1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * 7 * This file is part of the SCTP kernel implementation 8 * 9 * These functions implement the sctp_outq class. The outqueue handles 10 * bundling and queueing of outgoing SCTP chunks. 11 * 12 * This SCTP implementation is free software; 13 * you can redistribute it and/or modify it under the terms of 14 * the GNU General Public License as published by 15 * the Free Software Foundation; either version 2, or (at your option) 16 * any later version. 17 * 18 * This SCTP implementation is distributed in the hope that it 19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 20 * ************************ 21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 22 * See the GNU General Public License for more details. 23 * 24 * You should have received a copy of the GNU General Public License 25 * along with GNU CC; see the file COPYING. If not, write to 26 * the Free Software Foundation, 59 Temple Place - Suite 330, 27 * Boston, MA 02111-1307, USA. 28 * 29 * Please send any bug reports or fixes you make to the 30 * email address(es): 31 * lksctp developers <lksctp-developers@lists.sourceforge.net> 32 * 33 * Or submit a bug report through the following website: 34 * http://www.sf.net/projects/lksctp 35 * 36 * Written or modified by: 37 * La Monte H.P. Yarroll <piggy@acm.org> 38 * Karl Knutson <karl@athena.chicago.il.us> 39 * Perry Melange <pmelange@null.cc.uic.edu> 40 * Xingang Guo <xingang.guo@intel.com> 41 * Hui Huang <hui.huang@nokia.com> 42 * Sridhar Samudrala <sri@us.ibm.com> 43 * Jon Grimm <jgrimm@us.ibm.com> 44 * 45 * Any bugs reported given to us we will try to fix... any fixes shared will 46 * be incorporated into the next SCTP release. 47 */ 48 49 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 50 51 #include <linux/types.h> 52 #include <linux/list.h> /* For struct list_head */ 53 #include <linux/socket.h> 54 #include <linux/ip.h> 55 #include <linux/slab.h> 56 #include <net/sock.h> /* For skb_set_owner_w */ 57 58 #include <net/sctp/sctp.h> 59 #include <net/sctp/sm.h> 60 61 /* Declare internal functions here. */ 62 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn); 63 static void sctp_check_transmitted(struct sctp_outq *q, 64 struct list_head *transmitted_queue, 65 struct sctp_transport *transport, 66 struct sctp_sackhdr *sack, 67 __u32 *highest_new_tsn); 68 69 static void sctp_mark_missing(struct sctp_outq *q, 70 struct list_head *transmitted_queue, 71 struct sctp_transport *transport, 72 __u32 highest_new_tsn, 73 int count_of_newacks); 74 75 static void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 sack_ctsn); 76 77 static int sctp_outq_flush(struct sctp_outq *q, int rtx_timeout); 78 79 /* Add data to the front of the queue. */ 80 static inline void sctp_outq_head_data(struct sctp_outq *q, 81 struct sctp_chunk *ch) 82 { 83 list_add(&ch->list, &q->out_chunk_list); 84 q->out_qlen += ch->skb->len; 85 } 86 87 /* Take data from the front of the queue. */ 88 static inline struct sctp_chunk *sctp_outq_dequeue_data(struct sctp_outq *q) 89 { 90 struct sctp_chunk *ch = NULL; 91 92 if (!list_empty(&q->out_chunk_list)) { 93 struct list_head *entry = q->out_chunk_list.next; 94 95 ch = list_entry(entry, struct sctp_chunk, list); 96 list_del_init(entry); 97 q->out_qlen -= ch->skb->len; 98 } 99 return ch; 100 } 101 /* Add data chunk to the end of the queue. */ 102 static inline void sctp_outq_tail_data(struct sctp_outq *q, 103 struct sctp_chunk *ch) 104 { 105 list_add_tail(&ch->list, &q->out_chunk_list); 106 q->out_qlen += ch->skb->len; 107 } 108 109 /* 110 * SFR-CACC algorithm: 111 * D) If count_of_newacks is greater than or equal to 2 112 * and t was not sent to the current primary then the 113 * sender MUST NOT increment missing report count for t. 114 */ 115 static inline int sctp_cacc_skip_3_1_d(struct sctp_transport *primary, 116 struct sctp_transport *transport, 117 int count_of_newacks) 118 { 119 if (count_of_newacks >=2 && transport != primary) 120 return 1; 121 return 0; 122 } 123 124 /* 125 * SFR-CACC algorithm: 126 * F) If count_of_newacks is less than 2, let d be the 127 * destination to which t was sent. If cacc_saw_newack 128 * is 0 for destination d, then the sender MUST NOT 129 * increment missing report count for t. 130 */ 131 static inline int sctp_cacc_skip_3_1_f(struct sctp_transport *transport, 132 int count_of_newacks) 133 { 134 if (count_of_newacks < 2 && 135 (transport && !transport->cacc.cacc_saw_newack)) 136 return 1; 137 return 0; 138 } 139 140 /* 141 * SFR-CACC algorithm: 142 * 3.1) If CYCLING_CHANGEOVER is 0, the sender SHOULD 143 * execute steps C, D, F. 144 * 145 * C has been implemented in sctp_outq_sack 146 */ 147 static inline int sctp_cacc_skip_3_1(struct sctp_transport *primary, 148 struct sctp_transport *transport, 149 int count_of_newacks) 150 { 151 if (!primary->cacc.cycling_changeover) { 152 if (sctp_cacc_skip_3_1_d(primary, transport, count_of_newacks)) 153 return 1; 154 if (sctp_cacc_skip_3_1_f(transport, count_of_newacks)) 155 return 1; 156 return 0; 157 } 158 return 0; 159 } 160 161 /* 162 * SFR-CACC algorithm: 163 * 3.2) Else if CYCLING_CHANGEOVER is 1, and t is less 164 * than next_tsn_at_change of the current primary, then 165 * the sender MUST NOT increment missing report count 166 * for t. 167 */ 168 static inline int sctp_cacc_skip_3_2(struct sctp_transport *primary, __u32 tsn) 169 { 170 if (primary->cacc.cycling_changeover && 171 TSN_lt(tsn, primary->cacc.next_tsn_at_change)) 172 return 1; 173 return 0; 174 } 175 176 /* 177 * SFR-CACC algorithm: 178 * 3) If the missing report count for TSN t is to be 179 * incremented according to [RFC2960] and 180 * [SCTP_STEWART-2002], and CHANGEOVER_ACTIVE is set, 181 * then the sender MUST further execute steps 3.1 and 182 * 3.2 to determine if the missing report count for 183 * TSN t SHOULD NOT be incremented. 184 * 185 * 3.3) If 3.1 and 3.2 do not dictate that the missing 186 * report count for t should not be incremented, then 187 * the sender SHOULD increment missing report count for 188 * t (according to [RFC2960] and [SCTP_STEWART_2002]). 189 */ 190 static inline int sctp_cacc_skip(struct sctp_transport *primary, 191 struct sctp_transport *transport, 192 int count_of_newacks, 193 __u32 tsn) 194 { 195 if (primary->cacc.changeover_active && 196 (sctp_cacc_skip_3_1(primary, transport, count_of_newacks) || 197 sctp_cacc_skip_3_2(primary, tsn))) 198 return 1; 199 return 0; 200 } 201 202 /* Initialize an existing sctp_outq. This does the boring stuff. 203 * You still need to define handlers if you really want to DO 204 * something with this structure... 205 */ 206 void sctp_outq_init(struct sctp_association *asoc, struct sctp_outq *q) 207 { 208 q->asoc = asoc; 209 INIT_LIST_HEAD(&q->out_chunk_list); 210 INIT_LIST_HEAD(&q->control_chunk_list); 211 INIT_LIST_HEAD(&q->retransmit); 212 INIT_LIST_HEAD(&q->sacked); 213 INIT_LIST_HEAD(&q->abandoned); 214 215 q->fast_rtx = 0; 216 q->outstanding_bytes = 0; 217 q->empty = 1; 218 q->cork = 0; 219 220 q->malloced = 0; 221 q->out_qlen = 0; 222 } 223 224 /* Free the outqueue structure and any related pending chunks. 225 */ 226 void sctp_outq_teardown(struct sctp_outq *q) 227 { 228 struct sctp_transport *transport; 229 struct list_head *lchunk, *temp; 230 struct sctp_chunk *chunk, *tmp; 231 232 /* Throw away unacknowledged chunks. */ 233 list_for_each_entry(transport, &q->asoc->peer.transport_addr_list, 234 transports) { 235 while ((lchunk = sctp_list_dequeue(&transport->transmitted)) != NULL) { 236 chunk = list_entry(lchunk, struct sctp_chunk, 237 transmitted_list); 238 /* Mark as part of a failed message. */ 239 sctp_chunk_fail(chunk, q->error); 240 sctp_chunk_free(chunk); 241 } 242 } 243 244 /* Throw away chunks that have been gap ACKed. */ 245 list_for_each_safe(lchunk, temp, &q->sacked) { 246 list_del_init(lchunk); 247 chunk = list_entry(lchunk, struct sctp_chunk, 248 transmitted_list); 249 sctp_chunk_fail(chunk, q->error); 250 sctp_chunk_free(chunk); 251 } 252 253 /* Throw away any chunks in the retransmit queue. */ 254 list_for_each_safe(lchunk, temp, &q->retransmit) { 255 list_del_init(lchunk); 256 chunk = list_entry(lchunk, struct sctp_chunk, 257 transmitted_list); 258 sctp_chunk_fail(chunk, q->error); 259 sctp_chunk_free(chunk); 260 } 261 262 /* Throw away any chunks that are in the abandoned queue. */ 263 list_for_each_safe(lchunk, temp, &q->abandoned) { 264 list_del_init(lchunk); 265 chunk = list_entry(lchunk, struct sctp_chunk, 266 transmitted_list); 267 sctp_chunk_fail(chunk, q->error); 268 sctp_chunk_free(chunk); 269 } 270 271 /* Throw away any leftover data chunks. */ 272 while ((chunk = sctp_outq_dequeue_data(q)) != NULL) { 273 274 /* Mark as send failure. */ 275 sctp_chunk_fail(chunk, q->error); 276 sctp_chunk_free(chunk); 277 } 278 279 q->error = 0; 280 281 /* Throw away any leftover control chunks. */ 282 list_for_each_entry_safe(chunk, tmp, &q->control_chunk_list, list) { 283 list_del_init(&chunk->list); 284 sctp_chunk_free(chunk); 285 } 286 } 287 288 /* Free the outqueue structure and any related pending chunks. */ 289 void sctp_outq_free(struct sctp_outq *q) 290 { 291 /* Throw away leftover chunks. */ 292 sctp_outq_teardown(q); 293 294 /* If we were kmalloc()'d, free the memory. */ 295 if (q->malloced) 296 kfree(q); 297 } 298 299 /* Put a new chunk in an sctp_outq. */ 300 int sctp_outq_tail(struct sctp_outq *q, struct sctp_chunk *chunk) 301 { 302 int error = 0; 303 304 SCTP_DEBUG_PRINTK("sctp_outq_tail(%p, %p[%s])\n", 305 q, chunk, chunk && chunk->chunk_hdr ? 306 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) 307 : "Illegal Chunk"); 308 309 /* If it is data, queue it up, otherwise, send it 310 * immediately. 311 */ 312 if (sctp_chunk_is_data(chunk)) { 313 /* Is it OK to queue data chunks? */ 314 /* From 9. Termination of Association 315 * 316 * When either endpoint performs a shutdown, the 317 * association on each peer will stop accepting new 318 * data from its user and only deliver data in queue 319 * at the time of sending or receiving the SHUTDOWN 320 * chunk. 321 */ 322 switch (q->asoc->state) { 323 case SCTP_STATE_CLOSED: 324 case SCTP_STATE_SHUTDOWN_PENDING: 325 case SCTP_STATE_SHUTDOWN_SENT: 326 case SCTP_STATE_SHUTDOWN_RECEIVED: 327 case SCTP_STATE_SHUTDOWN_ACK_SENT: 328 /* Cannot send after transport endpoint shutdown */ 329 error = -ESHUTDOWN; 330 break; 331 332 default: 333 SCTP_DEBUG_PRINTK("outqueueing (%p, %p[%s])\n", 334 q, chunk, chunk && chunk->chunk_hdr ? 335 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) 336 : "Illegal Chunk"); 337 338 sctp_outq_tail_data(q, chunk); 339 if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED) 340 SCTP_INC_STATS(SCTP_MIB_OUTUNORDERCHUNKS); 341 else 342 SCTP_INC_STATS(SCTP_MIB_OUTORDERCHUNKS); 343 q->empty = 0; 344 break; 345 } 346 } else { 347 list_add_tail(&chunk->list, &q->control_chunk_list); 348 SCTP_INC_STATS(SCTP_MIB_OUTCTRLCHUNKS); 349 } 350 351 if (error < 0) 352 return error; 353 354 if (!q->cork) 355 error = sctp_outq_flush(q, 0); 356 357 return error; 358 } 359 360 /* Insert a chunk into the sorted list based on the TSNs. The retransmit list 361 * and the abandoned list are in ascending order. 362 */ 363 static void sctp_insert_list(struct list_head *head, struct list_head *new) 364 { 365 struct list_head *pos; 366 struct sctp_chunk *nchunk, *lchunk; 367 __u32 ntsn, ltsn; 368 int done = 0; 369 370 nchunk = list_entry(new, struct sctp_chunk, transmitted_list); 371 ntsn = ntohl(nchunk->subh.data_hdr->tsn); 372 373 list_for_each(pos, head) { 374 lchunk = list_entry(pos, struct sctp_chunk, transmitted_list); 375 ltsn = ntohl(lchunk->subh.data_hdr->tsn); 376 if (TSN_lt(ntsn, ltsn)) { 377 list_add(new, pos->prev); 378 done = 1; 379 break; 380 } 381 } 382 if (!done) 383 list_add_tail(new, head); 384 } 385 386 /* Mark all the eligible packets on a transport for retransmission. */ 387 void sctp_retransmit_mark(struct sctp_outq *q, 388 struct sctp_transport *transport, 389 __u8 reason) 390 { 391 struct list_head *lchunk, *ltemp; 392 struct sctp_chunk *chunk; 393 394 /* Walk through the specified transmitted queue. */ 395 list_for_each_safe(lchunk, ltemp, &transport->transmitted) { 396 chunk = list_entry(lchunk, struct sctp_chunk, 397 transmitted_list); 398 399 /* If the chunk is abandoned, move it to abandoned list. */ 400 if (sctp_chunk_abandoned(chunk)) { 401 list_del_init(lchunk); 402 sctp_insert_list(&q->abandoned, lchunk); 403 404 /* If this chunk has not been previousely acked, 405 * stop considering it 'outstanding'. Our peer 406 * will most likely never see it since it will 407 * not be retransmitted 408 */ 409 if (!chunk->tsn_gap_acked) { 410 if (chunk->transport) 411 chunk->transport->flight_size -= 412 sctp_data_size(chunk); 413 q->outstanding_bytes -= sctp_data_size(chunk); 414 q->asoc->peer.rwnd += sctp_data_size(chunk); 415 } 416 continue; 417 } 418 419 /* If we are doing retransmission due to a timeout or pmtu 420 * discovery, only the chunks that are not yet acked should 421 * be added to the retransmit queue. 422 */ 423 if ((reason == SCTP_RTXR_FAST_RTX && 424 (chunk->fast_retransmit == SCTP_NEED_FRTX)) || 425 (reason != SCTP_RTXR_FAST_RTX && !chunk->tsn_gap_acked)) { 426 /* RFC 2960 6.2.1 Processing a Received SACK 427 * 428 * C) Any time a DATA chunk is marked for 429 * retransmission (via either T3-rtx timer expiration 430 * (Section 6.3.3) or via fast retransmit 431 * (Section 7.2.4)), add the data size of those 432 * chunks to the rwnd. 433 */ 434 q->asoc->peer.rwnd += sctp_data_size(chunk); 435 q->outstanding_bytes -= sctp_data_size(chunk); 436 if (chunk->transport) 437 transport->flight_size -= sctp_data_size(chunk); 438 439 /* sctpimpguide-05 Section 2.8.2 440 * M5) If a T3-rtx timer expires, the 441 * 'TSN.Missing.Report' of all affected TSNs is set 442 * to 0. 443 */ 444 chunk->tsn_missing_report = 0; 445 446 /* If a chunk that is being used for RTT measurement 447 * has to be retransmitted, we cannot use this chunk 448 * anymore for RTT measurements. Reset rto_pending so 449 * that a new RTT measurement is started when a new 450 * data chunk is sent. 451 */ 452 if (chunk->rtt_in_progress) { 453 chunk->rtt_in_progress = 0; 454 transport->rto_pending = 0; 455 } 456 457 /* Move the chunk to the retransmit queue. The chunks 458 * on the retransmit queue are always kept in order. 459 */ 460 list_del_init(lchunk); 461 sctp_insert_list(&q->retransmit, lchunk); 462 } 463 } 464 465 SCTP_DEBUG_PRINTK("%s: transport: %p, reason: %d, " 466 "cwnd: %d, ssthresh: %d, flight_size: %d, " 467 "pba: %d\n", __func__, 468 transport, reason, 469 transport->cwnd, transport->ssthresh, 470 transport->flight_size, 471 transport->partial_bytes_acked); 472 473 } 474 475 /* Mark all the eligible packets on a transport for retransmission and force 476 * one packet out. 477 */ 478 void sctp_retransmit(struct sctp_outq *q, struct sctp_transport *transport, 479 sctp_retransmit_reason_t reason) 480 { 481 int error = 0; 482 483 switch(reason) { 484 case SCTP_RTXR_T3_RTX: 485 SCTP_INC_STATS(SCTP_MIB_T3_RETRANSMITS); 486 sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_T3_RTX); 487 /* Update the retran path if the T3-rtx timer has expired for 488 * the current retran path. 489 */ 490 if (transport == transport->asoc->peer.retran_path) 491 sctp_assoc_update_retran_path(transport->asoc); 492 transport->asoc->rtx_data_chunks += 493 transport->asoc->unack_data; 494 break; 495 case SCTP_RTXR_FAST_RTX: 496 SCTP_INC_STATS(SCTP_MIB_FAST_RETRANSMITS); 497 sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_FAST_RTX); 498 q->fast_rtx = 1; 499 break; 500 case SCTP_RTXR_PMTUD: 501 SCTP_INC_STATS(SCTP_MIB_PMTUD_RETRANSMITS); 502 break; 503 case SCTP_RTXR_T1_RTX: 504 SCTP_INC_STATS(SCTP_MIB_T1_RETRANSMITS); 505 transport->asoc->init_retries++; 506 break; 507 default: 508 BUG(); 509 } 510 511 sctp_retransmit_mark(q, transport, reason); 512 513 /* PR-SCTP A5) Any time the T3-rtx timer expires, on any destination, 514 * the sender SHOULD try to advance the "Advanced.Peer.Ack.Point" by 515 * following the procedures outlined in C1 - C5. 516 */ 517 if (reason == SCTP_RTXR_T3_RTX) 518 sctp_generate_fwdtsn(q, q->asoc->ctsn_ack_point); 519 520 /* Flush the queues only on timeout, since fast_rtx is only 521 * triggered during sack processing and the queue 522 * will be flushed at the end. 523 */ 524 if (reason != SCTP_RTXR_FAST_RTX) 525 error = sctp_outq_flush(q, /* rtx_timeout */ 1); 526 527 if (error) 528 q->asoc->base.sk->sk_err = -error; 529 } 530 531 /* 532 * Transmit DATA chunks on the retransmit queue. Upon return from 533 * sctp_outq_flush_rtx() the packet 'pkt' may contain chunks which 534 * need to be transmitted by the caller. 535 * We assume that pkt->transport has already been set. 536 * 537 * The return value is a normal kernel error return value. 538 */ 539 static int sctp_outq_flush_rtx(struct sctp_outq *q, struct sctp_packet *pkt, 540 int rtx_timeout, int *start_timer) 541 { 542 struct list_head *lqueue; 543 struct sctp_transport *transport = pkt->transport; 544 sctp_xmit_t status; 545 struct sctp_chunk *chunk, *chunk1; 546 int fast_rtx; 547 int error = 0; 548 int timer = 0; 549 int done = 0; 550 551 lqueue = &q->retransmit; 552 fast_rtx = q->fast_rtx; 553 554 /* This loop handles time-out retransmissions, fast retransmissions, 555 * and retransmissions due to opening of whindow. 556 * 557 * RFC 2960 6.3.3 Handle T3-rtx Expiration 558 * 559 * E3) Determine how many of the earliest (i.e., lowest TSN) 560 * outstanding DATA chunks for the address for which the 561 * T3-rtx has expired will fit into a single packet, subject 562 * to the MTU constraint for the path corresponding to the 563 * destination transport address to which the retransmission 564 * is being sent (this may be different from the address for 565 * which the timer expires [see Section 6.4]). Call this value 566 * K. Bundle and retransmit those K DATA chunks in a single 567 * packet to the destination endpoint. 568 * 569 * [Just to be painfully clear, if we are retransmitting 570 * because a timeout just happened, we should send only ONE 571 * packet of retransmitted data.] 572 * 573 * For fast retransmissions we also send only ONE packet. However, 574 * if we are just flushing the queue due to open window, we'll 575 * try to send as much as possible. 576 */ 577 list_for_each_entry_safe(chunk, chunk1, lqueue, transmitted_list) { 578 /* If the chunk is abandoned, move it to abandoned list. */ 579 if (sctp_chunk_abandoned(chunk)) { 580 list_del_init(&chunk->transmitted_list); 581 sctp_insert_list(&q->abandoned, 582 &chunk->transmitted_list); 583 continue; 584 } 585 586 /* Make sure that Gap Acked TSNs are not retransmitted. A 587 * simple approach is just to move such TSNs out of the 588 * way and into a 'transmitted' queue and skip to the 589 * next chunk. 590 */ 591 if (chunk->tsn_gap_acked) { 592 list_del(&chunk->transmitted_list); 593 list_add_tail(&chunk->transmitted_list, 594 &transport->transmitted); 595 continue; 596 } 597 598 /* If we are doing fast retransmit, ignore non-fast_rtransmit 599 * chunks 600 */ 601 if (fast_rtx && !chunk->fast_retransmit) 602 continue; 603 604 redo: 605 /* Attempt to append this chunk to the packet. */ 606 status = sctp_packet_append_chunk(pkt, chunk); 607 608 switch (status) { 609 case SCTP_XMIT_PMTU_FULL: 610 if (!pkt->has_data && !pkt->has_cookie_echo) { 611 /* If this packet did not contain DATA then 612 * retransmission did not happen, so do it 613 * again. We'll ignore the error here since 614 * control chunks are already freed so there 615 * is nothing we can do. 616 */ 617 sctp_packet_transmit(pkt); 618 goto redo; 619 } 620 621 /* Send this packet. */ 622 error = sctp_packet_transmit(pkt); 623 624 /* If we are retransmitting, we should only 625 * send a single packet. 626 * Otherwise, try appending this chunk again. 627 */ 628 if (rtx_timeout || fast_rtx) 629 done = 1; 630 else 631 goto redo; 632 633 /* Bundle next chunk in the next round. */ 634 break; 635 636 case SCTP_XMIT_RWND_FULL: 637 /* Send this packet. */ 638 error = sctp_packet_transmit(pkt); 639 640 /* Stop sending DATA as there is no more room 641 * at the receiver. 642 */ 643 done = 1; 644 break; 645 646 case SCTP_XMIT_NAGLE_DELAY: 647 /* Send this packet. */ 648 error = sctp_packet_transmit(pkt); 649 650 /* Stop sending DATA because of nagle delay. */ 651 done = 1; 652 break; 653 654 default: 655 /* The append was successful, so add this chunk to 656 * the transmitted list. 657 */ 658 list_del(&chunk->transmitted_list); 659 list_add_tail(&chunk->transmitted_list, 660 &transport->transmitted); 661 662 /* Mark the chunk as ineligible for fast retransmit 663 * after it is retransmitted. 664 */ 665 if (chunk->fast_retransmit == SCTP_NEED_FRTX) 666 chunk->fast_retransmit = SCTP_DONT_FRTX; 667 668 q->empty = 0; 669 break; 670 } 671 672 /* Set the timer if there were no errors */ 673 if (!error && !timer) 674 timer = 1; 675 676 if (done) 677 break; 678 } 679 680 /* If we are here due to a retransmit timeout or a fast 681 * retransmit and if there are any chunks left in the retransmit 682 * queue that could not fit in the PMTU sized packet, they need 683 * to be marked as ineligible for a subsequent fast retransmit. 684 */ 685 if (rtx_timeout || fast_rtx) { 686 list_for_each_entry(chunk1, lqueue, transmitted_list) { 687 if (chunk1->fast_retransmit == SCTP_NEED_FRTX) 688 chunk1->fast_retransmit = SCTP_DONT_FRTX; 689 } 690 } 691 692 *start_timer = timer; 693 694 /* Clear fast retransmit hint */ 695 if (fast_rtx) 696 q->fast_rtx = 0; 697 698 return error; 699 } 700 701 /* Cork the outqueue so queued chunks are really queued. */ 702 int sctp_outq_uncork(struct sctp_outq *q) 703 { 704 int error = 0; 705 if (q->cork) 706 q->cork = 0; 707 error = sctp_outq_flush(q, 0); 708 return error; 709 } 710 711 712 /* 713 * Try to flush an outqueue. 714 * 715 * Description: Send everything in q which we legally can, subject to 716 * congestion limitations. 717 * * Note: This function can be called from multiple contexts so appropriate 718 * locking concerns must be made. Today we use the sock lock to protect 719 * this function. 720 */ 721 static int sctp_outq_flush(struct sctp_outq *q, int rtx_timeout) 722 { 723 struct sctp_packet *packet; 724 struct sctp_packet singleton; 725 struct sctp_association *asoc = q->asoc; 726 __u16 sport = asoc->base.bind_addr.port; 727 __u16 dport = asoc->peer.port; 728 __u32 vtag = asoc->peer.i.init_tag; 729 struct sctp_transport *transport = NULL; 730 struct sctp_transport *new_transport; 731 struct sctp_chunk *chunk, *tmp; 732 sctp_xmit_t status; 733 int error = 0; 734 int start_timer = 0; 735 int one_packet = 0; 736 737 /* These transports have chunks to send. */ 738 struct list_head transport_list; 739 struct list_head *ltransport; 740 741 INIT_LIST_HEAD(&transport_list); 742 packet = NULL; 743 744 /* 745 * 6.10 Bundling 746 * ... 747 * When bundling control chunks with DATA chunks, an 748 * endpoint MUST place control chunks first in the outbound 749 * SCTP packet. The transmitter MUST transmit DATA chunks 750 * within a SCTP packet in increasing order of TSN. 751 * ... 752 */ 753 754 list_for_each_entry_safe(chunk, tmp, &q->control_chunk_list, list) { 755 /* RFC 5061, 5.3 756 * F1) This means that until such time as the ASCONF 757 * containing the add is acknowledged, the sender MUST 758 * NOT use the new IP address as a source for ANY SCTP 759 * packet except on carrying an ASCONF Chunk. 760 */ 761 if (asoc->src_out_of_asoc_ok && 762 chunk->chunk_hdr->type != SCTP_CID_ASCONF) 763 continue; 764 765 list_del_init(&chunk->list); 766 767 /* Pick the right transport to use. */ 768 new_transport = chunk->transport; 769 770 if (!new_transport) { 771 /* 772 * If we have a prior transport pointer, see if 773 * the destination address of the chunk 774 * matches the destination address of the 775 * current transport. If not a match, then 776 * try to look up the transport with a given 777 * destination address. We do this because 778 * after processing ASCONFs, we may have new 779 * transports created. 780 */ 781 if (transport && 782 sctp_cmp_addr_exact(&chunk->dest, 783 &transport->ipaddr)) 784 new_transport = transport; 785 else 786 new_transport = sctp_assoc_lookup_paddr(asoc, 787 &chunk->dest); 788 789 /* if we still don't have a new transport, then 790 * use the current active path. 791 */ 792 if (!new_transport) 793 new_transport = asoc->peer.active_path; 794 } else if ((new_transport->state == SCTP_INACTIVE) || 795 (new_transport->state == SCTP_UNCONFIRMED) || 796 (new_transport->state == SCTP_PF)) { 797 /* If the chunk is Heartbeat or Heartbeat Ack, 798 * send it to chunk->transport, even if it's 799 * inactive. 800 * 801 * 3.3.6 Heartbeat Acknowledgement: 802 * ... 803 * A HEARTBEAT ACK is always sent to the source IP 804 * address of the IP datagram containing the 805 * HEARTBEAT chunk to which this ack is responding. 806 * ... 807 * 808 * ASCONF_ACKs also must be sent to the source. 809 */ 810 if (chunk->chunk_hdr->type != SCTP_CID_HEARTBEAT && 811 chunk->chunk_hdr->type != SCTP_CID_HEARTBEAT_ACK && 812 chunk->chunk_hdr->type != SCTP_CID_ASCONF_ACK) 813 new_transport = asoc->peer.active_path; 814 } 815 816 /* Are we switching transports? 817 * Take care of transport locks. 818 */ 819 if (new_transport != transport) { 820 transport = new_transport; 821 if (list_empty(&transport->send_ready)) { 822 list_add_tail(&transport->send_ready, 823 &transport_list); 824 } 825 packet = &transport->packet; 826 sctp_packet_config(packet, vtag, 827 asoc->peer.ecn_capable); 828 } 829 830 switch (chunk->chunk_hdr->type) { 831 /* 832 * 6.10 Bundling 833 * ... 834 * An endpoint MUST NOT bundle INIT, INIT ACK or SHUTDOWN 835 * COMPLETE with any other chunks. [Send them immediately.] 836 */ 837 case SCTP_CID_INIT: 838 case SCTP_CID_INIT_ACK: 839 case SCTP_CID_SHUTDOWN_COMPLETE: 840 sctp_packet_init(&singleton, transport, sport, dport); 841 sctp_packet_config(&singleton, vtag, 0); 842 sctp_packet_append_chunk(&singleton, chunk); 843 error = sctp_packet_transmit(&singleton); 844 if (error < 0) 845 return error; 846 break; 847 848 case SCTP_CID_ABORT: 849 if (sctp_test_T_bit(chunk)) { 850 packet->vtag = asoc->c.my_vtag; 851 } 852 /* The following chunks are "response" chunks, i.e. 853 * they are generated in response to something we 854 * received. If we are sending these, then we can 855 * send only 1 packet containing these chunks. 856 */ 857 case SCTP_CID_HEARTBEAT_ACK: 858 case SCTP_CID_SHUTDOWN_ACK: 859 case SCTP_CID_COOKIE_ACK: 860 case SCTP_CID_COOKIE_ECHO: 861 case SCTP_CID_ERROR: 862 case SCTP_CID_ECN_CWR: 863 case SCTP_CID_ASCONF_ACK: 864 one_packet = 1; 865 /* Fall through */ 866 867 case SCTP_CID_SACK: 868 case SCTP_CID_HEARTBEAT: 869 case SCTP_CID_SHUTDOWN: 870 case SCTP_CID_ECN_ECNE: 871 case SCTP_CID_ASCONF: 872 case SCTP_CID_FWD_TSN: 873 status = sctp_packet_transmit_chunk(packet, chunk, 874 one_packet); 875 if (status != SCTP_XMIT_OK) { 876 /* put the chunk back */ 877 list_add(&chunk->list, &q->control_chunk_list); 878 } else if (chunk->chunk_hdr->type == SCTP_CID_FWD_TSN) { 879 /* PR-SCTP C5) If a FORWARD TSN is sent, the 880 * sender MUST assure that at least one T3-rtx 881 * timer is running. 882 */ 883 sctp_transport_reset_timers(transport); 884 } 885 break; 886 887 default: 888 /* We built a chunk with an illegal type! */ 889 BUG(); 890 } 891 } 892 893 if (q->asoc->src_out_of_asoc_ok) 894 goto sctp_flush_out; 895 896 /* Is it OK to send data chunks? */ 897 switch (asoc->state) { 898 case SCTP_STATE_COOKIE_ECHOED: 899 /* Only allow bundling when this packet has a COOKIE-ECHO 900 * chunk. 901 */ 902 if (!packet || !packet->has_cookie_echo) 903 break; 904 905 /* fallthru */ 906 case SCTP_STATE_ESTABLISHED: 907 case SCTP_STATE_SHUTDOWN_PENDING: 908 case SCTP_STATE_SHUTDOWN_RECEIVED: 909 /* 910 * RFC 2960 6.1 Transmission of DATA Chunks 911 * 912 * C) When the time comes for the sender to transmit, 913 * before sending new DATA chunks, the sender MUST 914 * first transmit any outstanding DATA chunks which 915 * are marked for retransmission (limited by the 916 * current cwnd). 917 */ 918 if (!list_empty(&q->retransmit)) { 919 if (asoc->peer.retran_path->state == SCTP_UNCONFIRMED) 920 goto sctp_flush_out; 921 if (transport == asoc->peer.retran_path) 922 goto retran; 923 924 /* Switch transports & prepare the packet. */ 925 926 transport = asoc->peer.retran_path; 927 928 if (list_empty(&transport->send_ready)) { 929 list_add_tail(&transport->send_ready, 930 &transport_list); 931 } 932 933 packet = &transport->packet; 934 sctp_packet_config(packet, vtag, 935 asoc->peer.ecn_capable); 936 retran: 937 error = sctp_outq_flush_rtx(q, packet, 938 rtx_timeout, &start_timer); 939 940 if (start_timer) 941 sctp_transport_reset_timers(transport); 942 943 /* This can happen on COOKIE-ECHO resend. Only 944 * one chunk can get bundled with a COOKIE-ECHO. 945 */ 946 if (packet->has_cookie_echo) 947 goto sctp_flush_out; 948 949 /* Don't send new data if there is still data 950 * waiting to retransmit. 951 */ 952 if (!list_empty(&q->retransmit)) 953 goto sctp_flush_out; 954 } 955 956 /* Apply Max.Burst limitation to the current transport in 957 * case it will be used for new data. We are going to 958 * rest it before we return, but we want to apply the limit 959 * to the currently queued data. 960 */ 961 if (transport) 962 sctp_transport_burst_limited(transport); 963 964 /* Finally, transmit new packets. */ 965 while ((chunk = sctp_outq_dequeue_data(q)) != NULL) { 966 /* RFC 2960 6.5 Every DATA chunk MUST carry a valid 967 * stream identifier. 968 */ 969 if (chunk->sinfo.sinfo_stream >= 970 asoc->c.sinit_num_ostreams) { 971 972 /* Mark as failed send. */ 973 sctp_chunk_fail(chunk, SCTP_ERROR_INV_STRM); 974 sctp_chunk_free(chunk); 975 continue; 976 } 977 978 /* Has this chunk expired? */ 979 if (sctp_chunk_abandoned(chunk)) { 980 sctp_chunk_fail(chunk, 0); 981 sctp_chunk_free(chunk); 982 continue; 983 } 984 985 /* If there is a specified transport, use it. 986 * Otherwise, we want to use the active path. 987 */ 988 new_transport = chunk->transport; 989 if (!new_transport || 990 ((new_transport->state == SCTP_INACTIVE) || 991 (new_transport->state == SCTP_UNCONFIRMED) || 992 (new_transport->state == SCTP_PF))) 993 new_transport = asoc->peer.active_path; 994 if (new_transport->state == SCTP_UNCONFIRMED) 995 continue; 996 997 /* Change packets if necessary. */ 998 if (new_transport != transport) { 999 transport = new_transport; 1000 1001 /* Schedule to have this transport's 1002 * packet flushed. 1003 */ 1004 if (list_empty(&transport->send_ready)) { 1005 list_add_tail(&transport->send_ready, 1006 &transport_list); 1007 } 1008 1009 packet = &transport->packet; 1010 sctp_packet_config(packet, vtag, 1011 asoc->peer.ecn_capable); 1012 /* We've switched transports, so apply the 1013 * Burst limit to the new transport. 1014 */ 1015 sctp_transport_burst_limited(transport); 1016 } 1017 1018 SCTP_DEBUG_PRINTK("sctp_outq_flush(%p, %p[%s]), ", 1019 q, chunk, 1020 chunk && chunk->chunk_hdr ? 1021 sctp_cname(SCTP_ST_CHUNK( 1022 chunk->chunk_hdr->type)) 1023 : "Illegal Chunk"); 1024 1025 SCTP_DEBUG_PRINTK("TX TSN 0x%x skb->head " 1026 "%p skb->users %d.\n", 1027 ntohl(chunk->subh.data_hdr->tsn), 1028 chunk->skb ?chunk->skb->head : NULL, 1029 chunk->skb ? 1030 atomic_read(&chunk->skb->users) : -1); 1031 1032 /* Add the chunk to the packet. */ 1033 status = sctp_packet_transmit_chunk(packet, chunk, 0); 1034 1035 switch (status) { 1036 case SCTP_XMIT_PMTU_FULL: 1037 case SCTP_XMIT_RWND_FULL: 1038 case SCTP_XMIT_NAGLE_DELAY: 1039 /* We could not append this chunk, so put 1040 * the chunk back on the output queue. 1041 */ 1042 SCTP_DEBUG_PRINTK("sctp_outq_flush: could " 1043 "not transmit TSN: 0x%x, status: %d\n", 1044 ntohl(chunk->subh.data_hdr->tsn), 1045 status); 1046 sctp_outq_head_data(q, chunk); 1047 goto sctp_flush_out; 1048 break; 1049 1050 case SCTP_XMIT_OK: 1051 /* The sender is in the SHUTDOWN-PENDING state, 1052 * The sender MAY set the I-bit in the DATA 1053 * chunk header. 1054 */ 1055 if (asoc->state == SCTP_STATE_SHUTDOWN_PENDING) 1056 chunk->chunk_hdr->flags |= SCTP_DATA_SACK_IMM; 1057 1058 break; 1059 1060 default: 1061 BUG(); 1062 } 1063 1064 /* BUG: We assume that the sctp_packet_transmit() 1065 * call below will succeed all the time and add the 1066 * chunk to the transmitted list and restart the 1067 * timers. 1068 * It is possible that the call can fail under OOM 1069 * conditions. 1070 * 1071 * Is this really a problem? Won't this behave 1072 * like a lost TSN? 1073 */ 1074 list_add_tail(&chunk->transmitted_list, 1075 &transport->transmitted); 1076 1077 sctp_transport_reset_timers(transport); 1078 1079 q->empty = 0; 1080 1081 /* Only let one DATA chunk get bundled with a 1082 * COOKIE-ECHO chunk. 1083 */ 1084 if (packet->has_cookie_echo) 1085 goto sctp_flush_out; 1086 } 1087 break; 1088 1089 default: 1090 /* Do nothing. */ 1091 break; 1092 } 1093 1094 sctp_flush_out: 1095 1096 /* Before returning, examine all the transports touched in 1097 * this call. Right now, we bluntly force clear all the 1098 * transports. Things might change after we implement Nagle. 1099 * But such an examination is still required. 1100 * 1101 * --xguo 1102 */ 1103 while ((ltransport = sctp_list_dequeue(&transport_list)) != NULL ) { 1104 struct sctp_transport *t = list_entry(ltransport, 1105 struct sctp_transport, 1106 send_ready); 1107 packet = &t->packet; 1108 if (!sctp_packet_empty(packet)) 1109 error = sctp_packet_transmit(packet); 1110 1111 /* Clear the burst limited state, if any */ 1112 sctp_transport_burst_reset(t); 1113 } 1114 1115 return error; 1116 } 1117 1118 /* Update unack_data based on the incoming SACK chunk */ 1119 static void sctp_sack_update_unack_data(struct sctp_association *assoc, 1120 struct sctp_sackhdr *sack) 1121 { 1122 sctp_sack_variable_t *frags; 1123 __u16 unack_data; 1124 int i; 1125 1126 unack_data = assoc->next_tsn - assoc->ctsn_ack_point - 1; 1127 1128 frags = sack->variable; 1129 for (i = 0; i < ntohs(sack->num_gap_ack_blocks); i++) { 1130 unack_data -= ((ntohs(frags[i].gab.end) - 1131 ntohs(frags[i].gab.start) + 1)); 1132 } 1133 1134 assoc->unack_data = unack_data; 1135 } 1136 1137 /* This is where we REALLY process a SACK. 1138 * 1139 * Process the SACK against the outqueue. Mostly, this just frees 1140 * things off the transmitted queue. 1141 */ 1142 int sctp_outq_sack(struct sctp_outq *q, struct sctp_sackhdr *sack) 1143 { 1144 struct sctp_association *asoc = q->asoc; 1145 struct sctp_transport *transport; 1146 struct sctp_chunk *tchunk = NULL; 1147 struct list_head *lchunk, *transport_list, *temp; 1148 sctp_sack_variable_t *frags = sack->variable; 1149 __u32 sack_ctsn, ctsn, tsn; 1150 __u32 highest_tsn, highest_new_tsn; 1151 __u32 sack_a_rwnd; 1152 unsigned int outstanding; 1153 struct sctp_transport *primary = asoc->peer.primary_path; 1154 int count_of_newacks = 0; 1155 int gap_ack_blocks; 1156 u8 accum_moved = 0; 1157 1158 /* Grab the association's destination address list. */ 1159 transport_list = &asoc->peer.transport_addr_list; 1160 1161 sack_ctsn = ntohl(sack->cum_tsn_ack); 1162 gap_ack_blocks = ntohs(sack->num_gap_ack_blocks); 1163 /* 1164 * SFR-CACC algorithm: 1165 * On receipt of a SACK the sender SHOULD execute the 1166 * following statements. 1167 * 1168 * 1) If the cumulative ack in the SACK passes next tsn_at_change 1169 * on the current primary, the CHANGEOVER_ACTIVE flag SHOULD be 1170 * cleared. The CYCLING_CHANGEOVER flag SHOULD also be cleared for 1171 * all destinations. 1172 * 2) If the SACK contains gap acks and the flag CHANGEOVER_ACTIVE 1173 * is set the receiver of the SACK MUST take the following actions: 1174 * 1175 * A) Initialize the cacc_saw_newack to 0 for all destination 1176 * addresses. 1177 * 1178 * Only bother if changeover_active is set. Otherwise, this is 1179 * totally suboptimal to do on every SACK. 1180 */ 1181 if (primary->cacc.changeover_active) { 1182 u8 clear_cycling = 0; 1183 1184 if (TSN_lte(primary->cacc.next_tsn_at_change, sack_ctsn)) { 1185 primary->cacc.changeover_active = 0; 1186 clear_cycling = 1; 1187 } 1188 1189 if (clear_cycling || gap_ack_blocks) { 1190 list_for_each_entry(transport, transport_list, 1191 transports) { 1192 if (clear_cycling) 1193 transport->cacc.cycling_changeover = 0; 1194 if (gap_ack_blocks) 1195 transport->cacc.cacc_saw_newack = 0; 1196 } 1197 } 1198 } 1199 1200 /* Get the highest TSN in the sack. */ 1201 highest_tsn = sack_ctsn; 1202 if (gap_ack_blocks) 1203 highest_tsn += ntohs(frags[gap_ack_blocks - 1].gab.end); 1204 1205 if (TSN_lt(asoc->highest_sacked, highest_tsn)) 1206 asoc->highest_sacked = highest_tsn; 1207 1208 highest_new_tsn = sack_ctsn; 1209 1210 /* Run through the retransmit queue. Credit bytes received 1211 * and free those chunks that we can. 1212 */ 1213 sctp_check_transmitted(q, &q->retransmit, NULL, sack, &highest_new_tsn); 1214 1215 /* Run through the transmitted queue. 1216 * Credit bytes received and free those chunks which we can. 1217 * 1218 * This is a MASSIVE candidate for optimization. 1219 */ 1220 list_for_each_entry(transport, transport_list, transports) { 1221 sctp_check_transmitted(q, &transport->transmitted, 1222 transport, sack, &highest_new_tsn); 1223 /* 1224 * SFR-CACC algorithm: 1225 * C) Let count_of_newacks be the number of 1226 * destinations for which cacc_saw_newack is set. 1227 */ 1228 if (transport->cacc.cacc_saw_newack) 1229 count_of_newacks ++; 1230 } 1231 1232 /* Move the Cumulative TSN Ack Point if appropriate. */ 1233 if (TSN_lt(asoc->ctsn_ack_point, sack_ctsn)) { 1234 asoc->ctsn_ack_point = sack_ctsn; 1235 accum_moved = 1; 1236 } 1237 1238 if (gap_ack_blocks) { 1239 1240 if (asoc->fast_recovery && accum_moved) 1241 highest_new_tsn = highest_tsn; 1242 1243 list_for_each_entry(transport, transport_list, transports) 1244 sctp_mark_missing(q, &transport->transmitted, transport, 1245 highest_new_tsn, count_of_newacks); 1246 } 1247 1248 /* Update unack_data field in the assoc. */ 1249 sctp_sack_update_unack_data(asoc, sack); 1250 1251 ctsn = asoc->ctsn_ack_point; 1252 1253 /* Throw away stuff rotting on the sack queue. */ 1254 list_for_each_safe(lchunk, temp, &q->sacked) { 1255 tchunk = list_entry(lchunk, struct sctp_chunk, 1256 transmitted_list); 1257 tsn = ntohl(tchunk->subh.data_hdr->tsn); 1258 if (TSN_lte(tsn, ctsn)) { 1259 list_del_init(&tchunk->transmitted_list); 1260 sctp_chunk_free(tchunk); 1261 } 1262 } 1263 1264 /* ii) Set rwnd equal to the newly received a_rwnd minus the 1265 * number of bytes still outstanding after processing the 1266 * Cumulative TSN Ack and the Gap Ack Blocks. 1267 */ 1268 1269 sack_a_rwnd = ntohl(sack->a_rwnd); 1270 outstanding = q->outstanding_bytes; 1271 1272 if (outstanding < sack_a_rwnd) 1273 sack_a_rwnd -= outstanding; 1274 else 1275 sack_a_rwnd = 0; 1276 1277 asoc->peer.rwnd = sack_a_rwnd; 1278 1279 sctp_generate_fwdtsn(q, sack_ctsn); 1280 1281 SCTP_DEBUG_PRINTK("%s: sack Cumulative TSN Ack is 0x%x.\n", 1282 __func__, sack_ctsn); 1283 SCTP_DEBUG_PRINTK("%s: Cumulative TSN Ack of association, " 1284 "%p is 0x%x. Adv peer ack point: 0x%x\n", 1285 __func__, asoc, ctsn, asoc->adv_peer_ack_point); 1286 1287 /* See if all chunks are acked. 1288 * Make sure the empty queue handler will get run later. 1289 */ 1290 q->empty = (list_empty(&q->out_chunk_list) && 1291 list_empty(&q->retransmit)); 1292 if (!q->empty) 1293 goto finish; 1294 1295 list_for_each_entry(transport, transport_list, transports) { 1296 q->empty = q->empty && list_empty(&transport->transmitted); 1297 if (!q->empty) 1298 goto finish; 1299 } 1300 1301 SCTP_DEBUG_PRINTK("sack queue is empty.\n"); 1302 finish: 1303 return q->empty; 1304 } 1305 1306 /* Is the outqueue empty? */ 1307 int sctp_outq_is_empty(const struct sctp_outq *q) 1308 { 1309 return q->empty; 1310 } 1311 1312 /******************************************************************** 1313 * 2nd Level Abstractions 1314 ********************************************************************/ 1315 1316 /* Go through a transport's transmitted list or the association's retransmit 1317 * list and move chunks that are acked by the Cumulative TSN Ack to q->sacked. 1318 * The retransmit list will not have an associated transport. 1319 * 1320 * I added coherent debug information output. --xguo 1321 * 1322 * Instead of printing 'sacked' or 'kept' for each TSN on the 1323 * transmitted_queue, we print a range: SACKED: TSN1-TSN2, TSN3, TSN4-TSN5. 1324 * KEPT TSN6-TSN7, etc. 1325 */ 1326 static void sctp_check_transmitted(struct sctp_outq *q, 1327 struct list_head *transmitted_queue, 1328 struct sctp_transport *transport, 1329 struct sctp_sackhdr *sack, 1330 __u32 *highest_new_tsn_in_sack) 1331 { 1332 struct list_head *lchunk; 1333 struct sctp_chunk *tchunk; 1334 struct list_head tlist; 1335 __u32 tsn; 1336 __u32 sack_ctsn; 1337 __u32 rtt; 1338 __u8 restart_timer = 0; 1339 int bytes_acked = 0; 1340 int migrate_bytes = 0; 1341 1342 /* These state variables are for coherent debug output. --xguo */ 1343 1344 #if SCTP_DEBUG 1345 __u32 dbg_ack_tsn = 0; /* An ACKed TSN range starts here... */ 1346 __u32 dbg_last_ack_tsn = 0; /* ...and finishes here. */ 1347 __u32 dbg_kept_tsn = 0; /* An un-ACKed range starts here... */ 1348 __u32 dbg_last_kept_tsn = 0; /* ...and finishes here. */ 1349 1350 /* 0 : The last TSN was ACKed. 1351 * 1 : The last TSN was NOT ACKed (i.e. KEPT). 1352 * -1: We need to initialize. 1353 */ 1354 int dbg_prt_state = -1; 1355 #endif /* SCTP_DEBUG */ 1356 1357 sack_ctsn = ntohl(sack->cum_tsn_ack); 1358 1359 INIT_LIST_HEAD(&tlist); 1360 1361 /* The while loop will skip empty transmitted queues. */ 1362 while (NULL != (lchunk = sctp_list_dequeue(transmitted_queue))) { 1363 tchunk = list_entry(lchunk, struct sctp_chunk, 1364 transmitted_list); 1365 1366 if (sctp_chunk_abandoned(tchunk)) { 1367 /* Move the chunk to abandoned list. */ 1368 sctp_insert_list(&q->abandoned, lchunk); 1369 1370 /* If this chunk has not been acked, stop 1371 * considering it as 'outstanding'. 1372 */ 1373 if (!tchunk->tsn_gap_acked) { 1374 if (tchunk->transport) 1375 tchunk->transport->flight_size -= 1376 sctp_data_size(tchunk); 1377 q->outstanding_bytes -= sctp_data_size(tchunk); 1378 } 1379 continue; 1380 } 1381 1382 tsn = ntohl(tchunk->subh.data_hdr->tsn); 1383 if (sctp_acked(sack, tsn)) { 1384 /* If this queue is the retransmit queue, the 1385 * retransmit timer has already reclaimed 1386 * the outstanding bytes for this chunk, so only 1387 * count bytes associated with a transport. 1388 */ 1389 if (transport) { 1390 /* If this chunk is being used for RTT 1391 * measurement, calculate the RTT and update 1392 * the RTO using this value. 1393 * 1394 * 6.3.1 C5) Karn's algorithm: RTT measurements 1395 * MUST NOT be made using packets that were 1396 * retransmitted (and thus for which it is 1397 * ambiguous whether the reply was for the 1398 * first instance of the packet or a later 1399 * instance). 1400 */ 1401 if (!tchunk->tsn_gap_acked && 1402 tchunk->rtt_in_progress) { 1403 tchunk->rtt_in_progress = 0; 1404 rtt = jiffies - tchunk->sent_at; 1405 sctp_transport_update_rto(transport, 1406 rtt); 1407 } 1408 } 1409 1410 /* If the chunk hasn't been marked as ACKED, 1411 * mark it and account bytes_acked if the 1412 * chunk had a valid transport (it will not 1413 * have a transport if ASCONF had deleted it 1414 * while DATA was outstanding). 1415 */ 1416 if (!tchunk->tsn_gap_acked) { 1417 tchunk->tsn_gap_acked = 1; 1418 *highest_new_tsn_in_sack = tsn; 1419 bytes_acked += sctp_data_size(tchunk); 1420 if (!tchunk->transport) 1421 migrate_bytes += sctp_data_size(tchunk); 1422 } 1423 1424 if (TSN_lte(tsn, sack_ctsn)) { 1425 /* RFC 2960 6.3.2 Retransmission Timer Rules 1426 * 1427 * R3) Whenever a SACK is received 1428 * that acknowledges the DATA chunk 1429 * with the earliest outstanding TSN 1430 * for that address, restart T3-rtx 1431 * timer for that address with its 1432 * current RTO. 1433 */ 1434 restart_timer = 1; 1435 1436 if (!tchunk->tsn_gap_acked) { 1437 /* 1438 * SFR-CACC algorithm: 1439 * 2) If the SACK contains gap acks 1440 * and the flag CHANGEOVER_ACTIVE is 1441 * set the receiver of the SACK MUST 1442 * take the following action: 1443 * 1444 * B) For each TSN t being acked that 1445 * has not been acked in any SACK so 1446 * far, set cacc_saw_newack to 1 for 1447 * the destination that the TSN was 1448 * sent to. 1449 */ 1450 if (transport && 1451 sack->num_gap_ack_blocks && 1452 q->asoc->peer.primary_path->cacc. 1453 changeover_active) 1454 transport->cacc.cacc_saw_newack 1455 = 1; 1456 } 1457 1458 list_add_tail(&tchunk->transmitted_list, 1459 &q->sacked); 1460 } else { 1461 /* RFC2960 7.2.4, sctpimpguide-05 2.8.2 1462 * M2) Each time a SACK arrives reporting 1463 * 'Stray DATA chunk(s)' record the highest TSN 1464 * reported as newly acknowledged, call this 1465 * value 'HighestTSNinSack'. A newly 1466 * acknowledged DATA chunk is one not 1467 * previously acknowledged in a SACK. 1468 * 1469 * When the SCTP sender of data receives a SACK 1470 * chunk that acknowledges, for the first time, 1471 * the receipt of a DATA chunk, all the still 1472 * unacknowledged DATA chunks whose TSN is 1473 * older than that newly acknowledged DATA 1474 * chunk, are qualified as 'Stray DATA chunks'. 1475 */ 1476 list_add_tail(lchunk, &tlist); 1477 } 1478 1479 #if SCTP_DEBUG 1480 switch (dbg_prt_state) { 1481 case 0: /* last TSN was ACKed */ 1482 if (dbg_last_ack_tsn + 1 == tsn) { 1483 /* This TSN belongs to the 1484 * current ACK range. 1485 */ 1486 break; 1487 } 1488 1489 if (dbg_last_ack_tsn != dbg_ack_tsn) { 1490 /* Display the end of the 1491 * current range. 1492 */ 1493 SCTP_DEBUG_PRINTK_CONT("-%08x", 1494 dbg_last_ack_tsn); 1495 } 1496 1497 /* Start a new range. */ 1498 SCTP_DEBUG_PRINTK_CONT(",%08x", tsn); 1499 dbg_ack_tsn = tsn; 1500 break; 1501 1502 case 1: /* The last TSN was NOT ACKed. */ 1503 if (dbg_last_kept_tsn != dbg_kept_tsn) { 1504 /* Display the end of current range. */ 1505 SCTP_DEBUG_PRINTK_CONT("-%08x", 1506 dbg_last_kept_tsn); 1507 } 1508 1509 SCTP_DEBUG_PRINTK_CONT("\n"); 1510 1511 /* FALL THROUGH... */ 1512 default: 1513 /* This is the first-ever TSN we examined. */ 1514 /* Start a new range of ACK-ed TSNs. */ 1515 SCTP_DEBUG_PRINTK("ACKed: %08x", tsn); 1516 dbg_prt_state = 0; 1517 dbg_ack_tsn = tsn; 1518 } 1519 1520 dbg_last_ack_tsn = tsn; 1521 #endif /* SCTP_DEBUG */ 1522 1523 } else { 1524 if (tchunk->tsn_gap_acked) { 1525 SCTP_DEBUG_PRINTK("%s: Receiver reneged on " 1526 "data TSN: 0x%x\n", 1527 __func__, 1528 tsn); 1529 tchunk->tsn_gap_acked = 0; 1530 1531 if (tchunk->transport) 1532 bytes_acked -= sctp_data_size(tchunk); 1533 1534 /* RFC 2960 6.3.2 Retransmission Timer Rules 1535 * 1536 * R4) Whenever a SACK is received missing a 1537 * TSN that was previously acknowledged via a 1538 * Gap Ack Block, start T3-rtx for the 1539 * destination address to which the DATA 1540 * chunk was originally 1541 * transmitted if it is not already running. 1542 */ 1543 restart_timer = 1; 1544 } 1545 1546 list_add_tail(lchunk, &tlist); 1547 1548 #if SCTP_DEBUG 1549 /* See the above comments on ACK-ed TSNs. */ 1550 switch (dbg_prt_state) { 1551 case 1: 1552 if (dbg_last_kept_tsn + 1 == tsn) 1553 break; 1554 1555 if (dbg_last_kept_tsn != dbg_kept_tsn) 1556 SCTP_DEBUG_PRINTK_CONT("-%08x", 1557 dbg_last_kept_tsn); 1558 1559 SCTP_DEBUG_PRINTK_CONT(",%08x", tsn); 1560 dbg_kept_tsn = tsn; 1561 break; 1562 1563 case 0: 1564 if (dbg_last_ack_tsn != dbg_ack_tsn) 1565 SCTP_DEBUG_PRINTK_CONT("-%08x", 1566 dbg_last_ack_tsn); 1567 SCTP_DEBUG_PRINTK_CONT("\n"); 1568 1569 /* FALL THROUGH... */ 1570 default: 1571 SCTP_DEBUG_PRINTK("KEPT: %08x",tsn); 1572 dbg_prt_state = 1; 1573 dbg_kept_tsn = tsn; 1574 } 1575 1576 dbg_last_kept_tsn = tsn; 1577 #endif /* SCTP_DEBUG */ 1578 } 1579 } 1580 1581 #if SCTP_DEBUG 1582 /* Finish off the last range, displaying its ending TSN. */ 1583 switch (dbg_prt_state) { 1584 case 0: 1585 if (dbg_last_ack_tsn != dbg_ack_tsn) { 1586 SCTP_DEBUG_PRINTK_CONT("-%08x\n", dbg_last_ack_tsn); 1587 } else { 1588 SCTP_DEBUG_PRINTK_CONT("\n"); 1589 } 1590 break; 1591 1592 case 1: 1593 if (dbg_last_kept_tsn != dbg_kept_tsn) { 1594 SCTP_DEBUG_PRINTK_CONT("-%08x\n", dbg_last_kept_tsn); 1595 } else { 1596 SCTP_DEBUG_PRINTK_CONT("\n"); 1597 } 1598 } 1599 #endif /* SCTP_DEBUG */ 1600 if (transport) { 1601 if (bytes_acked) { 1602 struct sctp_association *asoc = transport->asoc; 1603 1604 /* We may have counted DATA that was migrated 1605 * to this transport due to DEL-IP operation. 1606 * Subtract those bytes, since the were never 1607 * send on this transport and shouldn't be 1608 * credited to this transport. 1609 */ 1610 bytes_acked -= migrate_bytes; 1611 1612 /* 8.2. When an outstanding TSN is acknowledged, 1613 * the endpoint shall clear the error counter of 1614 * the destination transport address to which the 1615 * DATA chunk was last sent. 1616 * The association's overall error counter is 1617 * also cleared. 1618 */ 1619 transport->error_count = 0; 1620 transport->asoc->overall_error_count = 0; 1621 1622 /* 1623 * While in SHUTDOWN PENDING, we may have started 1624 * the T5 shutdown guard timer after reaching the 1625 * retransmission limit. Stop that timer as soon 1626 * as the receiver acknowledged any data. 1627 */ 1628 if (asoc->state == SCTP_STATE_SHUTDOWN_PENDING && 1629 del_timer(&asoc->timers 1630 [SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD])) 1631 sctp_association_put(asoc); 1632 1633 /* Mark the destination transport address as 1634 * active if it is not so marked. 1635 */ 1636 if ((transport->state == SCTP_INACTIVE) || 1637 (transport->state == SCTP_UNCONFIRMED)) { 1638 sctp_assoc_control_transport( 1639 transport->asoc, 1640 transport, 1641 SCTP_TRANSPORT_UP, 1642 SCTP_RECEIVED_SACK); 1643 } 1644 1645 sctp_transport_raise_cwnd(transport, sack_ctsn, 1646 bytes_acked); 1647 1648 transport->flight_size -= bytes_acked; 1649 if (transport->flight_size == 0) 1650 transport->partial_bytes_acked = 0; 1651 q->outstanding_bytes -= bytes_acked + migrate_bytes; 1652 } else { 1653 /* RFC 2960 6.1, sctpimpguide-06 2.15.2 1654 * When a sender is doing zero window probing, it 1655 * should not timeout the association if it continues 1656 * to receive new packets from the receiver. The 1657 * reason is that the receiver MAY keep its window 1658 * closed for an indefinite time. 1659 * A sender is doing zero window probing when the 1660 * receiver's advertised window is zero, and there is 1661 * only one data chunk in flight to the receiver. 1662 * 1663 * Allow the association to timeout while in SHUTDOWN 1664 * PENDING or SHUTDOWN RECEIVED in case the receiver 1665 * stays in zero window mode forever. 1666 */ 1667 if (!q->asoc->peer.rwnd && 1668 !list_empty(&tlist) && 1669 (sack_ctsn+2 == q->asoc->next_tsn) && 1670 q->asoc->state < SCTP_STATE_SHUTDOWN_PENDING) { 1671 SCTP_DEBUG_PRINTK("%s: SACK received for zero " 1672 "window probe: %u\n", 1673 __func__, sack_ctsn); 1674 q->asoc->overall_error_count = 0; 1675 transport->error_count = 0; 1676 } 1677 } 1678 1679 /* RFC 2960 6.3.2 Retransmission Timer Rules 1680 * 1681 * R2) Whenever all outstanding data sent to an address have 1682 * been acknowledged, turn off the T3-rtx timer of that 1683 * address. 1684 */ 1685 if (!transport->flight_size) { 1686 if (timer_pending(&transport->T3_rtx_timer) && 1687 del_timer(&transport->T3_rtx_timer)) { 1688 sctp_transport_put(transport); 1689 } 1690 } else if (restart_timer) { 1691 if (!mod_timer(&transport->T3_rtx_timer, 1692 jiffies + transport->rto)) 1693 sctp_transport_hold(transport); 1694 } 1695 } 1696 1697 list_splice(&tlist, transmitted_queue); 1698 } 1699 1700 /* Mark chunks as missing and consequently may get retransmitted. */ 1701 static void sctp_mark_missing(struct sctp_outq *q, 1702 struct list_head *transmitted_queue, 1703 struct sctp_transport *transport, 1704 __u32 highest_new_tsn_in_sack, 1705 int count_of_newacks) 1706 { 1707 struct sctp_chunk *chunk; 1708 __u32 tsn; 1709 char do_fast_retransmit = 0; 1710 struct sctp_association *asoc = q->asoc; 1711 struct sctp_transport *primary = asoc->peer.primary_path; 1712 1713 list_for_each_entry(chunk, transmitted_queue, transmitted_list) { 1714 1715 tsn = ntohl(chunk->subh.data_hdr->tsn); 1716 1717 /* RFC 2960 7.2.4, sctpimpguide-05 2.8.2 M3) Examine all 1718 * 'Unacknowledged TSN's', if the TSN number of an 1719 * 'Unacknowledged TSN' is smaller than the 'HighestTSNinSack' 1720 * value, increment the 'TSN.Missing.Report' count on that 1721 * chunk if it has NOT been fast retransmitted or marked for 1722 * fast retransmit already. 1723 */ 1724 if (chunk->fast_retransmit == SCTP_CAN_FRTX && 1725 !chunk->tsn_gap_acked && 1726 TSN_lt(tsn, highest_new_tsn_in_sack)) { 1727 1728 /* SFR-CACC may require us to skip marking 1729 * this chunk as missing. 1730 */ 1731 if (!transport || !sctp_cacc_skip(primary, 1732 chunk->transport, 1733 count_of_newacks, tsn)) { 1734 chunk->tsn_missing_report++; 1735 1736 SCTP_DEBUG_PRINTK( 1737 "%s: TSN 0x%x missing counter: %d\n", 1738 __func__, tsn, 1739 chunk->tsn_missing_report); 1740 } 1741 } 1742 /* 1743 * M4) If any DATA chunk is found to have a 1744 * 'TSN.Missing.Report' 1745 * value larger than or equal to 3, mark that chunk for 1746 * retransmission and start the fast retransmit procedure. 1747 */ 1748 1749 if (chunk->tsn_missing_report >= 3) { 1750 chunk->fast_retransmit = SCTP_NEED_FRTX; 1751 do_fast_retransmit = 1; 1752 } 1753 } 1754 1755 if (transport) { 1756 if (do_fast_retransmit) 1757 sctp_retransmit(q, transport, SCTP_RTXR_FAST_RTX); 1758 1759 SCTP_DEBUG_PRINTK("%s: transport: %p, cwnd: %d, " 1760 "ssthresh: %d, flight_size: %d, pba: %d\n", 1761 __func__, transport, transport->cwnd, 1762 transport->ssthresh, transport->flight_size, 1763 transport->partial_bytes_acked); 1764 } 1765 } 1766 1767 /* Is the given TSN acked by this packet? */ 1768 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn) 1769 { 1770 int i; 1771 sctp_sack_variable_t *frags; 1772 __u16 gap; 1773 __u32 ctsn = ntohl(sack->cum_tsn_ack); 1774 1775 if (TSN_lte(tsn, ctsn)) 1776 goto pass; 1777 1778 /* 3.3.4 Selective Acknowledgement (SACK) (3): 1779 * 1780 * Gap Ack Blocks: 1781 * These fields contain the Gap Ack Blocks. They are repeated 1782 * for each Gap Ack Block up to the number of Gap Ack Blocks 1783 * defined in the Number of Gap Ack Blocks field. All DATA 1784 * chunks with TSNs greater than or equal to (Cumulative TSN 1785 * Ack + Gap Ack Block Start) and less than or equal to 1786 * (Cumulative TSN Ack + Gap Ack Block End) of each Gap Ack 1787 * Block are assumed to have been received correctly. 1788 */ 1789 1790 frags = sack->variable; 1791 gap = tsn - ctsn; 1792 for (i = 0; i < ntohs(sack->num_gap_ack_blocks); ++i) { 1793 if (TSN_lte(ntohs(frags[i].gab.start), gap) && 1794 TSN_lte(gap, ntohs(frags[i].gab.end))) 1795 goto pass; 1796 } 1797 1798 return 0; 1799 pass: 1800 return 1; 1801 } 1802 1803 static inline int sctp_get_skip_pos(struct sctp_fwdtsn_skip *skiplist, 1804 int nskips, __be16 stream) 1805 { 1806 int i; 1807 1808 for (i = 0; i < nskips; i++) { 1809 if (skiplist[i].stream == stream) 1810 return i; 1811 } 1812 return i; 1813 } 1814 1815 /* Create and add a fwdtsn chunk to the outq's control queue if needed. */ 1816 static void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 ctsn) 1817 { 1818 struct sctp_association *asoc = q->asoc; 1819 struct sctp_chunk *ftsn_chunk = NULL; 1820 struct sctp_fwdtsn_skip ftsn_skip_arr[10]; 1821 int nskips = 0; 1822 int skip_pos = 0; 1823 __u32 tsn; 1824 struct sctp_chunk *chunk; 1825 struct list_head *lchunk, *temp; 1826 1827 if (!asoc->peer.prsctp_capable) 1828 return; 1829 1830 /* PR-SCTP C1) Let SackCumAck be the Cumulative TSN ACK carried in the 1831 * received SACK. 1832 * 1833 * If (Advanced.Peer.Ack.Point < SackCumAck), then update 1834 * Advanced.Peer.Ack.Point to be equal to SackCumAck. 1835 */ 1836 if (TSN_lt(asoc->adv_peer_ack_point, ctsn)) 1837 asoc->adv_peer_ack_point = ctsn; 1838 1839 /* PR-SCTP C2) Try to further advance the "Advanced.Peer.Ack.Point" 1840 * locally, that is, to move "Advanced.Peer.Ack.Point" up as long as 1841 * the chunk next in the out-queue space is marked as "abandoned" as 1842 * shown in the following example: 1843 * 1844 * Assuming that a SACK arrived with the Cumulative TSN ACK 102 1845 * and the Advanced.Peer.Ack.Point is updated to this value: 1846 * 1847 * out-queue at the end of ==> out-queue after Adv.Ack.Point 1848 * normal SACK processing local advancement 1849 * ... ... 1850 * Adv.Ack.Pt-> 102 acked 102 acked 1851 * 103 abandoned 103 abandoned 1852 * 104 abandoned Adv.Ack.P-> 104 abandoned 1853 * 105 105 1854 * 106 acked 106 acked 1855 * ... ... 1856 * 1857 * In this example, the data sender successfully advanced the 1858 * "Advanced.Peer.Ack.Point" from 102 to 104 locally. 1859 */ 1860 list_for_each_safe(lchunk, temp, &q->abandoned) { 1861 chunk = list_entry(lchunk, struct sctp_chunk, 1862 transmitted_list); 1863 tsn = ntohl(chunk->subh.data_hdr->tsn); 1864 1865 /* Remove any chunks in the abandoned queue that are acked by 1866 * the ctsn. 1867 */ 1868 if (TSN_lte(tsn, ctsn)) { 1869 list_del_init(lchunk); 1870 sctp_chunk_free(chunk); 1871 } else { 1872 if (TSN_lte(tsn, asoc->adv_peer_ack_point+1)) { 1873 asoc->adv_peer_ack_point = tsn; 1874 if (chunk->chunk_hdr->flags & 1875 SCTP_DATA_UNORDERED) 1876 continue; 1877 skip_pos = sctp_get_skip_pos(&ftsn_skip_arr[0], 1878 nskips, 1879 chunk->subh.data_hdr->stream); 1880 ftsn_skip_arr[skip_pos].stream = 1881 chunk->subh.data_hdr->stream; 1882 ftsn_skip_arr[skip_pos].ssn = 1883 chunk->subh.data_hdr->ssn; 1884 if (skip_pos == nskips) 1885 nskips++; 1886 if (nskips == 10) 1887 break; 1888 } else 1889 break; 1890 } 1891 } 1892 1893 /* PR-SCTP C3) If, after step C1 and C2, the "Advanced.Peer.Ack.Point" 1894 * is greater than the Cumulative TSN ACK carried in the received 1895 * SACK, the data sender MUST send the data receiver a FORWARD TSN 1896 * chunk containing the latest value of the 1897 * "Advanced.Peer.Ack.Point". 1898 * 1899 * C4) For each "abandoned" TSN the sender of the FORWARD TSN SHOULD 1900 * list each stream and sequence number in the forwarded TSN. This 1901 * information will enable the receiver to easily find any 1902 * stranded TSN's waiting on stream reorder queues. Each stream 1903 * SHOULD only be reported once; this means that if multiple 1904 * abandoned messages occur in the same stream then only the 1905 * highest abandoned stream sequence number is reported. If the 1906 * total size of the FORWARD TSN does NOT fit in a single MTU then 1907 * the sender of the FORWARD TSN SHOULD lower the 1908 * Advanced.Peer.Ack.Point to the last TSN that will fit in a 1909 * single MTU. 1910 */ 1911 if (asoc->adv_peer_ack_point > ctsn) 1912 ftsn_chunk = sctp_make_fwdtsn(asoc, asoc->adv_peer_ack_point, 1913 nskips, &ftsn_skip_arr[0]); 1914 1915 if (ftsn_chunk) { 1916 list_add_tail(&ftsn_chunk->list, &q->control_chunk_list); 1917 SCTP_INC_STATS(SCTP_MIB_OUTCTRLCHUNKS); 1918 } 1919 } 1920