xref: /openbmc/linux/net/sctp/outqueue.c (revision 7dd65feb)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  *
7  * This file is part of the SCTP kernel implementation
8  *
9  * These functions implement the sctp_outq class.   The outqueue handles
10  * bundling and queueing of outgoing SCTP chunks.
11  *
12  * This SCTP implementation is free software;
13  * you can redistribute it and/or modify it under the terms of
14  * the GNU General Public License as published by
15  * the Free Software Foundation; either version 2, or (at your option)
16  * any later version.
17  *
18  * This SCTP implementation is distributed in the hope that it
19  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20  *                 ************************
21  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22  * See the GNU General Public License for more details.
23  *
24  * You should have received a copy of the GNU General Public License
25  * along with GNU CC; see the file COPYING.  If not, write to
26  * the Free Software Foundation, 59 Temple Place - Suite 330,
27  * Boston, MA 02111-1307, USA.
28  *
29  * Please send any bug reports or fixes you make to the
30  * email address(es):
31  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
32  *
33  * Or submit a bug report through the following website:
34  *    http://www.sf.net/projects/lksctp
35  *
36  * Written or modified by:
37  *    La Monte H.P. Yarroll <piggy@acm.org>
38  *    Karl Knutson          <karl@athena.chicago.il.us>
39  *    Perry Melange         <pmelange@null.cc.uic.edu>
40  *    Xingang Guo           <xingang.guo@intel.com>
41  *    Hui Huang 	    <hui.huang@nokia.com>
42  *    Sridhar Samudrala     <sri@us.ibm.com>
43  *    Jon Grimm             <jgrimm@us.ibm.com>
44  *
45  * Any bugs reported given to us we will try to fix... any fixes shared will
46  * be incorporated into the next SCTP release.
47  */
48 
49 #include <linux/types.h>
50 #include <linux/list.h>   /* For struct list_head */
51 #include <linux/socket.h>
52 #include <linux/ip.h>
53 #include <net/sock.h>	  /* For skb_set_owner_w */
54 
55 #include <net/sctp/sctp.h>
56 #include <net/sctp/sm.h>
57 
58 /* Declare internal functions here.  */
59 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn);
60 static void sctp_check_transmitted(struct sctp_outq *q,
61 				   struct list_head *transmitted_queue,
62 				   struct sctp_transport *transport,
63 				   struct sctp_sackhdr *sack,
64 				   __u32 highest_new_tsn);
65 
66 static void sctp_mark_missing(struct sctp_outq *q,
67 			      struct list_head *transmitted_queue,
68 			      struct sctp_transport *transport,
69 			      __u32 highest_new_tsn,
70 			      int count_of_newacks);
71 
72 static void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 sack_ctsn);
73 
74 static int sctp_outq_flush(struct sctp_outq *q, int rtx_timeout);
75 
76 /* Add data to the front of the queue. */
77 static inline void sctp_outq_head_data(struct sctp_outq *q,
78 					struct sctp_chunk *ch)
79 {
80 	list_add(&ch->list, &q->out_chunk_list);
81 	q->out_qlen += ch->skb->len;
82 	return;
83 }
84 
85 /* Take data from the front of the queue. */
86 static inline struct sctp_chunk *sctp_outq_dequeue_data(struct sctp_outq *q)
87 {
88 	struct sctp_chunk *ch = NULL;
89 
90 	if (!list_empty(&q->out_chunk_list)) {
91 		struct list_head *entry = q->out_chunk_list.next;
92 
93 		ch = list_entry(entry, struct sctp_chunk, list);
94 		list_del_init(entry);
95 		q->out_qlen -= ch->skb->len;
96 	}
97 	return ch;
98 }
99 /* Add data chunk to the end of the queue. */
100 static inline void sctp_outq_tail_data(struct sctp_outq *q,
101 				       struct sctp_chunk *ch)
102 {
103 	list_add_tail(&ch->list, &q->out_chunk_list);
104 	q->out_qlen += ch->skb->len;
105 	return;
106 }
107 
108 /*
109  * SFR-CACC algorithm:
110  * D) If count_of_newacks is greater than or equal to 2
111  * and t was not sent to the current primary then the
112  * sender MUST NOT increment missing report count for t.
113  */
114 static inline int sctp_cacc_skip_3_1_d(struct sctp_transport *primary,
115 				       struct sctp_transport *transport,
116 				       int count_of_newacks)
117 {
118 	if (count_of_newacks >=2 && transport != primary)
119 		return 1;
120 	return 0;
121 }
122 
123 /*
124  * SFR-CACC algorithm:
125  * F) If count_of_newacks is less than 2, let d be the
126  * destination to which t was sent. If cacc_saw_newack
127  * is 0 for destination d, then the sender MUST NOT
128  * increment missing report count for t.
129  */
130 static inline int sctp_cacc_skip_3_1_f(struct sctp_transport *transport,
131 				       int count_of_newacks)
132 {
133 	if (count_of_newacks < 2 && !transport->cacc.cacc_saw_newack)
134 		return 1;
135 	return 0;
136 }
137 
138 /*
139  * SFR-CACC algorithm:
140  * 3.1) If CYCLING_CHANGEOVER is 0, the sender SHOULD
141  * execute steps C, D, F.
142  *
143  * C has been implemented in sctp_outq_sack
144  */
145 static inline int sctp_cacc_skip_3_1(struct sctp_transport *primary,
146 				     struct sctp_transport *transport,
147 				     int count_of_newacks)
148 {
149 	if (!primary->cacc.cycling_changeover) {
150 		if (sctp_cacc_skip_3_1_d(primary, transport, count_of_newacks))
151 			return 1;
152 		if (sctp_cacc_skip_3_1_f(transport, count_of_newacks))
153 			return 1;
154 		return 0;
155 	}
156 	return 0;
157 }
158 
159 /*
160  * SFR-CACC algorithm:
161  * 3.2) Else if CYCLING_CHANGEOVER is 1, and t is less
162  * than next_tsn_at_change of the current primary, then
163  * the sender MUST NOT increment missing report count
164  * for t.
165  */
166 static inline int sctp_cacc_skip_3_2(struct sctp_transport *primary, __u32 tsn)
167 {
168 	if (primary->cacc.cycling_changeover &&
169 	    TSN_lt(tsn, primary->cacc.next_tsn_at_change))
170 		return 1;
171 	return 0;
172 }
173 
174 /*
175  * SFR-CACC algorithm:
176  * 3) If the missing report count for TSN t is to be
177  * incremented according to [RFC2960] and
178  * [SCTP_STEWART-2002], and CHANGEOVER_ACTIVE is set,
179  * then the sender MUST futher execute steps 3.1 and
180  * 3.2 to determine if the missing report count for
181  * TSN t SHOULD NOT be incremented.
182  *
183  * 3.3) If 3.1 and 3.2 do not dictate that the missing
184  * report count for t should not be incremented, then
185  * the sender SOULD increment missing report count for
186  * t (according to [RFC2960] and [SCTP_STEWART_2002]).
187  */
188 static inline int sctp_cacc_skip(struct sctp_transport *primary,
189 				 struct sctp_transport *transport,
190 				 int count_of_newacks,
191 				 __u32 tsn)
192 {
193 	if (primary->cacc.changeover_active &&
194 	    (sctp_cacc_skip_3_1(primary, transport, count_of_newacks) ||
195 	     sctp_cacc_skip_3_2(primary, tsn)))
196 		return 1;
197 	return 0;
198 }
199 
200 /* Initialize an existing sctp_outq.  This does the boring stuff.
201  * You still need to define handlers if you really want to DO
202  * something with this structure...
203  */
204 void sctp_outq_init(struct sctp_association *asoc, struct sctp_outq *q)
205 {
206 	q->asoc = asoc;
207 	INIT_LIST_HEAD(&q->out_chunk_list);
208 	INIT_LIST_HEAD(&q->control_chunk_list);
209 	INIT_LIST_HEAD(&q->retransmit);
210 	INIT_LIST_HEAD(&q->sacked);
211 	INIT_LIST_HEAD(&q->abandoned);
212 
213 	q->fast_rtx = 0;
214 	q->outstanding_bytes = 0;
215 	q->empty = 1;
216 	q->cork  = 0;
217 
218 	q->malloced = 0;
219 	q->out_qlen = 0;
220 }
221 
222 /* Free the outqueue structure and any related pending chunks.
223  */
224 void sctp_outq_teardown(struct sctp_outq *q)
225 {
226 	struct sctp_transport *transport;
227 	struct list_head *lchunk, *temp;
228 	struct sctp_chunk *chunk, *tmp;
229 
230 	/* Throw away unacknowledged chunks. */
231 	list_for_each_entry(transport, &q->asoc->peer.transport_addr_list,
232 			transports) {
233 		while ((lchunk = sctp_list_dequeue(&transport->transmitted)) != NULL) {
234 			chunk = list_entry(lchunk, struct sctp_chunk,
235 					   transmitted_list);
236 			/* Mark as part of a failed message. */
237 			sctp_chunk_fail(chunk, q->error);
238 			sctp_chunk_free(chunk);
239 		}
240 	}
241 
242 	/* Throw away chunks that have been gap ACKed.  */
243 	list_for_each_safe(lchunk, temp, &q->sacked) {
244 		list_del_init(lchunk);
245 		chunk = list_entry(lchunk, struct sctp_chunk,
246 				   transmitted_list);
247 		sctp_chunk_fail(chunk, q->error);
248 		sctp_chunk_free(chunk);
249 	}
250 
251 	/* Throw away any chunks in the retransmit queue. */
252 	list_for_each_safe(lchunk, temp, &q->retransmit) {
253 		list_del_init(lchunk);
254 		chunk = list_entry(lchunk, struct sctp_chunk,
255 				   transmitted_list);
256 		sctp_chunk_fail(chunk, q->error);
257 		sctp_chunk_free(chunk);
258 	}
259 
260 	/* Throw away any chunks that are in the abandoned queue. */
261 	list_for_each_safe(lchunk, temp, &q->abandoned) {
262 		list_del_init(lchunk);
263 		chunk = list_entry(lchunk, struct sctp_chunk,
264 				   transmitted_list);
265 		sctp_chunk_fail(chunk, q->error);
266 		sctp_chunk_free(chunk);
267 	}
268 
269 	/* Throw away any leftover data chunks. */
270 	while ((chunk = sctp_outq_dequeue_data(q)) != NULL) {
271 
272 		/* Mark as send failure. */
273 		sctp_chunk_fail(chunk, q->error);
274 		sctp_chunk_free(chunk);
275 	}
276 
277 	q->error = 0;
278 
279 	/* Throw away any leftover control chunks. */
280 	list_for_each_entry_safe(chunk, tmp, &q->control_chunk_list, list) {
281 		list_del_init(&chunk->list);
282 		sctp_chunk_free(chunk);
283 	}
284 }
285 
286 /* Free the outqueue structure and any related pending chunks.  */
287 void sctp_outq_free(struct sctp_outq *q)
288 {
289 	/* Throw away leftover chunks. */
290 	sctp_outq_teardown(q);
291 
292 	/* If we were kmalloc()'d, free the memory.  */
293 	if (q->malloced)
294 		kfree(q);
295 }
296 
297 /* Put a new chunk in an sctp_outq.  */
298 int sctp_outq_tail(struct sctp_outq *q, struct sctp_chunk *chunk)
299 {
300 	int error = 0;
301 
302 	SCTP_DEBUG_PRINTK("sctp_outq_tail(%p, %p[%s])\n",
303 			  q, chunk, chunk && chunk->chunk_hdr ?
304 			  sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type))
305 			  : "Illegal Chunk");
306 
307 	/* If it is data, queue it up, otherwise, send it
308 	 * immediately.
309 	 */
310 	if (SCTP_CID_DATA == chunk->chunk_hdr->type) {
311 		/* Is it OK to queue data chunks?  */
312 		/* From 9. Termination of Association
313 		 *
314 		 * When either endpoint performs a shutdown, the
315 		 * association on each peer will stop accepting new
316 		 * data from its user and only deliver data in queue
317 		 * at the time of sending or receiving the SHUTDOWN
318 		 * chunk.
319 		 */
320 		switch (q->asoc->state) {
321 		case SCTP_STATE_EMPTY:
322 		case SCTP_STATE_CLOSED:
323 		case SCTP_STATE_SHUTDOWN_PENDING:
324 		case SCTP_STATE_SHUTDOWN_SENT:
325 		case SCTP_STATE_SHUTDOWN_RECEIVED:
326 		case SCTP_STATE_SHUTDOWN_ACK_SENT:
327 			/* Cannot send after transport endpoint shutdown */
328 			error = -ESHUTDOWN;
329 			break;
330 
331 		default:
332 			SCTP_DEBUG_PRINTK("outqueueing (%p, %p[%s])\n",
333 			  q, chunk, chunk && chunk->chunk_hdr ?
334 			  sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type))
335 			  : "Illegal Chunk");
336 
337 			sctp_outq_tail_data(q, chunk);
338 			if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED)
339 				SCTP_INC_STATS(SCTP_MIB_OUTUNORDERCHUNKS);
340 			else
341 				SCTP_INC_STATS(SCTP_MIB_OUTORDERCHUNKS);
342 			q->empty = 0;
343 			break;
344 		}
345 	} else {
346 		list_add_tail(&chunk->list, &q->control_chunk_list);
347 		SCTP_INC_STATS(SCTP_MIB_OUTCTRLCHUNKS);
348 	}
349 
350 	if (error < 0)
351 		return error;
352 
353 	if (!q->cork)
354 		error = sctp_outq_flush(q, 0);
355 
356 	return error;
357 }
358 
359 /* Insert a chunk into the sorted list based on the TSNs.  The retransmit list
360  * and the abandoned list are in ascending order.
361  */
362 static void sctp_insert_list(struct list_head *head, struct list_head *new)
363 {
364 	struct list_head *pos;
365 	struct sctp_chunk *nchunk, *lchunk;
366 	__u32 ntsn, ltsn;
367 	int done = 0;
368 
369 	nchunk = list_entry(new, struct sctp_chunk, transmitted_list);
370 	ntsn = ntohl(nchunk->subh.data_hdr->tsn);
371 
372 	list_for_each(pos, head) {
373 		lchunk = list_entry(pos, struct sctp_chunk, transmitted_list);
374 		ltsn = ntohl(lchunk->subh.data_hdr->tsn);
375 		if (TSN_lt(ntsn, ltsn)) {
376 			list_add(new, pos->prev);
377 			done = 1;
378 			break;
379 		}
380 	}
381 	if (!done)
382 		list_add_tail(new, head);
383 }
384 
385 /* Mark all the eligible packets on a transport for retransmission.  */
386 void sctp_retransmit_mark(struct sctp_outq *q,
387 			  struct sctp_transport *transport,
388 			  __u8 reason)
389 {
390 	struct list_head *lchunk, *ltemp;
391 	struct sctp_chunk *chunk;
392 
393 	/* Walk through the specified transmitted queue.  */
394 	list_for_each_safe(lchunk, ltemp, &transport->transmitted) {
395 		chunk = list_entry(lchunk, struct sctp_chunk,
396 				   transmitted_list);
397 
398 		/* If the chunk is abandoned, move it to abandoned list. */
399 		if (sctp_chunk_abandoned(chunk)) {
400 			list_del_init(lchunk);
401 			sctp_insert_list(&q->abandoned, lchunk);
402 
403 			/* If this chunk has not been previousely acked,
404 			 * stop considering it 'outstanding'.  Our peer
405 			 * will most likely never see it since it will
406 			 * not be retransmitted
407 			 */
408 			if (!chunk->tsn_gap_acked) {
409 				if (chunk->transport)
410 					chunk->transport->flight_size -=
411 							sctp_data_size(chunk);
412 				q->outstanding_bytes -= sctp_data_size(chunk);
413 				q->asoc->peer.rwnd += (sctp_data_size(chunk) +
414 							sizeof(struct sk_buff));
415 			}
416 			continue;
417 		}
418 
419 		/* If we are doing  retransmission due to a timeout or pmtu
420 		 * discovery, only the  chunks that are not yet acked should
421 		 * be added to the retransmit queue.
422 		 */
423 		if ((reason == SCTP_RTXR_FAST_RTX  &&
424 			    (chunk->fast_retransmit == SCTP_NEED_FRTX)) ||
425 		    (reason != SCTP_RTXR_FAST_RTX  && !chunk->tsn_gap_acked)) {
426 			/* RFC 2960 6.2.1 Processing a Received SACK
427 			 *
428 			 * C) Any time a DATA chunk is marked for
429 			 * retransmission (via either T3-rtx timer expiration
430 			 * (Section 6.3.3) or via fast retransmit
431 			 * (Section 7.2.4)), add the data size of those
432 			 * chunks to the rwnd.
433 			 */
434 			q->asoc->peer.rwnd += (sctp_data_size(chunk) +
435 						sizeof(struct sk_buff));
436 			q->outstanding_bytes -= sctp_data_size(chunk);
437 			if (chunk->transport)
438 				transport->flight_size -= sctp_data_size(chunk);
439 
440 			/* sctpimpguide-05 Section 2.8.2
441 			 * M5) If a T3-rtx timer expires, the
442 			 * 'TSN.Missing.Report' of all affected TSNs is set
443 			 * to 0.
444 			 */
445 			chunk->tsn_missing_report = 0;
446 
447 			/* If a chunk that is being used for RTT measurement
448 			 * has to be retransmitted, we cannot use this chunk
449 			 * anymore for RTT measurements. Reset rto_pending so
450 			 * that a new RTT measurement is started when a new
451 			 * data chunk is sent.
452 			 */
453 			if (chunk->rtt_in_progress) {
454 				chunk->rtt_in_progress = 0;
455 				transport->rto_pending = 0;
456 			}
457 
458 			/* Move the chunk to the retransmit queue. The chunks
459 			 * on the retransmit queue are always kept in order.
460 			 */
461 			list_del_init(lchunk);
462 			sctp_insert_list(&q->retransmit, lchunk);
463 		}
464 	}
465 
466 	SCTP_DEBUG_PRINTK("%s: transport: %p, reason: %d, "
467 			  "cwnd: %d, ssthresh: %d, flight_size: %d, "
468 			  "pba: %d\n", __func__,
469 			  transport, reason,
470 			  transport->cwnd, transport->ssthresh,
471 			  transport->flight_size,
472 			  transport->partial_bytes_acked);
473 
474 }
475 
476 /* Mark all the eligible packets on a transport for retransmission and force
477  * one packet out.
478  */
479 void sctp_retransmit(struct sctp_outq *q, struct sctp_transport *transport,
480 		     sctp_retransmit_reason_t reason)
481 {
482 	int error = 0;
483 
484 	switch(reason) {
485 	case SCTP_RTXR_T3_RTX:
486 		SCTP_INC_STATS(SCTP_MIB_T3_RETRANSMITS);
487 		sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_T3_RTX);
488 		/* Update the retran path if the T3-rtx timer has expired for
489 		 * the current retran path.
490 		 */
491 		if (transport == transport->asoc->peer.retran_path)
492 			sctp_assoc_update_retran_path(transport->asoc);
493 		transport->asoc->rtx_data_chunks +=
494 			transport->asoc->unack_data;
495 		break;
496 	case SCTP_RTXR_FAST_RTX:
497 		SCTP_INC_STATS(SCTP_MIB_FAST_RETRANSMITS);
498 		sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_FAST_RTX);
499 		q->fast_rtx = 1;
500 		break;
501 	case SCTP_RTXR_PMTUD:
502 		SCTP_INC_STATS(SCTP_MIB_PMTUD_RETRANSMITS);
503 		break;
504 	case SCTP_RTXR_T1_RTX:
505 		SCTP_INC_STATS(SCTP_MIB_T1_RETRANSMITS);
506 		transport->asoc->init_retries++;
507 		break;
508 	default:
509 		BUG();
510 	}
511 
512 	sctp_retransmit_mark(q, transport, reason);
513 
514 	/* PR-SCTP A5) Any time the T3-rtx timer expires, on any destination,
515 	 * the sender SHOULD try to advance the "Advanced.Peer.Ack.Point" by
516 	 * following the procedures outlined in C1 - C5.
517 	 */
518 	if (reason == SCTP_RTXR_T3_RTX)
519 		sctp_generate_fwdtsn(q, q->asoc->ctsn_ack_point);
520 
521 	/* Flush the queues only on timeout, since fast_rtx is only
522 	 * triggered during sack processing and the queue
523 	 * will be flushed at the end.
524 	 */
525 	if (reason != SCTP_RTXR_FAST_RTX)
526 		error = sctp_outq_flush(q, /* rtx_timeout */ 1);
527 
528 	if (error)
529 		q->asoc->base.sk->sk_err = -error;
530 }
531 
532 /*
533  * Transmit DATA chunks on the retransmit queue.  Upon return from
534  * sctp_outq_flush_rtx() the packet 'pkt' may contain chunks which
535  * need to be transmitted by the caller.
536  * We assume that pkt->transport has already been set.
537  *
538  * The return value is a normal kernel error return value.
539  */
540 static int sctp_outq_flush_rtx(struct sctp_outq *q, struct sctp_packet *pkt,
541 			       int rtx_timeout, int *start_timer)
542 {
543 	struct list_head *lqueue;
544 	struct sctp_transport *transport = pkt->transport;
545 	sctp_xmit_t status;
546 	struct sctp_chunk *chunk, *chunk1;
547 	struct sctp_association *asoc;
548 	int fast_rtx;
549 	int error = 0;
550 	int timer = 0;
551 	int done = 0;
552 
553 	asoc = q->asoc;
554 	lqueue = &q->retransmit;
555 	fast_rtx = q->fast_rtx;
556 
557 	/* This loop handles time-out retransmissions, fast retransmissions,
558 	 * and retransmissions due to opening of whindow.
559 	 *
560 	 * RFC 2960 6.3.3 Handle T3-rtx Expiration
561 	 *
562 	 * E3) Determine how many of the earliest (i.e., lowest TSN)
563 	 * outstanding DATA chunks for the address for which the
564 	 * T3-rtx has expired will fit into a single packet, subject
565 	 * to the MTU constraint for the path corresponding to the
566 	 * destination transport address to which the retransmission
567 	 * is being sent (this may be different from the address for
568 	 * which the timer expires [see Section 6.4]). Call this value
569 	 * K. Bundle and retransmit those K DATA chunks in a single
570 	 * packet to the destination endpoint.
571 	 *
572 	 * [Just to be painfully clear, if we are retransmitting
573 	 * because a timeout just happened, we should send only ONE
574 	 * packet of retransmitted data.]
575 	 *
576 	 * For fast retransmissions we also send only ONE packet.  However,
577 	 * if we are just flushing the queue due to open window, we'll
578 	 * try to send as much as possible.
579 	 */
580 	list_for_each_entry_safe(chunk, chunk1, lqueue, transmitted_list) {
581 
582 		/* Make sure that Gap Acked TSNs are not retransmitted.  A
583 		 * simple approach is just to move such TSNs out of the
584 		 * way and into a 'transmitted' queue and skip to the
585 		 * next chunk.
586 		 */
587 		if (chunk->tsn_gap_acked) {
588 			list_del(&chunk->transmitted_list);
589 			list_add_tail(&chunk->transmitted_list,
590 					&transport->transmitted);
591 			continue;
592 		}
593 
594 		/* If we are doing fast retransmit, ignore non-fast_rtransmit
595 		 * chunks
596 		 */
597 		if (fast_rtx && !chunk->fast_retransmit)
598 			continue;
599 
600 		/* Attempt to append this chunk to the packet. */
601 		status = sctp_packet_append_chunk(pkt, chunk);
602 
603 		switch (status) {
604 		case SCTP_XMIT_PMTU_FULL:
605 			/* Send this packet.  */
606 			error = sctp_packet_transmit(pkt);
607 
608 			/* If we are retransmitting, we should only
609 			 * send a single packet.
610 			 */
611 			if (rtx_timeout || fast_rtx)
612 				done = 1;
613 
614 			/* Bundle next chunk in the next round.  */
615 			break;
616 
617 		case SCTP_XMIT_RWND_FULL:
618 			/* Send this packet. */
619 			error = sctp_packet_transmit(pkt);
620 
621 			/* Stop sending DATA as there is no more room
622 			 * at the receiver.
623 			 */
624 			done = 1;
625 			break;
626 
627 		case SCTP_XMIT_NAGLE_DELAY:
628 			/* Send this packet. */
629 			error = sctp_packet_transmit(pkt);
630 
631 			/* Stop sending DATA because of nagle delay. */
632 			done = 1;
633 			break;
634 
635 		default:
636 			/* The append was successful, so add this chunk to
637 			 * the transmitted list.
638 			 */
639 			list_del(&chunk->transmitted_list);
640 			list_add_tail(&chunk->transmitted_list,
641 					&transport->transmitted);
642 
643 			/* Mark the chunk as ineligible for fast retransmit
644 			 * after it is retransmitted.
645 			 */
646 			if (chunk->fast_retransmit == SCTP_NEED_FRTX)
647 				chunk->fast_retransmit = SCTP_DONT_FRTX;
648 
649 			/* Force start T3-rtx timer when fast retransmitting
650 			 * the earliest outstanding TSN
651 			 */
652 			if (!timer && fast_rtx &&
653 			    ntohl(chunk->subh.data_hdr->tsn) ==
654 					     asoc->ctsn_ack_point + 1)
655 				timer = 2;
656 
657 			q->empty = 0;
658 			break;
659 		}
660 
661 		/* Set the timer if there were no errors */
662 		if (!error && !timer)
663 			timer = 1;
664 
665 		if (done)
666 			break;
667 	}
668 
669 	/* If we are here due to a retransmit timeout or a fast
670 	 * retransmit and if there are any chunks left in the retransmit
671 	 * queue that could not fit in the PMTU sized packet, they need
672 	 * to be marked as ineligible for a subsequent fast retransmit.
673 	 */
674 	if (rtx_timeout || fast_rtx) {
675 		list_for_each_entry(chunk1, lqueue, transmitted_list) {
676 			if (chunk1->fast_retransmit == SCTP_NEED_FRTX)
677 				chunk1->fast_retransmit = SCTP_DONT_FRTX;
678 		}
679 	}
680 
681 	*start_timer = timer;
682 
683 	/* Clear fast retransmit hint */
684 	if (fast_rtx)
685 		q->fast_rtx = 0;
686 
687 	return error;
688 }
689 
690 /* Cork the outqueue so queued chunks are really queued. */
691 int sctp_outq_uncork(struct sctp_outq *q)
692 {
693 	int error = 0;
694 	if (q->cork)
695 		q->cork = 0;
696 	error = sctp_outq_flush(q, 0);
697 	return error;
698 }
699 
700 
701 /*
702  * Try to flush an outqueue.
703  *
704  * Description: Send everything in q which we legally can, subject to
705  * congestion limitations.
706  * * Note: This function can be called from multiple contexts so appropriate
707  * locking concerns must be made.  Today we use the sock lock to protect
708  * this function.
709  */
710 static int sctp_outq_flush(struct sctp_outq *q, int rtx_timeout)
711 {
712 	struct sctp_packet *packet;
713 	struct sctp_packet singleton;
714 	struct sctp_association *asoc = q->asoc;
715 	__u16 sport = asoc->base.bind_addr.port;
716 	__u16 dport = asoc->peer.port;
717 	__u32 vtag = asoc->peer.i.init_tag;
718 	struct sctp_transport *transport = NULL;
719 	struct sctp_transport *new_transport;
720 	struct sctp_chunk *chunk, *tmp;
721 	sctp_xmit_t status;
722 	int error = 0;
723 	int start_timer = 0;
724 	int one_packet = 0;
725 
726 	/* These transports have chunks to send. */
727 	struct list_head transport_list;
728 	struct list_head *ltransport;
729 
730 	INIT_LIST_HEAD(&transport_list);
731 	packet = NULL;
732 
733 	/*
734 	 * 6.10 Bundling
735 	 *   ...
736 	 *   When bundling control chunks with DATA chunks, an
737 	 *   endpoint MUST place control chunks first in the outbound
738 	 *   SCTP packet.  The transmitter MUST transmit DATA chunks
739 	 *   within a SCTP packet in increasing order of TSN.
740 	 *   ...
741 	 */
742 
743 	list_for_each_entry_safe(chunk, tmp, &q->control_chunk_list, list) {
744 		list_del_init(&chunk->list);
745 
746 		/* Pick the right transport to use. */
747 		new_transport = chunk->transport;
748 
749 		if (!new_transport) {
750 			/*
751 			 * If we have a prior transport pointer, see if
752 			 * the destination address of the chunk
753 			 * matches the destination address of the
754 			 * current transport.  If not a match, then
755 			 * try to look up the transport with a given
756 			 * destination address.  We do this because
757 			 * after processing ASCONFs, we may have new
758 			 * transports created.
759 			 */
760 			if (transport &&
761 			    sctp_cmp_addr_exact(&chunk->dest,
762 						&transport->ipaddr))
763 					new_transport = transport;
764 			else
765 				new_transport = sctp_assoc_lookup_paddr(asoc,
766 								&chunk->dest);
767 
768 			/* if we still don't have a new transport, then
769 			 * use the current active path.
770 			 */
771 			if (!new_transport)
772 				new_transport = asoc->peer.active_path;
773 		} else if ((new_transport->state == SCTP_INACTIVE) ||
774 			   (new_transport->state == SCTP_UNCONFIRMED)) {
775 			/* If the chunk is Heartbeat or Heartbeat Ack,
776 			 * send it to chunk->transport, even if it's
777 			 * inactive.
778 			 *
779 			 * 3.3.6 Heartbeat Acknowledgement:
780 			 * ...
781 			 * A HEARTBEAT ACK is always sent to the source IP
782 			 * address of the IP datagram containing the
783 			 * HEARTBEAT chunk to which this ack is responding.
784 			 * ...
785 			 *
786 			 * ASCONF_ACKs also must be sent to the source.
787 			 */
788 			if (chunk->chunk_hdr->type != SCTP_CID_HEARTBEAT &&
789 			    chunk->chunk_hdr->type != SCTP_CID_HEARTBEAT_ACK &&
790 			    chunk->chunk_hdr->type != SCTP_CID_ASCONF_ACK)
791 				new_transport = asoc->peer.active_path;
792 		}
793 
794 		/* Are we switching transports?
795 		 * Take care of transport locks.
796 		 */
797 		if (new_transport != transport) {
798 			transport = new_transport;
799 			if (list_empty(&transport->send_ready)) {
800 				list_add_tail(&transport->send_ready,
801 					      &transport_list);
802 			}
803 			packet = &transport->packet;
804 			sctp_packet_config(packet, vtag,
805 					   asoc->peer.ecn_capable);
806 		}
807 
808 		switch (chunk->chunk_hdr->type) {
809 		/*
810 		 * 6.10 Bundling
811 		 *   ...
812 		 *   An endpoint MUST NOT bundle INIT, INIT ACK or SHUTDOWN
813 		 *   COMPLETE with any other chunks.  [Send them immediately.]
814 		 */
815 		case SCTP_CID_INIT:
816 		case SCTP_CID_INIT_ACK:
817 		case SCTP_CID_SHUTDOWN_COMPLETE:
818 			sctp_packet_init(&singleton, transport, sport, dport);
819 			sctp_packet_config(&singleton, vtag, 0);
820 			sctp_packet_append_chunk(&singleton, chunk);
821 			error = sctp_packet_transmit(&singleton);
822 			if (error < 0)
823 				return error;
824 			break;
825 
826 		case SCTP_CID_ABORT:
827 			if (sctp_test_T_bit(chunk)) {
828 				packet->vtag = asoc->c.my_vtag;
829 			}
830 		/* The following chunks are "response" chunks, i.e.
831 		 * they are generated in response to something we
832 		 * received.  If we are sending these, then we can
833 		 * send only 1 packet containing these chunks.
834 		 */
835 		case SCTP_CID_HEARTBEAT_ACK:
836 		case SCTP_CID_SHUTDOWN_ACK:
837 		case SCTP_CID_COOKIE_ACK:
838 		case SCTP_CID_COOKIE_ECHO:
839 		case SCTP_CID_ERROR:
840 		case SCTP_CID_ECN_CWR:
841 		case SCTP_CID_ASCONF_ACK:
842 			one_packet = 1;
843 			/* Fall throught */
844 
845 		case SCTP_CID_SACK:
846 		case SCTP_CID_HEARTBEAT:
847 		case SCTP_CID_SHUTDOWN:
848 		case SCTP_CID_ECN_ECNE:
849 		case SCTP_CID_ASCONF:
850 		case SCTP_CID_FWD_TSN:
851 			status = sctp_packet_transmit_chunk(packet, chunk,
852 							    one_packet);
853 			if (status  != SCTP_XMIT_OK) {
854 				/* put the chunk back */
855 				list_add(&chunk->list, &q->control_chunk_list);
856 			}
857 			break;
858 
859 		default:
860 			/* We built a chunk with an illegal type! */
861 			BUG();
862 		}
863 	}
864 
865 	/* Is it OK to send data chunks?  */
866 	switch (asoc->state) {
867 	case SCTP_STATE_COOKIE_ECHOED:
868 		/* Only allow bundling when this packet has a COOKIE-ECHO
869 		 * chunk.
870 		 */
871 		if (!packet || !packet->has_cookie_echo)
872 			break;
873 
874 		/* fallthru */
875 	case SCTP_STATE_ESTABLISHED:
876 	case SCTP_STATE_SHUTDOWN_PENDING:
877 	case SCTP_STATE_SHUTDOWN_RECEIVED:
878 		/*
879 		 * RFC 2960 6.1  Transmission of DATA Chunks
880 		 *
881 		 * C) When the time comes for the sender to transmit,
882 		 * before sending new DATA chunks, the sender MUST
883 		 * first transmit any outstanding DATA chunks which
884 		 * are marked for retransmission (limited by the
885 		 * current cwnd).
886 		 */
887 		if (!list_empty(&q->retransmit)) {
888 			if (transport == asoc->peer.retran_path)
889 				goto retran;
890 
891 			/* Switch transports & prepare the packet.  */
892 
893 			transport = asoc->peer.retran_path;
894 
895 			if (list_empty(&transport->send_ready)) {
896 				list_add_tail(&transport->send_ready,
897 					      &transport_list);
898 			}
899 
900 			packet = &transport->packet;
901 			sctp_packet_config(packet, vtag,
902 					   asoc->peer.ecn_capable);
903 		retran:
904 			error = sctp_outq_flush_rtx(q, packet,
905 						    rtx_timeout, &start_timer);
906 
907 			if (start_timer)
908 				sctp_transport_reset_timers(transport,
909 							    start_timer-1);
910 
911 			/* This can happen on COOKIE-ECHO resend.  Only
912 			 * one chunk can get bundled with a COOKIE-ECHO.
913 			 */
914 			if (packet->has_cookie_echo)
915 				goto sctp_flush_out;
916 
917 			/* Don't send new data if there is still data
918 			 * waiting to retransmit.
919 			 */
920 			if (!list_empty(&q->retransmit))
921 				goto sctp_flush_out;
922 		}
923 
924 		/* Apply Max.Burst limitation to the current transport in
925 		 * case it will be used for new data.  We are going to
926 		 * rest it before we return, but we want to apply the limit
927 		 * to the currently queued data.
928 		 */
929 		if (transport)
930 			sctp_transport_burst_limited(transport);
931 
932 		/* Finally, transmit new packets.  */
933 		while ((chunk = sctp_outq_dequeue_data(q)) != NULL) {
934 			/* RFC 2960 6.5 Every DATA chunk MUST carry a valid
935 			 * stream identifier.
936 			 */
937 			if (chunk->sinfo.sinfo_stream >=
938 			    asoc->c.sinit_num_ostreams) {
939 
940 				/* Mark as failed send. */
941 				sctp_chunk_fail(chunk, SCTP_ERROR_INV_STRM);
942 				sctp_chunk_free(chunk);
943 				continue;
944 			}
945 
946 			/* Has this chunk expired? */
947 			if (sctp_chunk_abandoned(chunk)) {
948 				sctp_chunk_fail(chunk, 0);
949 				sctp_chunk_free(chunk);
950 				continue;
951 			}
952 
953 			/* If there is a specified transport, use it.
954 			 * Otherwise, we want to use the active path.
955 			 */
956 			new_transport = chunk->transport;
957 			if (!new_transport ||
958 			    ((new_transport->state == SCTP_INACTIVE) ||
959 			     (new_transport->state == SCTP_UNCONFIRMED)))
960 				new_transport = asoc->peer.active_path;
961 
962 			/* Change packets if necessary.  */
963 			if (new_transport != transport) {
964 				transport = new_transport;
965 
966 				/* Schedule to have this transport's
967 				 * packet flushed.
968 				 */
969 				if (list_empty(&transport->send_ready)) {
970 					list_add_tail(&transport->send_ready,
971 						      &transport_list);
972 				}
973 
974 				packet = &transport->packet;
975 				sctp_packet_config(packet, vtag,
976 						   asoc->peer.ecn_capable);
977 				/* We've switched transports, so apply the
978 				 * Burst limit to the new transport.
979 				 */
980 				sctp_transport_burst_limited(transport);
981 			}
982 
983 			SCTP_DEBUG_PRINTK("sctp_outq_flush(%p, %p[%s]), ",
984 					  q, chunk,
985 					  chunk && chunk->chunk_hdr ?
986 					  sctp_cname(SCTP_ST_CHUNK(
987 						  chunk->chunk_hdr->type))
988 					  : "Illegal Chunk");
989 
990 			SCTP_DEBUG_PRINTK("TX TSN 0x%x skb->head "
991 					"%p skb->users %d.\n",
992 					ntohl(chunk->subh.data_hdr->tsn),
993 					chunk->skb ?chunk->skb->head : NULL,
994 					chunk->skb ?
995 					atomic_read(&chunk->skb->users) : -1);
996 
997 			/* Add the chunk to the packet.  */
998 			status = sctp_packet_transmit_chunk(packet, chunk, 0);
999 
1000 			switch (status) {
1001 			case SCTP_XMIT_PMTU_FULL:
1002 			case SCTP_XMIT_RWND_FULL:
1003 			case SCTP_XMIT_NAGLE_DELAY:
1004 				/* We could not append this chunk, so put
1005 				 * the chunk back on the output queue.
1006 				 */
1007 				SCTP_DEBUG_PRINTK("sctp_outq_flush: could "
1008 					"not transmit TSN: 0x%x, status: %d\n",
1009 					ntohl(chunk->subh.data_hdr->tsn),
1010 					status);
1011 				sctp_outq_head_data(q, chunk);
1012 				goto sctp_flush_out;
1013 				break;
1014 
1015 			case SCTP_XMIT_OK:
1016 				/* The sender is in the SHUTDOWN-PENDING state,
1017 				 * The sender MAY set the I-bit in the DATA
1018 				 * chunk header.
1019 				 */
1020 				if (asoc->state == SCTP_STATE_SHUTDOWN_PENDING)
1021 					chunk->chunk_hdr->flags |= SCTP_DATA_SACK_IMM;
1022 
1023 				break;
1024 
1025 			default:
1026 				BUG();
1027 			}
1028 
1029 			/* BUG: We assume that the sctp_packet_transmit()
1030 			 * call below will succeed all the time and add the
1031 			 * chunk to the transmitted list and restart the
1032 			 * timers.
1033 			 * It is possible that the call can fail under OOM
1034 			 * conditions.
1035 			 *
1036 			 * Is this really a problem?  Won't this behave
1037 			 * like a lost TSN?
1038 			 */
1039 			list_add_tail(&chunk->transmitted_list,
1040 				      &transport->transmitted);
1041 
1042 			sctp_transport_reset_timers(transport, 0);
1043 
1044 			q->empty = 0;
1045 
1046 			/* Only let one DATA chunk get bundled with a
1047 			 * COOKIE-ECHO chunk.
1048 			 */
1049 			if (packet->has_cookie_echo)
1050 				goto sctp_flush_out;
1051 		}
1052 		break;
1053 
1054 	default:
1055 		/* Do nothing.  */
1056 		break;
1057 	}
1058 
1059 sctp_flush_out:
1060 
1061 	/* Before returning, examine all the transports touched in
1062 	 * this call.  Right now, we bluntly force clear all the
1063 	 * transports.  Things might change after we implement Nagle.
1064 	 * But such an examination is still required.
1065 	 *
1066 	 * --xguo
1067 	 */
1068 	while ((ltransport = sctp_list_dequeue(&transport_list)) != NULL ) {
1069 		struct sctp_transport *t = list_entry(ltransport,
1070 						      struct sctp_transport,
1071 						      send_ready);
1072 		packet = &t->packet;
1073 		if (!sctp_packet_empty(packet))
1074 			error = sctp_packet_transmit(packet);
1075 
1076 		/* Clear the burst limited state, if any */
1077 		sctp_transport_burst_reset(t);
1078 	}
1079 
1080 	return error;
1081 }
1082 
1083 /* Update unack_data based on the incoming SACK chunk */
1084 static void sctp_sack_update_unack_data(struct sctp_association *assoc,
1085 					struct sctp_sackhdr *sack)
1086 {
1087 	sctp_sack_variable_t *frags;
1088 	__u16 unack_data;
1089 	int i;
1090 
1091 	unack_data = assoc->next_tsn - assoc->ctsn_ack_point - 1;
1092 
1093 	frags = sack->variable;
1094 	for (i = 0; i < ntohs(sack->num_gap_ack_blocks); i++) {
1095 		unack_data -= ((ntohs(frags[i].gab.end) -
1096 				ntohs(frags[i].gab.start) + 1));
1097 	}
1098 
1099 	assoc->unack_data = unack_data;
1100 }
1101 
1102 /* Return the highest new tsn that is acknowledged by the given SACK chunk. */
1103 static __u32 sctp_highest_new_tsn(struct sctp_sackhdr *sack,
1104 				  struct sctp_association *asoc)
1105 {
1106 	struct sctp_transport *transport;
1107 	struct sctp_chunk *chunk;
1108 	__u32 highest_new_tsn, tsn;
1109 	struct list_head *transport_list = &asoc->peer.transport_addr_list;
1110 
1111 	highest_new_tsn = ntohl(sack->cum_tsn_ack);
1112 
1113 	list_for_each_entry(transport, transport_list, transports) {
1114 		list_for_each_entry(chunk, &transport->transmitted,
1115 				transmitted_list) {
1116 			tsn = ntohl(chunk->subh.data_hdr->tsn);
1117 
1118 			if (!chunk->tsn_gap_acked &&
1119 			    TSN_lt(highest_new_tsn, tsn) &&
1120 			    sctp_acked(sack, tsn))
1121 				highest_new_tsn = tsn;
1122 		}
1123 	}
1124 
1125 	return highest_new_tsn;
1126 }
1127 
1128 /* This is where we REALLY process a SACK.
1129  *
1130  * Process the SACK against the outqueue.  Mostly, this just frees
1131  * things off the transmitted queue.
1132  */
1133 int sctp_outq_sack(struct sctp_outq *q, struct sctp_sackhdr *sack)
1134 {
1135 	struct sctp_association *asoc = q->asoc;
1136 	struct sctp_transport *transport;
1137 	struct sctp_chunk *tchunk = NULL;
1138 	struct list_head *lchunk, *transport_list, *temp;
1139 	sctp_sack_variable_t *frags = sack->variable;
1140 	__u32 sack_ctsn, ctsn, tsn;
1141 	__u32 highest_tsn, highest_new_tsn;
1142 	__u32 sack_a_rwnd;
1143 	unsigned outstanding;
1144 	struct sctp_transport *primary = asoc->peer.primary_path;
1145 	int count_of_newacks = 0;
1146 	int gap_ack_blocks;
1147 
1148 	/* Grab the association's destination address list. */
1149 	transport_list = &asoc->peer.transport_addr_list;
1150 
1151 	sack_ctsn = ntohl(sack->cum_tsn_ack);
1152 	gap_ack_blocks = ntohs(sack->num_gap_ack_blocks);
1153 	/*
1154 	 * SFR-CACC algorithm:
1155 	 * On receipt of a SACK the sender SHOULD execute the
1156 	 * following statements.
1157 	 *
1158 	 * 1) If the cumulative ack in the SACK passes next tsn_at_change
1159 	 * on the current primary, the CHANGEOVER_ACTIVE flag SHOULD be
1160 	 * cleared. The CYCLING_CHANGEOVER flag SHOULD also be cleared for
1161 	 * all destinations.
1162 	 * 2) If the SACK contains gap acks and the flag CHANGEOVER_ACTIVE
1163 	 * is set the receiver of the SACK MUST take the following actions:
1164 	 *
1165 	 * A) Initialize the cacc_saw_newack to 0 for all destination
1166 	 * addresses.
1167 	 *
1168 	 * Only bother if changeover_active is set. Otherwise, this is
1169 	 * totally suboptimal to do on every SACK.
1170 	 */
1171 	if (primary->cacc.changeover_active) {
1172 		u8 clear_cycling = 0;
1173 
1174 		if (TSN_lte(primary->cacc.next_tsn_at_change, sack_ctsn)) {
1175 			primary->cacc.changeover_active = 0;
1176 			clear_cycling = 1;
1177 		}
1178 
1179 		if (clear_cycling || gap_ack_blocks) {
1180 			list_for_each_entry(transport, transport_list,
1181 					transports) {
1182 				if (clear_cycling)
1183 					transport->cacc.cycling_changeover = 0;
1184 				if (gap_ack_blocks)
1185 					transport->cacc.cacc_saw_newack = 0;
1186 			}
1187 		}
1188 	}
1189 
1190 	/* Get the highest TSN in the sack. */
1191 	highest_tsn = sack_ctsn;
1192 	if (gap_ack_blocks)
1193 		highest_tsn += ntohs(frags[gap_ack_blocks - 1].gab.end);
1194 
1195 	if (TSN_lt(asoc->highest_sacked, highest_tsn)) {
1196 		highest_new_tsn = highest_tsn;
1197 		asoc->highest_sacked = highest_tsn;
1198 	} else {
1199 		highest_new_tsn = sctp_highest_new_tsn(sack, asoc);
1200 	}
1201 
1202 
1203 	/* Run through the retransmit queue.  Credit bytes received
1204 	 * and free those chunks that we can.
1205 	 */
1206 	sctp_check_transmitted(q, &q->retransmit, NULL, sack, highest_new_tsn);
1207 
1208 	/* Run through the transmitted queue.
1209 	 * Credit bytes received and free those chunks which we can.
1210 	 *
1211 	 * This is a MASSIVE candidate for optimization.
1212 	 */
1213 	list_for_each_entry(transport, transport_list, transports) {
1214 		sctp_check_transmitted(q, &transport->transmitted,
1215 				       transport, sack, highest_new_tsn);
1216 		/*
1217 		 * SFR-CACC algorithm:
1218 		 * C) Let count_of_newacks be the number of
1219 		 * destinations for which cacc_saw_newack is set.
1220 		 */
1221 		if (transport->cacc.cacc_saw_newack)
1222 			count_of_newacks ++;
1223 	}
1224 
1225 	if (gap_ack_blocks) {
1226 		list_for_each_entry(transport, transport_list, transports)
1227 			sctp_mark_missing(q, &transport->transmitted, transport,
1228 					  highest_new_tsn, count_of_newacks);
1229 	}
1230 
1231 	/* Move the Cumulative TSN Ack Point if appropriate.  */
1232 	if (TSN_lt(asoc->ctsn_ack_point, sack_ctsn))
1233 		asoc->ctsn_ack_point = sack_ctsn;
1234 
1235 	/* Update unack_data field in the assoc. */
1236 	sctp_sack_update_unack_data(asoc, sack);
1237 
1238 	ctsn = asoc->ctsn_ack_point;
1239 
1240 	/* Throw away stuff rotting on the sack queue.  */
1241 	list_for_each_safe(lchunk, temp, &q->sacked) {
1242 		tchunk = list_entry(lchunk, struct sctp_chunk,
1243 				    transmitted_list);
1244 		tsn = ntohl(tchunk->subh.data_hdr->tsn);
1245 		if (TSN_lte(tsn, ctsn)) {
1246 			list_del_init(&tchunk->transmitted_list);
1247 			sctp_chunk_free(tchunk);
1248 		}
1249 	}
1250 
1251 	/* ii) Set rwnd equal to the newly received a_rwnd minus the
1252 	 *     number of bytes still outstanding after processing the
1253 	 *     Cumulative TSN Ack and the Gap Ack Blocks.
1254 	 */
1255 
1256 	sack_a_rwnd = ntohl(sack->a_rwnd);
1257 	outstanding = q->outstanding_bytes;
1258 
1259 	if (outstanding < sack_a_rwnd)
1260 		sack_a_rwnd -= outstanding;
1261 	else
1262 		sack_a_rwnd = 0;
1263 
1264 	asoc->peer.rwnd = sack_a_rwnd;
1265 
1266 	sctp_generate_fwdtsn(q, sack_ctsn);
1267 
1268 	SCTP_DEBUG_PRINTK("%s: sack Cumulative TSN Ack is 0x%x.\n",
1269 			  __func__, sack_ctsn);
1270 	SCTP_DEBUG_PRINTK("%s: Cumulative TSN Ack of association, "
1271 			  "%p is 0x%x. Adv peer ack point: 0x%x\n",
1272 			  __func__, asoc, ctsn, asoc->adv_peer_ack_point);
1273 
1274 	/* See if all chunks are acked.
1275 	 * Make sure the empty queue handler will get run later.
1276 	 */
1277 	q->empty = (list_empty(&q->out_chunk_list) &&
1278 		    list_empty(&q->retransmit));
1279 	if (!q->empty)
1280 		goto finish;
1281 
1282 	list_for_each_entry(transport, transport_list, transports) {
1283 		q->empty = q->empty && list_empty(&transport->transmitted);
1284 		if (!q->empty)
1285 			goto finish;
1286 	}
1287 
1288 	SCTP_DEBUG_PRINTK("sack queue is empty.\n");
1289 finish:
1290 	return q->empty;
1291 }
1292 
1293 /* Is the outqueue empty?  */
1294 int sctp_outq_is_empty(const struct sctp_outq *q)
1295 {
1296 	return q->empty;
1297 }
1298 
1299 /********************************************************************
1300  * 2nd Level Abstractions
1301  ********************************************************************/
1302 
1303 /* Go through a transport's transmitted list or the association's retransmit
1304  * list and move chunks that are acked by the Cumulative TSN Ack to q->sacked.
1305  * The retransmit list will not have an associated transport.
1306  *
1307  * I added coherent debug information output.	--xguo
1308  *
1309  * Instead of printing 'sacked' or 'kept' for each TSN on the
1310  * transmitted_queue, we print a range: SACKED: TSN1-TSN2, TSN3, TSN4-TSN5.
1311  * KEPT TSN6-TSN7, etc.
1312  */
1313 static void sctp_check_transmitted(struct sctp_outq *q,
1314 				   struct list_head *transmitted_queue,
1315 				   struct sctp_transport *transport,
1316 				   struct sctp_sackhdr *sack,
1317 				   __u32 highest_new_tsn_in_sack)
1318 {
1319 	struct list_head *lchunk;
1320 	struct sctp_chunk *tchunk;
1321 	struct list_head tlist;
1322 	__u32 tsn;
1323 	__u32 sack_ctsn;
1324 	__u32 rtt;
1325 	__u8 restart_timer = 0;
1326 	int bytes_acked = 0;
1327 	int migrate_bytes = 0;
1328 
1329 	/* These state variables are for coherent debug output. --xguo */
1330 
1331 #if SCTP_DEBUG
1332 	__u32 dbg_ack_tsn = 0;	/* An ACKed TSN range starts here... */
1333 	__u32 dbg_last_ack_tsn = 0;  /* ...and finishes here.	     */
1334 	__u32 dbg_kept_tsn = 0;	/* An un-ACKed range starts here...  */
1335 	__u32 dbg_last_kept_tsn = 0; /* ...and finishes here.	     */
1336 
1337 	/* 0 : The last TSN was ACKed.
1338 	 * 1 : The last TSN was NOT ACKed (i.e. KEPT).
1339 	 * -1: We need to initialize.
1340 	 */
1341 	int dbg_prt_state = -1;
1342 #endif /* SCTP_DEBUG */
1343 
1344 	sack_ctsn = ntohl(sack->cum_tsn_ack);
1345 
1346 	INIT_LIST_HEAD(&tlist);
1347 
1348 	/* The while loop will skip empty transmitted queues. */
1349 	while (NULL != (lchunk = sctp_list_dequeue(transmitted_queue))) {
1350 		tchunk = list_entry(lchunk, struct sctp_chunk,
1351 				    transmitted_list);
1352 
1353 		if (sctp_chunk_abandoned(tchunk)) {
1354 			/* Move the chunk to abandoned list. */
1355 			sctp_insert_list(&q->abandoned, lchunk);
1356 
1357 			/* If this chunk has not been acked, stop
1358 			 * considering it as 'outstanding'.
1359 			 */
1360 			if (!tchunk->tsn_gap_acked) {
1361 				if (tchunk->transport)
1362 					tchunk->transport->flight_size -=
1363 							sctp_data_size(tchunk);
1364 				q->outstanding_bytes -= sctp_data_size(tchunk);
1365 			}
1366 			continue;
1367 		}
1368 
1369 		tsn = ntohl(tchunk->subh.data_hdr->tsn);
1370 		if (sctp_acked(sack, tsn)) {
1371 			/* If this queue is the retransmit queue, the
1372 			 * retransmit timer has already reclaimed
1373 			 * the outstanding bytes for this chunk, so only
1374 			 * count bytes associated with a transport.
1375 			 */
1376 			if (transport) {
1377 				/* If this chunk is being used for RTT
1378 				 * measurement, calculate the RTT and update
1379 				 * the RTO using this value.
1380 				 *
1381 				 * 6.3.1 C5) Karn's algorithm: RTT measurements
1382 				 * MUST NOT be made using packets that were
1383 				 * retransmitted (and thus for which it is
1384 				 * ambiguous whether the reply was for the
1385 				 * first instance of the packet or a later
1386 				 * instance).
1387 				 */
1388 				if (!tchunk->tsn_gap_acked &&
1389 				    !tchunk->resent &&
1390 				    tchunk->rtt_in_progress) {
1391 					tchunk->rtt_in_progress = 0;
1392 					rtt = jiffies - tchunk->sent_at;
1393 					sctp_transport_update_rto(transport,
1394 								  rtt);
1395 				}
1396 			}
1397 
1398 			/* If the chunk hasn't been marked as ACKED,
1399 			 * mark it and account bytes_acked if the
1400 			 * chunk had a valid transport (it will not
1401 			 * have a transport if ASCONF had deleted it
1402 			 * while DATA was outstanding).
1403 			 */
1404 			if (!tchunk->tsn_gap_acked) {
1405 				tchunk->tsn_gap_acked = 1;
1406 				bytes_acked += sctp_data_size(tchunk);
1407 				if (!tchunk->transport)
1408 					migrate_bytes += sctp_data_size(tchunk);
1409 			}
1410 
1411 			if (TSN_lte(tsn, sack_ctsn)) {
1412 				/* RFC 2960  6.3.2 Retransmission Timer Rules
1413 				 *
1414 				 * R3) Whenever a SACK is received
1415 				 * that acknowledges the DATA chunk
1416 				 * with the earliest outstanding TSN
1417 				 * for that address, restart T3-rtx
1418 				 * timer for that address with its
1419 				 * current RTO.
1420 				 */
1421 				restart_timer = 1;
1422 
1423 				if (!tchunk->tsn_gap_acked) {
1424 					/*
1425 					 * SFR-CACC algorithm:
1426 					 * 2) If the SACK contains gap acks
1427 					 * and the flag CHANGEOVER_ACTIVE is
1428 					 * set the receiver of the SACK MUST
1429 					 * take the following action:
1430 					 *
1431 					 * B) For each TSN t being acked that
1432 					 * has not been acked in any SACK so
1433 					 * far, set cacc_saw_newack to 1 for
1434 					 * the destination that the TSN was
1435 					 * sent to.
1436 					 */
1437 					if (transport &&
1438 					    sack->num_gap_ack_blocks &&
1439 					    q->asoc->peer.primary_path->cacc.
1440 					    changeover_active)
1441 						transport->cacc.cacc_saw_newack
1442 							= 1;
1443 				}
1444 
1445 				list_add_tail(&tchunk->transmitted_list,
1446 					      &q->sacked);
1447 			} else {
1448 				/* RFC2960 7.2.4, sctpimpguide-05 2.8.2
1449 				 * M2) Each time a SACK arrives reporting
1450 				 * 'Stray DATA chunk(s)' record the highest TSN
1451 				 * reported as newly acknowledged, call this
1452 				 * value 'HighestTSNinSack'. A newly
1453 				 * acknowledged DATA chunk is one not
1454 				 * previously acknowledged in a SACK.
1455 				 *
1456 				 * When the SCTP sender of data receives a SACK
1457 				 * chunk that acknowledges, for the first time,
1458 				 * the receipt of a DATA chunk, all the still
1459 				 * unacknowledged DATA chunks whose TSN is
1460 				 * older than that newly acknowledged DATA
1461 				 * chunk, are qualified as 'Stray DATA chunks'.
1462 				 */
1463 				list_add_tail(lchunk, &tlist);
1464 			}
1465 
1466 #if SCTP_DEBUG
1467 			switch (dbg_prt_state) {
1468 			case 0:	/* last TSN was ACKed */
1469 				if (dbg_last_ack_tsn + 1 == tsn) {
1470 					/* This TSN belongs to the
1471 					 * current ACK range.
1472 					 */
1473 					break;
1474 				}
1475 
1476 				if (dbg_last_ack_tsn != dbg_ack_tsn) {
1477 					/* Display the end of the
1478 					 * current range.
1479 					 */
1480 					SCTP_DEBUG_PRINTK("-%08x",
1481 							  dbg_last_ack_tsn);
1482 				}
1483 
1484 				/* Start a new range.  */
1485 				SCTP_DEBUG_PRINTK(",%08x", tsn);
1486 				dbg_ack_tsn = tsn;
1487 				break;
1488 
1489 			case 1:	/* The last TSN was NOT ACKed. */
1490 				if (dbg_last_kept_tsn != dbg_kept_tsn) {
1491 					/* Display the end of current range. */
1492 					SCTP_DEBUG_PRINTK("-%08x",
1493 							  dbg_last_kept_tsn);
1494 				}
1495 
1496 				SCTP_DEBUG_PRINTK("\n");
1497 
1498 				/* FALL THROUGH... */
1499 			default:
1500 				/* This is the first-ever TSN we examined.  */
1501 				/* Start a new range of ACK-ed TSNs.  */
1502 				SCTP_DEBUG_PRINTK("ACKed: %08x", tsn);
1503 				dbg_prt_state = 0;
1504 				dbg_ack_tsn = tsn;
1505 			}
1506 
1507 			dbg_last_ack_tsn = tsn;
1508 #endif /* SCTP_DEBUG */
1509 
1510 		} else {
1511 			if (tchunk->tsn_gap_acked) {
1512 				SCTP_DEBUG_PRINTK("%s: Receiver reneged on "
1513 						  "data TSN: 0x%x\n",
1514 						  __func__,
1515 						  tsn);
1516 				tchunk->tsn_gap_acked = 0;
1517 
1518 				if (tchunk->transport)
1519 					bytes_acked -= sctp_data_size(tchunk);
1520 
1521 				/* RFC 2960 6.3.2 Retransmission Timer Rules
1522 				 *
1523 				 * R4) Whenever a SACK is received missing a
1524 				 * TSN that was previously acknowledged via a
1525 				 * Gap Ack Block, start T3-rtx for the
1526 				 * destination address to which the DATA
1527 				 * chunk was originally
1528 				 * transmitted if it is not already running.
1529 				 */
1530 				restart_timer = 1;
1531 			}
1532 
1533 			list_add_tail(lchunk, &tlist);
1534 
1535 #if SCTP_DEBUG
1536 			/* See the above comments on ACK-ed TSNs. */
1537 			switch (dbg_prt_state) {
1538 			case 1:
1539 				if (dbg_last_kept_tsn + 1 == tsn)
1540 					break;
1541 
1542 				if (dbg_last_kept_tsn != dbg_kept_tsn)
1543 					SCTP_DEBUG_PRINTK("-%08x",
1544 							  dbg_last_kept_tsn);
1545 
1546 				SCTP_DEBUG_PRINTK(",%08x", tsn);
1547 				dbg_kept_tsn = tsn;
1548 				break;
1549 
1550 			case 0:
1551 				if (dbg_last_ack_tsn != dbg_ack_tsn)
1552 					SCTP_DEBUG_PRINTK("-%08x",
1553 							  dbg_last_ack_tsn);
1554 				SCTP_DEBUG_PRINTK("\n");
1555 
1556 				/* FALL THROUGH... */
1557 			default:
1558 				SCTP_DEBUG_PRINTK("KEPT: %08x",tsn);
1559 				dbg_prt_state = 1;
1560 				dbg_kept_tsn = tsn;
1561 			}
1562 
1563 			dbg_last_kept_tsn = tsn;
1564 #endif /* SCTP_DEBUG */
1565 		}
1566 	}
1567 
1568 #if SCTP_DEBUG
1569 	/* Finish off the last range, displaying its ending TSN.  */
1570 	switch (dbg_prt_state) {
1571 	case 0:
1572 		if (dbg_last_ack_tsn != dbg_ack_tsn) {
1573 			SCTP_DEBUG_PRINTK("-%08x\n", dbg_last_ack_tsn);
1574 		} else {
1575 			SCTP_DEBUG_PRINTK("\n");
1576 		}
1577 	break;
1578 
1579 	case 1:
1580 		if (dbg_last_kept_tsn != dbg_kept_tsn) {
1581 			SCTP_DEBUG_PRINTK("-%08x\n", dbg_last_kept_tsn);
1582 		} else {
1583 			SCTP_DEBUG_PRINTK("\n");
1584 		}
1585 	}
1586 #endif /* SCTP_DEBUG */
1587 	if (transport) {
1588 		if (bytes_acked) {
1589 			/* We may have counted DATA that was migrated
1590 			 * to this transport due to DEL-IP operation.
1591 			 * Subtract those bytes, since the were never
1592 			 * send on this transport and shouldn't be
1593 			 * credited to this transport.
1594 			 */
1595 			bytes_acked -= migrate_bytes;
1596 
1597 			/* 8.2. When an outstanding TSN is acknowledged,
1598 			 * the endpoint shall clear the error counter of
1599 			 * the destination transport address to which the
1600 			 * DATA chunk was last sent.
1601 			 * The association's overall error counter is
1602 			 * also cleared.
1603 			 */
1604 			transport->error_count = 0;
1605 			transport->asoc->overall_error_count = 0;
1606 
1607 			/* Mark the destination transport address as
1608 			 * active if it is not so marked.
1609 			 */
1610 			if ((transport->state == SCTP_INACTIVE) ||
1611 			    (transport->state == SCTP_UNCONFIRMED)) {
1612 				sctp_assoc_control_transport(
1613 					transport->asoc,
1614 					transport,
1615 					SCTP_TRANSPORT_UP,
1616 					SCTP_RECEIVED_SACK);
1617 			}
1618 
1619 			sctp_transport_raise_cwnd(transport, sack_ctsn,
1620 						  bytes_acked);
1621 
1622 			transport->flight_size -= bytes_acked;
1623 			if (transport->flight_size == 0)
1624 				transport->partial_bytes_acked = 0;
1625 			q->outstanding_bytes -= bytes_acked + migrate_bytes;
1626 		} else {
1627 			/* RFC 2960 6.1, sctpimpguide-06 2.15.2
1628 			 * When a sender is doing zero window probing, it
1629 			 * should not timeout the association if it continues
1630 			 * to receive new packets from the receiver. The
1631 			 * reason is that the receiver MAY keep its window
1632 			 * closed for an indefinite time.
1633 			 * A sender is doing zero window probing when the
1634 			 * receiver's advertised window is zero, and there is
1635 			 * only one data chunk in flight to the receiver.
1636 			 */
1637 			if (!q->asoc->peer.rwnd &&
1638 			    !list_empty(&tlist) &&
1639 			    (sack_ctsn+2 == q->asoc->next_tsn)) {
1640 				SCTP_DEBUG_PRINTK("%s: SACK received for zero "
1641 						  "window probe: %u\n",
1642 						  __func__, sack_ctsn);
1643 				q->asoc->overall_error_count = 0;
1644 				transport->error_count = 0;
1645 			}
1646 		}
1647 
1648 		/* RFC 2960 6.3.2 Retransmission Timer Rules
1649 		 *
1650 		 * R2) Whenever all outstanding data sent to an address have
1651 		 * been acknowledged, turn off the T3-rtx timer of that
1652 		 * address.
1653 		 */
1654 		if (!transport->flight_size) {
1655 			if (timer_pending(&transport->T3_rtx_timer) &&
1656 			    del_timer(&transport->T3_rtx_timer)) {
1657 				sctp_transport_put(transport);
1658 			}
1659 		} else if (restart_timer) {
1660 			if (!mod_timer(&transport->T3_rtx_timer,
1661 				       jiffies + transport->rto))
1662 				sctp_transport_hold(transport);
1663 		}
1664 	}
1665 
1666 	list_splice(&tlist, transmitted_queue);
1667 }
1668 
1669 /* Mark chunks as missing and consequently may get retransmitted. */
1670 static void sctp_mark_missing(struct sctp_outq *q,
1671 			      struct list_head *transmitted_queue,
1672 			      struct sctp_transport *transport,
1673 			      __u32 highest_new_tsn_in_sack,
1674 			      int count_of_newacks)
1675 {
1676 	struct sctp_chunk *chunk;
1677 	__u32 tsn;
1678 	char do_fast_retransmit = 0;
1679 	struct sctp_transport *primary = q->asoc->peer.primary_path;
1680 
1681 	list_for_each_entry(chunk, transmitted_queue, transmitted_list) {
1682 
1683 		tsn = ntohl(chunk->subh.data_hdr->tsn);
1684 
1685 		/* RFC 2960 7.2.4, sctpimpguide-05 2.8.2 M3) Examine all
1686 		 * 'Unacknowledged TSN's', if the TSN number of an
1687 		 * 'Unacknowledged TSN' is smaller than the 'HighestTSNinSack'
1688 		 * value, increment the 'TSN.Missing.Report' count on that
1689 		 * chunk if it has NOT been fast retransmitted or marked for
1690 		 * fast retransmit already.
1691 		 */
1692 		if (chunk->fast_retransmit == SCTP_CAN_FRTX &&
1693 		    !chunk->tsn_gap_acked &&
1694 		    TSN_lt(tsn, highest_new_tsn_in_sack)) {
1695 
1696 			/* SFR-CACC may require us to skip marking
1697 			 * this chunk as missing.
1698 			 */
1699 			if (!transport || !sctp_cacc_skip(primary, transport,
1700 					    count_of_newacks, tsn)) {
1701 				chunk->tsn_missing_report++;
1702 
1703 				SCTP_DEBUG_PRINTK(
1704 					"%s: TSN 0x%x missing counter: %d\n",
1705 					__func__, tsn,
1706 					chunk->tsn_missing_report);
1707 			}
1708 		}
1709 		/*
1710 		 * M4) If any DATA chunk is found to have a
1711 		 * 'TSN.Missing.Report'
1712 		 * value larger than or equal to 3, mark that chunk for
1713 		 * retransmission and start the fast retransmit procedure.
1714 		 */
1715 
1716 		if (chunk->tsn_missing_report >= 3) {
1717 			chunk->fast_retransmit = SCTP_NEED_FRTX;
1718 			do_fast_retransmit = 1;
1719 		}
1720 	}
1721 
1722 	if (transport) {
1723 		if (do_fast_retransmit)
1724 			sctp_retransmit(q, transport, SCTP_RTXR_FAST_RTX);
1725 
1726 		SCTP_DEBUG_PRINTK("%s: transport: %p, cwnd: %d, "
1727 				  "ssthresh: %d, flight_size: %d, pba: %d\n",
1728 				  __func__, transport, transport->cwnd,
1729 				  transport->ssthresh, transport->flight_size,
1730 				  transport->partial_bytes_acked);
1731 	}
1732 }
1733 
1734 /* Is the given TSN acked by this packet?  */
1735 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn)
1736 {
1737 	int i;
1738 	sctp_sack_variable_t *frags;
1739 	__u16 gap;
1740 	__u32 ctsn = ntohl(sack->cum_tsn_ack);
1741 
1742 	if (TSN_lte(tsn, ctsn))
1743 		goto pass;
1744 
1745 	/* 3.3.4 Selective Acknowledgement (SACK) (3):
1746 	 *
1747 	 * Gap Ack Blocks:
1748 	 *  These fields contain the Gap Ack Blocks. They are repeated
1749 	 *  for each Gap Ack Block up to the number of Gap Ack Blocks
1750 	 *  defined in the Number of Gap Ack Blocks field. All DATA
1751 	 *  chunks with TSNs greater than or equal to (Cumulative TSN
1752 	 *  Ack + Gap Ack Block Start) and less than or equal to
1753 	 *  (Cumulative TSN Ack + Gap Ack Block End) of each Gap Ack
1754 	 *  Block are assumed to have been received correctly.
1755 	 */
1756 
1757 	frags = sack->variable;
1758 	gap = tsn - ctsn;
1759 	for (i = 0; i < ntohs(sack->num_gap_ack_blocks); ++i) {
1760 		if (TSN_lte(ntohs(frags[i].gab.start), gap) &&
1761 		    TSN_lte(gap, ntohs(frags[i].gab.end)))
1762 			goto pass;
1763 	}
1764 
1765 	return 0;
1766 pass:
1767 	return 1;
1768 }
1769 
1770 static inline int sctp_get_skip_pos(struct sctp_fwdtsn_skip *skiplist,
1771 				    int nskips, __be16 stream)
1772 {
1773 	int i;
1774 
1775 	for (i = 0; i < nskips; i++) {
1776 		if (skiplist[i].stream == stream)
1777 			return i;
1778 	}
1779 	return i;
1780 }
1781 
1782 /* Create and add a fwdtsn chunk to the outq's control queue if needed. */
1783 static void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 ctsn)
1784 {
1785 	struct sctp_association *asoc = q->asoc;
1786 	struct sctp_chunk *ftsn_chunk = NULL;
1787 	struct sctp_fwdtsn_skip ftsn_skip_arr[10];
1788 	int nskips = 0;
1789 	int skip_pos = 0;
1790 	__u32 tsn;
1791 	struct sctp_chunk *chunk;
1792 	struct list_head *lchunk, *temp;
1793 
1794 	if (!asoc->peer.prsctp_capable)
1795 		return;
1796 
1797 	/* PR-SCTP C1) Let SackCumAck be the Cumulative TSN ACK carried in the
1798 	 * received SACK.
1799 	 *
1800 	 * If (Advanced.Peer.Ack.Point < SackCumAck), then update
1801 	 * Advanced.Peer.Ack.Point to be equal to SackCumAck.
1802 	 */
1803 	if (TSN_lt(asoc->adv_peer_ack_point, ctsn))
1804 		asoc->adv_peer_ack_point = ctsn;
1805 
1806 	/* PR-SCTP C2) Try to further advance the "Advanced.Peer.Ack.Point"
1807 	 * locally, that is, to move "Advanced.Peer.Ack.Point" up as long as
1808 	 * the chunk next in the out-queue space is marked as "abandoned" as
1809 	 * shown in the following example:
1810 	 *
1811 	 * Assuming that a SACK arrived with the Cumulative TSN ACK 102
1812 	 * and the Advanced.Peer.Ack.Point is updated to this value:
1813 	 *
1814 	 *   out-queue at the end of  ==>   out-queue after Adv.Ack.Point
1815 	 *   normal SACK processing           local advancement
1816 	 *                ...                           ...
1817 	 *   Adv.Ack.Pt-> 102 acked                     102 acked
1818 	 *                103 abandoned                 103 abandoned
1819 	 *                104 abandoned     Adv.Ack.P-> 104 abandoned
1820 	 *                105                           105
1821 	 *                106 acked                     106 acked
1822 	 *                ...                           ...
1823 	 *
1824 	 * In this example, the data sender successfully advanced the
1825 	 * "Advanced.Peer.Ack.Point" from 102 to 104 locally.
1826 	 */
1827 	list_for_each_safe(lchunk, temp, &q->abandoned) {
1828 		chunk = list_entry(lchunk, struct sctp_chunk,
1829 					transmitted_list);
1830 		tsn = ntohl(chunk->subh.data_hdr->tsn);
1831 
1832 		/* Remove any chunks in the abandoned queue that are acked by
1833 		 * the ctsn.
1834 		 */
1835 		if (TSN_lte(tsn, ctsn)) {
1836 			list_del_init(lchunk);
1837 			sctp_chunk_free(chunk);
1838 		} else {
1839 			if (TSN_lte(tsn, asoc->adv_peer_ack_point+1)) {
1840 				asoc->adv_peer_ack_point = tsn;
1841 				if (chunk->chunk_hdr->flags &
1842 					 SCTP_DATA_UNORDERED)
1843 					continue;
1844 				skip_pos = sctp_get_skip_pos(&ftsn_skip_arr[0],
1845 						nskips,
1846 						chunk->subh.data_hdr->stream);
1847 				ftsn_skip_arr[skip_pos].stream =
1848 					chunk->subh.data_hdr->stream;
1849 				ftsn_skip_arr[skip_pos].ssn =
1850 					 chunk->subh.data_hdr->ssn;
1851 				if (skip_pos == nskips)
1852 					nskips++;
1853 				if (nskips == 10)
1854 					break;
1855 			} else
1856 				break;
1857 		}
1858 	}
1859 
1860 	/* PR-SCTP C3) If, after step C1 and C2, the "Advanced.Peer.Ack.Point"
1861 	 * is greater than the Cumulative TSN ACK carried in the received
1862 	 * SACK, the data sender MUST send the data receiver a FORWARD TSN
1863 	 * chunk containing the latest value of the
1864 	 * "Advanced.Peer.Ack.Point".
1865 	 *
1866 	 * C4) For each "abandoned" TSN the sender of the FORWARD TSN SHOULD
1867 	 * list each stream and sequence number in the forwarded TSN. This
1868 	 * information will enable the receiver to easily find any
1869 	 * stranded TSN's waiting on stream reorder queues. Each stream
1870 	 * SHOULD only be reported once; this means that if multiple
1871 	 * abandoned messages occur in the same stream then only the
1872 	 * highest abandoned stream sequence number is reported. If the
1873 	 * total size of the FORWARD TSN does NOT fit in a single MTU then
1874 	 * the sender of the FORWARD TSN SHOULD lower the
1875 	 * Advanced.Peer.Ack.Point to the last TSN that will fit in a
1876 	 * single MTU.
1877 	 */
1878 	if (asoc->adv_peer_ack_point > ctsn)
1879 		ftsn_chunk = sctp_make_fwdtsn(asoc, asoc->adv_peer_ack_point,
1880 					      nskips, &ftsn_skip_arr[0]);
1881 
1882 	if (ftsn_chunk) {
1883 		list_add_tail(&ftsn_chunk->list, &q->control_chunk_list);
1884 		SCTP_INC_STATS(SCTP_MIB_OUTCTRLCHUNKS);
1885 	}
1886 }
1887