authkey(asoc, 0, SCTP_AUTH_NO_AUTH, GFP_ATOMIC); 1058 if (ev) 1059 asoc->stream.si->enqueue_event(&asoc->ulpq, ev); 1060 } 1061 1062 /* Helper function to generate an adaptation indication event */ 1063 static void sctp_cmd_adaptation_ind(struct sctp_cmd_seq *commands, 1064 struct sctp_association *asoc) 1065 { 1066 struct sctp_ulpevent *ev; 1067 1068 ev = sctp_ulpevent_make_adaptation_indication(asoc, GFP_ATOMIC); 1069 1070 if (ev) 1071 asoc->stream.si->enqueue_event(&asoc->ulpq, ev); 1072 } 1073 1074 1075 static void sctp_cmd_t1_timer_update(struct sctp_association *asoc, 1076 enum sctp_event_timeout timer, 1077 char *name) 1078 { 1079 struct sctp_transport *t; 1080 1081 t = asoc->init_last_sent_to; 1082 asoc->init_err_counter++; 1083 1084 if (t->init_sent_count > (asoc->init_cycle + 1)) { 1085 asoc->timeouts[timer] *= 2; 1086 if (asoc->timeouts[timer] > asoc->max_init_timeo) { 1087 asoc->timeouts[timer] = asoc->max_init_timeo; 1088 } 1089 asoc->init_cycle++; 1090 1091 pr_debug("%s: T1[%s] timeout adjustment init_err_counter:%d" 1092 " cycle:%d timeout:%ld\n", __func__, name, 1093 asoc->init_err_counter, asoc->init_cycle, 1094 asoc->timeouts[timer]); 1095 } 1096 1097 } 1098 1099 /* Send the whole message, chunk by chunk, to the outqueue. 1100 * This way the whole message is queued up and bundling if 1101 * encouraged for small fragments. 1102 */ 1103 static void sctp_cmd_send_msg(struct sctp_association *asoc, 1104 struct sctp_datamsg *msg, gfp_t gfp) 1105 { 1106 struct sctp_chunk *chunk; 1107 1108 list_for_each_entry(chunk, &msg->chunks, frag_list) 1109 sctp_outq_tail(&asoc->outqueue, chunk, gfp); 1110 1111 asoc->outqueue.sched->enqueue(&asoc->outqueue, msg); 1112 } 1113 1114 1115 /* Sent the next ASCONF packet currently stored in the association. 1116 * This happens after the ASCONF_ACK was succeffully processed. 1117 */ 1118 static void sctp_cmd_send_asconf(struct sctp_association *asoc) 1119 { 1120 struct net *net = sock_net(asoc->base.sk); 1121 1122 /* Send the next asconf chunk from the addip chunk 1123 * queue. 1124 */ 1125 if (!list_empty(&asoc->addip_chunk_list)) { 1126 struct list_head *entry = asoc->addip_chunk_list.next; 1127 struct sctp_chunk *asconf = list_entry(entry, 1128 struct sctp_chunk, list); 1129 list_del_init(entry); 1130 1131 /* Hold the chunk until an ASCONF_ACK is received. */ 1132 sctp_chunk_hold(asconf); 1133 if (sctp_primitive_ASCONF(net, asoc, asconf)) 1134 sctp_chunk_free(asconf); 1135 else 1136 asoc->addip_last_asconf = asconf; 1137 } 1138 } 1139 1140 1141 /* These three macros allow us to pull the debugging code out of the 1142 * main flow of sctp_do_sm() to keep attention focused on the real 1143 * functionality there. 1144 */ 1145 #define debug_pre_sfn() \ 1146 pr_debug("%s[pre-fn]: ep:%p, %s, %s, asoc:%p[%s], %s\n", __func__, \ 1147 ep, sctp_evttype_tbl[event_type], (*debug_fn)(subtype), \ 1148 asoc, sctp_state_tbl[state], state_fn->name) 1149 1150 #define debug_post_sfn() \ 1151 pr_debug("%s[post-fn]: asoc:%p, status:%s\n", __func__, asoc, \ 1152 sctp_status_tbl[status]) 1153 1154 #define debug_post_sfx() \ 1155 pr_debug("%s[post-sfx]: error:%d, asoc:%p[%s]\n", __func__, error, \ 1156 asoc, sctp_state_tbl[(asoc && sctp_id2assoc(ep->base.sk, \ 1157 sctp_assoc2id(asoc))) ? asoc->state : SCTP_STATE_CLOSED]) 1158 1159 /* 1160 * This is the master state machine processing function. 1161 * 1162 * If you want to understand all of lksctp, this is a 1163 * good place to start. 1164 */ 1165 int sctp_do_sm(struct net *net, enum sctp_event_type event_type, 1166 union sctp_subtype subtype, enum sctp_state state, 1167 struct sctp_endpoint *ep, struct sctp_association *asoc, 1168 void *event_arg, gfp_t gfp) 1169 { 1170 typedef const char *(printfn_t)(union sctp_subtype); 1171 static printfn_t *table[] = { 1172 NULL, sctp_cname, sctp_tname, sctp_oname, sctp_pname, 1173 }; 1174 printfn_t *debug_fn __attribute__ ((unused)) = table[event_type]; 1175 const struct sctp_sm_table_entry *state_fn; 1176 struct sctp_cmd_seq commands; 1177 enum sctp_disposition status; 1178 int error = 0; 1179 1180 /* Look up the state function, run it, and then process the 1181 * side effects. These three steps are the heart of lksctp. 1182 */ 1183 state_fn = sctp_sm_lookup_event(net, event_type, state, subtype); 1184 1185 sctp_init_cmd_seq(&commands); 1186 1187 debug_pre_sfn(); 1188 status = state_fn->fn(net, ep, asoc, subtype, event_arg, &commands); 1189 debug_post_sfn(); 1190 1191 error = sctp_side_effects(event_type, subtype, state, 1192 ep, &asoc, event_arg, status, 1193 &commands, gfp); 1194 debug_post_sfx(); 1195 1196 return error; 1197 } 1198 1199 /***************************************************************** 1200 * This the master state function side effect processing function. 1201 *****************************************************************/ 1202 static int sctp_side_effects(enum sctp_event_type event_type, 1203 union sctp_subtype subtype, 1204 enum sctp_state state, 1205 struct sctp_endpoint *ep, 1206 struct sctp_association **asoc, 1207 void *event_arg, 1208 enum sctp_disposition status, 1209 struct sctp_cmd_seq *commands, 1210 gfp_t gfp) 1211 { 1212 int error; 1213 1214 /* FIXME - Most of the dispositions left today would be categorized 1215 * as "exceptional" dispositions. For those dispositions, it 1216 * may not be proper to run through any of the commands at all. 1217 * For example, the command interpreter might be run only with 1218 * disposition SCTP_DISPOSITION_CONSUME. 1219 */ 1220 if (0 != (error = sctp_cmd_interpreter(event_type, subtype, state, 1221 ep, *asoc, 1222 event_arg, status, 1223 commands, gfp))) 1224 goto bail; 1225 1226 switch (status) { 1227 case SCTP_DISPOSITION_DISCARD: 1228 pr_debug("%s: ignored sctp protocol event - state:%d, " 1229 "event_type:%d, event_id:%d\n", __func__, state, 1230 event_type, subtype.chunk); 1231 break; 1232 1233 case SCTP_DISPOSITION_NOMEM: 1234 /* We ran out of memory, so we need to discard this 1235 * packet. 1236 */ 1237 /* BUG--we should now recover some memory, probably by 1238 * reneging... 1239 */ 1240 error = -ENOMEM; 1241 break; 1242 1243 case SCTP_DISPOSITION_DELETE_TCB: 1244 case SCTP_DISPOSITION_ABORT: 1245 /* This should now be a command. */ 1246 *asoc = NULL; 1247 break; 1248 1249 case SCTP_DISPOSITION_CONSUME: 1250 /* 1251 * We should no longer have much work to do here as the 1252 * real work has been done as explicit commands above. 1253 */ 1254 break; 1255 1256 case SCTP_DISPOSITION_VIOLATION: 1257 net_err_ratelimited("protocol violation state %d chunkid %d\n", 1258 state, subtype.chunk); 1259 break; 1260 1261 case SCTP_DISPOSITION_NOT_IMPL: 1262 pr_warn("unimplemented feature in state %d, event_type %d, event_id %d\n", 1263 state, event_type, subtype.chunk); 1264 break; 1265 1266 case SCTP_DISPOSITION_BUG: 1267 pr_err("bug in state %d, event_type %d, event_id %d\n", 1268 state, event_type, subtype.chunk); 1269 BUG(); 1270 break; 1271 1272 default: 1273 pr_err("impossible disposition %d in state %d, event_type %d, event_id %d\n", 1274 status, state, event_type, subtype.chunk); 1275 BUG(); 1276 break; 1277 } 1278 1279 bail: 1280 return error; 1281 } 1282 1283 /******************************************************************** 1284 * 2nd Level Abstractions 1285 ********************************************************************/ 1286 1287 /* This is the side-effect interpreter. */ 1288 static int sctp_cmd_interpreter(enum sctp_event_type event_type, 1289 union sctp_subtype subtype, 1290 enum sctp_state state, 1291 struct sctp_endpoint *ep, 1292 struct sctp_association *asoc, 1293 void *event_arg, 1294 enum sctp_disposition status, 1295 struct sctp_cmd_seq *commands, 1296 gfp_t gfp) 1297 { 1298 struct sctp_sock *sp = sctp_sk(ep->base.sk); 1299 struct sctp_chunk *chunk = NULL, *new_obj; 1300 struct sctp_packet *packet; 1301 struct sctp_sackhdr sackh; 1302 struct timer_list *timer; 1303 struct sctp_transport *t; 1304 unsigned long timeout; 1305 struct sctp_cmd *cmd; 1306 int local_cork = 0; 1307 int error = 0; 1308 int force; 1309 1310 if (SCTP_EVENT_T_TIMEOUT != event_type) 1311 chunk = event_arg; 1312 1313 /* Note: This whole file is a huge candidate for rework. 1314 * For example, each command could either have its own handler, so 1315 * the loop would look like: 1316 * while (cmds) 1317 * cmd->handle(x, y, z) 1318 * --jgrimm 1319 */ 1320 while (NULL != (cmd = sctp_next_cmd(commands))) { 1321 switch (cmd->verb) { 1322 case SCTP_CMD_NOP: 1323 /* Do nothing. */ 1324 break; 1325 1326 case SCTP_CMD_NEW_ASOC: 1327 /* Register a new association. */ 1328 if (local_cork) { 1329 sctp_outq_uncork(&asoc->outqueue, gfp); 1330 local_cork = 0; 1331 } 1332 1333 /* Register with the endpoint. */ 1334 asoc = cmd->obj.asoc; 1335 BUG_ON(asoc->peer.primary_path == NULL); 1336 sctp_endpoint_add_asoc(ep, asoc); 1337 break; 1338 1339 case SCTP_CMD_UPDATE_ASSOC: 1340 sctp_cmd_assoc_update(commands, asoc, cmd->obj.asoc); 1341 break; 1342 1343 case SCTP_CMD_PURGE_OUTQUEUE: 1344 sctp_outq_teardown(&asoc->outqueue); 1345 break; 1346 1347 case SCTP_CMD_DELETE_TCB: 1348 if (local_cork) { 1349 sctp_outq_uncork(&asoc->outqueue, gfp); 1350 local_cork = 0; 1351 } 1352 /* Delete the current association. */ 1353 sctp_cmd_delete_tcb(commands, asoc); 1354 asoc = NULL; 1355 break; 1356 1357 case SCTP_CMD_NEW_STATE: 1358 /* Enter a new state. */ 1359 sctp_cmd_new_state(commands, asoc, cmd->obj.state); 1360 break; 1361 1362 case SCTP_CMD_REPORT_TSN: 1363 /* Record the arrival of a TSN. */ 1364 error = sctp_tsnmap_mark(&asoc->peer.tsn_map, 1365 cmd->obj.u32, NULL); 1366 break; 1367 1368 case SCTP_CMD_REPORT_FWDTSN: 1369 asoc->stream.si->report_ftsn(&asoc->ulpq, cmd->obj.u32); 1370 break; 1371 1372 case SCTP_CMD_PROCESS_FWDTSN: 1373 asoc->stream.si->handle_ftsn(&asoc->ulpq, 1374 cmd->obj.chunk); 1375 break; 1376 1377 case SCTP_CMD_GEN_SACK: 1378 /* Generate a Selective ACK. 1379 * The argument tells us whether to just count 1380 * the packet and MAYBE generate a SACK, or 1381 * force a SACK out. 1382 */ 1383 force = cmd->obj.i32; 1384 error = sctp_gen_sack(asoc, force, commands); 1385 break; 1386 1387 case SCTP_CMD_PROCESS_SACK: 1388 /* Process an inbound SACK. */ 1389 error = sctp_cmd_process_sack(commands, asoc, 1390 cmd->obj.chunk); 1391 break; 1392 1393 case SCTP_CMD_GEN_INIT_ACK: 1394 /* Generate an INIT ACK chunk. */ 1395 new_obj = sctp_make_init_ack(asoc, chunk, GFP_ATOMIC, 1396 0); 1397 if (!new_obj) 1398 goto nomem; 1399 1400 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, 1401 SCTP_CHUNK(new_obj)); 1402 break; 1403 1404 case SCTP_CMD_PEER_INIT: 1405 /* Process a unified INIT from the peer. 1406 * Note: Only used during INIT-ACK processing. If 1407 * there is an error just return to the outter 1408 * layer which will bail. 1409 */ 1410 error = sctp_cmd_process_init(commands, asoc, chunk, 1411 cmd->obj.init, gfp); 1412 break; 1413 1414 case SCTP_CMD_GEN_COOKIE_ECHO: 1415 /* Generate a COOKIE ECHO chunk. */ 1416 new_obj = sctp_make_cookie_echo(asoc, chunk); 1417 if (!new_obj) { 1418 if (cmd->obj.chunk) 1419 sctp_chunk_free(cmd->obj.chunk); 1420 goto nomem; 1421 } 1422 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, 1423 SCTP_CHUNK(new_obj)); 1424 1425 /* If there is an ERROR chunk to be sent along with 1426 * the COOKIE_ECHO, send it, too. 1427 */ 1428 if (cmd->obj.chunk) 1429 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, 1430 SCTP_CHUNK(cmd->obj.chunk)); 1431 1432 if (new_obj->transport) { 1433 new_obj->transport->init_sent_count++; 1434 asoc->init_last_sent_to = new_obj->transport; 1435 } 1436 1437 /* FIXME - Eventually come up with a cleaner way to 1438 * enabling COOKIE-ECHO + DATA bundling during 1439 * multihoming stale cookie scenarios, the following 1440 * command plays with asoc->peer.retran_path to 1441 * avoid the problem of sending the COOKIE-ECHO and 1442 * DATA in different paths, which could result 1443 * in the association being ABORTed if the DATA chunk 1444 * is processed first by the server. Checking the 1445 * init error counter simply causes this command 1446 * to be executed only during failed attempts of 1447 * association establishment. 1448 */ 1449 if ((asoc->peer.retran_path != 1450 asoc->peer.primary_path) && 1451 (asoc->init_err_counter > 0)) { 1452 sctp_add_cmd_sf(commands, 1453 SCTP_CMD_FORCE_PRIM_RETRAN, 1454 SCTP_NULL()); 1455 } 1456 1457 break; 1458 1459 case SCTP_CMD_GEN_SHUTDOWN: 1460 /* Generate SHUTDOWN when in SHUTDOWN_SENT state. 1461 * Reset error counts. 1462 */ 1463 asoc->overall_error_count = 0; 1464 1465 /* Generate a SHUTDOWN chunk. */ 1466 new_obj = sctp_make_shutdown(asoc, chunk); 1467 if (!new_obj) 1468 goto nomem; 1469 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, 1470 SCTP_CHUNK(new_obj)); 1471 break; 1472 1473 case SCTP_CMD_CHUNK_ULP: 1474 /* Send a chunk to the sockets layer. */ 1475 pr_debug("%s: sm_sideff: chunk_up:%p, ulpq:%p\n", 1476 __func__, cmd->obj.chunk, &asoc->ulpq); 1477 1478 asoc->stream.si->ulpevent_data(&asoc->ulpq, 1479 cmd->obj.chunk, 1480 GFP_ATOMIC); 1481 break; 1482 1483 case SCTP_CMD_EVENT_ULP: 1484 /* Send a notification to the sockets layer. */ 1485 pr_debug("%s: sm_sideff: event_up:%p, ulpq:%p\n", 1486 __func__, cmd->obj.ulpevent, &asoc->ulpq); 1487 1488 asoc->stream.si->enqueue_event(&asoc->ulpq, 1489 cmd->obj.ulpevent); 1490 break; 1491 1492 case SCTP_CMD_REPLY: 1493 /* If an caller has not already corked, do cork. */ 1494 if (!asoc->outqueue.cork) { 1495 sctp_outq_cork(&asoc->outqueue); 1496 local_cork = 1; 1497 } 1498 /* Send a chunk to our peer. */ 1499 sctp_outq_tail(&asoc->outqueue, cmd->obj.chunk, gfp); 1500 break; 1501 1502 case SCTP_CMD_SEND_PKT: 1503 /* Send a full packet to our peer. */ 1504 packet = cmd->obj.packet; 1505 sctp_packet_transmit(packet, gfp); 1506 sctp_ootb_pkt_free(packet); 1507 break; 1508 1509 case SCTP_CMD_T1_RETRAN: 1510 /* Mark a transport for retransmission. */ 1511 sctp_retransmit(&asoc->outqueue, cmd->obj.transport, 1512 SCTP_RTXR_T1_RTX); 1513 break; 1514 1515 case SCTP_CMD_RETRAN: 1516 /* Mark a transport for retransmission. */ 1517 sctp_retransmit(&asoc->outqueue, cmd->obj.transport, 1518 SCTP_RTXR_T3_RTX); 1519 break; 1520 1521 case SCTP_CMD_ECN_CE: 1522 /* Do delayed CE processing. */ 1523 sctp_do_ecn_ce_work(asoc, cmd->obj.u32); 1524 break; 1525 1526 case SCTP_CMD_ECN_ECNE: 1527 /* Do delayed ECNE processing. */ 1528 new_obj = sctp_do_ecn_ecne_work(asoc, cmd->obj.u32, 1529 chunk); 1530 if (new_obj) 1531 sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, 1532 SCTP_CHUNK(new_obj)); 1533 break; 1534 1535 case SCTP_CMD_ECN_CWR: 1536 /* Do delayed CWR processing. */ 1537 sctp_do_ecn_cwr_work(asoc, cmd->obj.u32); 1538 break; 1539 1540 case SCTP_CMD_SETUP_T2: 1541 sctp_cmd_setup_t2(commands, asoc, cmd->obj.chunk); 1542 break; 1543 1544 case SCTP_CMD_TIMER_START_ONCE: 1545 timer = &asoc->timers[cmd->obj.to]; 1546 1547 if (timer_pending(timer)) 1548 break; 1549 /* fall through */ 1550 1551 case SCTP_CMD_TIMER_START: 1552 timer = &asoc->timers[cmd->obj.to]; 1553 timeout = asoc->timeouts[cmd->obj.to]; 1554 BUG_ON(!timeout); 1555 1556 timer->expires = jiffies + timeout; 1557 sctp_association_hold(asoc); 1558 add_timer(timer); 1559 break; 1560 1561 case SCTP_CMD_TIMER_RESTART: 1562 timer = &asoc->timers[cmd->obj.to]; 1563 timeout = asoc->timeouts[cmd->obj.to]; 1564 if (!mod_timer(timer, jiffies + timeout)) 1565 sctp_association_hold(asoc); 1566 break; 1567 1568 case SCTP_CMD_TIMER_STOP: 1569 timer = &asoc->timers[cmd->obj.to]; 1570 if (del_timer(timer)) 1571 sctp_association_put(asoc); 1572 break; 1573 1574 case SCTP_CMD_INIT_CHOOSE_TRANSPORT: 1575 chunk = cmd->obj.chunk; 1576 t = sctp_assoc_choose_alter_transport(asoc, 1577 asoc->init_last_sent_to); 1578 asoc->init_last_sent_to = t; 1579 chunk->transport = t; 1580 t->init_sent_count++; 1581 /* Set the new transport as primary */ 1582 sctp_assoc_set_primary(asoc, t); 1583 break; 1584 1585 case SCTP_CMD_INIT_RESTART: 1586 /* Do the needed accounting and updates 1587 * associated with restarting an initialization 1588 * timer. Only multiply the timeout by two if 1589 * all transports have been tried at the current 1590 * timeout. 1591 */ 1592 sctp_cmd_t1_timer_update(asoc, 1593 SCTP_EVENT_TIMEOUT_T1_INIT, 1594 "INIT"); 1595 1596 sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART, 1597 SCTP_TO(SCTP_EVENT_TIMEOUT_T1_INIT)); 1598 break; 1599 1600 case SCTP_CMD_COOKIEECHO_RESTART: 1601 /* Do the needed accounting and updates 1602 * associated with restarting an initialization 1603 * timer. Only multiply the timeout by two if 1604 * all transports have been tried at the current 1605 * timeout. 1606 */ 1607 sctp_cmd_t1_timer_update(asoc, 1608 SCTP_EVENT_TIMEOUT_T1_COOKIE, 1609 "COOKIE"); 1610 1611 /* If we've sent any data bundled with 1612 * COOKIE-ECHO we need to resend. 1613 */ 1614 list_for_each_entry(t, &asoc->peer.transport_addr_list, 1615 transports) { 1616 sctp_retransmit_mark(&asoc->outqueue, t, 1617 SCTP_RTXR_T1_RTX); 1618 } 1619 1620 sctp_add_cmd_sf(commands, 1621 SCTP_CMD_TIMER_RESTART, 1622 SCTP_TO(SCTP_EVENT_TIMEOUT_T1_COOKIE)); 1623 break; 1624 1625 case SCTP_CMD_INIT_FAILED: 1626 sctp_cmd_init_failed(commands, asoc, cmd->obj.u32); 1627 break; 1628 1629 case SCTP_CMD_ASSOC_FAILED: 1630 sctp_cmd_assoc_failed(commands, asoc, event_type, 1631 subtype, chunk, cmd->obj.u32); 1632 break; 1633 1634 case SCTP_CMD_INIT_COUNTER_INC: 1635 asoc->init_err_counter++; 1636 break; 1637 1638 case SCTP_CMD_INIT_COUNTER_RESET: 1639 asoc->init_err_counter = 0; 1640 asoc->init_cycle = 0; 1641 list_for_each_entry(t, &asoc->peer.transport_addr_list, 1642 transports) { 1643 t->init_sent_count = 0; 1644 } 1645 break; 1646 1647 case SCTP_CMD_REPORT_DUP: 1648 sctp_tsnmap_mark_dup(&asoc->peer.tsn_map, 1649 cmd->obj.u32); 1650 break; 1651 1652 case SCTP_CMD_REPORT_BAD_TAG: 1653 pr_debug("%s: vtag mismatch!\n", __func__); 1654 break; 1655 1656 case SCTP_CMD_STRIKE: 1657 /* Mark one strike against a transport. */ 1658 sctp_do_8_2_transport_strike(commands, asoc, 1659 cmd->obj.transport, 0); 1660 break; 1661 1662 case SCTP_CMD_TRANSPORT_IDLE: 1663 t = cmd->obj.transport; 1664 sctp_transport_lower_cwnd(t, SCTP_LOWER_CWND_INACTIVE); 1665 break; 1666 1667 case SCTP_CMD_TRANSPORT_HB_SENT: 1668 t = cmd->obj.transport; 1669 sctp_do_8_2_transport_strike(commands, asoc, 1670 t, 1); 1671 t->hb_sent = 1; 1672 break; 1673 1674 case SCTP_CMD_TRANSPORT_ON: 1675 t = cmd->obj.transport; 1676 sctp_cmd_transport_on(commands, asoc, t, chunk); 1677 break; 1678 1679 case SCTP_CMD_HB_TIMERS_START: 1680 sctp_cmd_hb_timers_start(commands, asoc); 1681 break; 1682 1683 case SCTP_CMD_HB_TIMER_UPDATE: 1684 t = cmd->obj.transport; 1685 sctp_transport_reset_hb_timer(t); 1686 break; 1687 1688 case SCTP_CMD_HB_TIMERS_STOP: 1689 sctp_cmd_hb_timers_stop(commands, asoc); 1690 break; 1691 1692 case SCTP_CMD_REPORT_ERROR: 1693 error = cmd->obj.error; 1694 break; 1695 1696 case SCTP_CMD_PROCESS_CTSN: 1697 /* Dummy up a SACK for processing. */ 1698 sackh.cum_tsn_ack = cmd->obj.be32; 1699 sackh.a_rwnd = htonl(asoc->peer.rwnd + 1700 asoc->outqueue.outstanding_bytes); 1701 sackh.num_gap_ack_blocks = 0; 1702 sackh.num_dup_tsns = 0; 1703 chunk->subh.sack_hdr = &sackh; 1704 sctp_add_cmd_sf(commands, SCTP_CMD_PROCESS_SACK, 1705 SCTP_CHUNK(chunk)); 1706 break; 1707 1708 case SCTP_CMD_DISCARD_PACKET: 1709 /* We need to discard the whole packet. 1710 * Uncork the queue since there might be 1711 * responses pending 1712 */ 1713 chunk->pdiscard = 1; 1714 if (asoc) { 1715 sctp_outq_uncork(&asoc->outqueue, gfp); 1716 local_cork = 0; 1717 } 1718 break; 1719 1720 case SCTP_CMD_RTO_PENDING: 1721 t = cmd->obj.transport; 1722 t->rto_pending = 1; 1723 break; 1724 1725 case SCTP_CMD_PART_DELIVER: 1726 asoc->stream.si->start_pd(&asoc->ulpq, GFP_ATOMIC); 1727 break; 1728 1729 case SCTP_CMD_RENEGE: 1730 asoc->stream.si->renege_events(&asoc->ulpq, 1731 cmd->obj.chunk, 1732 GFP_ATOMIC); 1733 break; 1734 1735 case SCTP_CMD_SETUP_T4: 1736 sctp_cmd_setup_t4(commands, asoc, cmd->obj.chunk); 1737 break; 1738 1739 case SCTP_CMD_PROCESS_OPERR: 1740 sctp_cmd_process_operr(commands, asoc, chunk); 1741 break; 1742 case SCTP_CMD_CLEAR_INIT_TAG: 1743 asoc->peer.i.init_tag = 0; 1744 break; 1745 case SCTP_CMD_DEL_NON_PRIMARY: 1746 sctp_cmd_del_non_primary(asoc); 1747 break; 1748 case SCTP_CMD_T3_RTX_TIMERS_STOP: 1749 sctp_cmd_t3_rtx_timers_stop(commands, asoc); 1750 break; 1751 case SCTP_CMD_FORCE_PRIM_RETRAN: 1752 t = asoc->peer.retran_path; 1753 asoc->peer.retran_path = asoc->peer.primary_path; 1754 sctp_outq_uncork(&asoc->outqueue, gfp); 1755 local_cork = 0; 1756 asoc->peer.retran_path = t; 1757 break; 1758 case SCTP_CMD_SET_SK_ERR: 1759 sctp_cmd_set_sk_err(asoc, cmd->obj.error); 1760 break; 1761 case SCTP_CMD_ASSOC_CHANGE: 1762 sctp_cmd_assoc_change(commands, asoc, 1763 cmd->obj.u8); 1764 break; 1765 case SCTP_CMD_ADAPTATION_IND: 1766 sctp_cmd_adaptation_ind(commands, asoc); 1767 break; 1768 case SCTP_CMD_PEER_NO_AUTH: 1769 sctp_cmd_peer_no_auth(commands, asoc); 1770 break; 1771 1772 case SCTP_CMD_ASSOC_SHKEY: 1773 error = sctp_auth_asoc_init_active_key(asoc, 1774 GFP_ATOMIC); 1775 break; 1776 case SCTP_CMD_UPDATE_INITTAG: 1777 asoc->peer.i.init_tag = cmd->obj.u32; 1778 break; 1779 case SCTP_CMD_SEND_MSG: 1780 if (!asoc->outqueue.cork) { 1781 sctp_outq_cork(&asoc->outqueue); 1782 local_cork = 1; 1783 } 1784 sctp_cmd_send_msg(asoc, cmd->obj.msg, gfp); 1785 break; 1786 case SCTP_CMD_SEND_NEXT_ASCONF: 1787 sctp_cmd_send_asconf(asoc); 1788 break; 1789 case SCTP_CMD_PURGE_ASCONF_QUEUE: 1790 sctp_asconf_queue_teardown(asoc); 1791 break; 1792 1793 case SCTP_CMD_SET_ASOC: 1794 if (asoc && local_cork) { 1795 sctp_outq_uncork(&asoc->outqueue, gfp); 1796 local_cork = 0; 1797 } 1798 asoc = cmd->obj.asoc; 1799 break; 1800 1801 default: 1802 pr_warn("Impossible command: %u\n", 1803 cmd->verb); 1804 break; 1805 } 1806 1807 if (error) 1808 break; 1809 } 1810 1811 out: 1812 /* If this is in response to a received chunk, wait until 1813 * we are done with the packet to open the queue so that we don't 1814 * send multiple packets in response to a single request. 1815 */ 1816 if (asoc && SCTP_EVENT_T_CHUNK == event_type && chunk) { 1817 if (chunk->end_of_packet || chunk->singleton) 1818 sctp_outq_uncork(&asoc->outqueue, gfp); 1819 } else if (local_cork) 1820 sctp_outq_uncork(&asoc->outqueue, gfp); 1821 1822 if (sp->data_ready_signalled) 1823 sp->data_ready_signalled = 0; 1824 1825 return error; 1826 nomem: 1827 error = -ENOMEM; 1828 goto out; 1829 } 1830