xref: /openbmc/linux/net/sctp/outqueue.c (revision c1d45424)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  *
7  * This file is part of the SCTP kernel implementation
8  *
9  * These functions implement the sctp_outq class.   The outqueue handles
10  * bundling and queueing of outgoing SCTP chunks.
11  *
12  * This SCTP implementation is free software;
13  * you can redistribute it and/or modify it under the terms of
14  * the GNU General Public License as published by
15  * the Free Software Foundation; either version 2, or (at your option)
16  * any later version.
17  *
18  * This SCTP implementation is distributed in the hope that it
19  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20  *                 ************************
21  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22  * See the GNU General Public License for more details.
23  *
24  * You should have received a copy of the GNU General Public License
25  * along with GNU CC; see the file COPYING.  If not, write to
26  * the Free Software Foundation, 59 Temple Place - Suite 330,
27  * Boston, MA 02111-1307, USA.
28  *
29  * Please send any bug reports or fixes you make to the
30  * email address(es):
31  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
32  *
33  * Or submit a bug report through the following website:
34  *    http://www.sf.net/projects/lksctp
35  *
36  * Written or modified by:
37  *    La Monte H.P. Yarroll <piggy@acm.org>
38  *    Karl Knutson          <karl@athena.chicago.il.us>
39  *    Perry Melange         <pmelange@null.cc.uic.edu>
40  *    Xingang Guo           <xingang.guo@intel.com>
41  *    Hui Huang 	    <hui.huang@nokia.com>
42  *    Sridhar Samudrala     <sri@us.ibm.com>
43  *    Jon Grimm             <jgrimm@us.ibm.com>
44  *
45  * Any bugs reported given to us we will try to fix... any fixes shared will
46  * be incorporated into the next SCTP release.
47  */
48 
49 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
50 
51 #include <linux/types.h>
52 #include <linux/list.h>   /* For struct list_head */
53 #include <linux/socket.h>
54 #include <linux/ip.h>
55 #include <linux/slab.h>
56 #include <net/sock.h>	  /* For skb_set_owner_w */
57 
58 #include <net/sctp/sctp.h>
59 #include <net/sctp/sm.h>
60 
61 /* Declare internal functions here.  */
62 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn);
63 static void sctp_check_transmitted(struct sctp_outq *q,
64 				   struct list_head *transmitted_queue,
65 				   struct sctp_transport *transport,
66 				   union sctp_addr *saddr,
67 				   struct sctp_sackhdr *sack,
68 				   __u32 *highest_new_tsn);
69 
70 static void sctp_mark_missing(struct sctp_outq *q,
71 			      struct list_head *transmitted_queue,
72 			      struct sctp_transport *transport,
73 			      __u32 highest_new_tsn,
74 			      int count_of_newacks);
75 
76 static void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 sack_ctsn);
77 
78 static int sctp_outq_flush(struct sctp_outq *q, int rtx_timeout);
79 
80 /* Add data to the front of the queue. */
81 static inline void sctp_outq_head_data(struct sctp_outq *q,
82 					struct sctp_chunk *ch)
83 {
84 	list_add(&ch->list, &q->out_chunk_list);
85 	q->out_qlen += ch->skb->len;
86 }
87 
88 /* Take data from the front of the queue. */
89 static inline struct sctp_chunk *sctp_outq_dequeue_data(struct sctp_outq *q)
90 {
91 	struct sctp_chunk *ch = NULL;
92 
93 	if (!list_empty(&q->out_chunk_list)) {
94 		struct list_head *entry = q->out_chunk_list.next;
95 
96 		ch = list_entry(entry, struct sctp_chunk, list);
97 		list_del_init(entry);
98 		q->out_qlen -= ch->skb->len;
99 	}
100 	return ch;
101 }
102 /* Add data chunk to the end of the queue. */
103 static inline void sctp_outq_tail_data(struct sctp_outq *q,
104 				       struct sctp_chunk *ch)
105 {
106 	list_add_tail(&ch->list, &q->out_chunk_list);
107 	q->out_qlen += ch->skb->len;
108 }
109 
110 /*
111  * SFR-CACC algorithm:
112  * D) If count_of_newacks is greater than or equal to 2
113  * and t was not sent to the current primary then the
114  * sender MUST NOT increment missing report count for t.
115  */
116 static inline int sctp_cacc_skip_3_1_d(struct sctp_transport *primary,
117 				       struct sctp_transport *transport,
118 				       int count_of_newacks)
119 {
120 	if (count_of_newacks >=2 && transport != primary)
121 		return 1;
122 	return 0;
123 }
124 
125 /*
126  * SFR-CACC algorithm:
127  * F) If count_of_newacks is less than 2, let d be the
128  * destination to which t was sent. If cacc_saw_newack
129  * is 0 for destination d, then the sender MUST NOT
130  * increment missing report count for t.
131  */
132 static inline int sctp_cacc_skip_3_1_f(struct sctp_transport *transport,
133 				       int count_of_newacks)
134 {
135 	if (count_of_newacks < 2 &&
136 			(transport && !transport->cacc.cacc_saw_newack))
137 		return 1;
138 	return 0;
139 }
140 
141 /*
142  * SFR-CACC algorithm:
143  * 3.1) If CYCLING_CHANGEOVER is 0, the sender SHOULD
144  * execute steps C, D, F.
145  *
146  * C has been implemented in sctp_outq_sack
147  */
148 static inline int sctp_cacc_skip_3_1(struct sctp_transport *primary,
149 				     struct sctp_transport *transport,
150 				     int count_of_newacks)
151 {
152 	if (!primary->cacc.cycling_changeover) {
153 		if (sctp_cacc_skip_3_1_d(primary, transport, count_of_newacks))
154 			return 1;
155 		if (sctp_cacc_skip_3_1_f(transport, count_of_newacks))
156 			return 1;
157 		return 0;
158 	}
159 	return 0;
160 }
161 
162 /*
163  * SFR-CACC algorithm:
164  * 3.2) Else if CYCLING_CHANGEOVER is 1, and t is less
165  * than next_tsn_at_change of the current primary, then
166  * the sender MUST NOT increment missing report count
167  * for t.
168  */
169 static inline int sctp_cacc_skip_3_2(struct sctp_transport *primary, __u32 tsn)
170 {
171 	if (primary->cacc.cycling_changeover &&
172 	    TSN_lt(tsn, primary->cacc.next_tsn_at_change))
173 		return 1;
174 	return 0;
175 }
176 
177 /*
178  * SFR-CACC algorithm:
179  * 3) If the missing report count for TSN t is to be
180  * incremented according to [RFC2960] and
181  * [SCTP_STEWART-2002], and CHANGEOVER_ACTIVE is set,
182  * then the sender MUST further execute steps 3.1 and
183  * 3.2 to determine if the missing report count for
184  * TSN t SHOULD NOT be incremented.
185  *
186  * 3.3) If 3.1 and 3.2 do not dictate that the missing
187  * report count for t should not be incremented, then
188  * the sender SHOULD increment missing report count for
189  * t (according to [RFC2960] and [SCTP_STEWART_2002]).
190  */
191 static inline int sctp_cacc_skip(struct sctp_transport *primary,
192 				 struct sctp_transport *transport,
193 				 int count_of_newacks,
194 				 __u32 tsn)
195 {
196 	if (primary->cacc.changeover_active &&
197 	    (sctp_cacc_skip_3_1(primary, transport, count_of_newacks) ||
198 	     sctp_cacc_skip_3_2(primary, tsn)))
199 		return 1;
200 	return 0;
201 }
202 
203 /* Initialize an existing sctp_outq.  This does the boring stuff.
204  * You still need to define handlers if you really want to DO
205  * something with this structure...
206  */
207 void sctp_outq_init(struct sctp_association *asoc, struct sctp_outq *q)
208 {
209 	memset(q, 0, sizeof(struct sctp_outq));
210 
211 	q->asoc = asoc;
212 	INIT_LIST_HEAD(&q->out_chunk_list);
213 	INIT_LIST_HEAD(&q->control_chunk_list);
214 	INIT_LIST_HEAD(&q->retransmit);
215 	INIT_LIST_HEAD(&q->sacked);
216 	INIT_LIST_HEAD(&q->abandoned);
217 
218 	q->empty = 1;
219 }
220 
221 /* Free the outqueue structure and any related pending chunks.
222  */
223 static void __sctp_outq_teardown(struct sctp_outq *q)
224 {
225 	struct sctp_transport *transport;
226 	struct list_head *lchunk, *temp;
227 	struct sctp_chunk *chunk, *tmp;
228 
229 	/* Throw away unacknowledged chunks. */
230 	list_for_each_entry(transport, &q->asoc->peer.transport_addr_list,
231 			transports) {
232 		while ((lchunk = sctp_list_dequeue(&transport->transmitted)) != NULL) {
233 			chunk = list_entry(lchunk, struct sctp_chunk,
234 					   transmitted_list);
235 			/* Mark as part of a failed message. */
236 			sctp_chunk_fail(chunk, q->error);
237 			sctp_chunk_free(chunk);
238 		}
239 	}
240 
241 	/* Throw away chunks that have been gap ACKed.  */
242 	list_for_each_safe(lchunk, temp, &q->sacked) {
243 		list_del_init(lchunk);
244 		chunk = list_entry(lchunk, struct sctp_chunk,
245 				   transmitted_list);
246 		sctp_chunk_fail(chunk, q->error);
247 		sctp_chunk_free(chunk);
248 	}
249 
250 	/* Throw away any chunks in the retransmit queue. */
251 	list_for_each_safe(lchunk, temp, &q->retransmit) {
252 		list_del_init(lchunk);
253 		chunk = list_entry(lchunk, struct sctp_chunk,
254 				   transmitted_list);
255 		sctp_chunk_fail(chunk, q->error);
256 		sctp_chunk_free(chunk);
257 	}
258 
259 	/* Throw away any chunks that are in the abandoned queue. */
260 	list_for_each_safe(lchunk, temp, &q->abandoned) {
261 		list_del_init(lchunk);
262 		chunk = list_entry(lchunk, struct sctp_chunk,
263 				   transmitted_list);
264 		sctp_chunk_fail(chunk, q->error);
265 		sctp_chunk_free(chunk);
266 	}
267 
268 	/* Throw away any leftover data chunks. */
269 	while ((chunk = sctp_outq_dequeue_data(q)) != NULL) {
270 
271 		/* Mark as send failure. */
272 		sctp_chunk_fail(chunk, q->error);
273 		sctp_chunk_free(chunk);
274 	}
275 
276 	/* Throw away any leftover control chunks. */
277 	list_for_each_entry_safe(chunk, tmp, &q->control_chunk_list, list) {
278 		list_del_init(&chunk->list);
279 		sctp_chunk_free(chunk);
280 	}
281 }
282 
283 void sctp_outq_teardown(struct sctp_outq *q)
284 {
285 	__sctp_outq_teardown(q);
286 	sctp_outq_init(q->asoc, q);
287 }
288 
289 /* Free the outqueue structure and any related pending chunks.  */
290 void sctp_outq_free(struct sctp_outq *q)
291 {
292 	/* Throw away leftover chunks. */
293 	__sctp_outq_teardown(q);
294 }
295 
296 /* Put a new chunk in an sctp_outq.  */
297 int sctp_outq_tail(struct sctp_outq *q, struct sctp_chunk *chunk)
298 {
299 	struct net *net = sock_net(q->asoc->base.sk);
300 	int error = 0;
301 
302 	pr_debug("%s: outq:%p, chunk:%p[%s]\n", __func__, q, chunk,
303 		 chunk && chunk->chunk_hdr ?
304 		 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) :
305 		 "illegal chunk");
306 
307 	/* If it is data, queue it up, otherwise, send it
308 	 * immediately.
309 	 */
310 	if (sctp_chunk_is_data(chunk)) {
311 		/* Is it OK to queue data chunks?  */
312 		/* From 9. Termination of Association
313 		 *
314 		 * When either endpoint performs a shutdown, the
315 		 * association on each peer will stop accepting new
316 		 * data from its user and only deliver data in queue
317 		 * at the time of sending or receiving the SHUTDOWN
318 		 * chunk.
319 		 */
320 		switch (q->asoc->state) {
321 		case SCTP_STATE_CLOSED:
322 		case SCTP_STATE_SHUTDOWN_PENDING:
323 		case SCTP_STATE_SHUTDOWN_SENT:
324 		case SCTP_STATE_SHUTDOWN_RECEIVED:
325 		case SCTP_STATE_SHUTDOWN_ACK_SENT:
326 			/* Cannot send after transport endpoint shutdown */
327 			error = -ESHUTDOWN;
328 			break;
329 
330 		default:
331 			pr_debug("%s: outqueueing: outq:%p, chunk:%p[%s])\n",
332 				 __func__, q, chunk, chunk && chunk->chunk_hdr ?
333 				 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) :
334 				 "illegal chunk");
335 
336 			sctp_outq_tail_data(q, chunk);
337 			if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED)
338 				SCTP_INC_STATS(net, SCTP_MIB_OUTUNORDERCHUNKS);
339 			else
340 				SCTP_INC_STATS(net, SCTP_MIB_OUTORDERCHUNKS);
341 			q->empty = 0;
342 			break;
343 		}
344 	} else {
345 		list_add_tail(&chunk->list, &q->control_chunk_list);
346 		SCTP_INC_STATS(net, SCTP_MIB_OUTCTRLCHUNKS);
347 	}
348 
349 	if (error < 0)
350 		return error;
351 
352 	if (!q->cork)
353 		error = sctp_outq_flush(q, 0);
354 
355 	return error;
356 }
357 
358 /* Insert a chunk into the sorted list based on the TSNs.  The retransmit list
359  * and the abandoned list are in ascending order.
360  */
361 static void sctp_insert_list(struct list_head *head, struct list_head *new)
362 {
363 	struct list_head *pos;
364 	struct sctp_chunk *nchunk, *lchunk;
365 	__u32 ntsn, ltsn;
366 	int done = 0;
367 
368 	nchunk = list_entry(new, struct sctp_chunk, transmitted_list);
369 	ntsn = ntohl(nchunk->subh.data_hdr->tsn);
370 
371 	list_for_each(pos, head) {
372 		lchunk = list_entry(pos, struct sctp_chunk, transmitted_list);
373 		ltsn = ntohl(lchunk->subh.data_hdr->tsn);
374 		if (TSN_lt(ntsn, ltsn)) {
375 			list_add(new, pos->prev);
376 			done = 1;
377 			break;
378 		}
379 	}
380 	if (!done)
381 		list_add_tail(new, head);
382 }
383 
384 /* Mark all the eligible packets on a transport for retransmission.  */
385 void sctp_retransmit_mark(struct sctp_outq *q,
386 			  struct sctp_transport *transport,
387 			  __u8 reason)
388 {
389 	struct list_head *lchunk, *ltemp;
390 	struct sctp_chunk *chunk;
391 
392 	/* Walk through the specified transmitted queue.  */
393 	list_for_each_safe(lchunk, ltemp, &transport->transmitted) {
394 		chunk = list_entry(lchunk, struct sctp_chunk,
395 				   transmitted_list);
396 
397 		/* If the chunk is abandoned, move it to abandoned list. */
398 		if (sctp_chunk_abandoned(chunk)) {
399 			list_del_init(lchunk);
400 			sctp_insert_list(&q->abandoned, lchunk);
401 
402 			/* If this chunk has not been previousely acked,
403 			 * stop considering it 'outstanding'.  Our peer
404 			 * will most likely never see it since it will
405 			 * not be retransmitted
406 			 */
407 			if (!chunk->tsn_gap_acked) {
408 				if (chunk->transport)
409 					chunk->transport->flight_size -=
410 							sctp_data_size(chunk);
411 				q->outstanding_bytes -= sctp_data_size(chunk);
412 				q->asoc->peer.rwnd += sctp_data_size(chunk);
413 			}
414 			continue;
415 		}
416 
417 		/* If we are doing  retransmission due to a timeout or pmtu
418 		 * discovery, only the  chunks that are not yet acked should
419 		 * be added to the retransmit queue.
420 		 */
421 		if ((reason == SCTP_RTXR_FAST_RTX  &&
422 			    (chunk->fast_retransmit == SCTP_NEED_FRTX)) ||
423 		    (reason != SCTP_RTXR_FAST_RTX  && !chunk->tsn_gap_acked)) {
424 			/* RFC 2960 6.2.1 Processing a Received SACK
425 			 *
426 			 * C) Any time a DATA chunk is marked for
427 			 * retransmission (via either T3-rtx timer expiration
428 			 * (Section 6.3.3) or via fast retransmit
429 			 * (Section 7.2.4)), add the data size of those
430 			 * chunks to the rwnd.
431 			 */
432 			q->asoc->peer.rwnd += sctp_data_size(chunk);
433 			q->outstanding_bytes -= sctp_data_size(chunk);
434 			if (chunk->transport)
435 				transport->flight_size -= sctp_data_size(chunk);
436 
437 			/* sctpimpguide-05 Section 2.8.2
438 			 * M5) If a T3-rtx timer expires, the
439 			 * 'TSN.Missing.Report' of all affected TSNs is set
440 			 * to 0.
441 			 */
442 			chunk->tsn_missing_report = 0;
443 
444 			/* If a chunk that is being used for RTT measurement
445 			 * has to be retransmitted, we cannot use this chunk
446 			 * anymore for RTT measurements. Reset rto_pending so
447 			 * that a new RTT measurement is started when a new
448 			 * data chunk is sent.
449 			 */
450 			if (chunk->rtt_in_progress) {
451 				chunk->rtt_in_progress = 0;
452 				transport->rto_pending = 0;
453 			}
454 
455 			/* Move the chunk to the retransmit queue. The chunks
456 			 * on the retransmit queue are always kept in order.
457 			 */
458 			list_del_init(lchunk);
459 			sctp_insert_list(&q->retransmit, lchunk);
460 		}
461 	}
462 
463 	pr_debug("%s: transport:%p, reason:%d, cwnd:%d, ssthresh:%d, "
464 		 "flight_size:%d, pba:%d\n", __func__, transport, reason,
465 		 transport->cwnd, transport->ssthresh, transport->flight_size,
466 		 transport->partial_bytes_acked);
467 }
468 
469 /* Mark all the eligible packets on a transport for retransmission and force
470  * one packet out.
471  */
472 void sctp_retransmit(struct sctp_outq *q, struct sctp_transport *transport,
473 		     sctp_retransmit_reason_t reason)
474 {
475 	struct net *net = sock_net(q->asoc->base.sk);
476 	int error = 0;
477 
478 	switch(reason) {
479 	case SCTP_RTXR_T3_RTX:
480 		SCTP_INC_STATS(net, SCTP_MIB_T3_RETRANSMITS);
481 		sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_T3_RTX);
482 		/* Update the retran path if the T3-rtx timer has expired for
483 		 * the current retran path.
484 		 */
485 		if (transport == transport->asoc->peer.retran_path)
486 			sctp_assoc_update_retran_path(transport->asoc);
487 		transport->asoc->rtx_data_chunks +=
488 			transport->asoc->unack_data;
489 		break;
490 	case SCTP_RTXR_FAST_RTX:
491 		SCTP_INC_STATS(net, SCTP_MIB_FAST_RETRANSMITS);
492 		sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_FAST_RTX);
493 		q->fast_rtx = 1;
494 		break;
495 	case SCTP_RTXR_PMTUD:
496 		SCTP_INC_STATS(net, SCTP_MIB_PMTUD_RETRANSMITS);
497 		break;
498 	case SCTP_RTXR_T1_RTX:
499 		SCTP_INC_STATS(net, SCTP_MIB_T1_RETRANSMITS);
500 		transport->asoc->init_retries++;
501 		break;
502 	default:
503 		BUG();
504 	}
505 
506 	sctp_retransmit_mark(q, transport, reason);
507 
508 	/* PR-SCTP A5) Any time the T3-rtx timer expires, on any destination,
509 	 * the sender SHOULD try to advance the "Advanced.Peer.Ack.Point" by
510 	 * following the procedures outlined in C1 - C5.
511 	 */
512 	if (reason == SCTP_RTXR_T3_RTX)
513 		sctp_generate_fwdtsn(q, q->asoc->ctsn_ack_point);
514 
515 	/* Flush the queues only on timeout, since fast_rtx is only
516 	 * triggered during sack processing and the queue
517 	 * will be flushed at the end.
518 	 */
519 	if (reason != SCTP_RTXR_FAST_RTX)
520 		error = sctp_outq_flush(q, /* rtx_timeout */ 1);
521 
522 	if (error)
523 		q->asoc->base.sk->sk_err = -error;
524 }
525 
526 /*
527  * Transmit DATA chunks on the retransmit queue.  Upon return from
528  * sctp_outq_flush_rtx() the packet 'pkt' may contain chunks which
529  * need to be transmitted by the caller.
530  * We assume that pkt->transport has already been set.
531  *
532  * The return value is a normal kernel error return value.
533  */
534 static int sctp_outq_flush_rtx(struct sctp_outq *q, struct sctp_packet *pkt,
535 			       int rtx_timeout, int *start_timer)
536 {
537 	struct list_head *lqueue;
538 	struct sctp_transport *transport = pkt->transport;
539 	sctp_xmit_t status;
540 	struct sctp_chunk *chunk, *chunk1;
541 	int fast_rtx;
542 	int error = 0;
543 	int timer = 0;
544 	int done = 0;
545 
546 	lqueue = &q->retransmit;
547 	fast_rtx = q->fast_rtx;
548 
549 	/* This loop handles time-out retransmissions, fast retransmissions,
550 	 * and retransmissions due to opening of whindow.
551 	 *
552 	 * RFC 2960 6.3.3 Handle T3-rtx Expiration
553 	 *
554 	 * E3) Determine how many of the earliest (i.e., lowest TSN)
555 	 * outstanding DATA chunks for the address for which the
556 	 * T3-rtx has expired will fit into a single packet, subject
557 	 * to the MTU constraint for the path corresponding to the
558 	 * destination transport address to which the retransmission
559 	 * is being sent (this may be different from the address for
560 	 * which the timer expires [see Section 6.4]). Call this value
561 	 * K. Bundle and retransmit those K DATA chunks in a single
562 	 * packet to the destination endpoint.
563 	 *
564 	 * [Just to be painfully clear, if we are retransmitting
565 	 * because a timeout just happened, we should send only ONE
566 	 * packet of retransmitted data.]
567 	 *
568 	 * For fast retransmissions we also send only ONE packet.  However,
569 	 * if we are just flushing the queue due to open window, we'll
570 	 * try to send as much as possible.
571 	 */
572 	list_for_each_entry_safe(chunk, chunk1, lqueue, transmitted_list) {
573 		/* If the chunk is abandoned, move it to abandoned list. */
574 		if (sctp_chunk_abandoned(chunk)) {
575 			list_del_init(&chunk->transmitted_list);
576 			sctp_insert_list(&q->abandoned,
577 					 &chunk->transmitted_list);
578 			continue;
579 		}
580 
581 		/* Make sure that Gap Acked TSNs are not retransmitted.  A
582 		 * simple approach is just to move such TSNs out of the
583 		 * way and into a 'transmitted' queue and skip to the
584 		 * next chunk.
585 		 */
586 		if (chunk->tsn_gap_acked) {
587 			list_move_tail(&chunk->transmitted_list,
588 				       &transport->transmitted);
589 			continue;
590 		}
591 
592 		/* If we are doing fast retransmit, ignore non-fast_rtransmit
593 		 * chunks
594 		 */
595 		if (fast_rtx && !chunk->fast_retransmit)
596 			continue;
597 
598 redo:
599 		/* Attempt to append this chunk to the packet. */
600 		status = sctp_packet_append_chunk(pkt, chunk);
601 
602 		switch (status) {
603 		case SCTP_XMIT_PMTU_FULL:
604 			if (!pkt->has_data && !pkt->has_cookie_echo) {
605 				/* If this packet did not contain DATA then
606 				 * retransmission did not happen, so do it
607 				 * again.  We'll ignore the error here since
608 				 * control chunks are already freed so there
609 				 * is nothing we can do.
610 				 */
611 				sctp_packet_transmit(pkt);
612 				goto redo;
613 			}
614 
615 			/* Send this packet.  */
616 			error = sctp_packet_transmit(pkt);
617 
618 			/* If we are retransmitting, we should only
619 			 * send a single packet.
620 			 * Otherwise, try appending this chunk again.
621 			 */
622 			if (rtx_timeout || fast_rtx)
623 				done = 1;
624 			else
625 				goto redo;
626 
627 			/* Bundle next chunk in the next round.  */
628 			break;
629 
630 		case SCTP_XMIT_RWND_FULL:
631 			/* Send this packet. */
632 			error = sctp_packet_transmit(pkt);
633 
634 			/* Stop sending DATA as there is no more room
635 			 * at the receiver.
636 			 */
637 			done = 1;
638 			break;
639 
640 		case SCTP_XMIT_NAGLE_DELAY:
641 			/* Send this packet. */
642 			error = sctp_packet_transmit(pkt);
643 
644 			/* Stop sending DATA because of nagle delay. */
645 			done = 1;
646 			break;
647 
648 		default:
649 			/* The append was successful, so add this chunk to
650 			 * the transmitted list.
651 			 */
652 			list_move_tail(&chunk->transmitted_list,
653 				       &transport->transmitted);
654 
655 			/* Mark the chunk as ineligible for fast retransmit
656 			 * after it is retransmitted.
657 			 */
658 			if (chunk->fast_retransmit == SCTP_NEED_FRTX)
659 				chunk->fast_retransmit = SCTP_DONT_FRTX;
660 
661 			q->empty = 0;
662 			q->asoc->stats.rtxchunks++;
663 			break;
664 		}
665 
666 		/* Set the timer if there were no errors */
667 		if (!error && !timer)
668 			timer = 1;
669 
670 		if (done)
671 			break;
672 	}
673 
674 	/* If we are here due to a retransmit timeout or a fast
675 	 * retransmit and if there are any chunks left in the retransmit
676 	 * queue that could not fit in the PMTU sized packet, they need
677 	 * to be marked as ineligible for a subsequent fast retransmit.
678 	 */
679 	if (rtx_timeout || fast_rtx) {
680 		list_for_each_entry(chunk1, lqueue, transmitted_list) {
681 			if (chunk1->fast_retransmit == SCTP_NEED_FRTX)
682 				chunk1->fast_retransmit = SCTP_DONT_FRTX;
683 		}
684 	}
685 
686 	*start_timer = timer;
687 
688 	/* Clear fast retransmit hint */
689 	if (fast_rtx)
690 		q->fast_rtx = 0;
691 
692 	return error;
693 }
694 
695 /* Cork the outqueue so queued chunks are really queued. */
696 int sctp_outq_uncork(struct sctp_outq *q)
697 {
698 	if (q->cork)
699 		q->cork = 0;
700 
701 	return sctp_outq_flush(q, 0);
702 }
703 
704 
705 /*
706  * Try to flush an outqueue.
707  *
708  * Description: Send everything in q which we legally can, subject to
709  * congestion limitations.
710  * * Note: This function can be called from multiple contexts so appropriate
711  * locking concerns must be made.  Today we use the sock lock to protect
712  * this function.
713  */
714 static int sctp_outq_flush(struct sctp_outq *q, int rtx_timeout)
715 {
716 	struct sctp_packet *packet;
717 	struct sctp_packet singleton;
718 	struct sctp_association *asoc = q->asoc;
719 	__u16 sport = asoc->base.bind_addr.port;
720 	__u16 dport = asoc->peer.port;
721 	__u32 vtag = asoc->peer.i.init_tag;
722 	struct sctp_transport *transport = NULL;
723 	struct sctp_transport *new_transport;
724 	struct sctp_chunk *chunk, *tmp;
725 	sctp_xmit_t status;
726 	int error = 0;
727 	int start_timer = 0;
728 	int one_packet = 0;
729 
730 	/* These transports have chunks to send. */
731 	struct list_head transport_list;
732 	struct list_head *ltransport;
733 
734 	INIT_LIST_HEAD(&transport_list);
735 	packet = NULL;
736 
737 	/*
738 	 * 6.10 Bundling
739 	 *   ...
740 	 *   When bundling control chunks with DATA chunks, an
741 	 *   endpoint MUST place control chunks first in the outbound
742 	 *   SCTP packet.  The transmitter MUST transmit DATA chunks
743 	 *   within a SCTP packet in increasing order of TSN.
744 	 *   ...
745 	 */
746 
747 	list_for_each_entry_safe(chunk, tmp, &q->control_chunk_list, list) {
748 		/* RFC 5061, 5.3
749 		 * F1) This means that until such time as the ASCONF
750 		 * containing the add is acknowledged, the sender MUST
751 		 * NOT use the new IP address as a source for ANY SCTP
752 		 * packet except on carrying an ASCONF Chunk.
753 		 */
754 		if (asoc->src_out_of_asoc_ok &&
755 		    chunk->chunk_hdr->type != SCTP_CID_ASCONF)
756 			continue;
757 
758 		list_del_init(&chunk->list);
759 
760 		/* Pick the right transport to use. */
761 		new_transport = chunk->transport;
762 
763 		if (!new_transport) {
764 			/*
765 			 * If we have a prior transport pointer, see if
766 			 * the destination address of the chunk
767 			 * matches the destination address of the
768 			 * current transport.  If not a match, then
769 			 * try to look up the transport with a given
770 			 * destination address.  We do this because
771 			 * after processing ASCONFs, we may have new
772 			 * transports created.
773 			 */
774 			if (transport &&
775 			    sctp_cmp_addr_exact(&chunk->dest,
776 						&transport->ipaddr))
777 					new_transport = transport;
778 			else
779 				new_transport = sctp_assoc_lookup_paddr(asoc,
780 								&chunk->dest);
781 
782 			/* if we still don't have a new transport, then
783 			 * use the current active path.
784 			 */
785 			if (!new_transport)
786 				new_transport = asoc->peer.active_path;
787 		} else if ((new_transport->state == SCTP_INACTIVE) ||
788 			   (new_transport->state == SCTP_UNCONFIRMED) ||
789 			   (new_transport->state == SCTP_PF)) {
790 			/* If the chunk is Heartbeat or Heartbeat Ack,
791 			 * send it to chunk->transport, even if it's
792 			 * inactive.
793 			 *
794 			 * 3.3.6 Heartbeat Acknowledgement:
795 			 * ...
796 			 * A HEARTBEAT ACK is always sent to the source IP
797 			 * address of the IP datagram containing the
798 			 * HEARTBEAT chunk to which this ack is responding.
799 			 * ...
800 			 *
801 			 * ASCONF_ACKs also must be sent to the source.
802 			 */
803 			if (chunk->chunk_hdr->type != SCTP_CID_HEARTBEAT &&
804 			    chunk->chunk_hdr->type != SCTP_CID_HEARTBEAT_ACK &&
805 			    chunk->chunk_hdr->type != SCTP_CID_ASCONF_ACK)
806 				new_transport = asoc->peer.active_path;
807 		}
808 
809 		/* Are we switching transports?
810 		 * Take care of transport locks.
811 		 */
812 		if (new_transport != transport) {
813 			transport = new_transport;
814 			if (list_empty(&transport->send_ready)) {
815 				list_add_tail(&transport->send_ready,
816 					      &transport_list);
817 			}
818 			packet = &transport->packet;
819 			sctp_packet_config(packet, vtag,
820 					   asoc->peer.ecn_capable);
821 		}
822 
823 		switch (chunk->chunk_hdr->type) {
824 		/*
825 		 * 6.10 Bundling
826 		 *   ...
827 		 *   An endpoint MUST NOT bundle INIT, INIT ACK or SHUTDOWN
828 		 *   COMPLETE with any other chunks.  [Send them immediately.]
829 		 */
830 		case SCTP_CID_INIT:
831 		case SCTP_CID_INIT_ACK:
832 		case SCTP_CID_SHUTDOWN_COMPLETE:
833 			sctp_packet_init(&singleton, transport, sport, dport);
834 			sctp_packet_config(&singleton, vtag, 0);
835 			sctp_packet_append_chunk(&singleton, chunk);
836 			error = sctp_packet_transmit(&singleton);
837 			if (error < 0)
838 				return error;
839 			break;
840 
841 		case SCTP_CID_ABORT:
842 			if (sctp_test_T_bit(chunk)) {
843 				packet->vtag = asoc->c.my_vtag;
844 			}
845 		/* The following chunks are "response" chunks, i.e.
846 		 * they are generated in response to something we
847 		 * received.  If we are sending these, then we can
848 		 * send only 1 packet containing these chunks.
849 		 */
850 		case SCTP_CID_HEARTBEAT_ACK:
851 		case SCTP_CID_SHUTDOWN_ACK:
852 		case SCTP_CID_COOKIE_ACK:
853 		case SCTP_CID_COOKIE_ECHO:
854 		case SCTP_CID_ERROR:
855 		case SCTP_CID_ECN_CWR:
856 		case SCTP_CID_ASCONF_ACK:
857 			one_packet = 1;
858 			/* Fall through */
859 
860 		case SCTP_CID_SACK:
861 		case SCTP_CID_HEARTBEAT:
862 		case SCTP_CID_SHUTDOWN:
863 		case SCTP_CID_ECN_ECNE:
864 		case SCTP_CID_ASCONF:
865 		case SCTP_CID_FWD_TSN:
866 			status = sctp_packet_transmit_chunk(packet, chunk,
867 							    one_packet);
868 			if (status  != SCTP_XMIT_OK) {
869 				/* put the chunk back */
870 				list_add(&chunk->list, &q->control_chunk_list);
871 			} else {
872 				asoc->stats.octrlchunks++;
873 				/* PR-SCTP C5) If a FORWARD TSN is sent, the
874 				 * sender MUST assure that at least one T3-rtx
875 				 * timer is running.
876 				 */
877 				if (chunk->chunk_hdr->type == SCTP_CID_FWD_TSN)
878 					sctp_transport_reset_timers(transport);
879 			}
880 			break;
881 
882 		default:
883 			/* We built a chunk with an illegal type! */
884 			BUG();
885 		}
886 	}
887 
888 	if (q->asoc->src_out_of_asoc_ok)
889 		goto sctp_flush_out;
890 
891 	/* Is it OK to send data chunks?  */
892 	switch (asoc->state) {
893 	case SCTP_STATE_COOKIE_ECHOED:
894 		/* Only allow bundling when this packet has a COOKIE-ECHO
895 		 * chunk.
896 		 */
897 		if (!packet || !packet->has_cookie_echo)
898 			break;
899 
900 		/* fallthru */
901 	case SCTP_STATE_ESTABLISHED:
902 	case SCTP_STATE_SHUTDOWN_PENDING:
903 	case SCTP_STATE_SHUTDOWN_RECEIVED:
904 		/*
905 		 * RFC 2960 6.1  Transmission of DATA Chunks
906 		 *
907 		 * C) When the time comes for the sender to transmit,
908 		 * before sending new DATA chunks, the sender MUST
909 		 * first transmit any outstanding DATA chunks which
910 		 * are marked for retransmission (limited by the
911 		 * current cwnd).
912 		 */
913 		if (!list_empty(&q->retransmit)) {
914 			if (asoc->peer.retran_path->state == SCTP_UNCONFIRMED)
915 				goto sctp_flush_out;
916 			if (transport == asoc->peer.retran_path)
917 				goto retran;
918 
919 			/* Switch transports & prepare the packet.  */
920 
921 			transport = asoc->peer.retran_path;
922 
923 			if (list_empty(&transport->send_ready)) {
924 				list_add_tail(&transport->send_ready,
925 					      &transport_list);
926 			}
927 
928 			packet = &transport->packet;
929 			sctp_packet_config(packet, vtag,
930 					   asoc->peer.ecn_capable);
931 		retran:
932 			error = sctp_outq_flush_rtx(q, packet,
933 						    rtx_timeout, &start_timer);
934 
935 			if (start_timer)
936 				sctp_transport_reset_timers(transport);
937 
938 			/* This can happen on COOKIE-ECHO resend.  Only
939 			 * one chunk can get bundled with a COOKIE-ECHO.
940 			 */
941 			if (packet->has_cookie_echo)
942 				goto sctp_flush_out;
943 
944 			/* Don't send new data if there is still data
945 			 * waiting to retransmit.
946 			 */
947 			if (!list_empty(&q->retransmit))
948 				goto sctp_flush_out;
949 		}
950 
951 		/* Apply Max.Burst limitation to the current transport in
952 		 * case it will be used for new data.  We are going to
953 		 * rest it before we return, but we want to apply the limit
954 		 * to the currently queued data.
955 		 */
956 		if (transport)
957 			sctp_transport_burst_limited(transport);
958 
959 		/* Finally, transmit new packets.  */
960 		while ((chunk = sctp_outq_dequeue_data(q)) != NULL) {
961 			/* RFC 2960 6.5 Every DATA chunk MUST carry a valid
962 			 * stream identifier.
963 			 */
964 			if (chunk->sinfo.sinfo_stream >=
965 			    asoc->c.sinit_num_ostreams) {
966 
967 				/* Mark as failed send. */
968 				sctp_chunk_fail(chunk, SCTP_ERROR_INV_STRM);
969 				sctp_chunk_free(chunk);
970 				continue;
971 			}
972 
973 			/* Has this chunk expired? */
974 			if (sctp_chunk_abandoned(chunk)) {
975 				sctp_chunk_fail(chunk, 0);
976 				sctp_chunk_free(chunk);
977 				continue;
978 			}
979 
980 			/* If there is a specified transport, use it.
981 			 * Otherwise, we want to use the active path.
982 			 */
983 			new_transport = chunk->transport;
984 			if (!new_transport ||
985 			    ((new_transport->state == SCTP_INACTIVE) ||
986 			     (new_transport->state == SCTP_UNCONFIRMED) ||
987 			     (new_transport->state == SCTP_PF)))
988 				new_transport = asoc->peer.active_path;
989 			if (new_transport->state == SCTP_UNCONFIRMED)
990 				continue;
991 
992 			/* Change packets if necessary.  */
993 			if (new_transport != transport) {
994 				transport = new_transport;
995 
996 				/* Schedule to have this transport's
997 				 * packet flushed.
998 				 */
999 				if (list_empty(&transport->send_ready)) {
1000 					list_add_tail(&transport->send_ready,
1001 						      &transport_list);
1002 				}
1003 
1004 				packet = &transport->packet;
1005 				sctp_packet_config(packet, vtag,
1006 						   asoc->peer.ecn_capable);
1007 				/* We've switched transports, so apply the
1008 				 * Burst limit to the new transport.
1009 				 */
1010 				sctp_transport_burst_limited(transport);
1011 			}
1012 
1013 			pr_debug("%s: outq:%p, chunk:%p[%s], tx-tsn:0x%x skb->head:%p "
1014 				 "skb->users:%d\n",
1015 				 __func__, q, chunk, chunk && chunk->chunk_hdr ?
1016 				 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) :
1017 				 "illegal chunk", ntohl(chunk->subh.data_hdr->tsn),
1018 				 chunk->skb ? chunk->skb->head : NULL, chunk->skb ?
1019 				 atomic_read(&chunk->skb->users) : -1);
1020 
1021 			/* Add the chunk to the packet.  */
1022 			status = sctp_packet_transmit_chunk(packet, chunk, 0);
1023 
1024 			switch (status) {
1025 			case SCTP_XMIT_PMTU_FULL:
1026 			case SCTP_XMIT_RWND_FULL:
1027 			case SCTP_XMIT_NAGLE_DELAY:
1028 				/* We could not append this chunk, so put
1029 				 * the chunk back on the output queue.
1030 				 */
1031 				pr_debug("%s: could not transmit tsn:0x%x, status:%d\n",
1032 					 __func__, ntohl(chunk->subh.data_hdr->tsn),
1033 					 status);
1034 
1035 				sctp_outq_head_data(q, chunk);
1036 				goto sctp_flush_out;
1037 				break;
1038 
1039 			case SCTP_XMIT_OK:
1040 				/* The sender is in the SHUTDOWN-PENDING state,
1041 				 * The sender MAY set the I-bit in the DATA
1042 				 * chunk header.
1043 				 */
1044 				if (asoc->state == SCTP_STATE_SHUTDOWN_PENDING)
1045 					chunk->chunk_hdr->flags |= SCTP_DATA_SACK_IMM;
1046 				if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED)
1047 					asoc->stats.ouodchunks++;
1048 				else
1049 					asoc->stats.oodchunks++;
1050 
1051 				break;
1052 
1053 			default:
1054 				BUG();
1055 			}
1056 
1057 			/* BUG: We assume that the sctp_packet_transmit()
1058 			 * call below will succeed all the time and add the
1059 			 * chunk to the transmitted list and restart the
1060 			 * timers.
1061 			 * It is possible that the call can fail under OOM
1062 			 * conditions.
1063 			 *
1064 			 * Is this really a problem?  Won't this behave
1065 			 * like a lost TSN?
1066 			 */
1067 			list_add_tail(&chunk->transmitted_list,
1068 				      &transport->transmitted);
1069 
1070 			sctp_transport_reset_timers(transport);
1071 
1072 			q->empty = 0;
1073 
1074 			/* Only let one DATA chunk get bundled with a
1075 			 * COOKIE-ECHO chunk.
1076 			 */
1077 			if (packet->has_cookie_echo)
1078 				goto sctp_flush_out;
1079 		}
1080 		break;
1081 
1082 	default:
1083 		/* Do nothing.  */
1084 		break;
1085 	}
1086 
1087 sctp_flush_out:
1088 
1089 	/* Before returning, examine all the transports touched in
1090 	 * this call.  Right now, we bluntly force clear all the
1091 	 * transports.  Things might change after we implement Nagle.
1092 	 * But such an examination is still required.
1093 	 *
1094 	 * --xguo
1095 	 */
1096 	while ((ltransport = sctp_list_dequeue(&transport_list)) != NULL ) {
1097 		struct sctp_transport *t = list_entry(ltransport,
1098 						      struct sctp_transport,
1099 						      send_ready);
1100 		packet = &t->packet;
1101 		if (!sctp_packet_empty(packet))
1102 			error = sctp_packet_transmit(packet);
1103 
1104 		/* Clear the burst limited state, if any */
1105 		sctp_transport_burst_reset(t);
1106 	}
1107 
1108 	return error;
1109 }
1110 
1111 /* Update unack_data based on the incoming SACK chunk */
1112 static void sctp_sack_update_unack_data(struct sctp_association *assoc,
1113 					struct sctp_sackhdr *sack)
1114 {
1115 	sctp_sack_variable_t *frags;
1116 	__u16 unack_data;
1117 	int i;
1118 
1119 	unack_data = assoc->next_tsn - assoc->ctsn_ack_point - 1;
1120 
1121 	frags = sack->variable;
1122 	for (i = 0; i < ntohs(sack->num_gap_ack_blocks); i++) {
1123 		unack_data -= ((ntohs(frags[i].gab.end) -
1124 				ntohs(frags[i].gab.start) + 1));
1125 	}
1126 
1127 	assoc->unack_data = unack_data;
1128 }
1129 
1130 /* This is where we REALLY process a SACK.
1131  *
1132  * Process the SACK against the outqueue.  Mostly, this just frees
1133  * things off the transmitted queue.
1134  */
1135 int sctp_outq_sack(struct sctp_outq *q, struct sctp_chunk *chunk)
1136 {
1137 	struct sctp_association *asoc = q->asoc;
1138 	struct sctp_sackhdr *sack = chunk->subh.sack_hdr;
1139 	struct sctp_transport *transport;
1140 	struct sctp_chunk *tchunk = NULL;
1141 	struct list_head *lchunk, *transport_list, *temp;
1142 	sctp_sack_variable_t *frags = sack->variable;
1143 	__u32 sack_ctsn, ctsn, tsn;
1144 	__u32 highest_tsn, highest_new_tsn;
1145 	__u32 sack_a_rwnd;
1146 	unsigned int outstanding;
1147 	struct sctp_transport *primary = asoc->peer.primary_path;
1148 	int count_of_newacks = 0;
1149 	int gap_ack_blocks;
1150 	u8 accum_moved = 0;
1151 
1152 	/* Grab the association's destination address list. */
1153 	transport_list = &asoc->peer.transport_addr_list;
1154 
1155 	sack_ctsn = ntohl(sack->cum_tsn_ack);
1156 	gap_ack_blocks = ntohs(sack->num_gap_ack_blocks);
1157 	asoc->stats.gapcnt += gap_ack_blocks;
1158 	/*
1159 	 * SFR-CACC algorithm:
1160 	 * On receipt of a SACK the sender SHOULD execute the
1161 	 * following statements.
1162 	 *
1163 	 * 1) If the cumulative ack in the SACK passes next tsn_at_change
1164 	 * on the current primary, the CHANGEOVER_ACTIVE flag SHOULD be
1165 	 * cleared. The CYCLING_CHANGEOVER flag SHOULD also be cleared for
1166 	 * all destinations.
1167 	 * 2) If the SACK contains gap acks and the flag CHANGEOVER_ACTIVE
1168 	 * is set the receiver of the SACK MUST take the following actions:
1169 	 *
1170 	 * A) Initialize the cacc_saw_newack to 0 for all destination
1171 	 * addresses.
1172 	 *
1173 	 * Only bother if changeover_active is set. Otherwise, this is
1174 	 * totally suboptimal to do on every SACK.
1175 	 */
1176 	if (primary->cacc.changeover_active) {
1177 		u8 clear_cycling = 0;
1178 
1179 		if (TSN_lte(primary->cacc.next_tsn_at_change, sack_ctsn)) {
1180 			primary->cacc.changeover_active = 0;
1181 			clear_cycling = 1;
1182 		}
1183 
1184 		if (clear_cycling || gap_ack_blocks) {
1185 			list_for_each_entry(transport, transport_list,
1186 					transports) {
1187 				if (clear_cycling)
1188 					transport->cacc.cycling_changeover = 0;
1189 				if (gap_ack_blocks)
1190 					transport->cacc.cacc_saw_newack = 0;
1191 			}
1192 		}
1193 	}
1194 
1195 	/* Get the highest TSN in the sack. */
1196 	highest_tsn = sack_ctsn;
1197 	if (gap_ack_blocks)
1198 		highest_tsn += ntohs(frags[gap_ack_blocks - 1].gab.end);
1199 
1200 	if (TSN_lt(asoc->highest_sacked, highest_tsn))
1201 		asoc->highest_sacked = highest_tsn;
1202 
1203 	highest_new_tsn = sack_ctsn;
1204 
1205 	/* Run through the retransmit queue.  Credit bytes received
1206 	 * and free those chunks that we can.
1207 	 */
1208 	sctp_check_transmitted(q, &q->retransmit, NULL, NULL, sack, &highest_new_tsn);
1209 
1210 	/* Run through the transmitted queue.
1211 	 * Credit bytes received and free those chunks which we can.
1212 	 *
1213 	 * This is a MASSIVE candidate for optimization.
1214 	 */
1215 	list_for_each_entry(transport, transport_list, transports) {
1216 		sctp_check_transmitted(q, &transport->transmitted,
1217 				       transport, &chunk->source, sack,
1218 				       &highest_new_tsn);
1219 		/*
1220 		 * SFR-CACC algorithm:
1221 		 * C) Let count_of_newacks be the number of
1222 		 * destinations for which cacc_saw_newack is set.
1223 		 */
1224 		if (transport->cacc.cacc_saw_newack)
1225 			count_of_newacks ++;
1226 	}
1227 
1228 	/* Move the Cumulative TSN Ack Point if appropriate.  */
1229 	if (TSN_lt(asoc->ctsn_ack_point, sack_ctsn)) {
1230 		asoc->ctsn_ack_point = sack_ctsn;
1231 		accum_moved = 1;
1232 	}
1233 
1234 	if (gap_ack_blocks) {
1235 
1236 		if (asoc->fast_recovery && accum_moved)
1237 			highest_new_tsn = highest_tsn;
1238 
1239 		list_for_each_entry(transport, transport_list, transports)
1240 			sctp_mark_missing(q, &transport->transmitted, transport,
1241 					  highest_new_tsn, count_of_newacks);
1242 	}
1243 
1244 	/* Update unack_data field in the assoc. */
1245 	sctp_sack_update_unack_data(asoc, sack);
1246 
1247 	ctsn = asoc->ctsn_ack_point;
1248 
1249 	/* Throw away stuff rotting on the sack queue.  */
1250 	list_for_each_safe(lchunk, temp, &q->sacked) {
1251 		tchunk = list_entry(lchunk, struct sctp_chunk,
1252 				    transmitted_list);
1253 		tsn = ntohl(tchunk->subh.data_hdr->tsn);
1254 		if (TSN_lte(tsn, ctsn)) {
1255 			list_del_init(&tchunk->transmitted_list);
1256 			sctp_chunk_free(tchunk);
1257 		}
1258 	}
1259 
1260 	/* ii) Set rwnd equal to the newly received a_rwnd minus the
1261 	 *     number of bytes still outstanding after processing the
1262 	 *     Cumulative TSN Ack and the Gap Ack Blocks.
1263 	 */
1264 
1265 	sack_a_rwnd = ntohl(sack->a_rwnd);
1266 	outstanding = q->outstanding_bytes;
1267 
1268 	if (outstanding < sack_a_rwnd)
1269 		sack_a_rwnd -= outstanding;
1270 	else
1271 		sack_a_rwnd = 0;
1272 
1273 	asoc->peer.rwnd = sack_a_rwnd;
1274 
1275 	sctp_generate_fwdtsn(q, sack_ctsn);
1276 
1277 	pr_debug("%s: sack cumulative tsn ack:0x%x\n", __func__, sack_ctsn);
1278 	pr_debug("%s: cumulative tsn ack of assoc:%p is 0x%x, "
1279 		 "advertised peer ack point:0x%x\n", __func__, asoc, ctsn,
1280 		 asoc->adv_peer_ack_point);
1281 
1282 	/* See if all chunks are acked.
1283 	 * Make sure the empty queue handler will get run later.
1284 	 */
1285 	q->empty = (list_empty(&q->out_chunk_list) &&
1286 		    list_empty(&q->retransmit));
1287 	if (!q->empty)
1288 		goto finish;
1289 
1290 	list_for_each_entry(transport, transport_list, transports) {
1291 		q->empty = q->empty && list_empty(&transport->transmitted);
1292 		if (!q->empty)
1293 			goto finish;
1294 	}
1295 
1296 	pr_debug("%s: sack queue is empty\n", __func__);
1297 finish:
1298 	return q->empty;
1299 }
1300 
1301 /* Is the outqueue empty?  */
1302 int sctp_outq_is_empty(const struct sctp_outq *q)
1303 {
1304 	return q->empty;
1305 }
1306 
1307 /********************************************************************
1308  * 2nd Level Abstractions
1309  ********************************************************************/
1310 
1311 /* Go through a transport's transmitted list or the association's retransmit
1312  * list and move chunks that are acked by the Cumulative TSN Ack to q->sacked.
1313  * The retransmit list will not have an associated transport.
1314  *
1315  * I added coherent debug information output.	--xguo
1316  *
1317  * Instead of printing 'sacked' or 'kept' for each TSN on the
1318  * transmitted_queue, we print a range: SACKED: TSN1-TSN2, TSN3, TSN4-TSN5.
1319  * KEPT TSN6-TSN7, etc.
1320  */
1321 static void sctp_check_transmitted(struct sctp_outq *q,
1322 				   struct list_head *transmitted_queue,
1323 				   struct sctp_transport *transport,
1324 				   union sctp_addr *saddr,
1325 				   struct sctp_sackhdr *sack,
1326 				   __u32 *highest_new_tsn_in_sack)
1327 {
1328 	struct list_head *lchunk;
1329 	struct sctp_chunk *tchunk;
1330 	struct list_head tlist;
1331 	__u32 tsn;
1332 	__u32 sack_ctsn;
1333 	__u32 rtt;
1334 	__u8 restart_timer = 0;
1335 	int bytes_acked = 0;
1336 	int migrate_bytes = 0;
1337 	bool forward_progress = false;
1338 
1339 	sack_ctsn = ntohl(sack->cum_tsn_ack);
1340 
1341 	INIT_LIST_HEAD(&tlist);
1342 
1343 	/* The while loop will skip empty transmitted queues. */
1344 	while (NULL != (lchunk = sctp_list_dequeue(transmitted_queue))) {
1345 		tchunk = list_entry(lchunk, struct sctp_chunk,
1346 				    transmitted_list);
1347 
1348 		if (sctp_chunk_abandoned(tchunk)) {
1349 			/* Move the chunk to abandoned list. */
1350 			sctp_insert_list(&q->abandoned, lchunk);
1351 
1352 			/* If this chunk has not been acked, stop
1353 			 * considering it as 'outstanding'.
1354 			 */
1355 			if (!tchunk->tsn_gap_acked) {
1356 				if (tchunk->transport)
1357 					tchunk->transport->flight_size -=
1358 							sctp_data_size(tchunk);
1359 				q->outstanding_bytes -= sctp_data_size(tchunk);
1360 			}
1361 			continue;
1362 		}
1363 
1364 		tsn = ntohl(tchunk->subh.data_hdr->tsn);
1365 		if (sctp_acked(sack, tsn)) {
1366 			/* If this queue is the retransmit queue, the
1367 			 * retransmit timer has already reclaimed
1368 			 * the outstanding bytes for this chunk, so only
1369 			 * count bytes associated with a transport.
1370 			 */
1371 			if (transport) {
1372 				/* If this chunk is being used for RTT
1373 				 * measurement, calculate the RTT and update
1374 				 * the RTO using this value.
1375 				 *
1376 				 * 6.3.1 C5) Karn's algorithm: RTT measurements
1377 				 * MUST NOT be made using packets that were
1378 				 * retransmitted (and thus for which it is
1379 				 * ambiguous whether the reply was for the
1380 				 * first instance of the packet or a later
1381 				 * instance).
1382 				 */
1383 				if (!tchunk->tsn_gap_acked &&
1384 				    tchunk->rtt_in_progress) {
1385 					tchunk->rtt_in_progress = 0;
1386 					rtt = jiffies - tchunk->sent_at;
1387 					sctp_transport_update_rto(transport,
1388 								  rtt);
1389 				}
1390 			}
1391 
1392 			/* If the chunk hasn't been marked as ACKED,
1393 			 * mark it and account bytes_acked if the
1394 			 * chunk had a valid transport (it will not
1395 			 * have a transport if ASCONF had deleted it
1396 			 * while DATA was outstanding).
1397 			 */
1398 			if (!tchunk->tsn_gap_acked) {
1399 				tchunk->tsn_gap_acked = 1;
1400 				*highest_new_tsn_in_sack = tsn;
1401 				bytes_acked += sctp_data_size(tchunk);
1402 				if (!tchunk->transport)
1403 					migrate_bytes += sctp_data_size(tchunk);
1404 				forward_progress = true;
1405 			}
1406 
1407 			if (TSN_lte(tsn, sack_ctsn)) {
1408 				/* RFC 2960  6.3.2 Retransmission Timer Rules
1409 				 *
1410 				 * R3) Whenever a SACK is received
1411 				 * that acknowledges the DATA chunk
1412 				 * with the earliest outstanding TSN
1413 				 * for that address, restart T3-rtx
1414 				 * timer for that address with its
1415 				 * current RTO.
1416 				 */
1417 				restart_timer = 1;
1418 				forward_progress = true;
1419 
1420 				if (!tchunk->tsn_gap_acked) {
1421 					/*
1422 					 * SFR-CACC algorithm:
1423 					 * 2) If the SACK contains gap acks
1424 					 * and the flag CHANGEOVER_ACTIVE is
1425 					 * set the receiver of the SACK MUST
1426 					 * take the following action:
1427 					 *
1428 					 * B) For each TSN t being acked that
1429 					 * has not been acked in any SACK so
1430 					 * far, set cacc_saw_newack to 1 for
1431 					 * the destination that the TSN was
1432 					 * sent to.
1433 					 */
1434 					if (transport &&
1435 					    sack->num_gap_ack_blocks &&
1436 					    q->asoc->peer.primary_path->cacc.
1437 					    changeover_active)
1438 						transport->cacc.cacc_saw_newack
1439 							= 1;
1440 				}
1441 
1442 				list_add_tail(&tchunk->transmitted_list,
1443 					      &q->sacked);
1444 			} else {
1445 				/* RFC2960 7.2.4, sctpimpguide-05 2.8.2
1446 				 * M2) Each time a SACK arrives reporting
1447 				 * 'Stray DATA chunk(s)' record the highest TSN
1448 				 * reported as newly acknowledged, call this
1449 				 * value 'HighestTSNinSack'. A newly
1450 				 * acknowledged DATA chunk is one not
1451 				 * previously acknowledged in a SACK.
1452 				 *
1453 				 * When the SCTP sender of data receives a SACK
1454 				 * chunk that acknowledges, for the first time,
1455 				 * the receipt of a DATA chunk, all the still
1456 				 * unacknowledged DATA chunks whose TSN is
1457 				 * older than that newly acknowledged DATA
1458 				 * chunk, are qualified as 'Stray DATA chunks'.
1459 				 */
1460 				list_add_tail(lchunk, &tlist);
1461 			}
1462 		} else {
1463 			if (tchunk->tsn_gap_acked) {
1464 				pr_debug("%s: receiver reneged on data TSN:0x%x\n",
1465 					 __func__, tsn);
1466 
1467 				tchunk->tsn_gap_acked = 0;
1468 
1469 				if (tchunk->transport)
1470 					bytes_acked -= sctp_data_size(tchunk);
1471 
1472 				/* RFC 2960 6.3.2 Retransmission Timer Rules
1473 				 *
1474 				 * R4) Whenever a SACK is received missing a
1475 				 * TSN that was previously acknowledged via a
1476 				 * Gap Ack Block, start T3-rtx for the
1477 				 * destination address to which the DATA
1478 				 * chunk was originally
1479 				 * transmitted if it is not already running.
1480 				 */
1481 				restart_timer = 1;
1482 			}
1483 
1484 			list_add_tail(lchunk, &tlist);
1485 		}
1486 	}
1487 
1488 	if (transport) {
1489 		if (bytes_acked) {
1490 			struct sctp_association *asoc = transport->asoc;
1491 
1492 			/* We may have counted DATA that was migrated
1493 			 * to this transport due to DEL-IP operation.
1494 			 * Subtract those bytes, since the were never
1495 			 * send on this transport and shouldn't be
1496 			 * credited to this transport.
1497 			 */
1498 			bytes_acked -= migrate_bytes;
1499 
1500 			/* 8.2. When an outstanding TSN is acknowledged,
1501 			 * the endpoint shall clear the error counter of
1502 			 * the destination transport address to which the
1503 			 * DATA chunk was last sent.
1504 			 * The association's overall error counter is
1505 			 * also cleared.
1506 			 */
1507 			transport->error_count = 0;
1508 			transport->asoc->overall_error_count = 0;
1509 			forward_progress = true;
1510 
1511 			/*
1512 			 * While in SHUTDOWN PENDING, we may have started
1513 			 * the T5 shutdown guard timer after reaching the
1514 			 * retransmission limit. Stop that timer as soon
1515 			 * as the receiver acknowledged any data.
1516 			 */
1517 			if (asoc->state == SCTP_STATE_SHUTDOWN_PENDING &&
1518 			    del_timer(&asoc->timers
1519 				[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]))
1520 					sctp_association_put(asoc);
1521 
1522 			/* Mark the destination transport address as
1523 			 * active if it is not so marked.
1524 			 */
1525 			if ((transport->state == SCTP_INACTIVE ||
1526 			     transport->state == SCTP_UNCONFIRMED) &&
1527 			    sctp_cmp_addr_exact(&transport->ipaddr, saddr)) {
1528 				sctp_assoc_control_transport(
1529 					transport->asoc,
1530 					transport,
1531 					SCTP_TRANSPORT_UP,
1532 					SCTP_RECEIVED_SACK);
1533 			}
1534 
1535 			sctp_transport_raise_cwnd(transport, sack_ctsn,
1536 						  bytes_acked);
1537 
1538 			transport->flight_size -= bytes_acked;
1539 			if (transport->flight_size == 0)
1540 				transport->partial_bytes_acked = 0;
1541 			q->outstanding_bytes -= bytes_acked + migrate_bytes;
1542 		} else {
1543 			/* RFC 2960 6.1, sctpimpguide-06 2.15.2
1544 			 * When a sender is doing zero window probing, it
1545 			 * should not timeout the association if it continues
1546 			 * to receive new packets from the receiver. The
1547 			 * reason is that the receiver MAY keep its window
1548 			 * closed for an indefinite time.
1549 			 * A sender is doing zero window probing when the
1550 			 * receiver's advertised window is zero, and there is
1551 			 * only one data chunk in flight to the receiver.
1552 			 *
1553 			 * Allow the association to timeout while in SHUTDOWN
1554 			 * PENDING or SHUTDOWN RECEIVED in case the receiver
1555 			 * stays in zero window mode forever.
1556 			 */
1557 			if (!q->asoc->peer.rwnd &&
1558 			    !list_empty(&tlist) &&
1559 			    (sack_ctsn+2 == q->asoc->next_tsn) &&
1560 			    q->asoc->state < SCTP_STATE_SHUTDOWN_PENDING) {
1561 				pr_debug("%s: sack received for zero window "
1562 					 "probe:%u\n", __func__, sack_ctsn);
1563 
1564 				q->asoc->overall_error_count = 0;
1565 				transport->error_count = 0;
1566 			}
1567 		}
1568 
1569 		/* RFC 2960 6.3.2 Retransmission Timer Rules
1570 		 *
1571 		 * R2) Whenever all outstanding data sent to an address have
1572 		 * been acknowledged, turn off the T3-rtx timer of that
1573 		 * address.
1574 		 */
1575 		if (!transport->flight_size) {
1576 			if (del_timer(&transport->T3_rtx_timer))
1577 				sctp_transport_put(transport);
1578 		} else if (restart_timer) {
1579 			if (!mod_timer(&transport->T3_rtx_timer,
1580 				       jiffies + transport->rto))
1581 				sctp_transport_hold(transport);
1582 		}
1583 
1584 		if (forward_progress) {
1585 			if (transport->dst)
1586 				dst_confirm(transport->dst);
1587 		}
1588 	}
1589 
1590 	list_splice(&tlist, transmitted_queue);
1591 }
1592 
1593 /* Mark chunks as missing and consequently may get retransmitted. */
1594 static void sctp_mark_missing(struct sctp_outq *q,
1595 			      struct list_head *transmitted_queue,
1596 			      struct sctp_transport *transport,
1597 			      __u32 highest_new_tsn_in_sack,
1598 			      int count_of_newacks)
1599 {
1600 	struct sctp_chunk *chunk;
1601 	__u32 tsn;
1602 	char do_fast_retransmit = 0;
1603 	struct sctp_association *asoc = q->asoc;
1604 	struct sctp_transport *primary = asoc->peer.primary_path;
1605 
1606 	list_for_each_entry(chunk, transmitted_queue, transmitted_list) {
1607 
1608 		tsn = ntohl(chunk->subh.data_hdr->tsn);
1609 
1610 		/* RFC 2960 7.2.4, sctpimpguide-05 2.8.2 M3) Examine all
1611 		 * 'Unacknowledged TSN's', if the TSN number of an
1612 		 * 'Unacknowledged TSN' is smaller than the 'HighestTSNinSack'
1613 		 * value, increment the 'TSN.Missing.Report' count on that
1614 		 * chunk if it has NOT been fast retransmitted or marked for
1615 		 * fast retransmit already.
1616 		 */
1617 		if (chunk->fast_retransmit == SCTP_CAN_FRTX &&
1618 		    !chunk->tsn_gap_acked &&
1619 		    TSN_lt(tsn, highest_new_tsn_in_sack)) {
1620 
1621 			/* SFR-CACC may require us to skip marking
1622 			 * this chunk as missing.
1623 			 */
1624 			if (!transport || !sctp_cacc_skip(primary,
1625 						chunk->transport,
1626 						count_of_newacks, tsn)) {
1627 				chunk->tsn_missing_report++;
1628 
1629 				pr_debug("%s: tsn:0x%x missing counter:%d\n",
1630 					 __func__, tsn, chunk->tsn_missing_report);
1631 			}
1632 		}
1633 		/*
1634 		 * M4) If any DATA chunk is found to have a
1635 		 * 'TSN.Missing.Report'
1636 		 * value larger than or equal to 3, mark that chunk for
1637 		 * retransmission and start the fast retransmit procedure.
1638 		 */
1639 
1640 		if (chunk->tsn_missing_report >= 3) {
1641 			chunk->fast_retransmit = SCTP_NEED_FRTX;
1642 			do_fast_retransmit = 1;
1643 		}
1644 	}
1645 
1646 	if (transport) {
1647 		if (do_fast_retransmit)
1648 			sctp_retransmit(q, transport, SCTP_RTXR_FAST_RTX);
1649 
1650 		pr_debug("%s: transport:%p, cwnd:%d, ssthresh:%d, "
1651 			 "flight_size:%d, pba:%d\n",  __func__, transport,
1652 			 transport->cwnd, transport->ssthresh,
1653 			 transport->flight_size, transport->partial_bytes_acked);
1654 	}
1655 }
1656 
1657 /* Is the given TSN acked by this packet?  */
1658 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn)
1659 {
1660 	int i;
1661 	sctp_sack_variable_t *frags;
1662 	__u16 gap;
1663 	__u32 ctsn = ntohl(sack->cum_tsn_ack);
1664 
1665 	if (TSN_lte(tsn, ctsn))
1666 		goto pass;
1667 
1668 	/* 3.3.4 Selective Acknowledgement (SACK) (3):
1669 	 *
1670 	 * Gap Ack Blocks:
1671 	 *  These fields contain the Gap Ack Blocks. They are repeated
1672 	 *  for each Gap Ack Block up to the number of Gap Ack Blocks
1673 	 *  defined in the Number of Gap Ack Blocks field. All DATA
1674 	 *  chunks with TSNs greater than or equal to (Cumulative TSN
1675 	 *  Ack + Gap Ack Block Start) and less than or equal to
1676 	 *  (Cumulative TSN Ack + Gap Ack Block End) of each Gap Ack
1677 	 *  Block are assumed to have been received correctly.
1678 	 */
1679 
1680 	frags = sack->variable;
1681 	gap = tsn - ctsn;
1682 	for (i = 0; i < ntohs(sack->num_gap_ack_blocks); ++i) {
1683 		if (TSN_lte(ntohs(frags[i].gab.start), gap) &&
1684 		    TSN_lte(gap, ntohs(frags[i].gab.end)))
1685 			goto pass;
1686 	}
1687 
1688 	return 0;
1689 pass:
1690 	return 1;
1691 }
1692 
1693 static inline int sctp_get_skip_pos(struct sctp_fwdtsn_skip *skiplist,
1694 				    int nskips, __be16 stream)
1695 {
1696 	int i;
1697 
1698 	for (i = 0; i < nskips; i++) {
1699 		if (skiplist[i].stream == stream)
1700 			return i;
1701 	}
1702 	return i;
1703 }
1704 
1705 /* Create and add a fwdtsn chunk to the outq's control queue if needed. */
1706 static void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 ctsn)
1707 {
1708 	struct sctp_association *asoc = q->asoc;
1709 	struct sctp_chunk *ftsn_chunk = NULL;
1710 	struct sctp_fwdtsn_skip ftsn_skip_arr[10];
1711 	int nskips = 0;
1712 	int skip_pos = 0;
1713 	__u32 tsn;
1714 	struct sctp_chunk *chunk;
1715 	struct list_head *lchunk, *temp;
1716 
1717 	if (!asoc->peer.prsctp_capable)
1718 		return;
1719 
1720 	/* PR-SCTP C1) Let SackCumAck be the Cumulative TSN ACK carried in the
1721 	 * received SACK.
1722 	 *
1723 	 * If (Advanced.Peer.Ack.Point < SackCumAck), then update
1724 	 * Advanced.Peer.Ack.Point to be equal to SackCumAck.
1725 	 */
1726 	if (TSN_lt(asoc->adv_peer_ack_point, ctsn))
1727 		asoc->adv_peer_ack_point = ctsn;
1728 
1729 	/* PR-SCTP C2) Try to further advance the "Advanced.Peer.Ack.Point"
1730 	 * locally, that is, to move "Advanced.Peer.Ack.Point" up as long as
1731 	 * the chunk next in the out-queue space is marked as "abandoned" as
1732 	 * shown in the following example:
1733 	 *
1734 	 * Assuming that a SACK arrived with the Cumulative TSN ACK 102
1735 	 * and the Advanced.Peer.Ack.Point is updated to this value:
1736 	 *
1737 	 *   out-queue at the end of  ==>   out-queue after Adv.Ack.Point
1738 	 *   normal SACK processing           local advancement
1739 	 *                ...                           ...
1740 	 *   Adv.Ack.Pt-> 102 acked                     102 acked
1741 	 *                103 abandoned                 103 abandoned
1742 	 *                104 abandoned     Adv.Ack.P-> 104 abandoned
1743 	 *                105                           105
1744 	 *                106 acked                     106 acked
1745 	 *                ...                           ...
1746 	 *
1747 	 * In this example, the data sender successfully advanced the
1748 	 * "Advanced.Peer.Ack.Point" from 102 to 104 locally.
1749 	 */
1750 	list_for_each_safe(lchunk, temp, &q->abandoned) {
1751 		chunk = list_entry(lchunk, struct sctp_chunk,
1752 					transmitted_list);
1753 		tsn = ntohl(chunk->subh.data_hdr->tsn);
1754 
1755 		/* Remove any chunks in the abandoned queue that are acked by
1756 		 * the ctsn.
1757 		 */
1758 		if (TSN_lte(tsn, ctsn)) {
1759 			list_del_init(lchunk);
1760 			sctp_chunk_free(chunk);
1761 		} else {
1762 			if (TSN_lte(tsn, asoc->adv_peer_ack_point+1)) {
1763 				asoc->adv_peer_ack_point = tsn;
1764 				if (chunk->chunk_hdr->flags &
1765 					 SCTP_DATA_UNORDERED)
1766 					continue;
1767 				skip_pos = sctp_get_skip_pos(&ftsn_skip_arr[0],
1768 						nskips,
1769 						chunk->subh.data_hdr->stream);
1770 				ftsn_skip_arr[skip_pos].stream =
1771 					chunk->subh.data_hdr->stream;
1772 				ftsn_skip_arr[skip_pos].ssn =
1773 					 chunk->subh.data_hdr->ssn;
1774 				if (skip_pos == nskips)
1775 					nskips++;
1776 				if (nskips == 10)
1777 					break;
1778 			} else
1779 				break;
1780 		}
1781 	}
1782 
1783 	/* PR-SCTP C3) If, after step C1 and C2, the "Advanced.Peer.Ack.Point"
1784 	 * is greater than the Cumulative TSN ACK carried in the received
1785 	 * SACK, the data sender MUST send the data receiver a FORWARD TSN
1786 	 * chunk containing the latest value of the
1787 	 * "Advanced.Peer.Ack.Point".
1788 	 *
1789 	 * C4) For each "abandoned" TSN the sender of the FORWARD TSN SHOULD
1790 	 * list each stream and sequence number in the forwarded TSN. This
1791 	 * information will enable the receiver to easily find any
1792 	 * stranded TSN's waiting on stream reorder queues. Each stream
1793 	 * SHOULD only be reported once; this means that if multiple
1794 	 * abandoned messages occur in the same stream then only the
1795 	 * highest abandoned stream sequence number is reported. If the
1796 	 * total size of the FORWARD TSN does NOT fit in a single MTU then
1797 	 * the sender of the FORWARD TSN SHOULD lower the
1798 	 * Advanced.Peer.Ack.Point to the last TSN that will fit in a
1799 	 * single MTU.
1800 	 */
1801 	if (asoc->adv_peer_ack_point > ctsn)
1802 		ftsn_chunk = sctp_make_fwdtsn(asoc, asoc->adv_peer_ack_point,
1803 					      nskips, &ftsn_skip_arr[0]);
1804 
1805 	if (ftsn_chunk) {
1806 		list_add_tail(&ftsn_chunk->list, &q->control_chunk_list);
1807 		SCTP_INC_STATS(sock_net(asoc->base.sk), SCTP_MIB_OUTCTRLCHUNKS);
1808 	}
1809 }
1810