xref: /openbmc/linux/net/sctp/outqueue.c (revision 7b6d864b)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  *
7  * This file is part of the SCTP kernel implementation
8  *
9  * These functions implement the sctp_outq class.   The outqueue handles
10  * bundling and queueing of outgoing SCTP chunks.
11  *
12  * This SCTP implementation is free software;
13  * you can redistribute it and/or modify it under the terms of
14  * the GNU General Public License as published by
15  * the Free Software Foundation; either version 2, or (at your option)
16  * any later version.
17  *
18  * This SCTP implementation is distributed in the hope that it
19  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20  *                 ************************
21  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22  * See the GNU General Public License for more details.
23  *
24  * You should have received a copy of the GNU General Public License
25  * along with GNU CC; see the file COPYING.  If not, write to
26  * the Free Software Foundation, 59 Temple Place - Suite 330,
27  * Boston, MA 02111-1307, USA.
28  *
29  * Please send any bug reports or fixes you make to the
30  * email address(es):
31  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
32  *
33  * Or submit a bug report through the following website:
34  *    http://www.sf.net/projects/lksctp
35  *
36  * Written or modified by:
37  *    La Monte H.P. Yarroll <piggy@acm.org>
38  *    Karl Knutson          <karl@athena.chicago.il.us>
39  *    Perry Melange         <pmelange@null.cc.uic.edu>
40  *    Xingang Guo           <xingang.guo@intel.com>
41  *    Hui Huang 	    <hui.huang@nokia.com>
42  *    Sridhar Samudrala     <sri@us.ibm.com>
43  *    Jon Grimm             <jgrimm@us.ibm.com>
44  *
45  * Any bugs reported given to us we will try to fix... any fixes shared will
46  * be incorporated into the next SCTP release.
47  */
48 
49 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
50 
51 #include <linux/types.h>
52 #include <linux/list.h>   /* For struct list_head */
53 #include <linux/socket.h>
54 #include <linux/ip.h>
55 #include <linux/slab.h>
56 #include <net/sock.h>	  /* For skb_set_owner_w */
57 
58 #include <net/sctp/sctp.h>
59 #include <net/sctp/sm.h>
60 
61 /* Declare internal functions here.  */
62 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn);
63 static void sctp_check_transmitted(struct sctp_outq *q,
64 				   struct list_head *transmitted_queue,
65 				   struct sctp_transport *transport,
66 				   union sctp_addr *saddr,
67 				   struct sctp_sackhdr *sack,
68 				   __u32 *highest_new_tsn);
69 
70 static void sctp_mark_missing(struct sctp_outq *q,
71 			      struct list_head *transmitted_queue,
72 			      struct sctp_transport *transport,
73 			      __u32 highest_new_tsn,
74 			      int count_of_newacks);
75 
76 static void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 sack_ctsn);
77 
78 static int sctp_outq_flush(struct sctp_outq *q, int rtx_timeout);
79 
80 /* Add data to the front of the queue. */
81 static inline void sctp_outq_head_data(struct sctp_outq *q,
82 					struct sctp_chunk *ch)
83 {
84 	list_add(&ch->list, &q->out_chunk_list);
85 	q->out_qlen += ch->skb->len;
86 }
87 
88 /* Take data from the front of the queue. */
89 static inline struct sctp_chunk *sctp_outq_dequeue_data(struct sctp_outq *q)
90 {
91 	struct sctp_chunk *ch = NULL;
92 
93 	if (!list_empty(&q->out_chunk_list)) {
94 		struct list_head *entry = q->out_chunk_list.next;
95 
96 		ch = list_entry(entry, struct sctp_chunk, list);
97 		list_del_init(entry);
98 		q->out_qlen -= ch->skb->len;
99 	}
100 	return ch;
101 }
102 /* Add data chunk to the end of the queue. */
103 static inline void sctp_outq_tail_data(struct sctp_outq *q,
104 				       struct sctp_chunk *ch)
105 {
106 	list_add_tail(&ch->list, &q->out_chunk_list);
107 	q->out_qlen += ch->skb->len;
108 }
109 
110 /*
111  * SFR-CACC algorithm:
112  * D) If count_of_newacks is greater than or equal to 2
113  * and t was not sent to the current primary then the
114  * sender MUST NOT increment missing report count for t.
115  */
116 static inline int sctp_cacc_skip_3_1_d(struct sctp_transport *primary,
117 				       struct sctp_transport *transport,
118 				       int count_of_newacks)
119 {
120 	if (count_of_newacks >=2 && transport != primary)
121 		return 1;
122 	return 0;
123 }
124 
125 /*
126  * SFR-CACC algorithm:
127  * F) If count_of_newacks is less than 2, let d be the
128  * destination to which t was sent. If cacc_saw_newack
129  * is 0 for destination d, then the sender MUST NOT
130  * increment missing report count for t.
131  */
132 static inline int sctp_cacc_skip_3_1_f(struct sctp_transport *transport,
133 				       int count_of_newacks)
134 {
135 	if (count_of_newacks < 2 &&
136 			(transport && !transport->cacc.cacc_saw_newack))
137 		return 1;
138 	return 0;
139 }
140 
141 /*
142  * SFR-CACC algorithm:
143  * 3.1) If CYCLING_CHANGEOVER is 0, the sender SHOULD
144  * execute steps C, D, F.
145  *
146  * C has been implemented in sctp_outq_sack
147  */
148 static inline int sctp_cacc_skip_3_1(struct sctp_transport *primary,
149 				     struct sctp_transport *transport,
150 				     int count_of_newacks)
151 {
152 	if (!primary->cacc.cycling_changeover) {
153 		if (sctp_cacc_skip_3_1_d(primary, transport, count_of_newacks))
154 			return 1;
155 		if (sctp_cacc_skip_3_1_f(transport, count_of_newacks))
156 			return 1;
157 		return 0;
158 	}
159 	return 0;
160 }
161 
162 /*
163  * SFR-CACC algorithm:
164  * 3.2) Else if CYCLING_CHANGEOVER is 1, and t is less
165  * than next_tsn_at_change of the current primary, then
166  * the sender MUST NOT increment missing report count
167  * for t.
168  */
169 static inline int sctp_cacc_skip_3_2(struct sctp_transport *primary, __u32 tsn)
170 {
171 	if (primary->cacc.cycling_changeover &&
172 	    TSN_lt(tsn, primary->cacc.next_tsn_at_change))
173 		return 1;
174 	return 0;
175 }
176 
177 /*
178  * SFR-CACC algorithm:
179  * 3) If the missing report count for TSN t is to be
180  * incremented according to [RFC2960] and
181  * [SCTP_STEWART-2002], and CHANGEOVER_ACTIVE is set,
182  * then the sender MUST further execute steps 3.1 and
183  * 3.2 to determine if the missing report count for
184  * TSN t SHOULD NOT be incremented.
185  *
186  * 3.3) If 3.1 and 3.2 do not dictate that the missing
187  * report count for t should not be incremented, then
188  * the sender SHOULD increment missing report count for
189  * t (according to [RFC2960] and [SCTP_STEWART_2002]).
190  */
191 static inline int sctp_cacc_skip(struct sctp_transport *primary,
192 				 struct sctp_transport *transport,
193 				 int count_of_newacks,
194 				 __u32 tsn)
195 {
196 	if (primary->cacc.changeover_active &&
197 	    (sctp_cacc_skip_3_1(primary, transport, count_of_newacks) ||
198 	     sctp_cacc_skip_3_2(primary, tsn)))
199 		return 1;
200 	return 0;
201 }
202 
203 /* Initialize an existing sctp_outq.  This does the boring stuff.
204  * You still need to define handlers if you really want to DO
205  * something with this structure...
206  */
207 void sctp_outq_init(struct sctp_association *asoc, struct sctp_outq *q)
208 {
209 	memset(q, 0, sizeof(struct sctp_outq));
210 
211 	q->asoc = asoc;
212 	INIT_LIST_HEAD(&q->out_chunk_list);
213 	INIT_LIST_HEAD(&q->control_chunk_list);
214 	INIT_LIST_HEAD(&q->retransmit);
215 	INIT_LIST_HEAD(&q->sacked);
216 	INIT_LIST_HEAD(&q->abandoned);
217 
218 	q->empty = 1;
219 }
220 
221 /* Free the outqueue structure and any related pending chunks.
222  */
223 static void __sctp_outq_teardown(struct sctp_outq *q)
224 {
225 	struct sctp_transport *transport;
226 	struct list_head *lchunk, *temp;
227 	struct sctp_chunk *chunk, *tmp;
228 
229 	/* Throw away unacknowledged chunks. */
230 	list_for_each_entry(transport, &q->asoc->peer.transport_addr_list,
231 			transports) {
232 		while ((lchunk = sctp_list_dequeue(&transport->transmitted)) != NULL) {
233 			chunk = list_entry(lchunk, struct sctp_chunk,
234 					   transmitted_list);
235 			/* Mark as part of a failed message. */
236 			sctp_chunk_fail(chunk, q->error);
237 			sctp_chunk_free(chunk);
238 		}
239 	}
240 
241 	/* Throw away chunks that have been gap ACKed.  */
242 	list_for_each_safe(lchunk, temp, &q->sacked) {
243 		list_del_init(lchunk);
244 		chunk = list_entry(lchunk, struct sctp_chunk,
245 				   transmitted_list);
246 		sctp_chunk_fail(chunk, q->error);
247 		sctp_chunk_free(chunk);
248 	}
249 
250 	/* Throw away any chunks in the retransmit queue. */
251 	list_for_each_safe(lchunk, temp, &q->retransmit) {
252 		list_del_init(lchunk);
253 		chunk = list_entry(lchunk, struct sctp_chunk,
254 				   transmitted_list);
255 		sctp_chunk_fail(chunk, q->error);
256 		sctp_chunk_free(chunk);
257 	}
258 
259 	/* Throw away any chunks that are in the abandoned queue. */
260 	list_for_each_safe(lchunk, temp, &q->abandoned) {
261 		list_del_init(lchunk);
262 		chunk = list_entry(lchunk, struct sctp_chunk,
263 				   transmitted_list);
264 		sctp_chunk_fail(chunk, q->error);
265 		sctp_chunk_free(chunk);
266 	}
267 
268 	/* Throw away any leftover data chunks. */
269 	while ((chunk = sctp_outq_dequeue_data(q)) != NULL) {
270 
271 		/* Mark as send failure. */
272 		sctp_chunk_fail(chunk, q->error);
273 		sctp_chunk_free(chunk);
274 	}
275 
276 	/* Throw away any leftover control chunks. */
277 	list_for_each_entry_safe(chunk, tmp, &q->control_chunk_list, list) {
278 		list_del_init(&chunk->list);
279 		sctp_chunk_free(chunk);
280 	}
281 }
282 
283 void sctp_outq_teardown(struct sctp_outq *q)
284 {
285 	__sctp_outq_teardown(q);
286 	sctp_outq_init(q->asoc, q);
287 }
288 
289 /* Free the outqueue structure and any related pending chunks.  */
290 void sctp_outq_free(struct sctp_outq *q)
291 {
292 	/* Throw away leftover chunks. */
293 	__sctp_outq_teardown(q);
294 }
295 
296 /* Put a new chunk in an sctp_outq.  */
297 int sctp_outq_tail(struct sctp_outq *q, struct sctp_chunk *chunk)
298 {
299 	struct net *net = sock_net(q->asoc->base.sk);
300 	int error = 0;
301 
302 	SCTP_DEBUG_PRINTK("sctp_outq_tail(%p, %p[%s])\n",
303 			  q, chunk, chunk && chunk->chunk_hdr ?
304 			  sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type))
305 			  : "Illegal Chunk");
306 
307 	/* If it is data, queue it up, otherwise, send it
308 	 * immediately.
309 	 */
310 	if (sctp_chunk_is_data(chunk)) {
311 		/* Is it OK to queue data chunks?  */
312 		/* From 9. Termination of Association
313 		 *
314 		 * When either endpoint performs a shutdown, the
315 		 * association on each peer will stop accepting new
316 		 * data from its user and only deliver data in queue
317 		 * at the time of sending or receiving the SHUTDOWN
318 		 * chunk.
319 		 */
320 		switch (q->asoc->state) {
321 		case SCTP_STATE_CLOSED:
322 		case SCTP_STATE_SHUTDOWN_PENDING:
323 		case SCTP_STATE_SHUTDOWN_SENT:
324 		case SCTP_STATE_SHUTDOWN_RECEIVED:
325 		case SCTP_STATE_SHUTDOWN_ACK_SENT:
326 			/* Cannot send after transport endpoint shutdown */
327 			error = -ESHUTDOWN;
328 			break;
329 
330 		default:
331 			SCTP_DEBUG_PRINTK("outqueueing (%p, %p[%s])\n",
332 			  q, chunk, chunk && chunk->chunk_hdr ?
333 			  sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type))
334 			  : "Illegal Chunk");
335 
336 			sctp_outq_tail_data(q, chunk);
337 			if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED)
338 				SCTP_INC_STATS(net, SCTP_MIB_OUTUNORDERCHUNKS);
339 			else
340 				SCTP_INC_STATS(net, SCTP_MIB_OUTORDERCHUNKS);
341 			q->empty = 0;
342 			break;
343 		}
344 	} else {
345 		list_add_tail(&chunk->list, &q->control_chunk_list);
346 		SCTP_INC_STATS(net, SCTP_MIB_OUTCTRLCHUNKS);
347 	}
348 
349 	if (error < 0)
350 		return error;
351 
352 	if (!q->cork)
353 		error = sctp_outq_flush(q, 0);
354 
355 	return error;
356 }
357 
358 /* Insert a chunk into the sorted list based on the TSNs.  The retransmit list
359  * and the abandoned list are in ascending order.
360  */
361 static void sctp_insert_list(struct list_head *head, struct list_head *new)
362 {
363 	struct list_head *pos;
364 	struct sctp_chunk *nchunk, *lchunk;
365 	__u32 ntsn, ltsn;
366 	int done = 0;
367 
368 	nchunk = list_entry(new, struct sctp_chunk, transmitted_list);
369 	ntsn = ntohl(nchunk->subh.data_hdr->tsn);
370 
371 	list_for_each(pos, head) {
372 		lchunk = list_entry(pos, struct sctp_chunk, transmitted_list);
373 		ltsn = ntohl(lchunk->subh.data_hdr->tsn);
374 		if (TSN_lt(ntsn, ltsn)) {
375 			list_add(new, pos->prev);
376 			done = 1;
377 			break;
378 		}
379 	}
380 	if (!done)
381 		list_add_tail(new, head);
382 }
383 
384 /* Mark all the eligible packets on a transport for retransmission.  */
385 void sctp_retransmit_mark(struct sctp_outq *q,
386 			  struct sctp_transport *transport,
387 			  __u8 reason)
388 {
389 	struct list_head *lchunk, *ltemp;
390 	struct sctp_chunk *chunk;
391 
392 	/* Walk through the specified transmitted queue.  */
393 	list_for_each_safe(lchunk, ltemp, &transport->transmitted) {
394 		chunk = list_entry(lchunk, struct sctp_chunk,
395 				   transmitted_list);
396 
397 		/* If the chunk is abandoned, move it to abandoned list. */
398 		if (sctp_chunk_abandoned(chunk)) {
399 			list_del_init(lchunk);
400 			sctp_insert_list(&q->abandoned, lchunk);
401 
402 			/* If this chunk has not been previousely acked,
403 			 * stop considering it 'outstanding'.  Our peer
404 			 * will most likely never see it since it will
405 			 * not be retransmitted
406 			 */
407 			if (!chunk->tsn_gap_acked) {
408 				if (chunk->transport)
409 					chunk->transport->flight_size -=
410 							sctp_data_size(chunk);
411 				q->outstanding_bytes -= sctp_data_size(chunk);
412 				q->asoc->peer.rwnd += sctp_data_size(chunk);
413 			}
414 			continue;
415 		}
416 
417 		/* If we are doing  retransmission due to a timeout or pmtu
418 		 * discovery, only the  chunks that are not yet acked should
419 		 * be added to the retransmit queue.
420 		 */
421 		if ((reason == SCTP_RTXR_FAST_RTX  &&
422 			    (chunk->fast_retransmit == SCTP_NEED_FRTX)) ||
423 		    (reason != SCTP_RTXR_FAST_RTX  && !chunk->tsn_gap_acked)) {
424 			/* RFC 2960 6.2.1 Processing a Received SACK
425 			 *
426 			 * C) Any time a DATA chunk is marked for
427 			 * retransmission (via either T3-rtx timer expiration
428 			 * (Section 6.3.3) or via fast retransmit
429 			 * (Section 7.2.4)), add the data size of those
430 			 * chunks to the rwnd.
431 			 */
432 			q->asoc->peer.rwnd += sctp_data_size(chunk);
433 			q->outstanding_bytes -= sctp_data_size(chunk);
434 			if (chunk->transport)
435 				transport->flight_size -= sctp_data_size(chunk);
436 
437 			/* sctpimpguide-05 Section 2.8.2
438 			 * M5) If a T3-rtx timer expires, the
439 			 * 'TSN.Missing.Report' of all affected TSNs is set
440 			 * to 0.
441 			 */
442 			chunk->tsn_missing_report = 0;
443 
444 			/* If a chunk that is being used for RTT measurement
445 			 * has to be retransmitted, we cannot use this chunk
446 			 * anymore for RTT measurements. Reset rto_pending so
447 			 * that a new RTT measurement is started when a new
448 			 * data chunk is sent.
449 			 */
450 			if (chunk->rtt_in_progress) {
451 				chunk->rtt_in_progress = 0;
452 				transport->rto_pending = 0;
453 			}
454 
455 			/* Move the chunk to the retransmit queue. The chunks
456 			 * on the retransmit queue are always kept in order.
457 			 */
458 			list_del_init(lchunk);
459 			sctp_insert_list(&q->retransmit, lchunk);
460 		}
461 	}
462 
463 	SCTP_DEBUG_PRINTK("%s: transport: %p, reason: %d, "
464 			  "cwnd: %d, ssthresh: %d, flight_size: %d, "
465 			  "pba: %d\n", __func__,
466 			  transport, reason,
467 			  transport->cwnd, transport->ssthresh,
468 			  transport->flight_size,
469 			  transport->partial_bytes_acked);
470 
471 }
472 
473 /* Mark all the eligible packets on a transport for retransmission and force
474  * one packet out.
475  */
476 void sctp_retransmit(struct sctp_outq *q, struct sctp_transport *transport,
477 		     sctp_retransmit_reason_t reason)
478 {
479 	struct net *net = sock_net(q->asoc->base.sk);
480 	int error = 0;
481 
482 	switch(reason) {
483 	case SCTP_RTXR_T3_RTX:
484 		SCTP_INC_STATS(net, SCTP_MIB_T3_RETRANSMITS);
485 		sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_T3_RTX);
486 		/* Update the retran path if the T3-rtx timer has expired for
487 		 * the current retran path.
488 		 */
489 		if (transport == transport->asoc->peer.retran_path)
490 			sctp_assoc_update_retran_path(transport->asoc);
491 		transport->asoc->rtx_data_chunks +=
492 			transport->asoc->unack_data;
493 		break;
494 	case SCTP_RTXR_FAST_RTX:
495 		SCTP_INC_STATS(net, SCTP_MIB_FAST_RETRANSMITS);
496 		sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_FAST_RTX);
497 		q->fast_rtx = 1;
498 		break;
499 	case SCTP_RTXR_PMTUD:
500 		SCTP_INC_STATS(net, SCTP_MIB_PMTUD_RETRANSMITS);
501 		break;
502 	case SCTP_RTXR_T1_RTX:
503 		SCTP_INC_STATS(net, SCTP_MIB_T1_RETRANSMITS);
504 		transport->asoc->init_retries++;
505 		break;
506 	default:
507 		BUG();
508 	}
509 
510 	sctp_retransmit_mark(q, transport, reason);
511 
512 	/* PR-SCTP A5) Any time the T3-rtx timer expires, on any destination,
513 	 * the sender SHOULD try to advance the "Advanced.Peer.Ack.Point" by
514 	 * following the procedures outlined in C1 - C5.
515 	 */
516 	if (reason == SCTP_RTXR_T3_RTX)
517 		sctp_generate_fwdtsn(q, q->asoc->ctsn_ack_point);
518 
519 	/* Flush the queues only on timeout, since fast_rtx is only
520 	 * triggered during sack processing and the queue
521 	 * will be flushed at the end.
522 	 */
523 	if (reason != SCTP_RTXR_FAST_RTX)
524 		error = sctp_outq_flush(q, /* rtx_timeout */ 1);
525 
526 	if (error)
527 		q->asoc->base.sk->sk_err = -error;
528 }
529 
530 /*
531  * Transmit DATA chunks on the retransmit queue.  Upon return from
532  * sctp_outq_flush_rtx() the packet 'pkt' may contain chunks which
533  * need to be transmitted by the caller.
534  * We assume that pkt->transport has already been set.
535  *
536  * The return value is a normal kernel error return value.
537  */
538 static int sctp_outq_flush_rtx(struct sctp_outq *q, struct sctp_packet *pkt,
539 			       int rtx_timeout, int *start_timer)
540 {
541 	struct list_head *lqueue;
542 	struct sctp_transport *transport = pkt->transport;
543 	sctp_xmit_t status;
544 	struct sctp_chunk *chunk, *chunk1;
545 	int fast_rtx;
546 	int error = 0;
547 	int timer = 0;
548 	int done = 0;
549 
550 	lqueue = &q->retransmit;
551 	fast_rtx = q->fast_rtx;
552 
553 	/* This loop handles time-out retransmissions, fast retransmissions,
554 	 * and retransmissions due to opening of whindow.
555 	 *
556 	 * RFC 2960 6.3.3 Handle T3-rtx Expiration
557 	 *
558 	 * E3) Determine how many of the earliest (i.e., lowest TSN)
559 	 * outstanding DATA chunks for the address for which the
560 	 * T3-rtx has expired will fit into a single packet, subject
561 	 * to the MTU constraint for the path corresponding to the
562 	 * destination transport address to which the retransmission
563 	 * is being sent (this may be different from the address for
564 	 * which the timer expires [see Section 6.4]). Call this value
565 	 * K. Bundle and retransmit those K DATA chunks in a single
566 	 * packet to the destination endpoint.
567 	 *
568 	 * [Just to be painfully clear, if we are retransmitting
569 	 * because a timeout just happened, we should send only ONE
570 	 * packet of retransmitted data.]
571 	 *
572 	 * For fast retransmissions we also send only ONE packet.  However,
573 	 * if we are just flushing the queue due to open window, we'll
574 	 * try to send as much as possible.
575 	 */
576 	list_for_each_entry_safe(chunk, chunk1, lqueue, transmitted_list) {
577 		/* If the chunk is abandoned, move it to abandoned list. */
578 		if (sctp_chunk_abandoned(chunk)) {
579 			list_del_init(&chunk->transmitted_list);
580 			sctp_insert_list(&q->abandoned,
581 					 &chunk->transmitted_list);
582 			continue;
583 		}
584 
585 		/* Make sure that Gap Acked TSNs are not retransmitted.  A
586 		 * simple approach is just to move such TSNs out of the
587 		 * way and into a 'transmitted' queue and skip to the
588 		 * next chunk.
589 		 */
590 		if (chunk->tsn_gap_acked) {
591 			list_move_tail(&chunk->transmitted_list,
592 				       &transport->transmitted);
593 			continue;
594 		}
595 
596 		/* If we are doing fast retransmit, ignore non-fast_rtransmit
597 		 * chunks
598 		 */
599 		if (fast_rtx && !chunk->fast_retransmit)
600 			continue;
601 
602 redo:
603 		/* Attempt to append this chunk to the packet. */
604 		status = sctp_packet_append_chunk(pkt, chunk);
605 
606 		switch (status) {
607 		case SCTP_XMIT_PMTU_FULL:
608 			if (!pkt->has_data && !pkt->has_cookie_echo) {
609 				/* If this packet did not contain DATA then
610 				 * retransmission did not happen, so do it
611 				 * again.  We'll ignore the error here since
612 				 * control chunks are already freed so there
613 				 * is nothing we can do.
614 				 */
615 				sctp_packet_transmit(pkt);
616 				goto redo;
617 			}
618 
619 			/* Send this packet.  */
620 			error = sctp_packet_transmit(pkt);
621 
622 			/* If we are retransmitting, we should only
623 			 * send a single packet.
624 			 * Otherwise, try appending this chunk again.
625 			 */
626 			if (rtx_timeout || fast_rtx)
627 				done = 1;
628 			else
629 				goto redo;
630 
631 			/* Bundle next chunk in the next round.  */
632 			break;
633 
634 		case SCTP_XMIT_RWND_FULL:
635 			/* Send this packet. */
636 			error = sctp_packet_transmit(pkt);
637 
638 			/* Stop sending DATA as there is no more room
639 			 * at the receiver.
640 			 */
641 			done = 1;
642 			break;
643 
644 		case SCTP_XMIT_NAGLE_DELAY:
645 			/* Send this packet. */
646 			error = sctp_packet_transmit(pkt);
647 
648 			/* Stop sending DATA because of nagle delay. */
649 			done = 1;
650 			break;
651 
652 		default:
653 			/* The append was successful, so add this chunk to
654 			 * the transmitted list.
655 			 */
656 			list_move_tail(&chunk->transmitted_list,
657 				       &transport->transmitted);
658 
659 			/* Mark the chunk as ineligible for fast retransmit
660 			 * after it is retransmitted.
661 			 */
662 			if (chunk->fast_retransmit == SCTP_NEED_FRTX)
663 				chunk->fast_retransmit = SCTP_DONT_FRTX;
664 
665 			q->empty = 0;
666 			q->asoc->stats.rtxchunks++;
667 			break;
668 		}
669 
670 		/* Set the timer if there were no errors */
671 		if (!error && !timer)
672 			timer = 1;
673 
674 		if (done)
675 			break;
676 	}
677 
678 	/* If we are here due to a retransmit timeout or a fast
679 	 * retransmit and if there are any chunks left in the retransmit
680 	 * queue that could not fit in the PMTU sized packet, they need
681 	 * to be marked as ineligible for a subsequent fast retransmit.
682 	 */
683 	if (rtx_timeout || fast_rtx) {
684 		list_for_each_entry(chunk1, lqueue, transmitted_list) {
685 			if (chunk1->fast_retransmit == SCTP_NEED_FRTX)
686 				chunk1->fast_retransmit = SCTP_DONT_FRTX;
687 		}
688 	}
689 
690 	*start_timer = timer;
691 
692 	/* Clear fast retransmit hint */
693 	if (fast_rtx)
694 		q->fast_rtx = 0;
695 
696 	return error;
697 }
698 
699 /* Cork the outqueue so queued chunks are really queued. */
700 int sctp_outq_uncork(struct sctp_outq *q)
701 {
702 	if (q->cork)
703 		q->cork = 0;
704 
705 	return sctp_outq_flush(q, 0);
706 }
707 
708 
709 /*
710  * Try to flush an outqueue.
711  *
712  * Description: Send everything in q which we legally can, subject to
713  * congestion limitations.
714  * * Note: This function can be called from multiple contexts so appropriate
715  * locking concerns must be made.  Today we use the sock lock to protect
716  * this function.
717  */
718 static int sctp_outq_flush(struct sctp_outq *q, int rtx_timeout)
719 {
720 	struct sctp_packet *packet;
721 	struct sctp_packet singleton;
722 	struct sctp_association *asoc = q->asoc;
723 	__u16 sport = asoc->base.bind_addr.port;
724 	__u16 dport = asoc->peer.port;
725 	__u32 vtag = asoc->peer.i.init_tag;
726 	struct sctp_transport *transport = NULL;
727 	struct sctp_transport *new_transport;
728 	struct sctp_chunk *chunk, *tmp;
729 	sctp_xmit_t status;
730 	int error = 0;
731 	int start_timer = 0;
732 	int one_packet = 0;
733 
734 	/* These transports have chunks to send. */
735 	struct list_head transport_list;
736 	struct list_head *ltransport;
737 
738 	INIT_LIST_HEAD(&transport_list);
739 	packet = NULL;
740 
741 	/*
742 	 * 6.10 Bundling
743 	 *   ...
744 	 *   When bundling control chunks with DATA chunks, an
745 	 *   endpoint MUST place control chunks first in the outbound
746 	 *   SCTP packet.  The transmitter MUST transmit DATA chunks
747 	 *   within a SCTP packet in increasing order of TSN.
748 	 *   ...
749 	 */
750 
751 	list_for_each_entry_safe(chunk, tmp, &q->control_chunk_list, list) {
752 		/* RFC 5061, 5.3
753 		 * F1) This means that until such time as the ASCONF
754 		 * containing the add is acknowledged, the sender MUST
755 		 * NOT use the new IP address as a source for ANY SCTP
756 		 * packet except on carrying an ASCONF Chunk.
757 		 */
758 		if (asoc->src_out_of_asoc_ok &&
759 		    chunk->chunk_hdr->type != SCTP_CID_ASCONF)
760 			continue;
761 
762 		list_del_init(&chunk->list);
763 
764 		/* Pick the right transport to use. */
765 		new_transport = chunk->transport;
766 
767 		if (!new_transport) {
768 			/*
769 			 * If we have a prior transport pointer, see if
770 			 * the destination address of the chunk
771 			 * matches the destination address of the
772 			 * current transport.  If not a match, then
773 			 * try to look up the transport with a given
774 			 * destination address.  We do this because
775 			 * after processing ASCONFs, we may have new
776 			 * transports created.
777 			 */
778 			if (transport &&
779 			    sctp_cmp_addr_exact(&chunk->dest,
780 						&transport->ipaddr))
781 					new_transport = transport;
782 			else
783 				new_transport = sctp_assoc_lookup_paddr(asoc,
784 								&chunk->dest);
785 
786 			/* if we still don't have a new transport, then
787 			 * use the current active path.
788 			 */
789 			if (!new_transport)
790 				new_transport = asoc->peer.active_path;
791 		} else if ((new_transport->state == SCTP_INACTIVE) ||
792 			   (new_transport->state == SCTP_UNCONFIRMED) ||
793 			   (new_transport->state == SCTP_PF)) {
794 			/* If the chunk is Heartbeat or Heartbeat Ack,
795 			 * send it to chunk->transport, even if it's
796 			 * inactive.
797 			 *
798 			 * 3.3.6 Heartbeat Acknowledgement:
799 			 * ...
800 			 * A HEARTBEAT ACK is always sent to the source IP
801 			 * address of the IP datagram containing the
802 			 * HEARTBEAT chunk to which this ack is responding.
803 			 * ...
804 			 *
805 			 * ASCONF_ACKs also must be sent to the source.
806 			 */
807 			if (chunk->chunk_hdr->type != SCTP_CID_HEARTBEAT &&
808 			    chunk->chunk_hdr->type != SCTP_CID_HEARTBEAT_ACK &&
809 			    chunk->chunk_hdr->type != SCTP_CID_ASCONF_ACK)
810 				new_transport = asoc->peer.active_path;
811 		}
812 
813 		/* Are we switching transports?
814 		 * Take care of transport locks.
815 		 */
816 		if (new_transport != transport) {
817 			transport = new_transport;
818 			if (list_empty(&transport->send_ready)) {
819 				list_add_tail(&transport->send_ready,
820 					      &transport_list);
821 			}
822 			packet = &transport->packet;
823 			sctp_packet_config(packet, vtag,
824 					   asoc->peer.ecn_capable);
825 		}
826 
827 		switch (chunk->chunk_hdr->type) {
828 		/*
829 		 * 6.10 Bundling
830 		 *   ...
831 		 *   An endpoint MUST NOT bundle INIT, INIT ACK or SHUTDOWN
832 		 *   COMPLETE with any other chunks.  [Send them immediately.]
833 		 */
834 		case SCTP_CID_INIT:
835 		case SCTP_CID_INIT_ACK:
836 		case SCTP_CID_SHUTDOWN_COMPLETE:
837 			sctp_packet_init(&singleton, transport, sport, dport);
838 			sctp_packet_config(&singleton, vtag, 0);
839 			sctp_packet_append_chunk(&singleton, chunk);
840 			error = sctp_packet_transmit(&singleton);
841 			if (error < 0)
842 				return error;
843 			break;
844 
845 		case SCTP_CID_ABORT:
846 			if (sctp_test_T_bit(chunk)) {
847 				packet->vtag = asoc->c.my_vtag;
848 			}
849 		/* The following chunks are "response" chunks, i.e.
850 		 * they are generated in response to something we
851 		 * received.  If we are sending these, then we can
852 		 * send only 1 packet containing these chunks.
853 		 */
854 		case SCTP_CID_HEARTBEAT_ACK:
855 		case SCTP_CID_SHUTDOWN_ACK:
856 		case SCTP_CID_COOKIE_ACK:
857 		case SCTP_CID_COOKIE_ECHO:
858 		case SCTP_CID_ERROR:
859 		case SCTP_CID_ECN_CWR:
860 		case SCTP_CID_ASCONF_ACK:
861 			one_packet = 1;
862 			/* Fall through */
863 
864 		case SCTP_CID_SACK:
865 		case SCTP_CID_HEARTBEAT:
866 		case SCTP_CID_SHUTDOWN:
867 		case SCTP_CID_ECN_ECNE:
868 		case SCTP_CID_ASCONF:
869 		case SCTP_CID_FWD_TSN:
870 			status = sctp_packet_transmit_chunk(packet, chunk,
871 							    one_packet);
872 			if (status  != SCTP_XMIT_OK) {
873 				/* put the chunk back */
874 				list_add(&chunk->list, &q->control_chunk_list);
875 			} else {
876 				asoc->stats.octrlchunks++;
877 				/* PR-SCTP C5) If a FORWARD TSN is sent, the
878 				 * sender MUST assure that at least one T3-rtx
879 				 * timer is running.
880 				 */
881 				if (chunk->chunk_hdr->type == SCTP_CID_FWD_TSN)
882 					sctp_transport_reset_timers(transport);
883 			}
884 			break;
885 
886 		default:
887 			/* We built a chunk with an illegal type! */
888 			BUG();
889 		}
890 	}
891 
892 	if (q->asoc->src_out_of_asoc_ok)
893 		goto sctp_flush_out;
894 
895 	/* Is it OK to send data chunks?  */
896 	switch (asoc->state) {
897 	case SCTP_STATE_COOKIE_ECHOED:
898 		/* Only allow bundling when this packet has a COOKIE-ECHO
899 		 * chunk.
900 		 */
901 		if (!packet || !packet->has_cookie_echo)
902 			break;
903 
904 		/* fallthru */
905 	case SCTP_STATE_ESTABLISHED:
906 	case SCTP_STATE_SHUTDOWN_PENDING:
907 	case SCTP_STATE_SHUTDOWN_RECEIVED:
908 		/*
909 		 * RFC 2960 6.1  Transmission of DATA Chunks
910 		 *
911 		 * C) When the time comes for the sender to transmit,
912 		 * before sending new DATA chunks, the sender MUST
913 		 * first transmit any outstanding DATA chunks which
914 		 * are marked for retransmission (limited by the
915 		 * current cwnd).
916 		 */
917 		if (!list_empty(&q->retransmit)) {
918 			if (asoc->peer.retran_path->state == SCTP_UNCONFIRMED)
919 				goto sctp_flush_out;
920 			if (transport == asoc->peer.retran_path)
921 				goto retran;
922 
923 			/* Switch transports & prepare the packet.  */
924 
925 			transport = asoc->peer.retran_path;
926 
927 			if (list_empty(&transport->send_ready)) {
928 				list_add_tail(&transport->send_ready,
929 					      &transport_list);
930 			}
931 
932 			packet = &transport->packet;
933 			sctp_packet_config(packet, vtag,
934 					   asoc->peer.ecn_capable);
935 		retran:
936 			error = sctp_outq_flush_rtx(q, packet,
937 						    rtx_timeout, &start_timer);
938 
939 			if (start_timer)
940 				sctp_transport_reset_timers(transport);
941 
942 			/* This can happen on COOKIE-ECHO resend.  Only
943 			 * one chunk can get bundled with a COOKIE-ECHO.
944 			 */
945 			if (packet->has_cookie_echo)
946 				goto sctp_flush_out;
947 
948 			/* Don't send new data if there is still data
949 			 * waiting to retransmit.
950 			 */
951 			if (!list_empty(&q->retransmit))
952 				goto sctp_flush_out;
953 		}
954 
955 		/* Apply Max.Burst limitation to the current transport in
956 		 * case it will be used for new data.  We are going to
957 		 * rest it before we return, but we want to apply the limit
958 		 * to the currently queued data.
959 		 */
960 		if (transport)
961 			sctp_transport_burst_limited(transport);
962 
963 		/* Finally, transmit new packets.  */
964 		while ((chunk = sctp_outq_dequeue_data(q)) != NULL) {
965 			/* RFC 2960 6.5 Every DATA chunk MUST carry a valid
966 			 * stream identifier.
967 			 */
968 			if (chunk->sinfo.sinfo_stream >=
969 			    asoc->c.sinit_num_ostreams) {
970 
971 				/* Mark as failed send. */
972 				sctp_chunk_fail(chunk, SCTP_ERROR_INV_STRM);
973 				sctp_chunk_free(chunk);
974 				continue;
975 			}
976 
977 			/* Has this chunk expired? */
978 			if (sctp_chunk_abandoned(chunk)) {
979 				sctp_chunk_fail(chunk, 0);
980 				sctp_chunk_free(chunk);
981 				continue;
982 			}
983 
984 			/* If there is a specified transport, use it.
985 			 * Otherwise, we want to use the active path.
986 			 */
987 			new_transport = chunk->transport;
988 			if (!new_transport ||
989 			    ((new_transport->state == SCTP_INACTIVE) ||
990 			     (new_transport->state == SCTP_UNCONFIRMED) ||
991 			     (new_transport->state == SCTP_PF)))
992 				new_transport = asoc->peer.active_path;
993 			if (new_transport->state == SCTP_UNCONFIRMED)
994 				continue;
995 
996 			/* Change packets if necessary.  */
997 			if (new_transport != transport) {
998 				transport = new_transport;
999 
1000 				/* Schedule to have this transport's
1001 				 * packet flushed.
1002 				 */
1003 				if (list_empty(&transport->send_ready)) {
1004 					list_add_tail(&transport->send_ready,
1005 						      &transport_list);
1006 				}
1007 
1008 				packet = &transport->packet;
1009 				sctp_packet_config(packet, vtag,
1010 						   asoc->peer.ecn_capable);
1011 				/* We've switched transports, so apply the
1012 				 * Burst limit to the new transport.
1013 				 */
1014 				sctp_transport_burst_limited(transport);
1015 			}
1016 
1017 			SCTP_DEBUG_PRINTK("sctp_outq_flush(%p, %p[%s]), ",
1018 					  q, chunk,
1019 					  chunk && chunk->chunk_hdr ?
1020 					  sctp_cname(SCTP_ST_CHUNK(
1021 						  chunk->chunk_hdr->type))
1022 					  : "Illegal Chunk");
1023 
1024 			SCTP_DEBUG_PRINTK("TX TSN 0x%x skb->head "
1025 					"%p skb->users %d.\n",
1026 					ntohl(chunk->subh.data_hdr->tsn),
1027 					chunk->skb ?chunk->skb->head : NULL,
1028 					chunk->skb ?
1029 					atomic_read(&chunk->skb->users) : -1);
1030 
1031 			/* Add the chunk to the packet.  */
1032 			status = sctp_packet_transmit_chunk(packet, chunk, 0);
1033 
1034 			switch (status) {
1035 			case SCTP_XMIT_PMTU_FULL:
1036 			case SCTP_XMIT_RWND_FULL:
1037 			case SCTP_XMIT_NAGLE_DELAY:
1038 				/* We could not append this chunk, so put
1039 				 * the chunk back on the output queue.
1040 				 */
1041 				SCTP_DEBUG_PRINTK("sctp_outq_flush: could "
1042 					"not transmit TSN: 0x%x, status: %d\n",
1043 					ntohl(chunk->subh.data_hdr->tsn),
1044 					status);
1045 				sctp_outq_head_data(q, chunk);
1046 				goto sctp_flush_out;
1047 				break;
1048 
1049 			case SCTP_XMIT_OK:
1050 				/* The sender is in the SHUTDOWN-PENDING state,
1051 				 * The sender MAY set the I-bit in the DATA
1052 				 * chunk header.
1053 				 */
1054 				if (asoc->state == SCTP_STATE_SHUTDOWN_PENDING)
1055 					chunk->chunk_hdr->flags |= SCTP_DATA_SACK_IMM;
1056 				if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED)
1057 					asoc->stats.ouodchunks++;
1058 				else
1059 					asoc->stats.oodchunks++;
1060 
1061 				break;
1062 
1063 			default:
1064 				BUG();
1065 			}
1066 
1067 			/* BUG: We assume that the sctp_packet_transmit()
1068 			 * call below will succeed all the time and add the
1069 			 * chunk to the transmitted list and restart the
1070 			 * timers.
1071 			 * It is possible that the call can fail under OOM
1072 			 * conditions.
1073 			 *
1074 			 * Is this really a problem?  Won't this behave
1075 			 * like a lost TSN?
1076 			 */
1077 			list_add_tail(&chunk->transmitted_list,
1078 				      &transport->transmitted);
1079 
1080 			sctp_transport_reset_timers(transport);
1081 
1082 			q->empty = 0;
1083 
1084 			/* Only let one DATA chunk get bundled with a
1085 			 * COOKIE-ECHO chunk.
1086 			 */
1087 			if (packet->has_cookie_echo)
1088 				goto sctp_flush_out;
1089 		}
1090 		break;
1091 
1092 	default:
1093 		/* Do nothing.  */
1094 		break;
1095 	}
1096 
1097 sctp_flush_out:
1098 
1099 	/* Before returning, examine all the transports touched in
1100 	 * this call.  Right now, we bluntly force clear all the
1101 	 * transports.  Things might change after we implement Nagle.
1102 	 * But such an examination is still required.
1103 	 *
1104 	 * --xguo
1105 	 */
1106 	while ((ltransport = sctp_list_dequeue(&transport_list)) != NULL ) {
1107 		struct sctp_transport *t = list_entry(ltransport,
1108 						      struct sctp_transport,
1109 						      send_ready);
1110 		packet = &t->packet;
1111 		if (!sctp_packet_empty(packet))
1112 			error = sctp_packet_transmit(packet);
1113 
1114 		/* Clear the burst limited state, if any */
1115 		sctp_transport_burst_reset(t);
1116 	}
1117 
1118 	return error;
1119 }
1120 
1121 /* Update unack_data based on the incoming SACK chunk */
1122 static void sctp_sack_update_unack_data(struct sctp_association *assoc,
1123 					struct sctp_sackhdr *sack)
1124 {
1125 	sctp_sack_variable_t *frags;
1126 	__u16 unack_data;
1127 	int i;
1128 
1129 	unack_data = assoc->next_tsn - assoc->ctsn_ack_point - 1;
1130 
1131 	frags = sack->variable;
1132 	for (i = 0; i < ntohs(sack->num_gap_ack_blocks); i++) {
1133 		unack_data -= ((ntohs(frags[i].gab.end) -
1134 				ntohs(frags[i].gab.start) + 1));
1135 	}
1136 
1137 	assoc->unack_data = unack_data;
1138 }
1139 
1140 /* This is where we REALLY process a SACK.
1141  *
1142  * Process the SACK against the outqueue.  Mostly, this just frees
1143  * things off the transmitted queue.
1144  */
1145 int sctp_outq_sack(struct sctp_outq *q, struct sctp_chunk *chunk)
1146 {
1147 	struct sctp_association *asoc = q->asoc;
1148 	struct sctp_sackhdr *sack = chunk->subh.sack_hdr;
1149 	struct sctp_transport *transport;
1150 	struct sctp_chunk *tchunk = NULL;
1151 	struct list_head *lchunk, *transport_list, *temp;
1152 	sctp_sack_variable_t *frags = sack->variable;
1153 	__u32 sack_ctsn, ctsn, tsn;
1154 	__u32 highest_tsn, highest_new_tsn;
1155 	__u32 sack_a_rwnd;
1156 	unsigned int outstanding;
1157 	struct sctp_transport *primary = asoc->peer.primary_path;
1158 	int count_of_newacks = 0;
1159 	int gap_ack_blocks;
1160 	u8 accum_moved = 0;
1161 
1162 	/* Grab the association's destination address list. */
1163 	transport_list = &asoc->peer.transport_addr_list;
1164 
1165 	sack_ctsn = ntohl(sack->cum_tsn_ack);
1166 	gap_ack_blocks = ntohs(sack->num_gap_ack_blocks);
1167 	asoc->stats.gapcnt += gap_ack_blocks;
1168 	/*
1169 	 * SFR-CACC algorithm:
1170 	 * On receipt of a SACK the sender SHOULD execute the
1171 	 * following statements.
1172 	 *
1173 	 * 1) If the cumulative ack in the SACK passes next tsn_at_change
1174 	 * on the current primary, the CHANGEOVER_ACTIVE flag SHOULD be
1175 	 * cleared. The CYCLING_CHANGEOVER flag SHOULD also be cleared for
1176 	 * all destinations.
1177 	 * 2) If the SACK contains gap acks and the flag CHANGEOVER_ACTIVE
1178 	 * is set the receiver of the SACK MUST take the following actions:
1179 	 *
1180 	 * A) Initialize the cacc_saw_newack to 0 for all destination
1181 	 * addresses.
1182 	 *
1183 	 * Only bother if changeover_active is set. Otherwise, this is
1184 	 * totally suboptimal to do on every SACK.
1185 	 */
1186 	if (primary->cacc.changeover_active) {
1187 		u8 clear_cycling = 0;
1188 
1189 		if (TSN_lte(primary->cacc.next_tsn_at_change, sack_ctsn)) {
1190 			primary->cacc.changeover_active = 0;
1191 			clear_cycling = 1;
1192 		}
1193 
1194 		if (clear_cycling || gap_ack_blocks) {
1195 			list_for_each_entry(transport, transport_list,
1196 					transports) {
1197 				if (clear_cycling)
1198 					transport->cacc.cycling_changeover = 0;
1199 				if (gap_ack_blocks)
1200 					transport->cacc.cacc_saw_newack = 0;
1201 			}
1202 		}
1203 	}
1204 
1205 	/* Get the highest TSN in the sack. */
1206 	highest_tsn = sack_ctsn;
1207 	if (gap_ack_blocks)
1208 		highest_tsn += ntohs(frags[gap_ack_blocks - 1].gab.end);
1209 
1210 	if (TSN_lt(asoc->highest_sacked, highest_tsn))
1211 		asoc->highest_sacked = highest_tsn;
1212 
1213 	highest_new_tsn = sack_ctsn;
1214 
1215 	/* Run through the retransmit queue.  Credit bytes received
1216 	 * and free those chunks that we can.
1217 	 */
1218 	sctp_check_transmitted(q, &q->retransmit, NULL, NULL, sack, &highest_new_tsn);
1219 
1220 	/* Run through the transmitted queue.
1221 	 * Credit bytes received and free those chunks which we can.
1222 	 *
1223 	 * This is a MASSIVE candidate for optimization.
1224 	 */
1225 	list_for_each_entry(transport, transport_list, transports) {
1226 		sctp_check_transmitted(q, &transport->transmitted,
1227 				       transport, &chunk->source, sack,
1228 				       &highest_new_tsn);
1229 		/*
1230 		 * SFR-CACC algorithm:
1231 		 * C) Let count_of_newacks be the number of
1232 		 * destinations for which cacc_saw_newack is set.
1233 		 */
1234 		if (transport->cacc.cacc_saw_newack)
1235 			count_of_newacks ++;
1236 	}
1237 
1238 	/* Move the Cumulative TSN Ack Point if appropriate.  */
1239 	if (TSN_lt(asoc->ctsn_ack_point, sack_ctsn)) {
1240 		asoc->ctsn_ack_point = sack_ctsn;
1241 		accum_moved = 1;
1242 	}
1243 
1244 	if (gap_ack_blocks) {
1245 
1246 		if (asoc->fast_recovery && accum_moved)
1247 			highest_new_tsn = highest_tsn;
1248 
1249 		list_for_each_entry(transport, transport_list, transports)
1250 			sctp_mark_missing(q, &transport->transmitted, transport,
1251 					  highest_new_tsn, count_of_newacks);
1252 	}
1253 
1254 	/* Update unack_data field in the assoc. */
1255 	sctp_sack_update_unack_data(asoc, sack);
1256 
1257 	ctsn = asoc->ctsn_ack_point;
1258 
1259 	/* Throw away stuff rotting on the sack queue.  */
1260 	list_for_each_safe(lchunk, temp, &q->sacked) {
1261 		tchunk = list_entry(lchunk, struct sctp_chunk,
1262 				    transmitted_list);
1263 		tsn = ntohl(tchunk->subh.data_hdr->tsn);
1264 		if (TSN_lte(tsn, ctsn)) {
1265 			list_del_init(&tchunk->transmitted_list);
1266 			sctp_chunk_free(tchunk);
1267 		}
1268 	}
1269 
1270 	/* ii) Set rwnd equal to the newly received a_rwnd minus the
1271 	 *     number of bytes still outstanding after processing the
1272 	 *     Cumulative TSN Ack and the Gap Ack Blocks.
1273 	 */
1274 
1275 	sack_a_rwnd = ntohl(sack->a_rwnd);
1276 	outstanding = q->outstanding_bytes;
1277 
1278 	if (outstanding < sack_a_rwnd)
1279 		sack_a_rwnd -= outstanding;
1280 	else
1281 		sack_a_rwnd = 0;
1282 
1283 	asoc->peer.rwnd = sack_a_rwnd;
1284 
1285 	sctp_generate_fwdtsn(q, sack_ctsn);
1286 
1287 	SCTP_DEBUG_PRINTK("%s: sack Cumulative TSN Ack is 0x%x.\n",
1288 			  __func__, sack_ctsn);
1289 	SCTP_DEBUG_PRINTK("%s: Cumulative TSN Ack of association, "
1290 			  "%p is 0x%x. Adv peer ack point: 0x%x\n",
1291 			  __func__, asoc, ctsn, asoc->adv_peer_ack_point);
1292 
1293 	/* See if all chunks are acked.
1294 	 * Make sure the empty queue handler will get run later.
1295 	 */
1296 	q->empty = (list_empty(&q->out_chunk_list) &&
1297 		    list_empty(&q->retransmit));
1298 	if (!q->empty)
1299 		goto finish;
1300 
1301 	list_for_each_entry(transport, transport_list, transports) {
1302 		q->empty = q->empty && list_empty(&transport->transmitted);
1303 		if (!q->empty)
1304 			goto finish;
1305 	}
1306 
1307 	SCTP_DEBUG_PRINTK("sack queue is empty.\n");
1308 finish:
1309 	return q->empty;
1310 }
1311 
1312 /* Is the outqueue empty?  */
1313 int sctp_outq_is_empty(const struct sctp_outq *q)
1314 {
1315 	return q->empty;
1316 }
1317 
1318 /********************************************************************
1319  * 2nd Level Abstractions
1320  ********************************************************************/
1321 
1322 /* Go through a transport's transmitted list or the association's retransmit
1323  * list and move chunks that are acked by the Cumulative TSN Ack to q->sacked.
1324  * The retransmit list will not have an associated transport.
1325  *
1326  * I added coherent debug information output.	--xguo
1327  *
1328  * Instead of printing 'sacked' or 'kept' for each TSN on the
1329  * transmitted_queue, we print a range: SACKED: TSN1-TSN2, TSN3, TSN4-TSN5.
1330  * KEPT TSN6-TSN7, etc.
1331  */
1332 static void sctp_check_transmitted(struct sctp_outq *q,
1333 				   struct list_head *transmitted_queue,
1334 				   struct sctp_transport *transport,
1335 				   union sctp_addr *saddr,
1336 				   struct sctp_sackhdr *sack,
1337 				   __u32 *highest_new_tsn_in_sack)
1338 {
1339 	struct list_head *lchunk;
1340 	struct sctp_chunk *tchunk;
1341 	struct list_head tlist;
1342 	__u32 tsn;
1343 	__u32 sack_ctsn;
1344 	__u32 rtt;
1345 	__u8 restart_timer = 0;
1346 	int bytes_acked = 0;
1347 	int migrate_bytes = 0;
1348 
1349 	/* These state variables are for coherent debug output. --xguo */
1350 
1351 #if SCTP_DEBUG
1352 	__u32 dbg_ack_tsn = 0;	/* An ACKed TSN range starts here... */
1353 	__u32 dbg_last_ack_tsn = 0;  /* ...and finishes here.	     */
1354 	__u32 dbg_kept_tsn = 0;	/* An un-ACKed range starts here...  */
1355 	__u32 dbg_last_kept_tsn = 0; /* ...and finishes here.	     */
1356 
1357 	/* 0 : The last TSN was ACKed.
1358 	 * 1 : The last TSN was NOT ACKed (i.e. KEPT).
1359 	 * -1: We need to initialize.
1360 	 */
1361 	int dbg_prt_state = -1;
1362 #endif /* SCTP_DEBUG */
1363 
1364 	sack_ctsn = ntohl(sack->cum_tsn_ack);
1365 
1366 	INIT_LIST_HEAD(&tlist);
1367 
1368 	/* The while loop will skip empty transmitted queues. */
1369 	while (NULL != (lchunk = sctp_list_dequeue(transmitted_queue))) {
1370 		tchunk = list_entry(lchunk, struct sctp_chunk,
1371 				    transmitted_list);
1372 
1373 		if (sctp_chunk_abandoned(tchunk)) {
1374 			/* Move the chunk to abandoned list. */
1375 			sctp_insert_list(&q->abandoned, lchunk);
1376 
1377 			/* If this chunk has not been acked, stop
1378 			 * considering it as 'outstanding'.
1379 			 */
1380 			if (!tchunk->tsn_gap_acked) {
1381 				if (tchunk->transport)
1382 					tchunk->transport->flight_size -=
1383 							sctp_data_size(tchunk);
1384 				q->outstanding_bytes -= sctp_data_size(tchunk);
1385 			}
1386 			continue;
1387 		}
1388 
1389 		tsn = ntohl(tchunk->subh.data_hdr->tsn);
1390 		if (sctp_acked(sack, tsn)) {
1391 			/* If this queue is the retransmit queue, the
1392 			 * retransmit timer has already reclaimed
1393 			 * the outstanding bytes for this chunk, so only
1394 			 * count bytes associated with a transport.
1395 			 */
1396 			if (transport) {
1397 				/* If this chunk is being used for RTT
1398 				 * measurement, calculate the RTT and update
1399 				 * the RTO using this value.
1400 				 *
1401 				 * 6.3.1 C5) Karn's algorithm: RTT measurements
1402 				 * MUST NOT be made using packets that were
1403 				 * retransmitted (and thus for which it is
1404 				 * ambiguous whether the reply was for the
1405 				 * first instance of the packet or a later
1406 				 * instance).
1407 				 */
1408 				if (!tchunk->tsn_gap_acked &&
1409 				    tchunk->rtt_in_progress) {
1410 					tchunk->rtt_in_progress = 0;
1411 					rtt = jiffies - tchunk->sent_at;
1412 					sctp_transport_update_rto(transport,
1413 								  rtt);
1414 				}
1415 			}
1416 
1417 			/* If the chunk hasn't been marked as ACKED,
1418 			 * mark it and account bytes_acked if the
1419 			 * chunk had a valid transport (it will not
1420 			 * have a transport if ASCONF had deleted it
1421 			 * while DATA was outstanding).
1422 			 */
1423 			if (!tchunk->tsn_gap_acked) {
1424 				tchunk->tsn_gap_acked = 1;
1425 				*highest_new_tsn_in_sack = tsn;
1426 				bytes_acked += sctp_data_size(tchunk);
1427 				if (!tchunk->transport)
1428 					migrate_bytes += sctp_data_size(tchunk);
1429 			}
1430 
1431 			if (TSN_lte(tsn, sack_ctsn)) {
1432 				/* RFC 2960  6.3.2 Retransmission Timer Rules
1433 				 *
1434 				 * R3) Whenever a SACK is received
1435 				 * that acknowledges the DATA chunk
1436 				 * with the earliest outstanding TSN
1437 				 * for that address, restart T3-rtx
1438 				 * timer for that address with its
1439 				 * current RTO.
1440 				 */
1441 				restart_timer = 1;
1442 
1443 				if (!tchunk->tsn_gap_acked) {
1444 					/*
1445 					 * SFR-CACC algorithm:
1446 					 * 2) If the SACK contains gap acks
1447 					 * and the flag CHANGEOVER_ACTIVE is
1448 					 * set the receiver of the SACK MUST
1449 					 * take the following action:
1450 					 *
1451 					 * B) For each TSN t being acked that
1452 					 * has not been acked in any SACK so
1453 					 * far, set cacc_saw_newack to 1 for
1454 					 * the destination that the TSN was
1455 					 * sent to.
1456 					 */
1457 					if (transport &&
1458 					    sack->num_gap_ack_blocks &&
1459 					    q->asoc->peer.primary_path->cacc.
1460 					    changeover_active)
1461 						transport->cacc.cacc_saw_newack
1462 							= 1;
1463 				}
1464 
1465 				list_add_tail(&tchunk->transmitted_list,
1466 					      &q->sacked);
1467 			} else {
1468 				/* RFC2960 7.2.4, sctpimpguide-05 2.8.2
1469 				 * M2) Each time a SACK arrives reporting
1470 				 * 'Stray DATA chunk(s)' record the highest TSN
1471 				 * reported as newly acknowledged, call this
1472 				 * value 'HighestTSNinSack'. A newly
1473 				 * acknowledged DATA chunk is one not
1474 				 * previously acknowledged in a SACK.
1475 				 *
1476 				 * When the SCTP sender of data receives a SACK
1477 				 * chunk that acknowledges, for the first time,
1478 				 * the receipt of a DATA chunk, all the still
1479 				 * unacknowledged DATA chunks whose TSN is
1480 				 * older than that newly acknowledged DATA
1481 				 * chunk, are qualified as 'Stray DATA chunks'.
1482 				 */
1483 				list_add_tail(lchunk, &tlist);
1484 			}
1485 
1486 #if SCTP_DEBUG
1487 			switch (dbg_prt_state) {
1488 			case 0:	/* last TSN was ACKed */
1489 				if (dbg_last_ack_tsn + 1 == tsn) {
1490 					/* This TSN belongs to the
1491 					 * current ACK range.
1492 					 */
1493 					break;
1494 				}
1495 
1496 				if (dbg_last_ack_tsn != dbg_ack_tsn) {
1497 					/* Display the end of the
1498 					 * current range.
1499 					 */
1500 					SCTP_DEBUG_PRINTK_CONT("-%08x",
1501 							       dbg_last_ack_tsn);
1502 				}
1503 
1504 				/* Start a new range.  */
1505 				SCTP_DEBUG_PRINTK_CONT(",%08x", tsn);
1506 				dbg_ack_tsn = tsn;
1507 				break;
1508 
1509 			case 1:	/* The last TSN was NOT ACKed. */
1510 				if (dbg_last_kept_tsn != dbg_kept_tsn) {
1511 					/* Display the end of current range. */
1512 					SCTP_DEBUG_PRINTK_CONT("-%08x",
1513 							       dbg_last_kept_tsn);
1514 				}
1515 
1516 				SCTP_DEBUG_PRINTK_CONT("\n");
1517 
1518 				/* FALL THROUGH... */
1519 			default:
1520 				/* This is the first-ever TSN we examined.  */
1521 				/* Start a new range of ACK-ed TSNs.  */
1522 				SCTP_DEBUG_PRINTK("ACKed: %08x", tsn);
1523 				dbg_prt_state = 0;
1524 				dbg_ack_tsn = tsn;
1525 			}
1526 
1527 			dbg_last_ack_tsn = tsn;
1528 #endif /* SCTP_DEBUG */
1529 
1530 		} else {
1531 			if (tchunk->tsn_gap_acked) {
1532 				SCTP_DEBUG_PRINTK("%s: Receiver reneged on "
1533 						  "data TSN: 0x%x\n",
1534 						  __func__,
1535 						  tsn);
1536 				tchunk->tsn_gap_acked = 0;
1537 
1538 				if (tchunk->transport)
1539 					bytes_acked -= sctp_data_size(tchunk);
1540 
1541 				/* RFC 2960 6.3.2 Retransmission Timer Rules
1542 				 *
1543 				 * R4) Whenever a SACK is received missing a
1544 				 * TSN that was previously acknowledged via a
1545 				 * Gap Ack Block, start T3-rtx for the
1546 				 * destination address to which the DATA
1547 				 * chunk was originally
1548 				 * transmitted if it is not already running.
1549 				 */
1550 				restart_timer = 1;
1551 			}
1552 
1553 			list_add_tail(lchunk, &tlist);
1554 
1555 #if SCTP_DEBUG
1556 			/* See the above comments on ACK-ed TSNs. */
1557 			switch (dbg_prt_state) {
1558 			case 1:
1559 				if (dbg_last_kept_tsn + 1 == tsn)
1560 					break;
1561 
1562 				if (dbg_last_kept_tsn != dbg_kept_tsn)
1563 					SCTP_DEBUG_PRINTK_CONT("-%08x",
1564 							       dbg_last_kept_tsn);
1565 
1566 				SCTP_DEBUG_PRINTK_CONT(",%08x", tsn);
1567 				dbg_kept_tsn = tsn;
1568 				break;
1569 
1570 			case 0:
1571 				if (dbg_last_ack_tsn != dbg_ack_tsn)
1572 					SCTP_DEBUG_PRINTK_CONT("-%08x",
1573 							       dbg_last_ack_tsn);
1574 				SCTP_DEBUG_PRINTK_CONT("\n");
1575 
1576 				/* FALL THROUGH... */
1577 			default:
1578 				SCTP_DEBUG_PRINTK("KEPT: %08x",tsn);
1579 				dbg_prt_state = 1;
1580 				dbg_kept_tsn = tsn;
1581 			}
1582 
1583 			dbg_last_kept_tsn = tsn;
1584 #endif /* SCTP_DEBUG */
1585 		}
1586 	}
1587 
1588 #if SCTP_DEBUG
1589 	/* Finish off the last range, displaying its ending TSN.  */
1590 	switch (dbg_prt_state) {
1591 	case 0:
1592 		if (dbg_last_ack_tsn != dbg_ack_tsn) {
1593 			SCTP_DEBUG_PRINTK_CONT("-%08x\n", dbg_last_ack_tsn);
1594 		} else {
1595 			SCTP_DEBUG_PRINTK_CONT("\n");
1596 		}
1597 	break;
1598 
1599 	case 1:
1600 		if (dbg_last_kept_tsn != dbg_kept_tsn) {
1601 			SCTP_DEBUG_PRINTK_CONT("-%08x\n", dbg_last_kept_tsn);
1602 		} else {
1603 			SCTP_DEBUG_PRINTK_CONT("\n");
1604 		}
1605 	}
1606 #endif /* SCTP_DEBUG */
1607 	if (transport) {
1608 		if (bytes_acked) {
1609 			struct sctp_association *asoc = transport->asoc;
1610 
1611 			/* We may have counted DATA that was migrated
1612 			 * to this transport due to DEL-IP operation.
1613 			 * Subtract those bytes, since the were never
1614 			 * send on this transport and shouldn't be
1615 			 * credited to this transport.
1616 			 */
1617 			bytes_acked -= migrate_bytes;
1618 
1619 			/* 8.2. When an outstanding TSN is acknowledged,
1620 			 * the endpoint shall clear the error counter of
1621 			 * the destination transport address to which the
1622 			 * DATA chunk was last sent.
1623 			 * The association's overall error counter is
1624 			 * also cleared.
1625 			 */
1626 			transport->error_count = 0;
1627 			transport->asoc->overall_error_count = 0;
1628 
1629 			/*
1630 			 * While in SHUTDOWN PENDING, we may have started
1631 			 * the T5 shutdown guard timer after reaching the
1632 			 * retransmission limit. Stop that timer as soon
1633 			 * as the receiver acknowledged any data.
1634 			 */
1635 			if (asoc->state == SCTP_STATE_SHUTDOWN_PENDING &&
1636 			    del_timer(&asoc->timers
1637 				[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]))
1638 					sctp_association_put(asoc);
1639 
1640 			/* Mark the destination transport address as
1641 			 * active if it is not so marked.
1642 			 */
1643 			if ((transport->state == SCTP_INACTIVE ||
1644 			     transport->state == SCTP_UNCONFIRMED) &&
1645 			    sctp_cmp_addr_exact(&transport->ipaddr, saddr)) {
1646 				sctp_assoc_control_transport(
1647 					transport->asoc,
1648 					transport,
1649 					SCTP_TRANSPORT_UP,
1650 					SCTP_RECEIVED_SACK);
1651 			}
1652 
1653 			sctp_transport_raise_cwnd(transport, sack_ctsn,
1654 						  bytes_acked);
1655 
1656 			transport->flight_size -= bytes_acked;
1657 			if (transport->flight_size == 0)
1658 				transport->partial_bytes_acked = 0;
1659 			q->outstanding_bytes -= bytes_acked + migrate_bytes;
1660 		} else {
1661 			/* RFC 2960 6.1, sctpimpguide-06 2.15.2
1662 			 * When a sender is doing zero window probing, it
1663 			 * should not timeout the association if it continues
1664 			 * to receive new packets from the receiver. The
1665 			 * reason is that the receiver MAY keep its window
1666 			 * closed for an indefinite time.
1667 			 * A sender is doing zero window probing when the
1668 			 * receiver's advertised window is zero, and there is
1669 			 * only one data chunk in flight to the receiver.
1670 			 *
1671 			 * Allow the association to timeout while in SHUTDOWN
1672 			 * PENDING or SHUTDOWN RECEIVED in case the receiver
1673 			 * stays in zero window mode forever.
1674 			 */
1675 			if (!q->asoc->peer.rwnd &&
1676 			    !list_empty(&tlist) &&
1677 			    (sack_ctsn+2 == q->asoc->next_tsn) &&
1678 			    q->asoc->state < SCTP_STATE_SHUTDOWN_PENDING) {
1679 				SCTP_DEBUG_PRINTK("%s: SACK received for zero "
1680 						  "window probe: %u\n",
1681 						  __func__, sack_ctsn);
1682 				q->asoc->overall_error_count = 0;
1683 				transport->error_count = 0;
1684 			}
1685 		}
1686 
1687 		/* RFC 2960 6.3.2 Retransmission Timer Rules
1688 		 *
1689 		 * R2) Whenever all outstanding data sent to an address have
1690 		 * been acknowledged, turn off the T3-rtx timer of that
1691 		 * address.
1692 		 */
1693 		if (!transport->flight_size) {
1694 			if (del_timer(&transport->T3_rtx_timer))
1695 				sctp_transport_put(transport);
1696 		} else if (restart_timer) {
1697 			if (!mod_timer(&transport->T3_rtx_timer,
1698 				       jiffies + transport->rto))
1699 				sctp_transport_hold(transport);
1700 		}
1701 	}
1702 
1703 	list_splice(&tlist, transmitted_queue);
1704 }
1705 
1706 /* Mark chunks as missing and consequently may get retransmitted. */
1707 static void sctp_mark_missing(struct sctp_outq *q,
1708 			      struct list_head *transmitted_queue,
1709 			      struct sctp_transport *transport,
1710 			      __u32 highest_new_tsn_in_sack,
1711 			      int count_of_newacks)
1712 {
1713 	struct sctp_chunk *chunk;
1714 	__u32 tsn;
1715 	char do_fast_retransmit = 0;
1716 	struct sctp_association *asoc = q->asoc;
1717 	struct sctp_transport *primary = asoc->peer.primary_path;
1718 
1719 	list_for_each_entry(chunk, transmitted_queue, transmitted_list) {
1720 
1721 		tsn = ntohl(chunk->subh.data_hdr->tsn);
1722 
1723 		/* RFC 2960 7.2.4, sctpimpguide-05 2.8.2 M3) Examine all
1724 		 * 'Unacknowledged TSN's', if the TSN number of an
1725 		 * 'Unacknowledged TSN' is smaller than the 'HighestTSNinSack'
1726 		 * value, increment the 'TSN.Missing.Report' count on that
1727 		 * chunk if it has NOT been fast retransmitted or marked for
1728 		 * fast retransmit already.
1729 		 */
1730 		if (chunk->fast_retransmit == SCTP_CAN_FRTX &&
1731 		    !chunk->tsn_gap_acked &&
1732 		    TSN_lt(tsn, highest_new_tsn_in_sack)) {
1733 
1734 			/* SFR-CACC may require us to skip marking
1735 			 * this chunk as missing.
1736 			 */
1737 			if (!transport || !sctp_cacc_skip(primary,
1738 						chunk->transport,
1739 						count_of_newacks, tsn)) {
1740 				chunk->tsn_missing_report++;
1741 
1742 				SCTP_DEBUG_PRINTK(
1743 					"%s: TSN 0x%x missing counter: %d\n",
1744 					__func__, tsn,
1745 					chunk->tsn_missing_report);
1746 			}
1747 		}
1748 		/*
1749 		 * M4) If any DATA chunk is found to have a
1750 		 * 'TSN.Missing.Report'
1751 		 * value larger than or equal to 3, mark that chunk for
1752 		 * retransmission and start the fast retransmit procedure.
1753 		 */
1754 
1755 		if (chunk->tsn_missing_report >= 3) {
1756 			chunk->fast_retransmit = SCTP_NEED_FRTX;
1757 			do_fast_retransmit = 1;
1758 		}
1759 	}
1760 
1761 	if (transport) {
1762 		if (do_fast_retransmit)
1763 			sctp_retransmit(q, transport, SCTP_RTXR_FAST_RTX);
1764 
1765 		SCTP_DEBUG_PRINTK("%s: transport: %p, cwnd: %d, "
1766 				  "ssthresh: %d, flight_size: %d, pba: %d\n",
1767 				  __func__, transport, transport->cwnd,
1768 				  transport->ssthresh, transport->flight_size,
1769 				  transport->partial_bytes_acked);
1770 	}
1771 }
1772 
1773 /* Is the given TSN acked by this packet?  */
1774 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn)
1775 {
1776 	int i;
1777 	sctp_sack_variable_t *frags;
1778 	__u16 gap;
1779 	__u32 ctsn = ntohl(sack->cum_tsn_ack);
1780 
1781 	if (TSN_lte(tsn, ctsn))
1782 		goto pass;
1783 
1784 	/* 3.3.4 Selective Acknowledgement (SACK) (3):
1785 	 *
1786 	 * Gap Ack Blocks:
1787 	 *  These fields contain the Gap Ack Blocks. They are repeated
1788 	 *  for each Gap Ack Block up to the number of Gap Ack Blocks
1789 	 *  defined in the Number of Gap Ack Blocks field. All DATA
1790 	 *  chunks with TSNs greater than or equal to (Cumulative TSN
1791 	 *  Ack + Gap Ack Block Start) and less than or equal to
1792 	 *  (Cumulative TSN Ack + Gap Ack Block End) of each Gap Ack
1793 	 *  Block are assumed to have been received correctly.
1794 	 */
1795 
1796 	frags = sack->variable;
1797 	gap = tsn - ctsn;
1798 	for (i = 0; i < ntohs(sack->num_gap_ack_blocks); ++i) {
1799 		if (TSN_lte(ntohs(frags[i].gab.start), gap) &&
1800 		    TSN_lte(gap, ntohs(frags[i].gab.end)))
1801 			goto pass;
1802 	}
1803 
1804 	return 0;
1805 pass:
1806 	return 1;
1807 }
1808 
1809 static inline int sctp_get_skip_pos(struct sctp_fwdtsn_skip *skiplist,
1810 				    int nskips, __be16 stream)
1811 {
1812 	int i;
1813 
1814 	for (i = 0; i < nskips; i++) {
1815 		if (skiplist[i].stream == stream)
1816 			return i;
1817 	}
1818 	return i;
1819 }
1820 
1821 /* Create and add a fwdtsn chunk to the outq's control queue if needed. */
1822 static void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 ctsn)
1823 {
1824 	struct sctp_association *asoc = q->asoc;
1825 	struct sctp_chunk *ftsn_chunk = NULL;
1826 	struct sctp_fwdtsn_skip ftsn_skip_arr[10];
1827 	int nskips = 0;
1828 	int skip_pos = 0;
1829 	__u32 tsn;
1830 	struct sctp_chunk *chunk;
1831 	struct list_head *lchunk, *temp;
1832 
1833 	if (!asoc->peer.prsctp_capable)
1834 		return;
1835 
1836 	/* PR-SCTP C1) Let SackCumAck be the Cumulative TSN ACK carried in the
1837 	 * received SACK.
1838 	 *
1839 	 * If (Advanced.Peer.Ack.Point < SackCumAck), then update
1840 	 * Advanced.Peer.Ack.Point to be equal to SackCumAck.
1841 	 */
1842 	if (TSN_lt(asoc->adv_peer_ack_point, ctsn))
1843 		asoc->adv_peer_ack_point = ctsn;
1844 
1845 	/* PR-SCTP C2) Try to further advance the "Advanced.Peer.Ack.Point"
1846 	 * locally, that is, to move "Advanced.Peer.Ack.Point" up as long as
1847 	 * the chunk next in the out-queue space is marked as "abandoned" as
1848 	 * shown in the following example:
1849 	 *
1850 	 * Assuming that a SACK arrived with the Cumulative TSN ACK 102
1851 	 * and the Advanced.Peer.Ack.Point is updated to this value:
1852 	 *
1853 	 *   out-queue at the end of  ==>   out-queue after Adv.Ack.Point
1854 	 *   normal SACK processing           local advancement
1855 	 *                ...                           ...
1856 	 *   Adv.Ack.Pt-> 102 acked                     102 acked
1857 	 *                103 abandoned                 103 abandoned
1858 	 *                104 abandoned     Adv.Ack.P-> 104 abandoned
1859 	 *                105                           105
1860 	 *                106 acked                     106 acked
1861 	 *                ...                           ...
1862 	 *
1863 	 * In this example, the data sender successfully advanced the
1864 	 * "Advanced.Peer.Ack.Point" from 102 to 104 locally.
1865 	 */
1866 	list_for_each_safe(lchunk, temp, &q->abandoned) {
1867 		chunk = list_entry(lchunk, struct sctp_chunk,
1868 					transmitted_list);
1869 		tsn = ntohl(chunk->subh.data_hdr->tsn);
1870 
1871 		/* Remove any chunks in the abandoned queue that are acked by
1872 		 * the ctsn.
1873 		 */
1874 		if (TSN_lte(tsn, ctsn)) {
1875 			list_del_init(lchunk);
1876 			sctp_chunk_free(chunk);
1877 		} else {
1878 			if (TSN_lte(tsn, asoc->adv_peer_ack_point+1)) {
1879 				asoc->adv_peer_ack_point = tsn;
1880 				if (chunk->chunk_hdr->flags &
1881 					 SCTP_DATA_UNORDERED)
1882 					continue;
1883 				skip_pos = sctp_get_skip_pos(&ftsn_skip_arr[0],
1884 						nskips,
1885 						chunk->subh.data_hdr->stream);
1886 				ftsn_skip_arr[skip_pos].stream =
1887 					chunk->subh.data_hdr->stream;
1888 				ftsn_skip_arr[skip_pos].ssn =
1889 					 chunk->subh.data_hdr->ssn;
1890 				if (skip_pos == nskips)
1891 					nskips++;
1892 				if (nskips == 10)
1893 					break;
1894 			} else
1895 				break;
1896 		}
1897 	}
1898 
1899 	/* PR-SCTP C3) If, after step C1 and C2, the "Advanced.Peer.Ack.Point"
1900 	 * is greater than the Cumulative TSN ACK carried in the received
1901 	 * SACK, the data sender MUST send the data receiver a FORWARD TSN
1902 	 * chunk containing the latest value of the
1903 	 * "Advanced.Peer.Ack.Point".
1904 	 *
1905 	 * C4) For each "abandoned" TSN the sender of the FORWARD TSN SHOULD
1906 	 * list each stream and sequence number in the forwarded TSN. This
1907 	 * information will enable the receiver to easily find any
1908 	 * stranded TSN's waiting on stream reorder queues. Each stream
1909 	 * SHOULD only be reported once; this means that if multiple
1910 	 * abandoned messages occur in the same stream then only the
1911 	 * highest abandoned stream sequence number is reported. If the
1912 	 * total size of the FORWARD TSN does NOT fit in a single MTU then
1913 	 * the sender of the FORWARD TSN SHOULD lower the
1914 	 * Advanced.Peer.Ack.Point to the last TSN that will fit in a
1915 	 * single MTU.
1916 	 */
1917 	if (asoc->adv_peer_ack_point > ctsn)
1918 		ftsn_chunk = sctp_make_fwdtsn(asoc, asoc->adv_peer_ack_point,
1919 					      nskips, &ftsn_skip_arr[0]);
1920 
1921 	if (ftsn_chunk) {
1922 		list_add_tail(&ftsn_chunk->list, &q->control_chunk_list);
1923 		SCTP_INC_STATS(sock_net(asoc->base.sk), SCTP_MIB_OUTCTRLCHUNKS);
1924 	}
1925 }
1926