xref: /openbmc/linux/net/sctp/outqueue.c (revision 6cbefbdc)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  *
7  * This file is part of the SCTP kernel implementation
8  *
9  * These functions implement the sctp_outq class.   The outqueue handles
10  * bundling and queueing of outgoing SCTP chunks.
11  *
12  * This SCTP implementation is free software;
13  * you can redistribute it and/or modify it under the terms of
14  * the GNU General Public License as published by
15  * the Free Software Foundation; either version 2, or (at your option)
16  * any later version.
17  *
18  * This SCTP implementation is distributed in the hope that it
19  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20  *                 ************************
21  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22  * See the GNU General Public License for more details.
23  *
24  * You should have received a copy of the GNU General Public License
25  * along with GNU CC; see the file COPYING.  If not, see
26  * <http://www.gnu.org/licenses/>.
27  *
28  * Please send any bug reports or fixes you make to the
29  * email address(es):
30  *    lksctp developers <linux-sctp@vger.kernel.org>
31  *
32  * Written or modified by:
33  *    La Monte H.P. Yarroll <piggy@acm.org>
34  *    Karl Knutson          <karl@athena.chicago.il.us>
35  *    Perry Melange         <pmelange@null.cc.uic.edu>
36  *    Xingang Guo           <xingang.guo@intel.com>
37  *    Hui Huang 	    <hui.huang@nokia.com>
38  *    Sridhar Samudrala     <sri@us.ibm.com>
39  *    Jon Grimm             <jgrimm@us.ibm.com>
40  */
41 
42 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
43 
44 #include <linux/types.h>
45 #include <linux/list.h>   /* For struct list_head */
46 #include <linux/socket.h>
47 #include <linux/ip.h>
48 #include <linux/slab.h>
49 #include <net/sock.h>	  /* For skb_set_owner_w */
50 
51 #include <net/sctp/sctp.h>
52 #include <net/sctp/sm.h>
53 #include <net/sctp/stream_sched.h>
54 
55 /* Declare internal functions here.  */
56 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn);
57 static void sctp_check_transmitted(struct sctp_outq *q,
58 				   struct list_head *transmitted_queue,
59 				   struct sctp_transport *transport,
60 				   union sctp_addr *saddr,
61 				   struct sctp_sackhdr *sack,
62 				   __u32 *highest_new_tsn);
63 
64 static void sctp_mark_missing(struct sctp_outq *q,
65 			      struct list_head *transmitted_queue,
66 			      struct sctp_transport *transport,
67 			      __u32 highest_new_tsn,
68 			      int count_of_newacks);
69 
70 static void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 sack_ctsn);
71 
72 static void sctp_outq_flush(struct sctp_outq *q, int rtx_timeout, gfp_t gfp);
73 
74 /* Add data to the front of the queue. */
75 static inline void sctp_outq_head_data(struct sctp_outq *q,
76 				       struct sctp_chunk *ch)
77 {
78 	struct sctp_stream_out_ext *oute;
79 	__u16 stream;
80 
81 	list_add(&ch->list, &q->out_chunk_list);
82 	q->out_qlen += ch->skb->len;
83 
84 	stream = sctp_chunk_stream_no(ch);
85 	oute = q->asoc->stream.out[stream].ext;
86 	list_add(&ch->stream_list, &oute->outq);
87 }
88 
89 /* Take data from the front of the queue. */
90 static inline struct sctp_chunk *sctp_outq_dequeue_data(struct sctp_outq *q)
91 {
92 	return q->sched->dequeue(q);
93 }
94 
95 /* Add data chunk to the end of the queue. */
96 static inline void sctp_outq_tail_data(struct sctp_outq *q,
97 				       struct sctp_chunk *ch)
98 {
99 	struct sctp_stream_out_ext *oute;
100 	__u16 stream;
101 
102 	list_add_tail(&ch->list, &q->out_chunk_list);
103 	q->out_qlen += ch->skb->len;
104 
105 	stream = sctp_chunk_stream_no(ch);
106 	oute = q->asoc->stream.out[stream].ext;
107 	list_add_tail(&ch->stream_list, &oute->outq);
108 }
109 
110 /*
111  * SFR-CACC algorithm:
112  * D) If count_of_newacks is greater than or equal to 2
113  * and t was not sent to the current primary then the
114  * sender MUST NOT increment missing report count for t.
115  */
116 static inline int sctp_cacc_skip_3_1_d(struct sctp_transport *primary,
117 				       struct sctp_transport *transport,
118 				       int count_of_newacks)
119 {
120 	if (count_of_newacks >= 2 && transport != primary)
121 		return 1;
122 	return 0;
123 }
124 
125 /*
126  * SFR-CACC algorithm:
127  * F) If count_of_newacks is less than 2, let d be the
128  * destination to which t was sent. If cacc_saw_newack
129  * is 0 for destination d, then the sender MUST NOT
130  * increment missing report count for t.
131  */
132 static inline int sctp_cacc_skip_3_1_f(struct sctp_transport *transport,
133 				       int count_of_newacks)
134 {
135 	if (count_of_newacks < 2 &&
136 			(transport && !transport->cacc.cacc_saw_newack))
137 		return 1;
138 	return 0;
139 }
140 
141 /*
142  * SFR-CACC algorithm:
143  * 3.1) If CYCLING_CHANGEOVER is 0, the sender SHOULD
144  * execute steps C, D, F.
145  *
146  * C has been implemented in sctp_outq_sack
147  */
148 static inline int sctp_cacc_skip_3_1(struct sctp_transport *primary,
149 				     struct sctp_transport *transport,
150 				     int count_of_newacks)
151 {
152 	if (!primary->cacc.cycling_changeover) {
153 		if (sctp_cacc_skip_3_1_d(primary, transport, count_of_newacks))
154 			return 1;
155 		if (sctp_cacc_skip_3_1_f(transport, count_of_newacks))
156 			return 1;
157 		return 0;
158 	}
159 	return 0;
160 }
161 
162 /*
163  * SFR-CACC algorithm:
164  * 3.2) Else if CYCLING_CHANGEOVER is 1, and t is less
165  * than next_tsn_at_change of the current primary, then
166  * the sender MUST NOT increment missing report count
167  * for t.
168  */
169 static inline int sctp_cacc_skip_3_2(struct sctp_transport *primary, __u32 tsn)
170 {
171 	if (primary->cacc.cycling_changeover &&
172 	    TSN_lt(tsn, primary->cacc.next_tsn_at_change))
173 		return 1;
174 	return 0;
175 }
176 
177 /*
178  * SFR-CACC algorithm:
179  * 3) If the missing report count for TSN t is to be
180  * incremented according to [RFC2960] and
181  * [SCTP_STEWART-2002], and CHANGEOVER_ACTIVE is set,
182  * then the sender MUST further execute steps 3.1 and
183  * 3.2 to determine if the missing report count for
184  * TSN t SHOULD NOT be incremented.
185  *
186  * 3.3) If 3.1 and 3.2 do not dictate that the missing
187  * report count for t should not be incremented, then
188  * the sender SHOULD increment missing report count for
189  * t (according to [RFC2960] and [SCTP_STEWART_2002]).
190  */
191 static inline int sctp_cacc_skip(struct sctp_transport *primary,
192 				 struct sctp_transport *transport,
193 				 int count_of_newacks,
194 				 __u32 tsn)
195 {
196 	if (primary->cacc.changeover_active &&
197 	    (sctp_cacc_skip_3_1(primary, transport, count_of_newacks) ||
198 	     sctp_cacc_skip_3_2(primary, tsn)))
199 		return 1;
200 	return 0;
201 }
202 
203 /* Initialize an existing sctp_outq.  This does the boring stuff.
204  * You still need to define handlers if you really want to DO
205  * something with this structure...
206  */
207 void sctp_outq_init(struct sctp_association *asoc, struct sctp_outq *q)
208 {
209 	memset(q, 0, sizeof(struct sctp_outq));
210 
211 	q->asoc = asoc;
212 	INIT_LIST_HEAD(&q->out_chunk_list);
213 	INIT_LIST_HEAD(&q->control_chunk_list);
214 	INIT_LIST_HEAD(&q->retransmit);
215 	INIT_LIST_HEAD(&q->sacked);
216 	INIT_LIST_HEAD(&q->abandoned);
217 	sctp_sched_set_sched(asoc, SCTP_SS_FCFS);
218 }
219 
220 /* Free the outqueue structure and any related pending chunks.
221  */
222 static void __sctp_outq_teardown(struct sctp_outq *q)
223 {
224 	struct sctp_transport *transport;
225 	struct list_head *lchunk, *temp;
226 	struct sctp_chunk *chunk, *tmp;
227 
228 	/* Throw away unacknowledged chunks. */
229 	list_for_each_entry(transport, &q->asoc->peer.transport_addr_list,
230 			transports) {
231 		while ((lchunk = sctp_list_dequeue(&transport->transmitted)) != NULL) {
232 			chunk = list_entry(lchunk, struct sctp_chunk,
233 					   transmitted_list);
234 			/* Mark as part of a failed message. */
235 			sctp_chunk_fail(chunk, q->error);
236 			sctp_chunk_free(chunk);
237 		}
238 	}
239 
240 	/* Throw away chunks that have been gap ACKed.  */
241 	list_for_each_safe(lchunk, temp, &q->sacked) {
242 		list_del_init(lchunk);
243 		chunk = list_entry(lchunk, struct sctp_chunk,
244 				   transmitted_list);
245 		sctp_chunk_fail(chunk, q->error);
246 		sctp_chunk_free(chunk);
247 	}
248 
249 	/* Throw away any chunks in the retransmit queue. */
250 	list_for_each_safe(lchunk, temp, &q->retransmit) {
251 		list_del_init(lchunk);
252 		chunk = list_entry(lchunk, struct sctp_chunk,
253 				   transmitted_list);
254 		sctp_chunk_fail(chunk, q->error);
255 		sctp_chunk_free(chunk);
256 	}
257 
258 	/* Throw away any chunks that are in the abandoned queue. */
259 	list_for_each_safe(lchunk, temp, &q->abandoned) {
260 		list_del_init(lchunk);
261 		chunk = list_entry(lchunk, struct sctp_chunk,
262 				   transmitted_list);
263 		sctp_chunk_fail(chunk, q->error);
264 		sctp_chunk_free(chunk);
265 	}
266 
267 	/* Throw away any leftover data chunks. */
268 	while ((chunk = sctp_outq_dequeue_data(q)) != NULL) {
269 		sctp_sched_dequeue_done(q, chunk);
270 
271 		/* Mark as send failure. */
272 		sctp_chunk_fail(chunk, q->error);
273 		sctp_chunk_free(chunk);
274 	}
275 
276 	/* Throw away any leftover control chunks. */
277 	list_for_each_entry_safe(chunk, tmp, &q->control_chunk_list, list) {
278 		list_del_init(&chunk->list);
279 		sctp_chunk_free(chunk);
280 	}
281 }
282 
283 void sctp_outq_teardown(struct sctp_outq *q)
284 {
285 	__sctp_outq_teardown(q);
286 	sctp_outq_init(q->asoc, q);
287 }
288 
289 /* Free the outqueue structure and any related pending chunks.  */
290 void sctp_outq_free(struct sctp_outq *q)
291 {
292 	/* Throw away leftover chunks. */
293 	__sctp_outq_teardown(q);
294 }
295 
296 /* Put a new chunk in an sctp_outq.  */
297 void sctp_outq_tail(struct sctp_outq *q, struct sctp_chunk *chunk, gfp_t gfp)
298 {
299 	struct net *net = sock_net(q->asoc->base.sk);
300 
301 	pr_debug("%s: outq:%p, chunk:%p[%s]\n", __func__, q, chunk,
302 		 chunk && chunk->chunk_hdr ?
303 		 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) :
304 		 "illegal chunk");
305 
306 	/* If it is data, queue it up, otherwise, send it
307 	 * immediately.
308 	 */
309 	if (sctp_chunk_is_data(chunk)) {
310 		pr_debug("%s: outqueueing: outq:%p, chunk:%p[%s])\n",
311 			 __func__, q, chunk, chunk && chunk->chunk_hdr ?
312 			 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) :
313 			 "illegal chunk");
314 
315 		sctp_outq_tail_data(q, chunk);
316 		if (chunk->asoc->peer.prsctp_capable &&
317 		    SCTP_PR_PRIO_ENABLED(chunk->sinfo.sinfo_flags))
318 			chunk->asoc->sent_cnt_removable++;
319 		if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED)
320 			SCTP_INC_STATS(net, SCTP_MIB_OUTUNORDERCHUNKS);
321 		else
322 			SCTP_INC_STATS(net, SCTP_MIB_OUTORDERCHUNKS);
323 	} else {
324 		list_add_tail(&chunk->list, &q->control_chunk_list);
325 		SCTP_INC_STATS(net, SCTP_MIB_OUTCTRLCHUNKS);
326 	}
327 
328 	if (!q->cork)
329 		sctp_outq_flush(q, 0, gfp);
330 }
331 
332 /* Insert a chunk into the sorted list based on the TSNs.  The retransmit list
333  * and the abandoned list are in ascending order.
334  */
335 static void sctp_insert_list(struct list_head *head, struct list_head *new)
336 {
337 	struct list_head *pos;
338 	struct sctp_chunk *nchunk, *lchunk;
339 	__u32 ntsn, ltsn;
340 	int done = 0;
341 
342 	nchunk = list_entry(new, struct sctp_chunk, transmitted_list);
343 	ntsn = ntohl(nchunk->subh.data_hdr->tsn);
344 
345 	list_for_each(pos, head) {
346 		lchunk = list_entry(pos, struct sctp_chunk, transmitted_list);
347 		ltsn = ntohl(lchunk->subh.data_hdr->tsn);
348 		if (TSN_lt(ntsn, ltsn)) {
349 			list_add(new, pos->prev);
350 			done = 1;
351 			break;
352 		}
353 	}
354 	if (!done)
355 		list_add_tail(new, head);
356 }
357 
358 static int sctp_prsctp_prune_sent(struct sctp_association *asoc,
359 				  struct sctp_sndrcvinfo *sinfo,
360 				  struct list_head *queue, int msg_len)
361 {
362 	struct sctp_chunk *chk, *temp;
363 
364 	list_for_each_entry_safe(chk, temp, queue, transmitted_list) {
365 		struct sctp_stream_out *streamout;
366 
367 		if (!SCTP_PR_PRIO_ENABLED(chk->sinfo.sinfo_flags) ||
368 		    chk->sinfo.sinfo_timetolive <= sinfo->sinfo_timetolive)
369 			continue;
370 
371 		list_del_init(&chk->transmitted_list);
372 		sctp_insert_list(&asoc->outqueue.abandoned,
373 				 &chk->transmitted_list);
374 
375 		streamout = &asoc->stream.out[chk->sinfo.sinfo_stream];
376 		asoc->sent_cnt_removable--;
377 		asoc->abandoned_sent[SCTP_PR_INDEX(PRIO)]++;
378 		streamout->ext->abandoned_sent[SCTP_PR_INDEX(PRIO)]++;
379 
380 		if (!chk->tsn_gap_acked) {
381 			if (chk->transport)
382 				chk->transport->flight_size -=
383 						sctp_data_size(chk);
384 			asoc->outqueue.outstanding_bytes -= sctp_data_size(chk);
385 		}
386 
387 		msg_len -= SCTP_DATA_SNDSIZE(chk) +
388 			   sizeof(struct sk_buff) +
389 			   sizeof(struct sctp_chunk);
390 		if (msg_len <= 0)
391 			break;
392 	}
393 
394 	return msg_len;
395 }
396 
397 static int sctp_prsctp_prune_unsent(struct sctp_association *asoc,
398 				    struct sctp_sndrcvinfo *sinfo, int msg_len)
399 {
400 	struct sctp_outq *q = &asoc->outqueue;
401 	struct sctp_chunk *chk, *temp;
402 
403 	q->sched->unsched_all(&asoc->stream);
404 
405 	list_for_each_entry_safe(chk, temp, &q->out_chunk_list, list) {
406 		if (!SCTP_PR_PRIO_ENABLED(chk->sinfo.sinfo_flags) ||
407 		    chk->sinfo.sinfo_timetolive <= sinfo->sinfo_timetolive)
408 			continue;
409 
410 		sctp_sched_dequeue_common(q, chk);
411 		asoc->sent_cnt_removable--;
412 		asoc->abandoned_unsent[SCTP_PR_INDEX(PRIO)]++;
413 		if (chk->sinfo.sinfo_stream < asoc->stream.outcnt) {
414 			struct sctp_stream_out *streamout =
415 				&asoc->stream.out[chk->sinfo.sinfo_stream];
416 
417 			streamout->ext->abandoned_unsent[SCTP_PR_INDEX(PRIO)]++;
418 		}
419 
420 		msg_len -= SCTP_DATA_SNDSIZE(chk) +
421 			   sizeof(struct sk_buff) +
422 			   sizeof(struct sctp_chunk);
423 		sctp_chunk_free(chk);
424 		if (msg_len <= 0)
425 			break;
426 	}
427 
428 	q->sched->sched_all(&asoc->stream);
429 
430 	return msg_len;
431 }
432 
433 /* Abandon the chunks according their priorities */
434 void sctp_prsctp_prune(struct sctp_association *asoc,
435 		       struct sctp_sndrcvinfo *sinfo, int msg_len)
436 {
437 	struct sctp_transport *transport;
438 
439 	if (!asoc->peer.prsctp_capable || !asoc->sent_cnt_removable)
440 		return;
441 
442 	msg_len = sctp_prsctp_prune_sent(asoc, sinfo,
443 					 &asoc->outqueue.retransmit,
444 					 msg_len);
445 	if (msg_len <= 0)
446 		return;
447 
448 	list_for_each_entry(transport, &asoc->peer.transport_addr_list,
449 			    transports) {
450 		msg_len = sctp_prsctp_prune_sent(asoc, sinfo,
451 						 &transport->transmitted,
452 						 msg_len);
453 		if (msg_len <= 0)
454 			return;
455 	}
456 
457 	sctp_prsctp_prune_unsent(asoc, sinfo, msg_len);
458 }
459 
460 /* Mark all the eligible packets on a transport for retransmission.  */
461 void sctp_retransmit_mark(struct sctp_outq *q,
462 			  struct sctp_transport *transport,
463 			  __u8 reason)
464 {
465 	struct list_head *lchunk, *ltemp;
466 	struct sctp_chunk *chunk;
467 
468 	/* Walk through the specified transmitted queue.  */
469 	list_for_each_safe(lchunk, ltemp, &transport->transmitted) {
470 		chunk = list_entry(lchunk, struct sctp_chunk,
471 				   transmitted_list);
472 
473 		/* If the chunk is abandoned, move it to abandoned list. */
474 		if (sctp_chunk_abandoned(chunk)) {
475 			list_del_init(lchunk);
476 			sctp_insert_list(&q->abandoned, lchunk);
477 
478 			/* If this chunk has not been previousely acked,
479 			 * stop considering it 'outstanding'.  Our peer
480 			 * will most likely never see it since it will
481 			 * not be retransmitted
482 			 */
483 			if (!chunk->tsn_gap_acked) {
484 				if (chunk->transport)
485 					chunk->transport->flight_size -=
486 							sctp_data_size(chunk);
487 				q->outstanding_bytes -= sctp_data_size(chunk);
488 				q->asoc->peer.rwnd += sctp_data_size(chunk);
489 			}
490 			continue;
491 		}
492 
493 		/* If we are doing  retransmission due to a timeout or pmtu
494 		 * discovery, only the  chunks that are not yet acked should
495 		 * be added to the retransmit queue.
496 		 */
497 		if ((reason == SCTP_RTXR_FAST_RTX  &&
498 			    (chunk->fast_retransmit == SCTP_NEED_FRTX)) ||
499 		    (reason != SCTP_RTXR_FAST_RTX  && !chunk->tsn_gap_acked)) {
500 			/* RFC 2960 6.2.1 Processing a Received SACK
501 			 *
502 			 * C) Any time a DATA chunk is marked for
503 			 * retransmission (via either T3-rtx timer expiration
504 			 * (Section 6.3.3) or via fast retransmit
505 			 * (Section 7.2.4)), add the data size of those
506 			 * chunks to the rwnd.
507 			 */
508 			q->asoc->peer.rwnd += sctp_data_size(chunk);
509 			q->outstanding_bytes -= sctp_data_size(chunk);
510 			if (chunk->transport)
511 				transport->flight_size -= sctp_data_size(chunk);
512 
513 			/* sctpimpguide-05 Section 2.8.2
514 			 * M5) If a T3-rtx timer expires, the
515 			 * 'TSN.Missing.Report' of all affected TSNs is set
516 			 * to 0.
517 			 */
518 			chunk->tsn_missing_report = 0;
519 
520 			/* If a chunk that is being used for RTT measurement
521 			 * has to be retransmitted, we cannot use this chunk
522 			 * anymore for RTT measurements. Reset rto_pending so
523 			 * that a new RTT measurement is started when a new
524 			 * data chunk is sent.
525 			 */
526 			if (chunk->rtt_in_progress) {
527 				chunk->rtt_in_progress = 0;
528 				transport->rto_pending = 0;
529 			}
530 
531 			/* Move the chunk to the retransmit queue. The chunks
532 			 * on the retransmit queue are always kept in order.
533 			 */
534 			list_del_init(lchunk);
535 			sctp_insert_list(&q->retransmit, lchunk);
536 		}
537 	}
538 
539 	pr_debug("%s: transport:%p, reason:%d, cwnd:%d, ssthresh:%d, "
540 		 "flight_size:%d, pba:%d\n", __func__, transport, reason,
541 		 transport->cwnd, transport->ssthresh, transport->flight_size,
542 		 transport->partial_bytes_acked);
543 }
544 
545 /* Mark all the eligible packets on a transport for retransmission and force
546  * one packet out.
547  */
548 void sctp_retransmit(struct sctp_outq *q, struct sctp_transport *transport,
549 		     enum sctp_retransmit_reason reason)
550 {
551 	struct net *net = sock_net(q->asoc->base.sk);
552 
553 	switch (reason) {
554 	case SCTP_RTXR_T3_RTX:
555 		SCTP_INC_STATS(net, SCTP_MIB_T3_RETRANSMITS);
556 		sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_T3_RTX);
557 		/* Update the retran path if the T3-rtx timer has expired for
558 		 * the current retran path.
559 		 */
560 		if (transport == transport->asoc->peer.retran_path)
561 			sctp_assoc_update_retran_path(transport->asoc);
562 		transport->asoc->rtx_data_chunks +=
563 			transport->asoc->unack_data;
564 		break;
565 	case SCTP_RTXR_FAST_RTX:
566 		SCTP_INC_STATS(net, SCTP_MIB_FAST_RETRANSMITS);
567 		sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_FAST_RTX);
568 		q->fast_rtx = 1;
569 		break;
570 	case SCTP_RTXR_PMTUD:
571 		SCTP_INC_STATS(net, SCTP_MIB_PMTUD_RETRANSMITS);
572 		break;
573 	case SCTP_RTXR_T1_RTX:
574 		SCTP_INC_STATS(net, SCTP_MIB_T1_RETRANSMITS);
575 		transport->asoc->init_retries++;
576 		break;
577 	default:
578 		BUG();
579 	}
580 
581 	sctp_retransmit_mark(q, transport, reason);
582 
583 	/* PR-SCTP A5) Any time the T3-rtx timer expires, on any destination,
584 	 * the sender SHOULD try to advance the "Advanced.Peer.Ack.Point" by
585 	 * following the procedures outlined in C1 - C5.
586 	 */
587 	if (reason == SCTP_RTXR_T3_RTX)
588 		sctp_generate_fwdtsn(q, q->asoc->ctsn_ack_point);
589 
590 	/* Flush the queues only on timeout, since fast_rtx is only
591 	 * triggered during sack processing and the queue
592 	 * will be flushed at the end.
593 	 */
594 	if (reason != SCTP_RTXR_FAST_RTX)
595 		sctp_outq_flush(q, /* rtx_timeout */ 1, GFP_ATOMIC);
596 }
597 
598 /*
599  * Transmit DATA chunks on the retransmit queue.  Upon return from
600  * sctp_outq_flush_rtx() the packet 'pkt' may contain chunks which
601  * need to be transmitted by the caller.
602  * We assume that pkt->transport has already been set.
603  *
604  * The return value is a normal kernel error return value.
605  */
606 static int sctp_outq_flush_rtx(struct sctp_outq *q, struct sctp_packet *pkt,
607 			       int rtx_timeout, int *start_timer)
608 {
609 	struct sctp_transport *transport = pkt->transport;
610 	struct sctp_chunk *chunk, *chunk1;
611 	struct list_head *lqueue;
612 	enum sctp_xmit status;
613 	int error = 0;
614 	int timer = 0;
615 	int done = 0;
616 	int fast_rtx;
617 
618 	lqueue = &q->retransmit;
619 	fast_rtx = q->fast_rtx;
620 
621 	/* This loop handles time-out retransmissions, fast retransmissions,
622 	 * and retransmissions due to opening of whindow.
623 	 *
624 	 * RFC 2960 6.3.3 Handle T3-rtx Expiration
625 	 *
626 	 * E3) Determine how many of the earliest (i.e., lowest TSN)
627 	 * outstanding DATA chunks for the address for which the
628 	 * T3-rtx has expired will fit into a single packet, subject
629 	 * to the MTU constraint for the path corresponding to the
630 	 * destination transport address to which the retransmission
631 	 * is being sent (this may be different from the address for
632 	 * which the timer expires [see Section 6.4]). Call this value
633 	 * K. Bundle and retransmit those K DATA chunks in a single
634 	 * packet to the destination endpoint.
635 	 *
636 	 * [Just to be painfully clear, if we are retransmitting
637 	 * because a timeout just happened, we should send only ONE
638 	 * packet of retransmitted data.]
639 	 *
640 	 * For fast retransmissions we also send only ONE packet.  However,
641 	 * if we are just flushing the queue due to open window, we'll
642 	 * try to send as much as possible.
643 	 */
644 	list_for_each_entry_safe(chunk, chunk1, lqueue, transmitted_list) {
645 		/* If the chunk is abandoned, move it to abandoned list. */
646 		if (sctp_chunk_abandoned(chunk)) {
647 			list_del_init(&chunk->transmitted_list);
648 			sctp_insert_list(&q->abandoned,
649 					 &chunk->transmitted_list);
650 			continue;
651 		}
652 
653 		/* Make sure that Gap Acked TSNs are not retransmitted.  A
654 		 * simple approach is just to move such TSNs out of the
655 		 * way and into a 'transmitted' queue and skip to the
656 		 * next chunk.
657 		 */
658 		if (chunk->tsn_gap_acked) {
659 			list_move_tail(&chunk->transmitted_list,
660 				       &transport->transmitted);
661 			continue;
662 		}
663 
664 		/* If we are doing fast retransmit, ignore non-fast_rtransmit
665 		 * chunks
666 		 */
667 		if (fast_rtx && !chunk->fast_retransmit)
668 			continue;
669 
670 redo:
671 		/* Attempt to append this chunk to the packet. */
672 		status = sctp_packet_append_chunk(pkt, chunk);
673 
674 		switch (status) {
675 		case SCTP_XMIT_PMTU_FULL:
676 			if (!pkt->has_data && !pkt->has_cookie_echo) {
677 				/* If this packet did not contain DATA then
678 				 * retransmission did not happen, so do it
679 				 * again.  We'll ignore the error here since
680 				 * control chunks are already freed so there
681 				 * is nothing we can do.
682 				 */
683 				sctp_packet_transmit(pkt, GFP_ATOMIC);
684 				goto redo;
685 			}
686 
687 			/* Send this packet.  */
688 			error = sctp_packet_transmit(pkt, GFP_ATOMIC);
689 
690 			/* If we are retransmitting, we should only
691 			 * send a single packet.
692 			 * Otherwise, try appending this chunk again.
693 			 */
694 			if (rtx_timeout || fast_rtx)
695 				done = 1;
696 			else
697 				goto redo;
698 
699 			/* Bundle next chunk in the next round.  */
700 			break;
701 
702 		case SCTP_XMIT_RWND_FULL:
703 			/* Send this packet. */
704 			error = sctp_packet_transmit(pkt, GFP_ATOMIC);
705 
706 			/* Stop sending DATA as there is no more room
707 			 * at the receiver.
708 			 */
709 			done = 1;
710 			break;
711 
712 		case SCTP_XMIT_DELAY:
713 			/* Send this packet. */
714 			error = sctp_packet_transmit(pkt, GFP_ATOMIC);
715 
716 			/* Stop sending DATA because of nagle delay. */
717 			done = 1;
718 			break;
719 
720 		default:
721 			/* The append was successful, so add this chunk to
722 			 * the transmitted list.
723 			 */
724 			list_move_tail(&chunk->transmitted_list,
725 				       &transport->transmitted);
726 
727 			/* Mark the chunk as ineligible for fast retransmit
728 			 * after it is retransmitted.
729 			 */
730 			if (chunk->fast_retransmit == SCTP_NEED_FRTX)
731 				chunk->fast_retransmit = SCTP_DONT_FRTX;
732 
733 			q->asoc->stats.rtxchunks++;
734 			break;
735 		}
736 
737 		/* Set the timer if there were no errors */
738 		if (!error && !timer)
739 			timer = 1;
740 
741 		if (done)
742 			break;
743 	}
744 
745 	/* If we are here due to a retransmit timeout or a fast
746 	 * retransmit and if there are any chunks left in the retransmit
747 	 * queue that could not fit in the PMTU sized packet, they need
748 	 * to be marked as ineligible for a subsequent fast retransmit.
749 	 */
750 	if (rtx_timeout || fast_rtx) {
751 		list_for_each_entry(chunk1, lqueue, transmitted_list) {
752 			if (chunk1->fast_retransmit == SCTP_NEED_FRTX)
753 				chunk1->fast_retransmit = SCTP_DONT_FRTX;
754 		}
755 	}
756 
757 	*start_timer = timer;
758 
759 	/* Clear fast retransmit hint */
760 	if (fast_rtx)
761 		q->fast_rtx = 0;
762 
763 	return error;
764 }
765 
766 /* Cork the outqueue so queued chunks are really queued. */
767 void sctp_outq_uncork(struct sctp_outq *q, gfp_t gfp)
768 {
769 	if (q->cork)
770 		q->cork = 0;
771 
772 	sctp_outq_flush(q, 0, gfp);
773 }
774 
775 
776 /*
777  * Try to flush an outqueue.
778  *
779  * Description: Send everything in q which we legally can, subject to
780  * congestion limitations.
781  * * Note: This function can be called from multiple contexts so appropriate
782  * locking concerns must be made.  Today we use the sock lock to protect
783  * this function.
784  */
785 static void sctp_outq_flush(struct sctp_outq *q, int rtx_timeout, gfp_t gfp)
786 {
787 	struct sctp_packet *packet;
788 	struct sctp_packet singleton;
789 	struct sctp_association *asoc = q->asoc;
790 	__u16 sport = asoc->base.bind_addr.port;
791 	__u16 dport = asoc->peer.port;
792 	__u32 vtag = asoc->peer.i.init_tag;
793 	struct sctp_transport *transport = NULL;
794 	struct sctp_transport *new_transport;
795 	struct sctp_chunk *chunk, *tmp;
796 	enum sctp_xmit status;
797 	int error = 0;
798 	int start_timer = 0;
799 	int one_packet = 0;
800 
801 	/* These transports have chunks to send. */
802 	struct list_head transport_list;
803 	struct list_head *ltransport;
804 
805 	INIT_LIST_HEAD(&transport_list);
806 	packet = NULL;
807 
808 	/*
809 	 * 6.10 Bundling
810 	 *   ...
811 	 *   When bundling control chunks with DATA chunks, an
812 	 *   endpoint MUST place control chunks first in the outbound
813 	 *   SCTP packet.  The transmitter MUST transmit DATA chunks
814 	 *   within a SCTP packet in increasing order of TSN.
815 	 *   ...
816 	 */
817 
818 	list_for_each_entry_safe(chunk, tmp, &q->control_chunk_list, list) {
819 		/* RFC 5061, 5.3
820 		 * F1) This means that until such time as the ASCONF
821 		 * containing the add is acknowledged, the sender MUST
822 		 * NOT use the new IP address as a source for ANY SCTP
823 		 * packet except on carrying an ASCONF Chunk.
824 		 */
825 		if (asoc->src_out_of_asoc_ok &&
826 		    chunk->chunk_hdr->type != SCTP_CID_ASCONF)
827 			continue;
828 
829 		list_del_init(&chunk->list);
830 
831 		/* Pick the right transport to use. */
832 		new_transport = chunk->transport;
833 
834 		if (!new_transport) {
835 			/*
836 			 * If we have a prior transport pointer, see if
837 			 * the destination address of the chunk
838 			 * matches the destination address of the
839 			 * current transport.  If not a match, then
840 			 * try to look up the transport with a given
841 			 * destination address.  We do this because
842 			 * after processing ASCONFs, we may have new
843 			 * transports created.
844 			 */
845 			if (transport &&
846 			    sctp_cmp_addr_exact(&chunk->dest,
847 						&transport->ipaddr))
848 					new_transport = transport;
849 			else
850 				new_transport = sctp_assoc_lookup_paddr(asoc,
851 								&chunk->dest);
852 
853 			/* if we still don't have a new transport, then
854 			 * use the current active path.
855 			 */
856 			if (!new_transport)
857 				new_transport = asoc->peer.active_path;
858 		} else if ((new_transport->state == SCTP_INACTIVE) ||
859 			   (new_transport->state == SCTP_UNCONFIRMED) ||
860 			   (new_transport->state == SCTP_PF)) {
861 			/* If the chunk is Heartbeat or Heartbeat Ack,
862 			 * send it to chunk->transport, even if it's
863 			 * inactive.
864 			 *
865 			 * 3.3.6 Heartbeat Acknowledgement:
866 			 * ...
867 			 * A HEARTBEAT ACK is always sent to the source IP
868 			 * address of the IP datagram containing the
869 			 * HEARTBEAT chunk to which this ack is responding.
870 			 * ...
871 			 *
872 			 * ASCONF_ACKs also must be sent to the source.
873 			 */
874 			if (chunk->chunk_hdr->type != SCTP_CID_HEARTBEAT &&
875 			    chunk->chunk_hdr->type != SCTP_CID_HEARTBEAT_ACK &&
876 			    chunk->chunk_hdr->type != SCTP_CID_ASCONF_ACK)
877 				new_transport = asoc->peer.active_path;
878 		}
879 
880 		/* Are we switching transports?
881 		 * Take care of transport locks.
882 		 */
883 		if (new_transport != transport) {
884 			transport = new_transport;
885 			if (list_empty(&transport->send_ready)) {
886 				list_add_tail(&transport->send_ready,
887 					      &transport_list);
888 			}
889 			packet = &transport->packet;
890 			sctp_packet_config(packet, vtag,
891 					   asoc->peer.ecn_capable);
892 		}
893 
894 		switch (chunk->chunk_hdr->type) {
895 		/*
896 		 * 6.10 Bundling
897 		 *   ...
898 		 *   An endpoint MUST NOT bundle INIT, INIT ACK or SHUTDOWN
899 		 *   COMPLETE with any other chunks.  [Send them immediately.]
900 		 */
901 		case SCTP_CID_INIT:
902 		case SCTP_CID_INIT_ACK:
903 		case SCTP_CID_SHUTDOWN_COMPLETE:
904 			sctp_packet_init(&singleton, transport, sport, dport);
905 			sctp_packet_config(&singleton, vtag, 0);
906 			sctp_packet_append_chunk(&singleton, chunk);
907 			error = sctp_packet_transmit(&singleton, gfp);
908 			if (error < 0) {
909 				asoc->base.sk->sk_err = -error;
910 				return;
911 			}
912 			break;
913 
914 		case SCTP_CID_ABORT:
915 			if (sctp_test_T_bit(chunk)) {
916 				packet->vtag = asoc->c.my_vtag;
917 			}
918 		/* The following chunks are "response" chunks, i.e.
919 		 * they are generated in response to something we
920 		 * received.  If we are sending these, then we can
921 		 * send only 1 packet containing these chunks.
922 		 */
923 		case SCTP_CID_HEARTBEAT_ACK:
924 		case SCTP_CID_SHUTDOWN_ACK:
925 		case SCTP_CID_COOKIE_ACK:
926 		case SCTP_CID_COOKIE_ECHO:
927 		case SCTP_CID_ERROR:
928 		case SCTP_CID_ECN_CWR:
929 		case SCTP_CID_ASCONF_ACK:
930 			one_packet = 1;
931 			/* Fall through */
932 
933 		case SCTP_CID_SACK:
934 		case SCTP_CID_HEARTBEAT:
935 		case SCTP_CID_SHUTDOWN:
936 		case SCTP_CID_ECN_ECNE:
937 		case SCTP_CID_ASCONF:
938 		case SCTP_CID_FWD_TSN:
939 		case SCTP_CID_RECONF:
940 			status = sctp_packet_transmit_chunk(packet, chunk,
941 							    one_packet, gfp);
942 			if (status  != SCTP_XMIT_OK) {
943 				/* put the chunk back */
944 				list_add(&chunk->list, &q->control_chunk_list);
945 				break;
946 			}
947 
948 			asoc->stats.octrlchunks++;
949 			/* PR-SCTP C5) If a FORWARD TSN is sent, the
950 			 * sender MUST assure that at least one T3-rtx
951 			 * timer is running.
952 			 */
953 			if (chunk->chunk_hdr->type == SCTP_CID_FWD_TSN) {
954 				sctp_transport_reset_t3_rtx(transport);
955 				transport->last_time_sent = jiffies;
956 			}
957 
958 			if (chunk == asoc->strreset_chunk)
959 				sctp_transport_reset_reconf_timer(transport);
960 
961 			break;
962 
963 		default:
964 			/* We built a chunk with an illegal type! */
965 			BUG();
966 		}
967 	}
968 
969 	if (q->asoc->src_out_of_asoc_ok)
970 		goto sctp_flush_out;
971 
972 	/* Is it OK to send data chunks?  */
973 	switch (asoc->state) {
974 	case SCTP_STATE_COOKIE_ECHOED:
975 		/* Only allow bundling when this packet has a COOKIE-ECHO
976 		 * chunk.
977 		 */
978 		if (!packet || !packet->has_cookie_echo)
979 			break;
980 
981 		/* fallthru */
982 	case SCTP_STATE_ESTABLISHED:
983 	case SCTP_STATE_SHUTDOWN_PENDING:
984 	case SCTP_STATE_SHUTDOWN_RECEIVED:
985 		/*
986 		 * RFC 2960 6.1  Transmission of DATA Chunks
987 		 *
988 		 * C) When the time comes for the sender to transmit,
989 		 * before sending new DATA chunks, the sender MUST
990 		 * first transmit any outstanding DATA chunks which
991 		 * are marked for retransmission (limited by the
992 		 * current cwnd).
993 		 */
994 		if (!list_empty(&q->retransmit)) {
995 			if (asoc->peer.retran_path->state == SCTP_UNCONFIRMED)
996 				goto sctp_flush_out;
997 			if (transport == asoc->peer.retran_path)
998 				goto retran;
999 
1000 			/* Switch transports & prepare the packet.  */
1001 
1002 			transport = asoc->peer.retran_path;
1003 
1004 			if (list_empty(&transport->send_ready)) {
1005 				list_add_tail(&transport->send_ready,
1006 					      &transport_list);
1007 			}
1008 
1009 			packet = &transport->packet;
1010 			sctp_packet_config(packet, vtag,
1011 					   asoc->peer.ecn_capable);
1012 		retran:
1013 			error = sctp_outq_flush_rtx(q, packet,
1014 						    rtx_timeout, &start_timer);
1015 			if (error < 0)
1016 				asoc->base.sk->sk_err = -error;
1017 
1018 			if (start_timer) {
1019 				sctp_transport_reset_t3_rtx(transport);
1020 				transport->last_time_sent = jiffies;
1021 			}
1022 
1023 			/* This can happen on COOKIE-ECHO resend.  Only
1024 			 * one chunk can get bundled with a COOKIE-ECHO.
1025 			 */
1026 			if (packet->has_cookie_echo)
1027 				goto sctp_flush_out;
1028 
1029 			/* Don't send new data if there is still data
1030 			 * waiting to retransmit.
1031 			 */
1032 			if (!list_empty(&q->retransmit))
1033 				goto sctp_flush_out;
1034 		}
1035 
1036 		/* Apply Max.Burst limitation to the current transport in
1037 		 * case it will be used for new data.  We are going to
1038 		 * rest it before we return, but we want to apply the limit
1039 		 * to the currently queued data.
1040 		 */
1041 		if (transport)
1042 			sctp_transport_burst_limited(transport);
1043 
1044 		/* Finally, transmit new packets.  */
1045 		while ((chunk = sctp_outq_dequeue_data(q)) != NULL) {
1046 			__u32 sid = ntohs(chunk->subh.data_hdr->stream);
1047 
1048 			/* Has this chunk expired? */
1049 			if (sctp_chunk_abandoned(chunk)) {
1050 				sctp_sched_dequeue_done(q, chunk);
1051 				sctp_chunk_fail(chunk, 0);
1052 				sctp_chunk_free(chunk);
1053 				continue;
1054 			}
1055 
1056 			if (asoc->stream.out[sid].state == SCTP_STREAM_CLOSED) {
1057 				sctp_outq_head_data(q, chunk);
1058 				goto sctp_flush_out;
1059 			}
1060 
1061 			/* If there is a specified transport, use it.
1062 			 * Otherwise, we want to use the active path.
1063 			 */
1064 			new_transport = chunk->transport;
1065 			if (!new_transport ||
1066 			    ((new_transport->state == SCTP_INACTIVE) ||
1067 			     (new_transport->state == SCTP_UNCONFIRMED) ||
1068 			     (new_transport->state == SCTP_PF)))
1069 				new_transport = asoc->peer.active_path;
1070 			if (new_transport->state == SCTP_UNCONFIRMED) {
1071 				WARN_ONCE(1, "Attempt to send packet on unconfirmed path.");
1072 				sctp_sched_dequeue_done(q, chunk);
1073 				sctp_chunk_fail(chunk, 0);
1074 				sctp_chunk_free(chunk);
1075 				continue;
1076 			}
1077 
1078 			/* Change packets if necessary.  */
1079 			if (new_transport != transport) {
1080 				transport = new_transport;
1081 
1082 				/* Schedule to have this transport's
1083 				 * packet flushed.
1084 				 */
1085 				if (list_empty(&transport->send_ready)) {
1086 					list_add_tail(&transport->send_ready,
1087 						      &transport_list);
1088 				}
1089 
1090 				packet = &transport->packet;
1091 				sctp_packet_config(packet, vtag,
1092 						   asoc->peer.ecn_capable);
1093 				/* We've switched transports, so apply the
1094 				 * Burst limit to the new transport.
1095 				 */
1096 				sctp_transport_burst_limited(transport);
1097 			}
1098 
1099 			pr_debug("%s: outq:%p, chunk:%p[%s], tx-tsn:0x%x skb->head:%p "
1100 				 "skb->users:%d\n",
1101 				 __func__, q, chunk, chunk && chunk->chunk_hdr ?
1102 				 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) :
1103 				 "illegal chunk", ntohl(chunk->subh.data_hdr->tsn),
1104 				 chunk->skb ? chunk->skb->head : NULL, chunk->skb ?
1105 				 refcount_read(&chunk->skb->users) : -1);
1106 
1107 			/* Add the chunk to the packet.  */
1108 			status = sctp_packet_transmit_chunk(packet, chunk, 0, gfp);
1109 
1110 			switch (status) {
1111 			case SCTP_XMIT_PMTU_FULL:
1112 			case SCTP_XMIT_RWND_FULL:
1113 			case SCTP_XMIT_DELAY:
1114 				/* We could not append this chunk, so put
1115 				 * the chunk back on the output queue.
1116 				 */
1117 				pr_debug("%s: could not transmit tsn:0x%x, status:%d\n",
1118 					 __func__, ntohl(chunk->subh.data_hdr->tsn),
1119 					 status);
1120 
1121 				sctp_outq_head_data(q, chunk);
1122 				goto sctp_flush_out;
1123 
1124 			case SCTP_XMIT_OK:
1125 				/* The sender is in the SHUTDOWN-PENDING state,
1126 				 * The sender MAY set the I-bit in the DATA
1127 				 * chunk header.
1128 				 */
1129 				if (asoc->state == SCTP_STATE_SHUTDOWN_PENDING)
1130 					chunk->chunk_hdr->flags |= SCTP_DATA_SACK_IMM;
1131 				if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED)
1132 					asoc->stats.ouodchunks++;
1133 				else
1134 					asoc->stats.oodchunks++;
1135 
1136 				/* Only now it's safe to consider this
1137 				 * chunk as sent, sched-wise.
1138 				 */
1139 				sctp_sched_dequeue_done(q, chunk);
1140 
1141 				break;
1142 
1143 			default:
1144 				BUG();
1145 			}
1146 
1147 			/* BUG: We assume that the sctp_packet_transmit()
1148 			 * call below will succeed all the time and add the
1149 			 * chunk to the transmitted list and restart the
1150 			 * timers.
1151 			 * It is possible that the call can fail under OOM
1152 			 * conditions.
1153 			 *
1154 			 * Is this really a problem?  Won't this behave
1155 			 * like a lost TSN?
1156 			 */
1157 			list_add_tail(&chunk->transmitted_list,
1158 				      &transport->transmitted);
1159 
1160 			sctp_transport_reset_t3_rtx(transport);
1161 			transport->last_time_sent = jiffies;
1162 
1163 			/* Only let one DATA chunk get bundled with a
1164 			 * COOKIE-ECHO chunk.
1165 			 */
1166 			if (packet->has_cookie_echo)
1167 				goto sctp_flush_out;
1168 		}
1169 		break;
1170 
1171 	default:
1172 		/* Do nothing.  */
1173 		break;
1174 	}
1175 
1176 sctp_flush_out:
1177 
1178 	/* Before returning, examine all the transports touched in
1179 	 * this call.  Right now, we bluntly force clear all the
1180 	 * transports.  Things might change after we implement Nagle.
1181 	 * But such an examination is still required.
1182 	 *
1183 	 * --xguo
1184 	 */
1185 	while ((ltransport = sctp_list_dequeue(&transport_list)) != NULL) {
1186 		struct sctp_transport *t = list_entry(ltransport,
1187 						      struct sctp_transport,
1188 						      send_ready);
1189 		packet = &t->packet;
1190 		if (!sctp_packet_empty(packet)) {
1191 			error = sctp_packet_transmit(packet, gfp);
1192 			if (error < 0)
1193 				asoc->base.sk->sk_err = -error;
1194 		}
1195 
1196 		/* Clear the burst limited state, if any */
1197 		sctp_transport_burst_reset(t);
1198 	}
1199 }
1200 
1201 /* Update unack_data based on the incoming SACK chunk */
1202 static void sctp_sack_update_unack_data(struct sctp_association *assoc,
1203 					struct sctp_sackhdr *sack)
1204 {
1205 	union sctp_sack_variable *frags;
1206 	__u16 unack_data;
1207 	int i;
1208 
1209 	unack_data = assoc->next_tsn - assoc->ctsn_ack_point - 1;
1210 
1211 	frags = sack->variable;
1212 	for (i = 0; i < ntohs(sack->num_gap_ack_blocks); i++) {
1213 		unack_data -= ((ntohs(frags[i].gab.end) -
1214 				ntohs(frags[i].gab.start) + 1));
1215 	}
1216 
1217 	assoc->unack_data = unack_data;
1218 }
1219 
1220 /* This is where we REALLY process a SACK.
1221  *
1222  * Process the SACK against the outqueue.  Mostly, this just frees
1223  * things off the transmitted queue.
1224  */
1225 int sctp_outq_sack(struct sctp_outq *q, struct sctp_chunk *chunk)
1226 {
1227 	struct sctp_association *asoc = q->asoc;
1228 	struct sctp_sackhdr *sack = chunk->subh.sack_hdr;
1229 	struct sctp_transport *transport;
1230 	struct sctp_chunk *tchunk = NULL;
1231 	struct list_head *lchunk, *transport_list, *temp;
1232 	union sctp_sack_variable *frags = sack->variable;
1233 	__u32 sack_ctsn, ctsn, tsn;
1234 	__u32 highest_tsn, highest_new_tsn;
1235 	__u32 sack_a_rwnd;
1236 	unsigned int outstanding;
1237 	struct sctp_transport *primary = asoc->peer.primary_path;
1238 	int count_of_newacks = 0;
1239 	int gap_ack_blocks;
1240 	u8 accum_moved = 0;
1241 
1242 	/* Grab the association's destination address list. */
1243 	transport_list = &asoc->peer.transport_addr_list;
1244 
1245 	sack_ctsn = ntohl(sack->cum_tsn_ack);
1246 	gap_ack_blocks = ntohs(sack->num_gap_ack_blocks);
1247 	asoc->stats.gapcnt += gap_ack_blocks;
1248 	/*
1249 	 * SFR-CACC algorithm:
1250 	 * On receipt of a SACK the sender SHOULD execute the
1251 	 * following statements.
1252 	 *
1253 	 * 1) If the cumulative ack in the SACK passes next tsn_at_change
1254 	 * on the current primary, the CHANGEOVER_ACTIVE flag SHOULD be
1255 	 * cleared. The CYCLING_CHANGEOVER flag SHOULD also be cleared for
1256 	 * all destinations.
1257 	 * 2) If the SACK contains gap acks and the flag CHANGEOVER_ACTIVE
1258 	 * is set the receiver of the SACK MUST take the following actions:
1259 	 *
1260 	 * A) Initialize the cacc_saw_newack to 0 for all destination
1261 	 * addresses.
1262 	 *
1263 	 * Only bother if changeover_active is set. Otherwise, this is
1264 	 * totally suboptimal to do on every SACK.
1265 	 */
1266 	if (primary->cacc.changeover_active) {
1267 		u8 clear_cycling = 0;
1268 
1269 		if (TSN_lte(primary->cacc.next_tsn_at_change, sack_ctsn)) {
1270 			primary->cacc.changeover_active = 0;
1271 			clear_cycling = 1;
1272 		}
1273 
1274 		if (clear_cycling || gap_ack_blocks) {
1275 			list_for_each_entry(transport, transport_list,
1276 					transports) {
1277 				if (clear_cycling)
1278 					transport->cacc.cycling_changeover = 0;
1279 				if (gap_ack_blocks)
1280 					transport->cacc.cacc_saw_newack = 0;
1281 			}
1282 		}
1283 	}
1284 
1285 	/* Get the highest TSN in the sack. */
1286 	highest_tsn = sack_ctsn;
1287 	if (gap_ack_blocks)
1288 		highest_tsn += ntohs(frags[gap_ack_blocks - 1].gab.end);
1289 
1290 	if (TSN_lt(asoc->highest_sacked, highest_tsn))
1291 		asoc->highest_sacked = highest_tsn;
1292 
1293 	highest_new_tsn = sack_ctsn;
1294 
1295 	/* Run through the retransmit queue.  Credit bytes received
1296 	 * and free those chunks that we can.
1297 	 */
1298 	sctp_check_transmitted(q, &q->retransmit, NULL, NULL, sack, &highest_new_tsn);
1299 
1300 	/* Run through the transmitted queue.
1301 	 * Credit bytes received and free those chunks which we can.
1302 	 *
1303 	 * This is a MASSIVE candidate for optimization.
1304 	 */
1305 	list_for_each_entry(transport, transport_list, transports) {
1306 		sctp_check_transmitted(q, &transport->transmitted,
1307 				       transport, &chunk->source, sack,
1308 				       &highest_new_tsn);
1309 		/*
1310 		 * SFR-CACC algorithm:
1311 		 * C) Let count_of_newacks be the number of
1312 		 * destinations for which cacc_saw_newack is set.
1313 		 */
1314 		if (transport->cacc.cacc_saw_newack)
1315 			count_of_newacks++;
1316 	}
1317 
1318 	/* Move the Cumulative TSN Ack Point if appropriate.  */
1319 	if (TSN_lt(asoc->ctsn_ack_point, sack_ctsn)) {
1320 		asoc->ctsn_ack_point = sack_ctsn;
1321 		accum_moved = 1;
1322 	}
1323 
1324 	if (gap_ack_blocks) {
1325 
1326 		if (asoc->fast_recovery && accum_moved)
1327 			highest_new_tsn = highest_tsn;
1328 
1329 		list_for_each_entry(transport, transport_list, transports)
1330 			sctp_mark_missing(q, &transport->transmitted, transport,
1331 					  highest_new_tsn, count_of_newacks);
1332 	}
1333 
1334 	/* Update unack_data field in the assoc. */
1335 	sctp_sack_update_unack_data(asoc, sack);
1336 
1337 	ctsn = asoc->ctsn_ack_point;
1338 
1339 	/* Throw away stuff rotting on the sack queue.  */
1340 	list_for_each_safe(lchunk, temp, &q->sacked) {
1341 		tchunk = list_entry(lchunk, struct sctp_chunk,
1342 				    transmitted_list);
1343 		tsn = ntohl(tchunk->subh.data_hdr->tsn);
1344 		if (TSN_lte(tsn, ctsn)) {
1345 			list_del_init(&tchunk->transmitted_list);
1346 			if (asoc->peer.prsctp_capable &&
1347 			    SCTP_PR_PRIO_ENABLED(chunk->sinfo.sinfo_flags))
1348 				asoc->sent_cnt_removable--;
1349 			sctp_chunk_free(tchunk);
1350 		}
1351 	}
1352 
1353 	/* ii) Set rwnd equal to the newly received a_rwnd minus the
1354 	 *     number of bytes still outstanding after processing the
1355 	 *     Cumulative TSN Ack and the Gap Ack Blocks.
1356 	 */
1357 
1358 	sack_a_rwnd = ntohl(sack->a_rwnd);
1359 	asoc->peer.zero_window_announced = !sack_a_rwnd;
1360 	outstanding = q->outstanding_bytes;
1361 
1362 	if (outstanding < sack_a_rwnd)
1363 		sack_a_rwnd -= outstanding;
1364 	else
1365 		sack_a_rwnd = 0;
1366 
1367 	asoc->peer.rwnd = sack_a_rwnd;
1368 
1369 	sctp_generate_fwdtsn(q, sack_ctsn);
1370 
1371 	pr_debug("%s: sack cumulative tsn ack:0x%x\n", __func__, sack_ctsn);
1372 	pr_debug("%s: cumulative tsn ack of assoc:%p is 0x%x, "
1373 		 "advertised peer ack point:0x%x\n", __func__, asoc, ctsn,
1374 		 asoc->adv_peer_ack_point);
1375 
1376 	return sctp_outq_is_empty(q);
1377 }
1378 
1379 /* Is the outqueue empty?
1380  * The queue is empty when we have not pending data, no in-flight data
1381  * and nothing pending retransmissions.
1382  */
1383 int sctp_outq_is_empty(const struct sctp_outq *q)
1384 {
1385 	return q->out_qlen == 0 && q->outstanding_bytes == 0 &&
1386 	       list_empty(&q->retransmit);
1387 }
1388 
1389 /********************************************************************
1390  * 2nd Level Abstractions
1391  ********************************************************************/
1392 
1393 /* Go through a transport's transmitted list or the association's retransmit
1394  * list and move chunks that are acked by the Cumulative TSN Ack to q->sacked.
1395  * The retransmit list will not have an associated transport.
1396  *
1397  * I added coherent debug information output.	--xguo
1398  *
1399  * Instead of printing 'sacked' or 'kept' for each TSN on the
1400  * transmitted_queue, we print a range: SACKED: TSN1-TSN2, TSN3, TSN4-TSN5.
1401  * KEPT TSN6-TSN7, etc.
1402  */
1403 static void sctp_check_transmitted(struct sctp_outq *q,
1404 				   struct list_head *transmitted_queue,
1405 				   struct sctp_transport *transport,
1406 				   union sctp_addr *saddr,
1407 				   struct sctp_sackhdr *sack,
1408 				   __u32 *highest_new_tsn_in_sack)
1409 {
1410 	struct list_head *lchunk;
1411 	struct sctp_chunk *tchunk;
1412 	struct list_head tlist;
1413 	__u32 tsn;
1414 	__u32 sack_ctsn;
1415 	__u32 rtt;
1416 	__u8 restart_timer = 0;
1417 	int bytes_acked = 0;
1418 	int migrate_bytes = 0;
1419 	bool forward_progress = false;
1420 
1421 	sack_ctsn = ntohl(sack->cum_tsn_ack);
1422 
1423 	INIT_LIST_HEAD(&tlist);
1424 
1425 	/* The while loop will skip empty transmitted queues. */
1426 	while (NULL != (lchunk = sctp_list_dequeue(transmitted_queue))) {
1427 		tchunk = list_entry(lchunk, struct sctp_chunk,
1428 				    transmitted_list);
1429 
1430 		if (sctp_chunk_abandoned(tchunk)) {
1431 			/* Move the chunk to abandoned list. */
1432 			sctp_insert_list(&q->abandoned, lchunk);
1433 
1434 			/* If this chunk has not been acked, stop
1435 			 * considering it as 'outstanding'.
1436 			 */
1437 			if (!tchunk->tsn_gap_acked) {
1438 				if (tchunk->transport)
1439 					tchunk->transport->flight_size -=
1440 							sctp_data_size(tchunk);
1441 				q->outstanding_bytes -= sctp_data_size(tchunk);
1442 			}
1443 			continue;
1444 		}
1445 
1446 		tsn = ntohl(tchunk->subh.data_hdr->tsn);
1447 		if (sctp_acked(sack, tsn)) {
1448 			/* If this queue is the retransmit queue, the
1449 			 * retransmit timer has already reclaimed
1450 			 * the outstanding bytes for this chunk, so only
1451 			 * count bytes associated with a transport.
1452 			 */
1453 			if (transport) {
1454 				/* If this chunk is being used for RTT
1455 				 * measurement, calculate the RTT and update
1456 				 * the RTO using this value.
1457 				 *
1458 				 * 6.3.1 C5) Karn's algorithm: RTT measurements
1459 				 * MUST NOT be made using packets that were
1460 				 * retransmitted (and thus for which it is
1461 				 * ambiguous whether the reply was for the
1462 				 * first instance of the packet or a later
1463 				 * instance).
1464 				 */
1465 				if (!tchunk->tsn_gap_acked &&
1466 				    !sctp_chunk_retransmitted(tchunk) &&
1467 				    tchunk->rtt_in_progress) {
1468 					tchunk->rtt_in_progress = 0;
1469 					rtt = jiffies - tchunk->sent_at;
1470 					sctp_transport_update_rto(transport,
1471 								  rtt);
1472 				}
1473 			}
1474 
1475 			/* If the chunk hasn't been marked as ACKED,
1476 			 * mark it and account bytes_acked if the
1477 			 * chunk had a valid transport (it will not
1478 			 * have a transport if ASCONF had deleted it
1479 			 * while DATA was outstanding).
1480 			 */
1481 			if (!tchunk->tsn_gap_acked) {
1482 				tchunk->tsn_gap_acked = 1;
1483 				if (TSN_lt(*highest_new_tsn_in_sack, tsn))
1484 					*highest_new_tsn_in_sack = tsn;
1485 				bytes_acked += sctp_data_size(tchunk);
1486 				if (!tchunk->transport)
1487 					migrate_bytes += sctp_data_size(tchunk);
1488 				forward_progress = true;
1489 			}
1490 
1491 			if (TSN_lte(tsn, sack_ctsn)) {
1492 				/* RFC 2960  6.3.2 Retransmission Timer Rules
1493 				 *
1494 				 * R3) Whenever a SACK is received
1495 				 * that acknowledges the DATA chunk
1496 				 * with the earliest outstanding TSN
1497 				 * for that address, restart T3-rtx
1498 				 * timer for that address with its
1499 				 * current RTO.
1500 				 */
1501 				restart_timer = 1;
1502 				forward_progress = true;
1503 
1504 				if (!tchunk->tsn_gap_acked) {
1505 					/*
1506 					 * SFR-CACC algorithm:
1507 					 * 2) If the SACK contains gap acks
1508 					 * and the flag CHANGEOVER_ACTIVE is
1509 					 * set the receiver of the SACK MUST
1510 					 * take the following action:
1511 					 *
1512 					 * B) For each TSN t being acked that
1513 					 * has not been acked in any SACK so
1514 					 * far, set cacc_saw_newack to 1 for
1515 					 * the destination that the TSN was
1516 					 * sent to.
1517 					 */
1518 					if (transport &&
1519 					    sack->num_gap_ack_blocks &&
1520 					    q->asoc->peer.primary_path->cacc.
1521 					    changeover_active)
1522 						transport->cacc.cacc_saw_newack
1523 							= 1;
1524 				}
1525 
1526 				list_add_tail(&tchunk->transmitted_list,
1527 					      &q->sacked);
1528 			} else {
1529 				/* RFC2960 7.2.4, sctpimpguide-05 2.8.2
1530 				 * M2) Each time a SACK arrives reporting
1531 				 * 'Stray DATA chunk(s)' record the highest TSN
1532 				 * reported as newly acknowledged, call this
1533 				 * value 'HighestTSNinSack'. A newly
1534 				 * acknowledged DATA chunk is one not
1535 				 * previously acknowledged in a SACK.
1536 				 *
1537 				 * When the SCTP sender of data receives a SACK
1538 				 * chunk that acknowledges, for the first time,
1539 				 * the receipt of a DATA chunk, all the still
1540 				 * unacknowledged DATA chunks whose TSN is
1541 				 * older than that newly acknowledged DATA
1542 				 * chunk, are qualified as 'Stray DATA chunks'.
1543 				 */
1544 				list_add_tail(lchunk, &tlist);
1545 			}
1546 		} else {
1547 			if (tchunk->tsn_gap_acked) {
1548 				pr_debug("%s: receiver reneged on data TSN:0x%x\n",
1549 					 __func__, tsn);
1550 
1551 				tchunk->tsn_gap_acked = 0;
1552 
1553 				if (tchunk->transport)
1554 					bytes_acked -= sctp_data_size(tchunk);
1555 
1556 				/* RFC 2960 6.3.2 Retransmission Timer Rules
1557 				 *
1558 				 * R4) Whenever a SACK is received missing a
1559 				 * TSN that was previously acknowledged via a
1560 				 * Gap Ack Block, start T3-rtx for the
1561 				 * destination address to which the DATA
1562 				 * chunk was originally
1563 				 * transmitted if it is not already running.
1564 				 */
1565 				restart_timer = 1;
1566 			}
1567 
1568 			list_add_tail(lchunk, &tlist);
1569 		}
1570 	}
1571 
1572 	if (transport) {
1573 		if (bytes_acked) {
1574 			struct sctp_association *asoc = transport->asoc;
1575 
1576 			/* We may have counted DATA that was migrated
1577 			 * to this transport due to DEL-IP operation.
1578 			 * Subtract those bytes, since the were never
1579 			 * send on this transport and shouldn't be
1580 			 * credited to this transport.
1581 			 */
1582 			bytes_acked -= migrate_bytes;
1583 
1584 			/* 8.2. When an outstanding TSN is acknowledged,
1585 			 * the endpoint shall clear the error counter of
1586 			 * the destination transport address to which the
1587 			 * DATA chunk was last sent.
1588 			 * The association's overall error counter is
1589 			 * also cleared.
1590 			 */
1591 			transport->error_count = 0;
1592 			transport->asoc->overall_error_count = 0;
1593 			forward_progress = true;
1594 
1595 			/*
1596 			 * While in SHUTDOWN PENDING, we may have started
1597 			 * the T5 shutdown guard timer after reaching the
1598 			 * retransmission limit. Stop that timer as soon
1599 			 * as the receiver acknowledged any data.
1600 			 */
1601 			if (asoc->state == SCTP_STATE_SHUTDOWN_PENDING &&
1602 			    del_timer(&asoc->timers
1603 				[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]))
1604 					sctp_association_put(asoc);
1605 
1606 			/* Mark the destination transport address as
1607 			 * active if it is not so marked.
1608 			 */
1609 			if ((transport->state == SCTP_INACTIVE ||
1610 			     transport->state == SCTP_UNCONFIRMED) &&
1611 			    sctp_cmp_addr_exact(&transport->ipaddr, saddr)) {
1612 				sctp_assoc_control_transport(
1613 					transport->asoc,
1614 					transport,
1615 					SCTP_TRANSPORT_UP,
1616 					SCTP_RECEIVED_SACK);
1617 			}
1618 
1619 			sctp_transport_raise_cwnd(transport, sack_ctsn,
1620 						  bytes_acked);
1621 
1622 			transport->flight_size -= bytes_acked;
1623 			if (transport->flight_size == 0)
1624 				transport->partial_bytes_acked = 0;
1625 			q->outstanding_bytes -= bytes_acked + migrate_bytes;
1626 		} else {
1627 			/* RFC 2960 6.1, sctpimpguide-06 2.15.2
1628 			 * When a sender is doing zero window probing, it
1629 			 * should not timeout the association if it continues
1630 			 * to receive new packets from the receiver. The
1631 			 * reason is that the receiver MAY keep its window
1632 			 * closed for an indefinite time.
1633 			 * A sender is doing zero window probing when the
1634 			 * receiver's advertised window is zero, and there is
1635 			 * only one data chunk in flight to the receiver.
1636 			 *
1637 			 * Allow the association to timeout while in SHUTDOWN
1638 			 * PENDING or SHUTDOWN RECEIVED in case the receiver
1639 			 * stays in zero window mode forever.
1640 			 */
1641 			if (!q->asoc->peer.rwnd &&
1642 			    !list_empty(&tlist) &&
1643 			    (sack_ctsn+2 == q->asoc->next_tsn) &&
1644 			    q->asoc->state < SCTP_STATE_SHUTDOWN_PENDING) {
1645 				pr_debug("%s: sack received for zero window "
1646 					 "probe:%u\n", __func__, sack_ctsn);
1647 
1648 				q->asoc->overall_error_count = 0;
1649 				transport->error_count = 0;
1650 			}
1651 		}
1652 
1653 		/* RFC 2960 6.3.2 Retransmission Timer Rules
1654 		 *
1655 		 * R2) Whenever all outstanding data sent to an address have
1656 		 * been acknowledged, turn off the T3-rtx timer of that
1657 		 * address.
1658 		 */
1659 		if (!transport->flight_size) {
1660 			if (del_timer(&transport->T3_rtx_timer))
1661 				sctp_transport_put(transport);
1662 		} else if (restart_timer) {
1663 			if (!mod_timer(&transport->T3_rtx_timer,
1664 				       jiffies + transport->rto))
1665 				sctp_transport_hold(transport);
1666 		}
1667 
1668 		if (forward_progress) {
1669 			if (transport->dst)
1670 				sctp_transport_dst_confirm(transport);
1671 		}
1672 	}
1673 
1674 	list_splice(&tlist, transmitted_queue);
1675 }
1676 
1677 /* Mark chunks as missing and consequently may get retransmitted. */
1678 static void sctp_mark_missing(struct sctp_outq *q,
1679 			      struct list_head *transmitted_queue,
1680 			      struct sctp_transport *transport,
1681 			      __u32 highest_new_tsn_in_sack,
1682 			      int count_of_newacks)
1683 {
1684 	struct sctp_chunk *chunk;
1685 	__u32 tsn;
1686 	char do_fast_retransmit = 0;
1687 	struct sctp_association *asoc = q->asoc;
1688 	struct sctp_transport *primary = asoc->peer.primary_path;
1689 
1690 	list_for_each_entry(chunk, transmitted_queue, transmitted_list) {
1691 
1692 		tsn = ntohl(chunk->subh.data_hdr->tsn);
1693 
1694 		/* RFC 2960 7.2.4, sctpimpguide-05 2.8.2 M3) Examine all
1695 		 * 'Unacknowledged TSN's', if the TSN number of an
1696 		 * 'Unacknowledged TSN' is smaller than the 'HighestTSNinSack'
1697 		 * value, increment the 'TSN.Missing.Report' count on that
1698 		 * chunk if it has NOT been fast retransmitted or marked for
1699 		 * fast retransmit already.
1700 		 */
1701 		if (chunk->fast_retransmit == SCTP_CAN_FRTX &&
1702 		    !chunk->tsn_gap_acked &&
1703 		    TSN_lt(tsn, highest_new_tsn_in_sack)) {
1704 
1705 			/* SFR-CACC may require us to skip marking
1706 			 * this chunk as missing.
1707 			 */
1708 			if (!transport || !sctp_cacc_skip(primary,
1709 						chunk->transport,
1710 						count_of_newacks, tsn)) {
1711 				chunk->tsn_missing_report++;
1712 
1713 				pr_debug("%s: tsn:0x%x missing counter:%d\n",
1714 					 __func__, tsn, chunk->tsn_missing_report);
1715 			}
1716 		}
1717 		/*
1718 		 * M4) If any DATA chunk is found to have a
1719 		 * 'TSN.Missing.Report'
1720 		 * value larger than or equal to 3, mark that chunk for
1721 		 * retransmission and start the fast retransmit procedure.
1722 		 */
1723 
1724 		if (chunk->tsn_missing_report >= 3) {
1725 			chunk->fast_retransmit = SCTP_NEED_FRTX;
1726 			do_fast_retransmit = 1;
1727 		}
1728 	}
1729 
1730 	if (transport) {
1731 		if (do_fast_retransmit)
1732 			sctp_retransmit(q, transport, SCTP_RTXR_FAST_RTX);
1733 
1734 		pr_debug("%s: transport:%p, cwnd:%d, ssthresh:%d, "
1735 			 "flight_size:%d, pba:%d\n",  __func__, transport,
1736 			 transport->cwnd, transport->ssthresh,
1737 			 transport->flight_size, transport->partial_bytes_acked);
1738 	}
1739 }
1740 
1741 /* Is the given TSN acked by this packet?  */
1742 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn)
1743 {
1744 	__u32 ctsn = ntohl(sack->cum_tsn_ack);
1745 	union sctp_sack_variable *frags;
1746 	__u16 tsn_offset, blocks;
1747 	int i;
1748 
1749 	if (TSN_lte(tsn, ctsn))
1750 		goto pass;
1751 
1752 	/* 3.3.4 Selective Acknowledgement (SACK) (3):
1753 	 *
1754 	 * Gap Ack Blocks:
1755 	 *  These fields contain the Gap Ack Blocks. They are repeated
1756 	 *  for each Gap Ack Block up to the number of Gap Ack Blocks
1757 	 *  defined in the Number of Gap Ack Blocks field. All DATA
1758 	 *  chunks with TSNs greater than or equal to (Cumulative TSN
1759 	 *  Ack + Gap Ack Block Start) and less than or equal to
1760 	 *  (Cumulative TSN Ack + Gap Ack Block End) of each Gap Ack
1761 	 *  Block are assumed to have been received correctly.
1762 	 */
1763 
1764 	frags = sack->variable;
1765 	blocks = ntohs(sack->num_gap_ack_blocks);
1766 	tsn_offset = tsn - ctsn;
1767 	for (i = 0; i < blocks; ++i) {
1768 		if (tsn_offset >= ntohs(frags[i].gab.start) &&
1769 		    tsn_offset <= ntohs(frags[i].gab.end))
1770 			goto pass;
1771 	}
1772 
1773 	return 0;
1774 pass:
1775 	return 1;
1776 }
1777 
1778 static inline int sctp_get_skip_pos(struct sctp_fwdtsn_skip *skiplist,
1779 				    int nskips, __be16 stream)
1780 {
1781 	int i;
1782 
1783 	for (i = 0; i < nskips; i++) {
1784 		if (skiplist[i].stream == stream)
1785 			return i;
1786 	}
1787 	return i;
1788 }
1789 
1790 /* Create and add a fwdtsn chunk to the outq's control queue if needed. */
1791 static void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 ctsn)
1792 {
1793 	struct sctp_association *asoc = q->asoc;
1794 	struct sctp_chunk *ftsn_chunk = NULL;
1795 	struct sctp_fwdtsn_skip ftsn_skip_arr[10];
1796 	int nskips = 0;
1797 	int skip_pos = 0;
1798 	__u32 tsn;
1799 	struct sctp_chunk *chunk;
1800 	struct list_head *lchunk, *temp;
1801 
1802 	if (!asoc->peer.prsctp_capable)
1803 		return;
1804 
1805 	/* PR-SCTP C1) Let SackCumAck be the Cumulative TSN ACK carried in the
1806 	 * received SACK.
1807 	 *
1808 	 * If (Advanced.Peer.Ack.Point < SackCumAck), then update
1809 	 * Advanced.Peer.Ack.Point to be equal to SackCumAck.
1810 	 */
1811 	if (TSN_lt(asoc->adv_peer_ack_point, ctsn))
1812 		asoc->adv_peer_ack_point = ctsn;
1813 
1814 	/* PR-SCTP C2) Try to further advance the "Advanced.Peer.Ack.Point"
1815 	 * locally, that is, to move "Advanced.Peer.Ack.Point" up as long as
1816 	 * the chunk next in the out-queue space is marked as "abandoned" as
1817 	 * shown in the following example:
1818 	 *
1819 	 * Assuming that a SACK arrived with the Cumulative TSN ACK 102
1820 	 * and the Advanced.Peer.Ack.Point is updated to this value:
1821 	 *
1822 	 *   out-queue at the end of  ==>   out-queue after Adv.Ack.Point
1823 	 *   normal SACK processing           local advancement
1824 	 *                ...                           ...
1825 	 *   Adv.Ack.Pt-> 102 acked                     102 acked
1826 	 *                103 abandoned                 103 abandoned
1827 	 *                104 abandoned     Adv.Ack.P-> 104 abandoned
1828 	 *                105                           105
1829 	 *                106 acked                     106 acked
1830 	 *                ...                           ...
1831 	 *
1832 	 * In this example, the data sender successfully advanced the
1833 	 * "Advanced.Peer.Ack.Point" from 102 to 104 locally.
1834 	 */
1835 	list_for_each_safe(lchunk, temp, &q->abandoned) {
1836 		chunk = list_entry(lchunk, struct sctp_chunk,
1837 					transmitted_list);
1838 		tsn = ntohl(chunk->subh.data_hdr->tsn);
1839 
1840 		/* Remove any chunks in the abandoned queue that are acked by
1841 		 * the ctsn.
1842 		 */
1843 		if (TSN_lte(tsn, ctsn)) {
1844 			list_del_init(lchunk);
1845 			sctp_chunk_free(chunk);
1846 		} else {
1847 			if (TSN_lte(tsn, asoc->adv_peer_ack_point+1)) {
1848 				asoc->adv_peer_ack_point = tsn;
1849 				if (chunk->chunk_hdr->flags &
1850 					 SCTP_DATA_UNORDERED)
1851 					continue;
1852 				skip_pos = sctp_get_skip_pos(&ftsn_skip_arr[0],
1853 						nskips,
1854 						chunk->subh.data_hdr->stream);
1855 				ftsn_skip_arr[skip_pos].stream =
1856 					chunk->subh.data_hdr->stream;
1857 				ftsn_skip_arr[skip_pos].ssn =
1858 					 chunk->subh.data_hdr->ssn;
1859 				if (skip_pos == nskips)
1860 					nskips++;
1861 				if (nskips == 10)
1862 					break;
1863 			} else
1864 				break;
1865 		}
1866 	}
1867 
1868 	/* PR-SCTP C3) If, after step C1 and C2, the "Advanced.Peer.Ack.Point"
1869 	 * is greater than the Cumulative TSN ACK carried in the received
1870 	 * SACK, the data sender MUST send the data receiver a FORWARD TSN
1871 	 * chunk containing the latest value of the
1872 	 * "Advanced.Peer.Ack.Point".
1873 	 *
1874 	 * C4) For each "abandoned" TSN the sender of the FORWARD TSN SHOULD
1875 	 * list each stream and sequence number in the forwarded TSN. This
1876 	 * information will enable the receiver to easily find any
1877 	 * stranded TSN's waiting on stream reorder queues. Each stream
1878 	 * SHOULD only be reported once; this means that if multiple
1879 	 * abandoned messages occur in the same stream then only the
1880 	 * highest abandoned stream sequence number is reported. If the
1881 	 * total size of the FORWARD TSN does NOT fit in a single MTU then
1882 	 * the sender of the FORWARD TSN SHOULD lower the
1883 	 * Advanced.Peer.Ack.Point to the last TSN that will fit in a
1884 	 * single MTU.
1885 	 */
1886 	if (asoc->adv_peer_ack_point > ctsn)
1887 		ftsn_chunk = sctp_make_fwdtsn(asoc, asoc->adv_peer_ack_point,
1888 					      nskips, &ftsn_skip_arr[0]);
1889 
1890 	if (ftsn_chunk) {
1891 		list_add_tail(&ftsn_chunk->list, &q->control_chunk_list);
1892 		SCTP_INC_STATS(sock_net(asoc->base.sk), SCTP_MIB_OUTCTRLCHUNKS);
1893 	}
1894 }
1895