xref: /openbmc/linux/net/sctp/outqueue.c (revision 40662333)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* SCTP kernel implementation
3  * (C) Copyright IBM Corp. 2001, 2004
4  * Copyright (c) 1999-2000 Cisco, Inc.
5  * Copyright (c) 1999-2001 Motorola, Inc.
6  * Copyright (c) 2001-2003 Intel Corp.
7  *
8  * This file is part of the SCTP kernel implementation
9  *
10  * These functions implement the sctp_outq class.   The outqueue handles
11  * bundling and queueing of outgoing SCTP chunks.
12  *
13  * Please send any bug reports or fixes you make to the
14  * email address(es):
15  *    lksctp developers <linux-sctp@vger.kernel.org>
16  *
17  * Written or modified by:
18  *    La Monte H.P. Yarroll <piggy@acm.org>
19  *    Karl Knutson          <karl@athena.chicago.il.us>
20  *    Perry Melange         <pmelange@null.cc.uic.edu>
21  *    Xingang Guo           <xingang.guo@intel.com>
22  *    Hui Huang 	    <hui.huang@nokia.com>
23  *    Sridhar Samudrala     <sri@us.ibm.com>
24  *    Jon Grimm             <jgrimm@us.ibm.com>
25  */
26 
27 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
28 
29 #include <linux/types.h>
30 #include <linux/list.h>   /* For struct list_head */
31 #include <linux/socket.h>
32 #include <linux/ip.h>
33 #include <linux/slab.h>
34 #include <net/sock.h>	  /* For skb_set_owner_w */
35 
36 #include <net/sctp/sctp.h>
37 #include <net/sctp/sm.h>
38 #include <net/sctp/stream_sched.h>
39 #include <trace/events/sctp.h>
40 
41 /* Declare internal functions here.  */
42 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn);
43 static void sctp_check_transmitted(struct sctp_outq *q,
44 				   struct list_head *transmitted_queue,
45 				   struct sctp_transport *transport,
46 				   union sctp_addr *saddr,
47 				   struct sctp_sackhdr *sack,
48 				   __u32 *highest_new_tsn);
49 
50 static void sctp_mark_missing(struct sctp_outq *q,
51 			      struct list_head *transmitted_queue,
52 			      struct sctp_transport *transport,
53 			      __u32 highest_new_tsn,
54 			      int count_of_newacks);
55 
56 static void sctp_outq_flush(struct sctp_outq *q, int rtx_timeout, gfp_t gfp);
57 
58 /* Add data to the front of the queue. */
59 static inline void sctp_outq_head_data(struct sctp_outq *q,
60 				       struct sctp_chunk *ch)
61 {
62 	struct sctp_stream_out_ext *oute;
63 	__u16 stream;
64 
65 	list_add(&ch->list, &q->out_chunk_list);
66 	q->out_qlen += ch->skb->len;
67 
68 	stream = sctp_chunk_stream_no(ch);
69 	oute = SCTP_SO(&q->asoc->stream, stream)->ext;
70 	list_add(&ch->stream_list, &oute->outq);
71 }
72 
73 /* Take data from the front of the queue. */
74 static inline struct sctp_chunk *sctp_outq_dequeue_data(struct sctp_outq *q)
75 {
76 	return q->sched->dequeue(q);
77 }
78 
79 /* Add data chunk to the end of the queue. */
80 static inline void sctp_outq_tail_data(struct sctp_outq *q,
81 				       struct sctp_chunk *ch)
82 {
83 	struct sctp_stream_out_ext *oute;
84 	__u16 stream;
85 
86 	list_add_tail(&ch->list, &q->out_chunk_list);
87 	q->out_qlen += ch->skb->len;
88 
89 	stream = sctp_chunk_stream_no(ch);
90 	oute = SCTP_SO(&q->asoc->stream, stream)->ext;
91 	list_add_tail(&ch->stream_list, &oute->outq);
92 }
93 
94 /*
95  * SFR-CACC algorithm:
96  * D) If count_of_newacks is greater than or equal to 2
97  * and t was not sent to the current primary then the
98  * sender MUST NOT increment missing report count for t.
99  */
100 static inline int sctp_cacc_skip_3_1_d(struct sctp_transport *primary,
101 				       struct sctp_transport *transport,
102 				       int count_of_newacks)
103 {
104 	if (count_of_newacks >= 2 && transport != primary)
105 		return 1;
106 	return 0;
107 }
108 
109 /*
110  * SFR-CACC algorithm:
111  * F) If count_of_newacks is less than 2, let d be the
112  * destination to which t was sent. If cacc_saw_newack
113  * is 0 for destination d, then the sender MUST NOT
114  * increment missing report count for t.
115  */
116 static inline int sctp_cacc_skip_3_1_f(struct sctp_transport *transport,
117 				       int count_of_newacks)
118 {
119 	if (count_of_newacks < 2 &&
120 			(transport && !transport->cacc.cacc_saw_newack))
121 		return 1;
122 	return 0;
123 }
124 
125 /*
126  * SFR-CACC algorithm:
127  * 3.1) If CYCLING_CHANGEOVER is 0, the sender SHOULD
128  * execute steps C, D, F.
129  *
130  * C has been implemented in sctp_outq_sack
131  */
132 static inline int sctp_cacc_skip_3_1(struct sctp_transport *primary,
133 				     struct sctp_transport *transport,
134 				     int count_of_newacks)
135 {
136 	if (!primary->cacc.cycling_changeover) {
137 		if (sctp_cacc_skip_3_1_d(primary, transport, count_of_newacks))
138 			return 1;
139 		if (sctp_cacc_skip_3_1_f(transport, count_of_newacks))
140 			return 1;
141 		return 0;
142 	}
143 	return 0;
144 }
145 
146 /*
147  * SFR-CACC algorithm:
148  * 3.2) Else if CYCLING_CHANGEOVER is 1, and t is less
149  * than next_tsn_at_change of the current primary, then
150  * the sender MUST NOT increment missing report count
151  * for t.
152  */
153 static inline int sctp_cacc_skip_3_2(struct sctp_transport *primary, __u32 tsn)
154 {
155 	if (primary->cacc.cycling_changeover &&
156 	    TSN_lt(tsn, primary->cacc.next_tsn_at_change))
157 		return 1;
158 	return 0;
159 }
160 
161 /*
162  * SFR-CACC algorithm:
163  * 3) If the missing report count for TSN t is to be
164  * incremented according to [RFC2960] and
165  * [SCTP_STEWART-2002], and CHANGEOVER_ACTIVE is set,
166  * then the sender MUST further execute steps 3.1 and
167  * 3.2 to determine if the missing report count for
168  * TSN t SHOULD NOT be incremented.
169  *
170  * 3.3) If 3.1 and 3.2 do not dictate that the missing
171  * report count for t should not be incremented, then
172  * the sender SHOULD increment missing report count for
173  * t (according to [RFC2960] and [SCTP_STEWART_2002]).
174  */
175 static inline int sctp_cacc_skip(struct sctp_transport *primary,
176 				 struct sctp_transport *transport,
177 				 int count_of_newacks,
178 				 __u32 tsn)
179 {
180 	if (primary->cacc.changeover_active &&
181 	    (sctp_cacc_skip_3_1(primary, transport, count_of_newacks) ||
182 	     sctp_cacc_skip_3_2(primary, tsn)))
183 		return 1;
184 	return 0;
185 }
186 
187 /* Initialize an existing sctp_outq.  This does the boring stuff.
188  * You still need to define handlers if you really want to DO
189  * something with this structure...
190  */
191 void sctp_outq_init(struct sctp_association *asoc, struct sctp_outq *q)
192 {
193 	memset(q, 0, sizeof(struct sctp_outq));
194 
195 	q->asoc = asoc;
196 	INIT_LIST_HEAD(&q->out_chunk_list);
197 	INIT_LIST_HEAD(&q->control_chunk_list);
198 	INIT_LIST_HEAD(&q->retransmit);
199 	INIT_LIST_HEAD(&q->sacked);
200 	INIT_LIST_HEAD(&q->abandoned);
201 	sctp_sched_set_sched(asoc, sctp_sk(asoc->base.sk)->default_ss);
202 }
203 
204 /* Free the outqueue structure and any related pending chunks.
205  */
206 static void __sctp_outq_teardown(struct sctp_outq *q)
207 {
208 	struct sctp_transport *transport;
209 	struct list_head *lchunk, *temp;
210 	struct sctp_chunk *chunk, *tmp;
211 
212 	/* Throw away unacknowledged chunks. */
213 	list_for_each_entry(transport, &q->asoc->peer.transport_addr_list,
214 			transports) {
215 		while ((lchunk = sctp_list_dequeue(&transport->transmitted)) != NULL) {
216 			chunk = list_entry(lchunk, struct sctp_chunk,
217 					   transmitted_list);
218 			/* Mark as part of a failed message. */
219 			sctp_chunk_fail(chunk, q->error);
220 			sctp_chunk_free(chunk);
221 		}
222 	}
223 
224 	/* Throw away chunks that have been gap ACKed.  */
225 	list_for_each_safe(lchunk, temp, &q->sacked) {
226 		list_del_init(lchunk);
227 		chunk = list_entry(lchunk, struct sctp_chunk,
228 				   transmitted_list);
229 		sctp_chunk_fail(chunk, q->error);
230 		sctp_chunk_free(chunk);
231 	}
232 
233 	/* Throw away any chunks in the retransmit queue. */
234 	list_for_each_safe(lchunk, temp, &q->retransmit) {
235 		list_del_init(lchunk);
236 		chunk = list_entry(lchunk, struct sctp_chunk,
237 				   transmitted_list);
238 		sctp_chunk_fail(chunk, q->error);
239 		sctp_chunk_free(chunk);
240 	}
241 
242 	/* Throw away any chunks that are in the abandoned queue. */
243 	list_for_each_safe(lchunk, temp, &q->abandoned) {
244 		list_del_init(lchunk);
245 		chunk = list_entry(lchunk, struct sctp_chunk,
246 				   transmitted_list);
247 		sctp_chunk_fail(chunk, q->error);
248 		sctp_chunk_free(chunk);
249 	}
250 
251 	/* Throw away any leftover data chunks. */
252 	while ((chunk = sctp_outq_dequeue_data(q)) != NULL) {
253 		sctp_sched_dequeue_done(q, chunk);
254 
255 		/* Mark as send failure. */
256 		sctp_chunk_fail(chunk, q->error);
257 		sctp_chunk_free(chunk);
258 	}
259 
260 	/* Throw away any leftover control chunks. */
261 	list_for_each_entry_safe(chunk, tmp, &q->control_chunk_list, list) {
262 		list_del_init(&chunk->list);
263 		sctp_chunk_free(chunk);
264 	}
265 }
266 
267 void sctp_outq_teardown(struct sctp_outq *q)
268 {
269 	__sctp_outq_teardown(q);
270 	sctp_outq_init(q->asoc, q);
271 }
272 
273 /* Free the outqueue structure and any related pending chunks.  */
274 void sctp_outq_free(struct sctp_outq *q)
275 {
276 	/* Throw away leftover chunks. */
277 	__sctp_outq_teardown(q);
278 }
279 
280 /* Put a new chunk in an sctp_outq.  */
281 void sctp_outq_tail(struct sctp_outq *q, struct sctp_chunk *chunk, gfp_t gfp)
282 {
283 	struct net *net = q->asoc->base.net;
284 
285 	pr_debug("%s: outq:%p, chunk:%p[%s]\n", __func__, q, chunk,
286 		 chunk && chunk->chunk_hdr ?
287 		 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) :
288 		 "illegal chunk");
289 
290 	/* If it is data, queue it up, otherwise, send it
291 	 * immediately.
292 	 */
293 	if (sctp_chunk_is_data(chunk)) {
294 		pr_debug("%s: outqueueing: outq:%p, chunk:%p[%s])\n",
295 			 __func__, q, chunk, chunk && chunk->chunk_hdr ?
296 			 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) :
297 			 "illegal chunk");
298 
299 		sctp_outq_tail_data(q, chunk);
300 		if (chunk->asoc->peer.prsctp_capable &&
301 		    SCTP_PR_PRIO_ENABLED(chunk->sinfo.sinfo_flags))
302 			chunk->asoc->sent_cnt_removable++;
303 		if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED)
304 			SCTP_INC_STATS(net, SCTP_MIB_OUTUNORDERCHUNKS);
305 		else
306 			SCTP_INC_STATS(net, SCTP_MIB_OUTORDERCHUNKS);
307 	} else {
308 		list_add_tail(&chunk->list, &q->control_chunk_list);
309 		SCTP_INC_STATS(net, SCTP_MIB_OUTCTRLCHUNKS);
310 	}
311 
312 	if (!q->cork)
313 		sctp_outq_flush(q, 0, gfp);
314 }
315 
316 /* Insert a chunk into the sorted list based on the TSNs.  The retransmit list
317  * and the abandoned list are in ascending order.
318  */
319 static void sctp_insert_list(struct list_head *head, struct list_head *new)
320 {
321 	struct list_head *pos;
322 	struct sctp_chunk *nchunk, *lchunk;
323 	__u32 ntsn, ltsn;
324 	int done = 0;
325 
326 	nchunk = list_entry(new, struct sctp_chunk, transmitted_list);
327 	ntsn = ntohl(nchunk->subh.data_hdr->tsn);
328 
329 	list_for_each(pos, head) {
330 		lchunk = list_entry(pos, struct sctp_chunk, transmitted_list);
331 		ltsn = ntohl(lchunk->subh.data_hdr->tsn);
332 		if (TSN_lt(ntsn, ltsn)) {
333 			list_add(new, pos->prev);
334 			done = 1;
335 			break;
336 		}
337 	}
338 	if (!done)
339 		list_add_tail(new, head);
340 }
341 
342 static int sctp_prsctp_prune_sent(struct sctp_association *asoc,
343 				  struct sctp_sndrcvinfo *sinfo,
344 				  struct list_head *queue, int msg_len)
345 {
346 	struct sctp_chunk *chk, *temp;
347 
348 	list_for_each_entry_safe(chk, temp, queue, transmitted_list) {
349 		struct sctp_stream_out *streamout;
350 
351 		if (!chk->msg->abandoned &&
352 		    (!SCTP_PR_PRIO_ENABLED(chk->sinfo.sinfo_flags) ||
353 		     chk->sinfo.sinfo_timetolive <= sinfo->sinfo_timetolive))
354 			continue;
355 
356 		chk->msg->abandoned = 1;
357 		list_del_init(&chk->transmitted_list);
358 		sctp_insert_list(&asoc->outqueue.abandoned,
359 				 &chk->transmitted_list);
360 
361 		streamout = SCTP_SO(&asoc->stream, chk->sinfo.sinfo_stream);
362 		asoc->sent_cnt_removable--;
363 		asoc->abandoned_sent[SCTP_PR_INDEX(PRIO)]++;
364 		streamout->ext->abandoned_sent[SCTP_PR_INDEX(PRIO)]++;
365 
366 		if (queue != &asoc->outqueue.retransmit &&
367 		    !chk->tsn_gap_acked) {
368 			if (chk->transport)
369 				chk->transport->flight_size -=
370 						sctp_data_size(chk);
371 			asoc->outqueue.outstanding_bytes -= sctp_data_size(chk);
372 		}
373 
374 		msg_len -= chk->skb->truesize + sizeof(struct sctp_chunk);
375 		if (msg_len <= 0)
376 			break;
377 	}
378 
379 	return msg_len;
380 }
381 
382 static int sctp_prsctp_prune_unsent(struct sctp_association *asoc,
383 				    struct sctp_sndrcvinfo *sinfo, int msg_len)
384 {
385 	struct sctp_outq *q = &asoc->outqueue;
386 	struct sctp_chunk *chk, *temp;
387 
388 	q->sched->unsched_all(&asoc->stream);
389 
390 	list_for_each_entry_safe(chk, temp, &q->out_chunk_list, list) {
391 		if (!chk->msg->abandoned &&
392 		    (!(chk->chunk_hdr->flags & SCTP_DATA_FIRST_FRAG) ||
393 		     !SCTP_PR_PRIO_ENABLED(chk->sinfo.sinfo_flags) ||
394 		     chk->sinfo.sinfo_timetolive <= sinfo->sinfo_timetolive))
395 			continue;
396 
397 		chk->msg->abandoned = 1;
398 		sctp_sched_dequeue_common(q, chk);
399 		asoc->sent_cnt_removable--;
400 		asoc->abandoned_unsent[SCTP_PR_INDEX(PRIO)]++;
401 		if (chk->sinfo.sinfo_stream < asoc->stream.outcnt) {
402 			struct sctp_stream_out *streamout =
403 				SCTP_SO(&asoc->stream, chk->sinfo.sinfo_stream);
404 
405 			streamout->ext->abandoned_unsent[SCTP_PR_INDEX(PRIO)]++;
406 		}
407 
408 		msg_len -= chk->skb->truesize + sizeof(struct sctp_chunk);
409 		sctp_chunk_free(chk);
410 		if (msg_len <= 0)
411 			break;
412 	}
413 
414 	q->sched->sched_all(&asoc->stream);
415 
416 	return msg_len;
417 }
418 
419 /* Abandon the chunks according their priorities */
420 void sctp_prsctp_prune(struct sctp_association *asoc,
421 		       struct sctp_sndrcvinfo *sinfo, int msg_len)
422 {
423 	struct sctp_transport *transport;
424 
425 	if (!asoc->peer.prsctp_capable || !asoc->sent_cnt_removable)
426 		return;
427 
428 	msg_len = sctp_prsctp_prune_sent(asoc, sinfo,
429 					 &asoc->outqueue.retransmit,
430 					 msg_len);
431 	if (msg_len <= 0)
432 		return;
433 
434 	list_for_each_entry(transport, &asoc->peer.transport_addr_list,
435 			    transports) {
436 		msg_len = sctp_prsctp_prune_sent(asoc, sinfo,
437 						 &transport->transmitted,
438 						 msg_len);
439 		if (msg_len <= 0)
440 			return;
441 	}
442 
443 	sctp_prsctp_prune_unsent(asoc, sinfo, msg_len);
444 }
445 
446 /* Mark all the eligible packets on a transport for retransmission.  */
447 void sctp_retransmit_mark(struct sctp_outq *q,
448 			  struct sctp_transport *transport,
449 			  __u8 reason)
450 {
451 	struct list_head *lchunk, *ltemp;
452 	struct sctp_chunk *chunk;
453 
454 	/* Walk through the specified transmitted queue.  */
455 	list_for_each_safe(lchunk, ltemp, &transport->transmitted) {
456 		chunk = list_entry(lchunk, struct sctp_chunk,
457 				   transmitted_list);
458 
459 		/* If the chunk is abandoned, move it to abandoned list. */
460 		if (sctp_chunk_abandoned(chunk)) {
461 			list_del_init(lchunk);
462 			sctp_insert_list(&q->abandoned, lchunk);
463 
464 			/* If this chunk has not been previousely acked,
465 			 * stop considering it 'outstanding'.  Our peer
466 			 * will most likely never see it since it will
467 			 * not be retransmitted
468 			 */
469 			if (!chunk->tsn_gap_acked) {
470 				if (chunk->transport)
471 					chunk->transport->flight_size -=
472 							sctp_data_size(chunk);
473 				q->outstanding_bytes -= sctp_data_size(chunk);
474 				q->asoc->peer.rwnd += sctp_data_size(chunk);
475 			}
476 			continue;
477 		}
478 
479 		/* If we are doing  retransmission due to a timeout or pmtu
480 		 * discovery, only the  chunks that are not yet acked should
481 		 * be added to the retransmit queue.
482 		 */
483 		if ((reason == SCTP_RTXR_FAST_RTX  &&
484 			    (chunk->fast_retransmit == SCTP_NEED_FRTX)) ||
485 		    (reason != SCTP_RTXR_FAST_RTX  && !chunk->tsn_gap_acked)) {
486 			/* RFC 2960 6.2.1 Processing a Received SACK
487 			 *
488 			 * C) Any time a DATA chunk is marked for
489 			 * retransmission (via either T3-rtx timer expiration
490 			 * (Section 6.3.3) or via fast retransmit
491 			 * (Section 7.2.4)), add the data size of those
492 			 * chunks to the rwnd.
493 			 */
494 			q->asoc->peer.rwnd += sctp_data_size(chunk);
495 			q->outstanding_bytes -= sctp_data_size(chunk);
496 			if (chunk->transport)
497 				transport->flight_size -= sctp_data_size(chunk);
498 
499 			/* sctpimpguide-05 Section 2.8.2
500 			 * M5) If a T3-rtx timer expires, the
501 			 * 'TSN.Missing.Report' of all affected TSNs is set
502 			 * to 0.
503 			 */
504 			chunk->tsn_missing_report = 0;
505 
506 			/* If a chunk that is being used for RTT measurement
507 			 * has to be retransmitted, we cannot use this chunk
508 			 * anymore for RTT measurements. Reset rto_pending so
509 			 * that a new RTT measurement is started when a new
510 			 * data chunk is sent.
511 			 */
512 			if (chunk->rtt_in_progress) {
513 				chunk->rtt_in_progress = 0;
514 				transport->rto_pending = 0;
515 			}
516 
517 			/* Move the chunk to the retransmit queue. The chunks
518 			 * on the retransmit queue are always kept in order.
519 			 */
520 			list_del_init(lchunk);
521 			sctp_insert_list(&q->retransmit, lchunk);
522 		}
523 	}
524 
525 	pr_debug("%s: transport:%p, reason:%d, cwnd:%d, ssthresh:%d, "
526 		 "flight_size:%d, pba:%d\n", __func__, transport, reason,
527 		 transport->cwnd, transport->ssthresh, transport->flight_size,
528 		 transport->partial_bytes_acked);
529 }
530 
531 /* Mark all the eligible packets on a transport for retransmission and force
532  * one packet out.
533  */
534 void sctp_retransmit(struct sctp_outq *q, struct sctp_transport *transport,
535 		     enum sctp_retransmit_reason reason)
536 {
537 	struct net *net = q->asoc->base.net;
538 
539 	switch (reason) {
540 	case SCTP_RTXR_T3_RTX:
541 		SCTP_INC_STATS(net, SCTP_MIB_T3_RETRANSMITS);
542 		sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_T3_RTX);
543 		/* Update the retran path if the T3-rtx timer has expired for
544 		 * the current retran path.
545 		 */
546 		if (transport == transport->asoc->peer.retran_path)
547 			sctp_assoc_update_retran_path(transport->asoc);
548 		transport->asoc->rtx_data_chunks +=
549 			transport->asoc->unack_data;
550 		if (transport->pl.state == SCTP_PL_COMPLETE &&
551 		    transport->asoc->unack_data)
552 			sctp_transport_reset_probe_timer(transport);
553 		break;
554 	case SCTP_RTXR_FAST_RTX:
555 		SCTP_INC_STATS(net, SCTP_MIB_FAST_RETRANSMITS);
556 		sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_FAST_RTX);
557 		q->fast_rtx = 1;
558 		break;
559 	case SCTP_RTXR_PMTUD:
560 		SCTP_INC_STATS(net, SCTP_MIB_PMTUD_RETRANSMITS);
561 		break;
562 	case SCTP_RTXR_T1_RTX:
563 		SCTP_INC_STATS(net, SCTP_MIB_T1_RETRANSMITS);
564 		transport->asoc->init_retries++;
565 		break;
566 	default:
567 		BUG();
568 	}
569 
570 	sctp_retransmit_mark(q, transport, reason);
571 
572 	/* PR-SCTP A5) Any time the T3-rtx timer expires, on any destination,
573 	 * the sender SHOULD try to advance the "Advanced.Peer.Ack.Point" by
574 	 * following the procedures outlined in C1 - C5.
575 	 */
576 	if (reason == SCTP_RTXR_T3_RTX)
577 		q->asoc->stream.si->generate_ftsn(q, q->asoc->ctsn_ack_point);
578 
579 	/* Flush the queues only on timeout, since fast_rtx is only
580 	 * triggered during sack processing and the queue
581 	 * will be flushed at the end.
582 	 */
583 	if (reason != SCTP_RTXR_FAST_RTX)
584 		sctp_outq_flush(q, /* rtx_timeout */ 1, GFP_ATOMIC);
585 }
586 
587 /*
588  * Transmit DATA chunks on the retransmit queue.  Upon return from
589  * __sctp_outq_flush_rtx() the packet 'pkt' may contain chunks which
590  * need to be transmitted by the caller.
591  * We assume that pkt->transport has already been set.
592  *
593  * The return value is a normal kernel error return value.
594  */
595 static int __sctp_outq_flush_rtx(struct sctp_outq *q, struct sctp_packet *pkt,
596 				 int rtx_timeout, int *start_timer, gfp_t gfp)
597 {
598 	struct sctp_transport *transport = pkt->transport;
599 	struct sctp_chunk *chunk, *chunk1;
600 	struct list_head *lqueue;
601 	enum sctp_xmit status;
602 	int error = 0;
603 	int timer = 0;
604 	int done = 0;
605 	int fast_rtx;
606 
607 	lqueue = &q->retransmit;
608 	fast_rtx = q->fast_rtx;
609 
610 	/* This loop handles time-out retransmissions, fast retransmissions,
611 	 * and retransmissions due to opening of whindow.
612 	 *
613 	 * RFC 2960 6.3.3 Handle T3-rtx Expiration
614 	 *
615 	 * E3) Determine how many of the earliest (i.e., lowest TSN)
616 	 * outstanding DATA chunks for the address for which the
617 	 * T3-rtx has expired will fit into a single packet, subject
618 	 * to the MTU constraint for the path corresponding to the
619 	 * destination transport address to which the retransmission
620 	 * is being sent (this may be different from the address for
621 	 * which the timer expires [see Section 6.4]). Call this value
622 	 * K. Bundle and retransmit those K DATA chunks in a single
623 	 * packet to the destination endpoint.
624 	 *
625 	 * [Just to be painfully clear, if we are retransmitting
626 	 * because a timeout just happened, we should send only ONE
627 	 * packet of retransmitted data.]
628 	 *
629 	 * For fast retransmissions we also send only ONE packet.  However,
630 	 * if we are just flushing the queue due to open window, we'll
631 	 * try to send as much as possible.
632 	 */
633 	list_for_each_entry_safe(chunk, chunk1, lqueue, transmitted_list) {
634 		/* If the chunk is abandoned, move it to abandoned list. */
635 		if (sctp_chunk_abandoned(chunk)) {
636 			list_del_init(&chunk->transmitted_list);
637 			sctp_insert_list(&q->abandoned,
638 					 &chunk->transmitted_list);
639 			continue;
640 		}
641 
642 		/* Make sure that Gap Acked TSNs are not retransmitted.  A
643 		 * simple approach is just to move such TSNs out of the
644 		 * way and into a 'transmitted' queue and skip to the
645 		 * next chunk.
646 		 */
647 		if (chunk->tsn_gap_acked) {
648 			list_move_tail(&chunk->transmitted_list,
649 				       &transport->transmitted);
650 			continue;
651 		}
652 
653 		/* If we are doing fast retransmit, ignore non-fast_rtransmit
654 		 * chunks
655 		 */
656 		if (fast_rtx && !chunk->fast_retransmit)
657 			continue;
658 
659 redo:
660 		/* Attempt to append this chunk to the packet. */
661 		status = sctp_packet_append_chunk(pkt, chunk);
662 
663 		switch (status) {
664 		case SCTP_XMIT_PMTU_FULL:
665 			if (!pkt->has_data && !pkt->has_cookie_echo) {
666 				/* If this packet did not contain DATA then
667 				 * retransmission did not happen, so do it
668 				 * again.  We'll ignore the error here since
669 				 * control chunks are already freed so there
670 				 * is nothing we can do.
671 				 */
672 				sctp_packet_transmit(pkt, gfp);
673 				goto redo;
674 			}
675 
676 			/* Send this packet.  */
677 			error = sctp_packet_transmit(pkt, gfp);
678 
679 			/* If we are retransmitting, we should only
680 			 * send a single packet.
681 			 * Otherwise, try appending this chunk again.
682 			 */
683 			if (rtx_timeout || fast_rtx)
684 				done = 1;
685 			else
686 				goto redo;
687 
688 			/* Bundle next chunk in the next round.  */
689 			break;
690 
691 		case SCTP_XMIT_RWND_FULL:
692 			/* Send this packet. */
693 			error = sctp_packet_transmit(pkt, gfp);
694 
695 			/* Stop sending DATA as there is no more room
696 			 * at the receiver.
697 			 */
698 			done = 1;
699 			break;
700 
701 		case SCTP_XMIT_DELAY:
702 			/* Send this packet. */
703 			error = sctp_packet_transmit(pkt, gfp);
704 
705 			/* Stop sending DATA because of nagle delay. */
706 			done = 1;
707 			break;
708 
709 		default:
710 			/* The append was successful, so add this chunk to
711 			 * the transmitted list.
712 			 */
713 			list_move_tail(&chunk->transmitted_list,
714 				       &transport->transmitted);
715 
716 			/* Mark the chunk as ineligible for fast retransmit
717 			 * after it is retransmitted.
718 			 */
719 			if (chunk->fast_retransmit == SCTP_NEED_FRTX)
720 				chunk->fast_retransmit = SCTP_DONT_FRTX;
721 
722 			q->asoc->stats.rtxchunks++;
723 			break;
724 		}
725 
726 		/* Set the timer if there were no errors */
727 		if (!error && !timer)
728 			timer = 1;
729 
730 		if (done)
731 			break;
732 	}
733 
734 	/* If we are here due to a retransmit timeout or a fast
735 	 * retransmit and if there are any chunks left in the retransmit
736 	 * queue that could not fit in the PMTU sized packet, they need
737 	 * to be marked as ineligible for a subsequent fast retransmit.
738 	 */
739 	if (rtx_timeout || fast_rtx) {
740 		list_for_each_entry(chunk1, lqueue, transmitted_list) {
741 			if (chunk1->fast_retransmit == SCTP_NEED_FRTX)
742 				chunk1->fast_retransmit = SCTP_DONT_FRTX;
743 		}
744 	}
745 
746 	*start_timer = timer;
747 
748 	/* Clear fast retransmit hint */
749 	if (fast_rtx)
750 		q->fast_rtx = 0;
751 
752 	return error;
753 }
754 
755 /* Cork the outqueue so queued chunks are really queued. */
756 void sctp_outq_uncork(struct sctp_outq *q, gfp_t gfp)
757 {
758 	if (q->cork)
759 		q->cork = 0;
760 
761 	sctp_outq_flush(q, 0, gfp);
762 }
763 
764 static int sctp_packet_singleton(struct sctp_transport *transport,
765 				 struct sctp_chunk *chunk, gfp_t gfp)
766 {
767 	const struct sctp_association *asoc = transport->asoc;
768 	const __u16 sport = asoc->base.bind_addr.port;
769 	const __u16 dport = asoc->peer.port;
770 	const __u32 vtag = asoc->peer.i.init_tag;
771 	struct sctp_packet singleton;
772 
773 	sctp_packet_init(&singleton, transport, sport, dport);
774 	sctp_packet_config(&singleton, vtag, 0);
775 	if (sctp_packet_append_chunk(&singleton, chunk) != SCTP_XMIT_OK) {
776 		list_del_init(&chunk->list);
777 		sctp_chunk_free(chunk);
778 		return -ENOMEM;
779 	}
780 	return sctp_packet_transmit(&singleton, gfp);
781 }
782 
783 /* Struct to hold the context during sctp outq flush */
784 struct sctp_flush_ctx {
785 	struct sctp_outq *q;
786 	/* Current transport being used. It's NOT the same as curr active one */
787 	struct sctp_transport *transport;
788 	/* These transports have chunks to send. */
789 	struct list_head transport_list;
790 	struct sctp_association *asoc;
791 	/* Packet on the current transport above */
792 	struct sctp_packet *packet;
793 	gfp_t gfp;
794 };
795 
796 /* transport: current transport */
797 static void sctp_outq_select_transport(struct sctp_flush_ctx *ctx,
798 				       struct sctp_chunk *chunk)
799 {
800 	struct sctp_transport *new_transport = chunk->transport;
801 
802 	if (!new_transport) {
803 		if (!sctp_chunk_is_data(chunk)) {
804 			/* If we have a prior transport pointer, see if
805 			 * the destination address of the chunk
806 			 * matches the destination address of the
807 			 * current transport.  If not a match, then
808 			 * try to look up the transport with a given
809 			 * destination address.  We do this because
810 			 * after processing ASCONFs, we may have new
811 			 * transports created.
812 			 */
813 			if (ctx->transport && sctp_cmp_addr_exact(&chunk->dest,
814 							&ctx->transport->ipaddr))
815 				new_transport = ctx->transport;
816 			else
817 				new_transport = sctp_assoc_lookup_paddr(ctx->asoc,
818 								  &chunk->dest);
819 		}
820 
821 		/* if we still don't have a new transport, then
822 		 * use the current active path.
823 		 */
824 		if (!new_transport)
825 			new_transport = ctx->asoc->peer.active_path;
826 	} else {
827 		__u8 type;
828 
829 		switch (new_transport->state) {
830 		case SCTP_INACTIVE:
831 		case SCTP_UNCONFIRMED:
832 		case SCTP_PF:
833 			/* If the chunk is Heartbeat or Heartbeat Ack,
834 			 * send it to chunk->transport, even if it's
835 			 * inactive.
836 			 *
837 			 * 3.3.6 Heartbeat Acknowledgement:
838 			 * ...
839 			 * A HEARTBEAT ACK is always sent to the source IP
840 			 * address of the IP datagram containing the
841 			 * HEARTBEAT chunk to which this ack is responding.
842 			 * ...
843 			 *
844 			 * ASCONF_ACKs also must be sent to the source.
845 			 */
846 			type = chunk->chunk_hdr->type;
847 			if (type != SCTP_CID_HEARTBEAT &&
848 			    type != SCTP_CID_HEARTBEAT_ACK &&
849 			    type != SCTP_CID_ASCONF_ACK)
850 				new_transport = ctx->asoc->peer.active_path;
851 			break;
852 		default:
853 			break;
854 		}
855 	}
856 
857 	/* Are we switching transports? Take care of transport locks. */
858 	if (new_transport != ctx->transport) {
859 		ctx->transport = new_transport;
860 		ctx->packet = &ctx->transport->packet;
861 
862 		if (list_empty(&ctx->transport->send_ready))
863 			list_add_tail(&ctx->transport->send_ready,
864 				      &ctx->transport_list);
865 
866 		sctp_packet_config(ctx->packet,
867 				   ctx->asoc->peer.i.init_tag,
868 				   ctx->asoc->peer.ecn_capable);
869 		/* We've switched transports, so apply the
870 		 * Burst limit to the new transport.
871 		 */
872 		sctp_transport_burst_limited(ctx->transport);
873 	}
874 }
875 
876 static void sctp_outq_flush_ctrl(struct sctp_flush_ctx *ctx)
877 {
878 	struct sctp_chunk *chunk, *tmp;
879 	enum sctp_xmit status;
880 	int one_packet, error;
881 
882 	list_for_each_entry_safe(chunk, tmp, &ctx->q->control_chunk_list, list) {
883 		one_packet = 0;
884 
885 		/* RFC 5061, 5.3
886 		 * F1) This means that until such time as the ASCONF
887 		 * containing the add is acknowledged, the sender MUST
888 		 * NOT use the new IP address as a source for ANY SCTP
889 		 * packet except on carrying an ASCONF Chunk.
890 		 */
891 		if (ctx->asoc->src_out_of_asoc_ok &&
892 		    chunk->chunk_hdr->type != SCTP_CID_ASCONF)
893 			continue;
894 
895 		list_del_init(&chunk->list);
896 
897 		/* Pick the right transport to use. Should always be true for
898 		 * the first chunk as we don't have a transport by then.
899 		 */
900 		sctp_outq_select_transport(ctx, chunk);
901 
902 		switch (chunk->chunk_hdr->type) {
903 		/* 6.10 Bundling
904 		 *   ...
905 		 *   An endpoint MUST NOT bundle INIT, INIT ACK or SHUTDOWN
906 		 *   COMPLETE with any other chunks.  [Send them immediately.]
907 		 */
908 		case SCTP_CID_INIT:
909 		case SCTP_CID_INIT_ACK:
910 		case SCTP_CID_SHUTDOWN_COMPLETE:
911 			error = sctp_packet_singleton(ctx->transport, chunk,
912 						      ctx->gfp);
913 			if (error < 0) {
914 				ctx->asoc->base.sk->sk_err = -error;
915 				return;
916 			}
917 			ctx->asoc->stats.octrlchunks++;
918 			break;
919 
920 		case SCTP_CID_ABORT:
921 			if (sctp_test_T_bit(chunk))
922 				ctx->packet->vtag = ctx->asoc->c.my_vtag;
923 			fallthrough;
924 
925 		/* The following chunks are "response" chunks, i.e.
926 		 * they are generated in response to something we
927 		 * received.  If we are sending these, then we can
928 		 * send only 1 packet containing these chunks.
929 		 */
930 		case SCTP_CID_HEARTBEAT_ACK:
931 		case SCTP_CID_SHUTDOWN_ACK:
932 		case SCTP_CID_COOKIE_ACK:
933 		case SCTP_CID_COOKIE_ECHO:
934 		case SCTP_CID_ERROR:
935 		case SCTP_CID_ECN_CWR:
936 		case SCTP_CID_ASCONF_ACK:
937 			one_packet = 1;
938 			fallthrough;
939 
940 		case SCTP_CID_HEARTBEAT:
941 			if (chunk->pmtu_probe) {
942 				error = sctp_packet_singleton(ctx->transport,
943 							      chunk, ctx->gfp);
944 				if (!error)
945 					ctx->asoc->stats.octrlchunks++;
946 				break;
947 			}
948 			fallthrough;
949 		case SCTP_CID_SACK:
950 		case SCTP_CID_SHUTDOWN:
951 		case SCTP_CID_ECN_ECNE:
952 		case SCTP_CID_ASCONF:
953 		case SCTP_CID_FWD_TSN:
954 		case SCTP_CID_I_FWD_TSN:
955 		case SCTP_CID_RECONF:
956 			status = sctp_packet_transmit_chunk(ctx->packet, chunk,
957 							    one_packet, ctx->gfp);
958 			if (status != SCTP_XMIT_OK) {
959 				/* put the chunk back */
960 				list_add(&chunk->list, &ctx->q->control_chunk_list);
961 				break;
962 			}
963 
964 			ctx->asoc->stats.octrlchunks++;
965 			/* PR-SCTP C5) If a FORWARD TSN is sent, the
966 			 * sender MUST assure that at least one T3-rtx
967 			 * timer is running.
968 			 */
969 			if (chunk->chunk_hdr->type == SCTP_CID_FWD_TSN ||
970 			    chunk->chunk_hdr->type == SCTP_CID_I_FWD_TSN) {
971 				sctp_transport_reset_t3_rtx(ctx->transport);
972 				ctx->transport->last_time_sent = jiffies;
973 			}
974 
975 			if (chunk == ctx->asoc->strreset_chunk)
976 				sctp_transport_reset_reconf_timer(ctx->transport);
977 
978 			break;
979 
980 		default:
981 			/* We built a chunk with an illegal type! */
982 			BUG();
983 		}
984 	}
985 }
986 
987 /* Returns false if new data shouldn't be sent */
988 static bool sctp_outq_flush_rtx(struct sctp_flush_ctx *ctx,
989 				int rtx_timeout)
990 {
991 	int error, start_timer = 0;
992 
993 	if (ctx->asoc->peer.retran_path->state == SCTP_UNCONFIRMED)
994 		return false;
995 
996 	if (ctx->transport != ctx->asoc->peer.retran_path) {
997 		/* Switch transports & prepare the packet.  */
998 		ctx->transport = ctx->asoc->peer.retran_path;
999 		ctx->packet = &ctx->transport->packet;
1000 
1001 		if (list_empty(&ctx->transport->send_ready))
1002 			list_add_tail(&ctx->transport->send_ready,
1003 				      &ctx->transport_list);
1004 
1005 		sctp_packet_config(ctx->packet, ctx->asoc->peer.i.init_tag,
1006 				   ctx->asoc->peer.ecn_capable);
1007 	}
1008 
1009 	error = __sctp_outq_flush_rtx(ctx->q, ctx->packet, rtx_timeout,
1010 				      &start_timer, ctx->gfp);
1011 	if (error < 0)
1012 		ctx->asoc->base.sk->sk_err = -error;
1013 
1014 	if (start_timer) {
1015 		sctp_transport_reset_t3_rtx(ctx->transport);
1016 		ctx->transport->last_time_sent = jiffies;
1017 	}
1018 
1019 	/* This can happen on COOKIE-ECHO resend.  Only
1020 	 * one chunk can get bundled with a COOKIE-ECHO.
1021 	 */
1022 	if (ctx->packet->has_cookie_echo)
1023 		return false;
1024 
1025 	/* Don't send new data if there is still data
1026 	 * waiting to retransmit.
1027 	 */
1028 	if (!list_empty(&ctx->q->retransmit))
1029 		return false;
1030 
1031 	return true;
1032 }
1033 
1034 static void sctp_outq_flush_data(struct sctp_flush_ctx *ctx,
1035 				 int rtx_timeout)
1036 {
1037 	struct sctp_chunk *chunk;
1038 	enum sctp_xmit status;
1039 
1040 	/* Is it OK to send data chunks?  */
1041 	switch (ctx->asoc->state) {
1042 	case SCTP_STATE_COOKIE_ECHOED:
1043 		/* Only allow bundling when this packet has a COOKIE-ECHO
1044 		 * chunk.
1045 		 */
1046 		if (!ctx->packet || !ctx->packet->has_cookie_echo)
1047 			return;
1048 
1049 		fallthrough;
1050 	case SCTP_STATE_ESTABLISHED:
1051 	case SCTP_STATE_SHUTDOWN_PENDING:
1052 	case SCTP_STATE_SHUTDOWN_RECEIVED:
1053 		break;
1054 
1055 	default:
1056 		/* Do nothing. */
1057 		return;
1058 	}
1059 
1060 	/* RFC 2960 6.1  Transmission of DATA Chunks
1061 	 *
1062 	 * C) When the time comes for the sender to transmit,
1063 	 * before sending new DATA chunks, the sender MUST
1064 	 * first transmit any outstanding DATA chunks which
1065 	 * are marked for retransmission (limited by the
1066 	 * current cwnd).
1067 	 */
1068 	if (!list_empty(&ctx->q->retransmit) &&
1069 	    !sctp_outq_flush_rtx(ctx, rtx_timeout))
1070 		return;
1071 
1072 	/* Apply Max.Burst limitation to the current transport in
1073 	 * case it will be used for new data.  We are going to
1074 	 * rest it before we return, but we want to apply the limit
1075 	 * to the currently queued data.
1076 	 */
1077 	if (ctx->transport)
1078 		sctp_transport_burst_limited(ctx->transport);
1079 
1080 	/* Finally, transmit new packets.  */
1081 	while ((chunk = sctp_outq_dequeue_data(ctx->q)) != NULL) {
1082 		__u32 sid = ntohs(chunk->subh.data_hdr->stream);
1083 		__u8 stream_state = SCTP_SO(&ctx->asoc->stream, sid)->state;
1084 
1085 		/* Has this chunk expired? */
1086 		if (sctp_chunk_abandoned(chunk)) {
1087 			sctp_sched_dequeue_done(ctx->q, chunk);
1088 			sctp_chunk_fail(chunk, 0);
1089 			sctp_chunk_free(chunk);
1090 			continue;
1091 		}
1092 
1093 		if (stream_state == SCTP_STREAM_CLOSED) {
1094 			sctp_outq_head_data(ctx->q, chunk);
1095 			break;
1096 		}
1097 
1098 		sctp_outq_select_transport(ctx, chunk);
1099 
1100 		pr_debug("%s: outq:%p, chunk:%p[%s], tx-tsn:0x%x skb->head:%p skb->users:%d\n",
1101 			 __func__, ctx->q, chunk, chunk && chunk->chunk_hdr ?
1102 			 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) :
1103 			 "illegal chunk", ntohl(chunk->subh.data_hdr->tsn),
1104 			 chunk->skb ? chunk->skb->head : NULL, chunk->skb ?
1105 			 refcount_read(&chunk->skb->users) : -1);
1106 
1107 		/* Add the chunk to the packet.  */
1108 		status = sctp_packet_transmit_chunk(ctx->packet, chunk, 0,
1109 						    ctx->gfp);
1110 		if (status != SCTP_XMIT_OK) {
1111 			/* We could not append this chunk, so put
1112 			 * the chunk back on the output queue.
1113 			 */
1114 			pr_debug("%s: could not transmit tsn:0x%x, status:%d\n",
1115 				 __func__, ntohl(chunk->subh.data_hdr->tsn),
1116 				 status);
1117 
1118 			sctp_outq_head_data(ctx->q, chunk);
1119 			break;
1120 		}
1121 
1122 		/* The sender is in the SHUTDOWN-PENDING state,
1123 		 * The sender MAY set the I-bit in the DATA
1124 		 * chunk header.
1125 		 */
1126 		if (ctx->asoc->state == SCTP_STATE_SHUTDOWN_PENDING)
1127 			chunk->chunk_hdr->flags |= SCTP_DATA_SACK_IMM;
1128 		if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED)
1129 			ctx->asoc->stats.ouodchunks++;
1130 		else
1131 			ctx->asoc->stats.oodchunks++;
1132 
1133 		/* Only now it's safe to consider this
1134 		 * chunk as sent, sched-wise.
1135 		 */
1136 		sctp_sched_dequeue_done(ctx->q, chunk);
1137 
1138 		list_add_tail(&chunk->transmitted_list,
1139 			      &ctx->transport->transmitted);
1140 
1141 		sctp_transport_reset_t3_rtx(ctx->transport);
1142 		ctx->transport->last_time_sent = jiffies;
1143 
1144 		/* Only let one DATA chunk get bundled with a
1145 		 * COOKIE-ECHO chunk.
1146 		 */
1147 		if (ctx->packet->has_cookie_echo)
1148 			break;
1149 	}
1150 }
1151 
1152 static void sctp_outq_flush_transports(struct sctp_flush_ctx *ctx)
1153 {
1154 	struct sock *sk = ctx->asoc->base.sk;
1155 	struct list_head *ltransport;
1156 	struct sctp_packet *packet;
1157 	struct sctp_transport *t;
1158 	int error = 0;
1159 
1160 	while ((ltransport = sctp_list_dequeue(&ctx->transport_list)) != NULL) {
1161 		t = list_entry(ltransport, struct sctp_transport, send_ready);
1162 		packet = &t->packet;
1163 		if (!sctp_packet_empty(packet)) {
1164 			rcu_read_lock();
1165 			if (t->dst && __sk_dst_get(sk) != t->dst) {
1166 				dst_hold(t->dst);
1167 				sk_setup_caps(sk, t->dst);
1168 			}
1169 			rcu_read_unlock();
1170 			error = sctp_packet_transmit(packet, ctx->gfp);
1171 			if (error < 0)
1172 				ctx->q->asoc->base.sk->sk_err = -error;
1173 		}
1174 
1175 		/* Clear the burst limited state, if any */
1176 		sctp_transport_burst_reset(t);
1177 	}
1178 }
1179 
1180 /* Try to flush an outqueue.
1181  *
1182  * Description: Send everything in q which we legally can, subject to
1183  * congestion limitations.
1184  * * Note: This function can be called from multiple contexts so appropriate
1185  * locking concerns must be made.  Today we use the sock lock to protect
1186  * this function.
1187  */
1188 
1189 static void sctp_outq_flush(struct sctp_outq *q, int rtx_timeout, gfp_t gfp)
1190 {
1191 	struct sctp_flush_ctx ctx = {
1192 		.q = q,
1193 		.transport = NULL,
1194 		.transport_list = LIST_HEAD_INIT(ctx.transport_list),
1195 		.asoc = q->asoc,
1196 		.packet = NULL,
1197 		.gfp = gfp,
1198 	};
1199 
1200 	/* 6.10 Bundling
1201 	 *   ...
1202 	 *   When bundling control chunks with DATA chunks, an
1203 	 *   endpoint MUST place control chunks first in the outbound
1204 	 *   SCTP packet.  The transmitter MUST transmit DATA chunks
1205 	 *   within a SCTP packet in increasing order of TSN.
1206 	 *   ...
1207 	 */
1208 
1209 	sctp_outq_flush_ctrl(&ctx);
1210 
1211 	if (q->asoc->src_out_of_asoc_ok)
1212 		goto sctp_flush_out;
1213 
1214 	sctp_outq_flush_data(&ctx, rtx_timeout);
1215 
1216 sctp_flush_out:
1217 
1218 	sctp_outq_flush_transports(&ctx);
1219 }
1220 
1221 /* Update unack_data based on the incoming SACK chunk */
1222 static void sctp_sack_update_unack_data(struct sctp_association *assoc,
1223 					struct sctp_sackhdr *sack)
1224 {
1225 	union sctp_sack_variable *frags;
1226 	__u16 unack_data;
1227 	int i;
1228 
1229 	unack_data = assoc->next_tsn - assoc->ctsn_ack_point - 1;
1230 
1231 	frags = sack->variable;
1232 	for (i = 0; i < ntohs(sack->num_gap_ack_blocks); i++) {
1233 		unack_data -= ((ntohs(frags[i].gab.end) -
1234 				ntohs(frags[i].gab.start) + 1));
1235 	}
1236 
1237 	assoc->unack_data = unack_data;
1238 }
1239 
1240 /* This is where we REALLY process a SACK.
1241  *
1242  * Process the SACK against the outqueue.  Mostly, this just frees
1243  * things off the transmitted queue.
1244  */
1245 int sctp_outq_sack(struct sctp_outq *q, struct sctp_chunk *chunk)
1246 {
1247 	struct sctp_association *asoc = q->asoc;
1248 	struct sctp_sackhdr *sack = chunk->subh.sack_hdr;
1249 	struct sctp_transport *transport;
1250 	struct sctp_chunk *tchunk = NULL;
1251 	struct list_head *lchunk, *transport_list, *temp;
1252 	union sctp_sack_variable *frags = sack->variable;
1253 	__u32 sack_ctsn, ctsn, tsn;
1254 	__u32 highest_tsn, highest_new_tsn;
1255 	__u32 sack_a_rwnd;
1256 	unsigned int outstanding;
1257 	struct sctp_transport *primary = asoc->peer.primary_path;
1258 	int count_of_newacks = 0;
1259 	int gap_ack_blocks;
1260 	u8 accum_moved = 0;
1261 
1262 	/* Grab the association's destination address list. */
1263 	transport_list = &asoc->peer.transport_addr_list;
1264 
1265 	/* SCTP path tracepoint for congestion control debugging. */
1266 	if (trace_sctp_probe_path_enabled()) {
1267 		list_for_each_entry(transport, transport_list, transports)
1268 			trace_sctp_probe_path(transport, asoc);
1269 	}
1270 
1271 	sack_ctsn = ntohl(sack->cum_tsn_ack);
1272 	gap_ack_blocks = ntohs(sack->num_gap_ack_blocks);
1273 	asoc->stats.gapcnt += gap_ack_blocks;
1274 	/*
1275 	 * SFR-CACC algorithm:
1276 	 * On receipt of a SACK the sender SHOULD execute the
1277 	 * following statements.
1278 	 *
1279 	 * 1) If the cumulative ack in the SACK passes next tsn_at_change
1280 	 * on the current primary, the CHANGEOVER_ACTIVE flag SHOULD be
1281 	 * cleared. The CYCLING_CHANGEOVER flag SHOULD also be cleared for
1282 	 * all destinations.
1283 	 * 2) If the SACK contains gap acks and the flag CHANGEOVER_ACTIVE
1284 	 * is set the receiver of the SACK MUST take the following actions:
1285 	 *
1286 	 * A) Initialize the cacc_saw_newack to 0 for all destination
1287 	 * addresses.
1288 	 *
1289 	 * Only bother if changeover_active is set. Otherwise, this is
1290 	 * totally suboptimal to do on every SACK.
1291 	 */
1292 	if (primary->cacc.changeover_active) {
1293 		u8 clear_cycling = 0;
1294 
1295 		if (TSN_lte(primary->cacc.next_tsn_at_change, sack_ctsn)) {
1296 			primary->cacc.changeover_active = 0;
1297 			clear_cycling = 1;
1298 		}
1299 
1300 		if (clear_cycling || gap_ack_blocks) {
1301 			list_for_each_entry(transport, transport_list,
1302 					transports) {
1303 				if (clear_cycling)
1304 					transport->cacc.cycling_changeover = 0;
1305 				if (gap_ack_blocks)
1306 					transport->cacc.cacc_saw_newack = 0;
1307 			}
1308 		}
1309 	}
1310 
1311 	/* Get the highest TSN in the sack. */
1312 	highest_tsn = sack_ctsn;
1313 	if (gap_ack_blocks)
1314 		highest_tsn += ntohs(frags[gap_ack_blocks - 1].gab.end);
1315 
1316 	if (TSN_lt(asoc->highest_sacked, highest_tsn))
1317 		asoc->highest_sacked = highest_tsn;
1318 
1319 	highest_new_tsn = sack_ctsn;
1320 
1321 	/* Run through the retransmit queue.  Credit bytes received
1322 	 * and free those chunks that we can.
1323 	 */
1324 	sctp_check_transmitted(q, &q->retransmit, NULL, NULL, sack, &highest_new_tsn);
1325 
1326 	/* Run through the transmitted queue.
1327 	 * Credit bytes received and free those chunks which we can.
1328 	 *
1329 	 * This is a MASSIVE candidate for optimization.
1330 	 */
1331 	list_for_each_entry(transport, transport_list, transports) {
1332 		sctp_check_transmitted(q, &transport->transmitted,
1333 				       transport, &chunk->source, sack,
1334 				       &highest_new_tsn);
1335 		/*
1336 		 * SFR-CACC algorithm:
1337 		 * C) Let count_of_newacks be the number of
1338 		 * destinations for which cacc_saw_newack is set.
1339 		 */
1340 		if (transport->cacc.cacc_saw_newack)
1341 			count_of_newacks++;
1342 	}
1343 
1344 	/* Move the Cumulative TSN Ack Point if appropriate.  */
1345 	if (TSN_lt(asoc->ctsn_ack_point, sack_ctsn)) {
1346 		asoc->ctsn_ack_point = sack_ctsn;
1347 		accum_moved = 1;
1348 	}
1349 
1350 	if (gap_ack_blocks) {
1351 
1352 		if (asoc->fast_recovery && accum_moved)
1353 			highest_new_tsn = highest_tsn;
1354 
1355 		list_for_each_entry(transport, transport_list, transports)
1356 			sctp_mark_missing(q, &transport->transmitted, transport,
1357 					  highest_new_tsn, count_of_newacks);
1358 	}
1359 
1360 	/* Update unack_data field in the assoc. */
1361 	sctp_sack_update_unack_data(asoc, sack);
1362 
1363 	ctsn = asoc->ctsn_ack_point;
1364 
1365 	/* Throw away stuff rotting on the sack queue.  */
1366 	list_for_each_safe(lchunk, temp, &q->sacked) {
1367 		tchunk = list_entry(lchunk, struct sctp_chunk,
1368 				    transmitted_list);
1369 		tsn = ntohl(tchunk->subh.data_hdr->tsn);
1370 		if (TSN_lte(tsn, ctsn)) {
1371 			list_del_init(&tchunk->transmitted_list);
1372 			if (asoc->peer.prsctp_capable &&
1373 			    SCTP_PR_PRIO_ENABLED(chunk->sinfo.sinfo_flags))
1374 				asoc->sent_cnt_removable--;
1375 			sctp_chunk_free(tchunk);
1376 		}
1377 	}
1378 
1379 	/* ii) Set rwnd equal to the newly received a_rwnd minus the
1380 	 *     number of bytes still outstanding after processing the
1381 	 *     Cumulative TSN Ack and the Gap Ack Blocks.
1382 	 */
1383 
1384 	sack_a_rwnd = ntohl(sack->a_rwnd);
1385 	asoc->peer.zero_window_announced = !sack_a_rwnd;
1386 	outstanding = q->outstanding_bytes;
1387 
1388 	if (outstanding < sack_a_rwnd)
1389 		sack_a_rwnd -= outstanding;
1390 	else
1391 		sack_a_rwnd = 0;
1392 
1393 	asoc->peer.rwnd = sack_a_rwnd;
1394 
1395 	asoc->stream.si->generate_ftsn(q, sack_ctsn);
1396 
1397 	pr_debug("%s: sack cumulative tsn ack:0x%x\n", __func__, sack_ctsn);
1398 	pr_debug("%s: cumulative tsn ack of assoc:%p is 0x%x, "
1399 		 "advertised peer ack point:0x%x\n", __func__, asoc, ctsn,
1400 		 asoc->adv_peer_ack_point);
1401 
1402 	return sctp_outq_is_empty(q);
1403 }
1404 
1405 /* Is the outqueue empty?
1406  * The queue is empty when we have not pending data, no in-flight data
1407  * and nothing pending retransmissions.
1408  */
1409 int sctp_outq_is_empty(const struct sctp_outq *q)
1410 {
1411 	return q->out_qlen == 0 && q->outstanding_bytes == 0 &&
1412 	       list_empty(&q->retransmit);
1413 }
1414 
1415 /********************************************************************
1416  * 2nd Level Abstractions
1417  ********************************************************************/
1418 
1419 /* Go through a transport's transmitted list or the association's retransmit
1420  * list and move chunks that are acked by the Cumulative TSN Ack to q->sacked.
1421  * The retransmit list will not have an associated transport.
1422  *
1423  * I added coherent debug information output.	--xguo
1424  *
1425  * Instead of printing 'sacked' or 'kept' for each TSN on the
1426  * transmitted_queue, we print a range: SACKED: TSN1-TSN2, TSN3, TSN4-TSN5.
1427  * KEPT TSN6-TSN7, etc.
1428  */
1429 static void sctp_check_transmitted(struct sctp_outq *q,
1430 				   struct list_head *transmitted_queue,
1431 				   struct sctp_transport *transport,
1432 				   union sctp_addr *saddr,
1433 				   struct sctp_sackhdr *sack,
1434 				   __u32 *highest_new_tsn_in_sack)
1435 {
1436 	struct list_head *lchunk;
1437 	struct sctp_chunk *tchunk;
1438 	struct list_head tlist;
1439 	__u32 tsn;
1440 	__u32 sack_ctsn;
1441 	__u32 rtt;
1442 	__u8 restart_timer = 0;
1443 	int bytes_acked = 0;
1444 	int migrate_bytes = 0;
1445 	bool forward_progress = false;
1446 
1447 	sack_ctsn = ntohl(sack->cum_tsn_ack);
1448 
1449 	INIT_LIST_HEAD(&tlist);
1450 
1451 	/* The while loop will skip empty transmitted queues. */
1452 	while (NULL != (lchunk = sctp_list_dequeue(transmitted_queue))) {
1453 		tchunk = list_entry(lchunk, struct sctp_chunk,
1454 				    transmitted_list);
1455 
1456 		if (sctp_chunk_abandoned(tchunk)) {
1457 			/* Move the chunk to abandoned list. */
1458 			sctp_insert_list(&q->abandoned, lchunk);
1459 
1460 			/* If this chunk has not been acked, stop
1461 			 * considering it as 'outstanding'.
1462 			 */
1463 			if (transmitted_queue != &q->retransmit &&
1464 			    !tchunk->tsn_gap_acked) {
1465 				if (tchunk->transport)
1466 					tchunk->transport->flight_size -=
1467 							sctp_data_size(tchunk);
1468 				q->outstanding_bytes -= sctp_data_size(tchunk);
1469 			}
1470 			continue;
1471 		}
1472 
1473 		tsn = ntohl(tchunk->subh.data_hdr->tsn);
1474 		if (sctp_acked(sack, tsn)) {
1475 			/* If this queue is the retransmit queue, the
1476 			 * retransmit timer has already reclaimed
1477 			 * the outstanding bytes for this chunk, so only
1478 			 * count bytes associated with a transport.
1479 			 */
1480 			if (transport && !tchunk->tsn_gap_acked) {
1481 				/* If this chunk is being used for RTT
1482 				 * measurement, calculate the RTT and update
1483 				 * the RTO using this value.
1484 				 *
1485 				 * 6.3.1 C5) Karn's algorithm: RTT measurements
1486 				 * MUST NOT be made using packets that were
1487 				 * retransmitted (and thus for which it is
1488 				 * ambiguous whether the reply was for the
1489 				 * first instance of the packet or a later
1490 				 * instance).
1491 				 */
1492 				if (!sctp_chunk_retransmitted(tchunk) &&
1493 				    tchunk->rtt_in_progress) {
1494 					tchunk->rtt_in_progress = 0;
1495 					rtt = jiffies - tchunk->sent_at;
1496 					sctp_transport_update_rto(transport,
1497 								  rtt);
1498 				}
1499 
1500 				if (TSN_lte(tsn, sack_ctsn)) {
1501 					/*
1502 					 * SFR-CACC algorithm:
1503 					 * 2) If the SACK contains gap acks
1504 					 * and the flag CHANGEOVER_ACTIVE is
1505 					 * set the receiver of the SACK MUST
1506 					 * take the following action:
1507 					 *
1508 					 * B) For each TSN t being acked that
1509 					 * has not been acked in any SACK so
1510 					 * far, set cacc_saw_newack to 1 for
1511 					 * the destination that the TSN was
1512 					 * sent to.
1513 					 */
1514 					if (sack->num_gap_ack_blocks &&
1515 					    q->asoc->peer.primary_path->cacc.
1516 					    changeover_active)
1517 						transport->cacc.cacc_saw_newack
1518 							= 1;
1519 				}
1520 			}
1521 
1522 			/* If the chunk hasn't been marked as ACKED,
1523 			 * mark it and account bytes_acked if the
1524 			 * chunk had a valid transport (it will not
1525 			 * have a transport if ASCONF had deleted it
1526 			 * while DATA was outstanding).
1527 			 */
1528 			if (!tchunk->tsn_gap_acked) {
1529 				tchunk->tsn_gap_acked = 1;
1530 				if (TSN_lt(*highest_new_tsn_in_sack, tsn))
1531 					*highest_new_tsn_in_sack = tsn;
1532 				bytes_acked += sctp_data_size(tchunk);
1533 				if (!tchunk->transport)
1534 					migrate_bytes += sctp_data_size(tchunk);
1535 				forward_progress = true;
1536 			}
1537 
1538 			if (TSN_lte(tsn, sack_ctsn)) {
1539 				/* RFC 2960  6.3.2 Retransmission Timer Rules
1540 				 *
1541 				 * R3) Whenever a SACK is received
1542 				 * that acknowledges the DATA chunk
1543 				 * with the earliest outstanding TSN
1544 				 * for that address, restart T3-rtx
1545 				 * timer for that address with its
1546 				 * current RTO.
1547 				 */
1548 				restart_timer = 1;
1549 				forward_progress = true;
1550 
1551 				list_add_tail(&tchunk->transmitted_list,
1552 					      &q->sacked);
1553 			} else {
1554 				/* RFC2960 7.2.4, sctpimpguide-05 2.8.2
1555 				 * M2) Each time a SACK arrives reporting
1556 				 * 'Stray DATA chunk(s)' record the highest TSN
1557 				 * reported as newly acknowledged, call this
1558 				 * value 'HighestTSNinSack'. A newly
1559 				 * acknowledged DATA chunk is one not
1560 				 * previously acknowledged in a SACK.
1561 				 *
1562 				 * When the SCTP sender of data receives a SACK
1563 				 * chunk that acknowledges, for the first time,
1564 				 * the receipt of a DATA chunk, all the still
1565 				 * unacknowledged DATA chunks whose TSN is
1566 				 * older than that newly acknowledged DATA
1567 				 * chunk, are qualified as 'Stray DATA chunks'.
1568 				 */
1569 				list_add_tail(lchunk, &tlist);
1570 			}
1571 		} else {
1572 			if (tchunk->tsn_gap_acked) {
1573 				pr_debug("%s: receiver reneged on data TSN:0x%x\n",
1574 					 __func__, tsn);
1575 
1576 				tchunk->tsn_gap_acked = 0;
1577 
1578 				if (tchunk->transport)
1579 					bytes_acked -= sctp_data_size(tchunk);
1580 
1581 				/* RFC 2960 6.3.2 Retransmission Timer Rules
1582 				 *
1583 				 * R4) Whenever a SACK is received missing a
1584 				 * TSN that was previously acknowledged via a
1585 				 * Gap Ack Block, start T3-rtx for the
1586 				 * destination address to which the DATA
1587 				 * chunk was originally
1588 				 * transmitted if it is not already running.
1589 				 */
1590 				restart_timer = 1;
1591 			}
1592 
1593 			list_add_tail(lchunk, &tlist);
1594 		}
1595 	}
1596 
1597 	if (transport) {
1598 		if (bytes_acked) {
1599 			struct sctp_association *asoc = transport->asoc;
1600 
1601 			/* We may have counted DATA that was migrated
1602 			 * to this transport due to DEL-IP operation.
1603 			 * Subtract those bytes, since the were never
1604 			 * send on this transport and shouldn't be
1605 			 * credited to this transport.
1606 			 */
1607 			bytes_acked -= migrate_bytes;
1608 
1609 			/* 8.2. When an outstanding TSN is acknowledged,
1610 			 * the endpoint shall clear the error counter of
1611 			 * the destination transport address to which the
1612 			 * DATA chunk was last sent.
1613 			 * The association's overall error counter is
1614 			 * also cleared.
1615 			 */
1616 			transport->error_count = 0;
1617 			transport->asoc->overall_error_count = 0;
1618 			forward_progress = true;
1619 
1620 			/*
1621 			 * While in SHUTDOWN PENDING, we may have started
1622 			 * the T5 shutdown guard timer after reaching the
1623 			 * retransmission limit. Stop that timer as soon
1624 			 * as the receiver acknowledged any data.
1625 			 */
1626 			if (asoc->state == SCTP_STATE_SHUTDOWN_PENDING &&
1627 			    del_timer(&asoc->timers
1628 				[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]))
1629 					sctp_association_put(asoc);
1630 
1631 			/* Mark the destination transport address as
1632 			 * active if it is not so marked.
1633 			 */
1634 			if ((transport->state == SCTP_INACTIVE ||
1635 			     transport->state == SCTP_UNCONFIRMED) &&
1636 			    sctp_cmp_addr_exact(&transport->ipaddr, saddr)) {
1637 				sctp_assoc_control_transport(
1638 					transport->asoc,
1639 					transport,
1640 					SCTP_TRANSPORT_UP,
1641 					SCTP_RECEIVED_SACK);
1642 			}
1643 
1644 			sctp_transport_raise_cwnd(transport, sack_ctsn,
1645 						  bytes_acked);
1646 
1647 			transport->flight_size -= bytes_acked;
1648 			if (transport->flight_size == 0)
1649 				transport->partial_bytes_acked = 0;
1650 			q->outstanding_bytes -= bytes_acked + migrate_bytes;
1651 		} else {
1652 			/* RFC 2960 6.1, sctpimpguide-06 2.15.2
1653 			 * When a sender is doing zero window probing, it
1654 			 * should not timeout the association if it continues
1655 			 * to receive new packets from the receiver. The
1656 			 * reason is that the receiver MAY keep its window
1657 			 * closed for an indefinite time.
1658 			 * A sender is doing zero window probing when the
1659 			 * receiver's advertised window is zero, and there is
1660 			 * only one data chunk in flight to the receiver.
1661 			 *
1662 			 * Allow the association to timeout while in SHUTDOWN
1663 			 * PENDING or SHUTDOWN RECEIVED in case the receiver
1664 			 * stays in zero window mode forever.
1665 			 */
1666 			if (!q->asoc->peer.rwnd &&
1667 			    !list_empty(&tlist) &&
1668 			    (sack_ctsn+2 == q->asoc->next_tsn) &&
1669 			    q->asoc->state < SCTP_STATE_SHUTDOWN_PENDING) {
1670 				pr_debug("%s: sack received for zero window "
1671 					 "probe:%u\n", __func__, sack_ctsn);
1672 
1673 				q->asoc->overall_error_count = 0;
1674 				transport->error_count = 0;
1675 			}
1676 		}
1677 
1678 		/* RFC 2960 6.3.2 Retransmission Timer Rules
1679 		 *
1680 		 * R2) Whenever all outstanding data sent to an address have
1681 		 * been acknowledged, turn off the T3-rtx timer of that
1682 		 * address.
1683 		 */
1684 		if (!transport->flight_size) {
1685 			if (del_timer(&transport->T3_rtx_timer))
1686 				sctp_transport_put(transport);
1687 		} else if (restart_timer) {
1688 			if (!mod_timer(&transport->T3_rtx_timer,
1689 				       jiffies + transport->rto))
1690 				sctp_transport_hold(transport);
1691 		}
1692 
1693 		if (forward_progress) {
1694 			if (transport->dst)
1695 				sctp_transport_dst_confirm(transport);
1696 		}
1697 	}
1698 
1699 	list_splice(&tlist, transmitted_queue);
1700 }
1701 
1702 /* Mark chunks as missing and consequently may get retransmitted. */
1703 static void sctp_mark_missing(struct sctp_outq *q,
1704 			      struct list_head *transmitted_queue,
1705 			      struct sctp_transport *transport,
1706 			      __u32 highest_new_tsn_in_sack,
1707 			      int count_of_newacks)
1708 {
1709 	struct sctp_chunk *chunk;
1710 	__u32 tsn;
1711 	char do_fast_retransmit = 0;
1712 	struct sctp_association *asoc = q->asoc;
1713 	struct sctp_transport *primary = asoc->peer.primary_path;
1714 
1715 	list_for_each_entry(chunk, transmitted_queue, transmitted_list) {
1716 
1717 		tsn = ntohl(chunk->subh.data_hdr->tsn);
1718 
1719 		/* RFC 2960 7.2.4, sctpimpguide-05 2.8.2 M3) Examine all
1720 		 * 'Unacknowledged TSN's', if the TSN number of an
1721 		 * 'Unacknowledged TSN' is smaller than the 'HighestTSNinSack'
1722 		 * value, increment the 'TSN.Missing.Report' count on that
1723 		 * chunk if it has NOT been fast retransmitted or marked for
1724 		 * fast retransmit already.
1725 		 */
1726 		if (chunk->fast_retransmit == SCTP_CAN_FRTX &&
1727 		    !chunk->tsn_gap_acked &&
1728 		    TSN_lt(tsn, highest_new_tsn_in_sack)) {
1729 
1730 			/* SFR-CACC may require us to skip marking
1731 			 * this chunk as missing.
1732 			 */
1733 			if (!transport || !sctp_cacc_skip(primary,
1734 						chunk->transport,
1735 						count_of_newacks, tsn)) {
1736 				chunk->tsn_missing_report++;
1737 
1738 				pr_debug("%s: tsn:0x%x missing counter:%d\n",
1739 					 __func__, tsn, chunk->tsn_missing_report);
1740 			}
1741 		}
1742 		/*
1743 		 * M4) If any DATA chunk is found to have a
1744 		 * 'TSN.Missing.Report'
1745 		 * value larger than or equal to 3, mark that chunk for
1746 		 * retransmission and start the fast retransmit procedure.
1747 		 */
1748 
1749 		if (chunk->tsn_missing_report >= 3) {
1750 			chunk->fast_retransmit = SCTP_NEED_FRTX;
1751 			do_fast_retransmit = 1;
1752 		}
1753 	}
1754 
1755 	if (transport) {
1756 		if (do_fast_retransmit)
1757 			sctp_retransmit(q, transport, SCTP_RTXR_FAST_RTX);
1758 
1759 		pr_debug("%s: transport:%p, cwnd:%d, ssthresh:%d, "
1760 			 "flight_size:%d, pba:%d\n",  __func__, transport,
1761 			 transport->cwnd, transport->ssthresh,
1762 			 transport->flight_size, transport->partial_bytes_acked);
1763 	}
1764 }
1765 
1766 /* Is the given TSN acked by this packet?  */
1767 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn)
1768 {
1769 	__u32 ctsn = ntohl(sack->cum_tsn_ack);
1770 	union sctp_sack_variable *frags;
1771 	__u16 tsn_offset, blocks;
1772 	int i;
1773 
1774 	if (TSN_lte(tsn, ctsn))
1775 		goto pass;
1776 
1777 	/* 3.3.4 Selective Acknowledgment (SACK) (3):
1778 	 *
1779 	 * Gap Ack Blocks:
1780 	 *  These fields contain the Gap Ack Blocks. They are repeated
1781 	 *  for each Gap Ack Block up to the number of Gap Ack Blocks
1782 	 *  defined in the Number of Gap Ack Blocks field. All DATA
1783 	 *  chunks with TSNs greater than or equal to (Cumulative TSN
1784 	 *  Ack + Gap Ack Block Start) and less than or equal to
1785 	 *  (Cumulative TSN Ack + Gap Ack Block End) of each Gap Ack
1786 	 *  Block are assumed to have been received correctly.
1787 	 */
1788 
1789 	frags = sack->variable;
1790 	blocks = ntohs(sack->num_gap_ack_blocks);
1791 	tsn_offset = tsn - ctsn;
1792 	for (i = 0; i < blocks; ++i) {
1793 		if (tsn_offset >= ntohs(frags[i].gab.start) &&
1794 		    tsn_offset <= ntohs(frags[i].gab.end))
1795 			goto pass;
1796 	}
1797 
1798 	return 0;
1799 pass:
1800 	return 1;
1801 }
1802 
1803 static inline int sctp_get_skip_pos(struct sctp_fwdtsn_skip *skiplist,
1804 				    int nskips, __be16 stream)
1805 {
1806 	int i;
1807 
1808 	for (i = 0; i < nskips; i++) {
1809 		if (skiplist[i].stream == stream)
1810 			return i;
1811 	}
1812 	return i;
1813 }
1814 
1815 /* Create and add a fwdtsn chunk to the outq's control queue if needed. */
1816 void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 ctsn)
1817 {
1818 	struct sctp_association *asoc = q->asoc;
1819 	struct sctp_chunk *ftsn_chunk = NULL;
1820 	struct sctp_fwdtsn_skip ftsn_skip_arr[10];
1821 	int nskips = 0;
1822 	int skip_pos = 0;
1823 	__u32 tsn;
1824 	struct sctp_chunk *chunk;
1825 	struct list_head *lchunk, *temp;
1826 
1827 	if (!asoc->peer.prsctp_capable)
1828 		return;
1829 
1830 	/* PR-SCTP C1) Let SackCumAck be the Cumulative TSN ACK carried in the
1831 	 * received SACK.
1832 	 *
1833 	 * If (Advanced.Peer.Ack.Point < SackCumAck), then update
1834 	 * Advanced.Peer.Ack.Point to be equal to SackCumAck.
1835 	 */
1836 	if (TSN_lt(asoc->adv_peer_ack_point, ctsn))
1837 		asoc->adv_peer_ack_point = ctsn;
1838 
1839 	/* PR-SCTP C2) Try to further advance the "Advanced.Peer.Ack.Point"
1840 	 * locally, that is, to move "Advanced.Peer.Ack.Point" up as long as
1841 	 * the chunk next in the out-queue space is marked as "abandoned" as
1842 	 * shown in the following example:
1843 	 *
1844 	 * Assuming that a SACK arrived with the Cumulative TSN ACK 102
1845 	 * and the Advanced.Peer.Ack.Point is updated to this value:
1846 	 *
1847 	 *   out-queue at the end of  ==>   out-queue after Adv.Ack.Point
1848 	 *   normal SACK processing           local advancement
1849 	 *                ...                           ...
1850 	 *   Adv.Ack.Pt-> 102 acked                     102 acked
1851 	 *                103 abandoned                 103 abandoned
1852 	 *                104 abandoned     Adv.Ack.P-> 104 abandoned
1853 	 *                105                           105
1854 	 *                106 acked                     106 acked
1855 	 *                ...                           ...
1856 	 *
1857 	 * In this example, the data sender successfully advanced the
1858 	 * "Advanced.Peer.Ack.Point" from 102 to 104 locally.
1859 	 */
1860 	list_for_each_safe(lchunk, temp, &q->abandoned) {
1861 		chunk = list_entry(lchunk, struct sctp_chunk,
1862 					transmitted_list);
1863 		tsn = ntohl(chunk->subh.data_hdr->tsn);
1864 
1865 		/* Remove any chunks in the abandoned queue that are acked by
1866 		 * the ctsn.
1867 		 */
1868 		if (TSN_lte(tsn, ctsn)) {
1869 			list_del_init(lchunk);
1870 			sctp_chunk_free(chunk);
1871 		} else {
1872 			if (TSN_lte(tsn, asoc->adv_peer_ack_point+1)) {
1873 				asoc->adv_peer_ack_point = tsn;
1874 				if (chunk->chunk_hdr->flags &
1875 					 SCTP_DATA_UNORDERED)
1876 					continue;
1877 				skip_pos = sctp_get_skip_pos(&ftsn_skip_arr[0],
1878 						nskips,
1879 						chunk->subh.data_hdr->stream);
1880 				ftsn_skip_arr[skip_pos].stream =
1881 					chunk->subh.data_hdr->stream;
1882 				ftsn_skip_arr[skip_pos].ssn =
1883 					 chunk->subh.data_hdr->ssn;
1884 				if (skip_pos == nskips)
1885 					nskips++;
1886 				if (nskips == 10)
1887 					break;
1888 			} else
1889 				break;
1890 		}
1891 	}
1892 
1893 	/* PR-SCTP C3) If, after step C1 and C2, the "Advanced.Peer.Ack.Point"
1894 	 * is greater than the Cumulative TSN ACK carried in the received
1895 	 * SACK, the data sender MUST send the data receiver a FORWARD TSN
1896 	 * chunk containing the latest value of the
1897 	 * "Advanced.Peer.Ack.Point".
1898 	 *
1899 	 * C4) For each "abandoned" TSN the sender of the FORWARD TSN SHOULD
1900 	 * list each stream and sequence number in the forwarded TSN. This
1901 	 * information will enable the receiver to easily find any
1902 	 * stranded TSN's waiting on stream reorder queues. Each stream
1903 	 * SHOULD only be reported once; this means that if multiple
1904 	 * abandoned messages occur in the same stream then only the
1905 	 * highest abandoned stream sequence number is reported. If the
1906 	 * total size of the FORWARD TSN does NOT fit in a single MTU then
1907 	 * the sender of the FORWARD TSN SHOULD lower the
1908 	 * Advanced.Peer.Ack.Point to the last TSN that will fit in a
1909 	 * single MTU.
1910 	 */
1911 	if (asoc->adv_peer_ack_point > ctsn)
1912 		ftsn_chunk = sctp_make_fwdtsn(asoc, asoc->adv_peer_ack_point,
1913 					      nskips, &ftsn_skip_arr[0]);
1914 
1915 	if (ftsn_chunk) {
1916 		list_add_tail(&ftsn_chunk->list, &q->control_chunk_list);
1917 		SCTP_INC_STATS(asoc->base.net, SCTP_MIB_OUTCTRLCHUNKS);
1918 	}
1919 }
1920