xref: /openbmc/linux/net/sctp/outqueue.c (revision 22d55f02)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* SCTP kernel implementation
3  * (C) Copyright IBM Corp. 2001, 2004
4  * Copyright (c) 1999-2000 Cisco, Inc.
5  * Copyright (c) 1999-2001 Motorola, Inc.
6  * Copyright (c) 2001-2003 Intel Corp.
7  *
8  * This file is part of the SCTP kernel implementation
9  *
10  * These functions implement the sctp_outq class.   The outqueue handles
11  * bundling and queueing of outgoing SCTP chunks.
12  *
13  * Please send any bug reports or fixes you make to the
14  * email address(es):
15  *    lksctp developers <linux-sctp@vger.kernel.org>
16  *
17  * Written or modified by:
18  *    La Monte H.P. Yarroll <piggy@acm.org>
19  *    Karl Knutson          <karl@athena.chicago.il.us>
20  *    Perry Melange         <pmelange@null.cc.uic.edu>
21  *    Xingang Guo           <xingang.guo@intel.com>
22  *    Hui Huang 	    <hui.huang@nokia.com>
23  *    Sridhar Samudrala     <sri@us.ibm.com>
24  *    Jon Grimm             <jgrimm@us.ibm.com>
25  */
26 
27 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
28 
29 #include <linux/types.h>
30 #include <linux/list.h>   /* For struct list_head */
31 #include <linux/socket.h>
32 #include <linux/ip.h>
33 #include <linux/slab.h>
34 #include <net/sock.h>	  /* For skb_set_owner_w */
35 
36 #include <net/sctp/sctp.h>
37 #include <net/sctp/sm.h>
38 #include <net/sctp/stream_sched.h>
39 
40 /* Declare internal functions here.  */
41 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn);
42 static void sctp_check_transmitted(struct sctp_outq *q,
43 				   struct list_head *transmitted_queue,
44 				   struct sctp_transport *transport,
45 				   union sctp_addr *saddr,
46 				   struct sctp_sackhdr *sack,
47 				   __u32 *highest_new_tsn);
48 
49 static void sctp_mark_missing(struct sctp_outq *q,
50 			      struct list_head *transmitted_queue,
51 			      struct sctp_transport *transport,
52 			      __u32 highest_new_tsn,
53 			      int count_of_newacks);
54 
55 static void sctp_outq_flush(struct sctp_outq *q, int rtx_timeout, gfp_t gfp);
56 
57 /* Add data to the front of the queue. */
58 static inline void sctp_outq_head_data(struct sctp_outq *q,
59 				       struct sctp_chunk *ch)
60 {
61 	struct sctp_stream_out_ext *oute;
62 	__u16 stream;
63 
64 	list_add(&ch->list, &q->out_chunk_list);
65 	q->out_qlen += ch->skb->len;
66 
67 	stream = sctp_chunk_stream_no(ch);
68 	oute = SCTP_SO(&q->asoc->stream, stream)->ext;
69 	list_add(&ch->stream_list, &oute->outq);
70 }
71 
72 /* Take data from the front of the queue. */
73 static inline struct sctp_chunk *sctp_outq_dequeue_data(struct sctp_outq *q)
74 {
75 	return q->sched->dequeue(q);
76 }
77 
78 /* Add data chunk to the end of the queue. */
79 static inline void sctp_outq_tail_data(struct sctp_outq *q,
80 				       struct sctp_chunk *ch)
81 {
82 	struct sctp_stream_out_ext *oute;
83 	__u16 stream;
84 
85 	list_add_tail(&ch->list, &q->out_chunk_list);
86 	q->out_qlen += ch->skb->len;
87 
88 	stream = sctp_chunk_stream_no(ch);
89 	oute = SCTP_SO(&q->asoc->stream, stream)->ext;
90 	list_add_tail(&ch->stream_list, &oute->outq);
91 }
92 
93 /*
94  * SFR-CACC algorithm:
95  * D) If count_of_newacks is greater than or equal to 2
96  * and t was not sent to the current primary then the
97  * sender MUST NOT increment missing report count for t.
98  */
99 static inline int sctp_cacc_skip_3_1_d(struct sctp_transport *primary,
100 				       struct sctp_transport *transport,
101 				       int count_of_newacks)
102 {
103 	if (count_of_newacks >= 2 && transport != primary)
104 		return 1;
105 	return 0;
106 }
107 
108 /*
109  * SFR-CACC algorithm:
110  * F) If count_of_newacks is less than 2, let d be the
111  * destination to which t was sent. If cacc_saw_newack
112  * is 0 for destination d, then the sender MUST NOT
113  * increment missing report count for t.
114  */
115 static inline int sctp_cacc_skip_3_1_f(struct sctp_transport *transport,
116 				       int count_of_newacks)
117 {
118 	if (count_of_newacks < 2 &&
119 			(transport && !transport->cacc.cacc_saw_newack))
120 		return 1;
121 	return 0;
122 }
123 
124 /*
125  * SFR-CACC algorithm:
126  * 3.1) If CYCLING_CHANGEOVER is 0, the sender SHOULD
127  * execute steps C, D, F.
128  *
129  * C has been implemented in sctp_outq_sack
130  */
131 static inline int sctp_cacc_skip_3_1(struct sctp_transport *primary,
132 				     struct sctp_transport *transport,
133 				     int count_of_newacks)
134 {
135 	if (!primary->cacc.cycling_changeover) {
136 		if (sctp_cacc_skip_3_1_d(primary, transport, count_of_newacks))
137 			return 1;
138 		if (sctp_cacc_skip_3_1_f(transport, count_of_newacks))
139 			return 1;
140 		return 0;
141 	}
142 	return 0;
143 }
144 
145 /*
146  * SFR-CACC algorithm:
147  * 3.2) Else if CYCLING_CHANGEOVER is 1, and t is less
148  * than next_tsn_at_change of the current primary, then
149  * the sender MUST NOT increment missing report count
150  * for t.
151  */
152 static inline int sctp_cacc_skip_3_2(struct sctp_transport *primary, __u32 tsn)
153 {
154 	if (primary->cacc.cycling_changeover &&
155 	    TSN_lt(tsn, primary->cacc.next_tsn_at_change))
156 		return 1;
157 	return 0;
158 }
159 
160 /*
161  * SFR-CACC algorithm:
162  * 3) If the missing report count for TSN t is to be
163  * incremented according to [RFC2960] and
164  * [SCTP_STEWART-2002], and CHANGEOVER_ACTIVE is set,
165  * then the sender MUST further execute steps 3.1 and
166  * 3.2 to determine if the missing report count for
167  * TSN t SHOULD NOT be incremented.
168  *
169  * 3.3) If 3.1 and 3.2 do not dictate that the missing
170  * report count for t should not be incremented, then
171  * the sender SHOULD increment missing report count for
172  * t (according to [RFC2960] and [SCTP_STEWART_2002]).
173  */
174 static inline int sctp_cacc_skip(struct sctp_transport *primary,
175 				 struct sctp_transport *transport,
176 				 int count_of_newacks,
177 				 __u32 tsn)
178 {
179 	if (primary->cacc.changeover_active &&
180 	    (sctp_cacc_skip_3_1(primary, transport, count_of_newacks) ||
181 	     sctp_cacc_skip_3_2(primary, tsn)))
182 		return 1;
183 	return 0;
184 }
185 
186 /* Initialize an existing sctp_outq.  This does the boring stuff.
187  * You still need to define handlers if you really want to DO
188  * something with this structure...
189  */
190 void sctp_outq_init(struct sctp_association *asoc, struct sctp_outq *q)
191 {
192 	memset(q, 0, sizeof(struct sctp_outq));
193 
194 	q->asoc = asoc;
195 	INIT_LIST_HEAD(&q->out_chunk_list);
196 	INIT_LIST_HEAD(&q->control_chunk_list);
197 	INIT_LIST_HEAD(&q->retransmit);
198 	INIT_LIST_HEAD(&q->sacked);
199 	INIT_LIST_HEAD(&q->abandoned);
200 	sctp_sched_set_sched(asoc, sctp_sk(asoc->base.sk)->default_ss);
201 }
202 
203 /* Free the outqueue structure and any related pending chunks.
204  */
205 static void __sctp_outq_teardown(struct sctp_outq *q)
206 {
207 	struct sctp_transport *transport;
208 	struct list_head *lchunk, *temp;
209 	struct sctp_chunk *chunk, *tmp;
210 
211 	/* Throw away unacknowledged chunks. */
212 	list_for_each_entry(transport, &q->asoc->peer.transport_addr_list,
213 			transports) {
214 		while ((lchunk = sctp_list_dequeue(&transport->transmitted)) != NULL) {
215 			chunk = list_entry(lchunk, struct sctp_chunk,
216 					   transmitted_list);
217 			/* Mark as part of a failed message. */
218 			sctp_chunk_fail(chunk, q->error);
219 			sctp_chunk_free(chunk);
220 		}
221 	}
222 
223 	/* Throw away chunks that have been gap ACKed.  */
224 	list_for_each_safe(lchunk, temp, &q->sacked) {
225 		list_del_init(lchunk);
226 		chunk = list_entry(lchunk, struct sctp_chunk,
227 				   transmitted_list);
228 		sctp_chunk_fail(chunk, q->error);
229 		sctp_chunk_free(chunk);
230 	}
231 
232 	/* Throw away any chunks in the retransmit queue. */
233 	list_for_each_safe(lchunk, temp, &q->retransmit) {
234 		list_del_init(lchunk);
235 		chunk = list_entry(lchunk, struct sctp_chunk,
236 				   transmitted_list);
237 		sctp_chunk_fail(chunk, q->error);
238 		sctp_chunk_free(chunk);
239 	}
240 
241 	/* Throw away any chunks that are in the abandoned queue. */
242 	list_for_each_safe(lchunk, temp, &q->abandoned) {
243 		list_del_init(lchunk);
244 		chunk = list_entry(lchunk, struct sctp_chunk,
245 				   transmitted_list);
246 		sctp_chunk_fail(chunk, q->error);
247 		sctp_chunk_free(chunk);
248 	}
249 
250 	/* Throw away any leftover data chunks. */
251 	while ((chunk = sctp_outq_dequeue_data(q)) != NULL) {
252 		sctp_sched_dequeue_done(q, chunk);
253 
254 		/* Mark as send failure. */
255 		sctp_chunk_fail(chunk, q->error);
256 		sctp_chunk_free(chunk);
257 	}
258 
259 	/* Throw away any leftover control chunks. */
260 	list_for_each_entry_safe(chunk, tmp, &q->control_chunk_list, list) {
261 		list_del_init(&chunk->list);
262 		sctp_chunk_free(chunk);
263 	}
264 }
265 
266 void sctp_outq_teardown(struct sctp_outq *q)
267 {
268 	__sctp_outq_teardown(q);
269 	sctp_outq_init(q->asoc, q);
270 }
271 
272 /* Free the outqueue structure and any related pending chunks.  */
273 void sctp_outq_free(struct sctp_outq *q)
274 {
275 	/* Throw away leftover chunks. */
276 	__sctp_outq_teardown(q);
277 }
278 
279 /* Put a new chunk in an sctp_outq.  */
280 void sctp_outq_tail(struct sctp_outq *q, struct sctp_chunk *chunk, gfp_t gfp)
281 {
282 	struct net *net = sock_net(q->asoc->base.sk);
283 
284 	pr_debug("%s: outq:%p, chunk:%p[%s]\n", __func__, q, chunk,
285 		 chunk && chunk->chunk_hdr ?
286 		 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) :
287 		 "illegal chunk");
288 
289 	/* If it is data, queue it up, otherwise, send it
290 	 * immediately.
291 	 */
292 	if (sctp_chunk_is_data(chunk)) {
293 		pr_debug("%s: outqueueing: outq:%p, chunk:%p[%s])\n",
294 			 __func__, q, chunk, chunk && chunk->chunk_hdr ?
295 			 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) :
296 			 "illegal chunk");
297 
298 		sctp_outq_tail_data(q, chunk);
299 		if (chunk->asoc->peer.prsctp_capable &&
300 		    SCTP_PR_PRIO_ENABLED(chunk->sinfo.sinfo_flags))
301 			chunk->asoc->sent_cnt_removable++;
302 		if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED)
303 			SCTP_INC_STATS(net, SCTP_MIB_OUTUNORDERCHUNKS);
304 		else
305 			SCTP_INC_STATS(net, SCTP_MIB_OUTORDERCHUNKS);
306 	} else {
307 		list_add_tail(&chunk->list, &q->control_chunk_list);
308 		SCTP_INC_STATS(net, SCTP_MIB_OUTCTRLCHUNKS);
309 	}
310 
311 	if (!q->cork)
312 		sctp_outq_flush(q, 0, gfp);
313 }
314 
315 /* Insert a chunk into the sorted list based on the TSNs.  The retransmit list
316  * and the abandoned list are in ascending order.
317  */
318 static void sctp_insert_list(struct list_head *head, struct list_head *new)
319 {
320 	struct list_head *pos;
321 	struct sctp_chunk *nchunk, *lchunk;
322 	__u32 ntsn, ltsn;
323 	int done = 0;
324 
325 	nchunk = list_entry(new, struct sctp_chunk, transmitted_list);
326 	ntsn = ntohl(nchunk->subh.data_hdr->tsn);
327 
328 	list_for_each(pos, head) {
329 		lchunk = list_entry(pos, struct sctp_chunk, transmitted_list);
330 		ltsn = ntohl(lchunk->subh.data_hdr->tsn);
331 		if (TSN_lt(ntsn, ltsn)) {
332 			list_add(new, pos->prev);
333 			done = 1;
334 			break;
335 		}
336 	}
337 	if (!done)
338 		list_add_tail(new, head);
339 }
340 
341 static int sctp_prsctp_prune_sent(struct sctp_association *asoc,
342 				  struct sctp_sndrcvinfo *sinfo,
343 				  struct list_head *queue, int msg_len)
344 {
345 	struct sctp_chunk *chk, *temp;
346 
347 	list_for_each_entry_safe(chk, temp, queue, transmitted_list) {
348 		struct sctp_stream_out *streamout;
349 
350 		if (!chk->msg->abandoned &&
351 		    (!SCTP_PR_PRIO_ENABLED(chk->sinfo.sinfo_flags) ||
352 		     chk->sinfo.sinfo_timetolive <= sinfo->sinfo_timetolive))
353 			continue;
354 
355 		chk->msg->abandoned = 1;
356 		list_del_init(&chk->transmitted_list);
357 		sctp_insert_list(&asoc->outqueue.abandoned,
358 				 &chk->transmitted_list);
359 
360 		streamout = SCTP_SO(&asoc->stream, chk->sinfo.sinfo_stream);
361 		asoc->sent_cnt_removable--;
362 		asoc->abandoned_sent[SCTP_PR_INDEX(PRIO)]++;
363 		streamout->ext->abandoned_sent[SCTP_PR_INDEX(PRIO)]++;
364 
365 		if (queue != &asoc->outqueue.retransmit &&
366 		    !chk->tsn_gap_acked) {
367 			if (chk->transport)
368 				chk->transport->flight_size -=
369 						sctp_data_size(chk);
370 			asoc->outqueue.outstanding_bytes -= sctp_data_size(chk);
371 		}
372 
373 		msg_len -= chk->skb->truesize + sizeof(struct sctp_chunk);
374 		if (msg_len <= 0)
375 			break;
376 	}
377 
378 	return msg_len;
379 }
380 
381 static int sctp_prsctp_prune_unsent(struct sctp_association *asoc,
382 				    struct sctp_sndrcvinfo *sinfo, int msg_len)
383 {
384 	struct sctp_outq *q = &asoc->outqueue;
385 	struct sctp_chunk *chk, *temp;
386 
387 	q->sched->unsched_all(&asoc->stream);
388 
389 	list_for_each_entry_safe(chk, temp, &q->out_chunk_list, list) {
390 		if (!chk->msg->abandoned &&
391 		    (!(chk->chunk_hdr->flags & SCTP_DATA_FIRST_FRAG) ||
392 		     !SCTP_PR_PRIO_ENABLED(chk->sinfo.sinfo_flags) ||
393 		     chk->sinfo.sinfo_timetolive <= sinfo->sinfo_timetolive))
394 			continue;
395 
396 		chk->msg->abandoned = 1;
397 		sctp_sched_dequeue_common(q, chk);
398 		asoc->sent_cnt_removable--;
399 		asoc->abandoned_unsent[SCTP_PR_INDEX(PRIO)]++;
400 		if (chk->sinfo.sinfo_stream < asoc->stream.outcnt) {
401 			struct sctp_stream_out *streamout =
402 				SCTP_SO(&asoc->stream, chk->sinfo.sinfo_stream);
403 
404 			streamout->ext->abandoned_unsent[SCTP_PR_INDEX(PRIO)]++;
405 		}
406 
407 		msg_len -= chk->skb->truesize + sizeof(struct sctp_chunk);
408 		sctp_chunk_free(chk);
409 		if (msg_len <= 0)
410 			break;
411 	}
412 
413 	q->sched->sched_all(&asoc->stream);
414 
415 	return msg_len;
416 }
417 
418 /* Abandon the chunks according their priorities */
419 void sctp_prsctp_prune(struct sctp_association *asoc,
420 		       struct sctp_sndrcvinfo *sinfo, int msg_len)
421 {
422 	struct sctp_transport *transport;
423 
424 	if (!asoc->peer.prsctp_capable || !asoc->sent_cnt_removable)
425 		return;
426 
427 	msg_len = sctp_prsctp_prune_sent(asoc, sinfo,
428 					 &asoc->outqueue.retransmit,
429 					 msg_len);
430 	if (msg_len <= 0)
431 		return;
432 
433 	list_for_each_entry(transport, &asoc->peer.transport_addr_list,
434 			    transports) {
435 		msg_len = sctp_prsctp_prune_sent(asoc, sinfo,
436 						 &transport->transmitted,
437 						 msg_len);
438 		if (msg_len <= 0)
439 			return;
440 	}
441 
442 	sctp_prsctp_prune_unsent(asoc, sinfo, msg_len);
443 }
444 
445 /* Mark all the eligible packets on a transport for retransmission.  */
446 void sctp_retransmit_mark(struct sctp_outq *q,
447 			  struct sctp_transport *transport,
448 			  __u8 reason)
449 {
450 	struct list_head *lchunk, *ltemp;
451 	struct sctp_chunk *chunk;
452 
453 	/* Walk through the specified transmitted queue.  */
454 	list_for_each_safe(lchunk, ltemp, &transport->transmitted) {
455 		chunk = list_entry(lchunk, struct sctp_chunk,
456 				   transmitted_list);
457 
458 		/* If the chunk is abandoned, move it to abandoned list. */
459 		if (sctp_chunk_abandoned(chunk)) {
460 			list_del_init(lchunk);
461 			sctp_insert_list(&q->abandoned, lchunk);
462 
463 			/* If this chunk has not been previousely acked,
464 			 * stop considering it 'outstanding'.  Our peer
465 			 * will most likely never see it since it will
466 			 * not be retransmitted
467 			 */
468 			if (!chunk->tsn_gap_acked) {
469 				if (chunk->transport)
470 					chunk->transport->flight_size -=
471 							sctp_data_size(chunk);
472 				q->outstanding_bytes -= sctp_data_size(chunk);
473 				q->asoc->peer.rwnd += sctp_data_size(chunk);
474 			}
475 			continue;
476 		}
477 
478 		/* If we are doing  retransmission due to a timeout or pmtu
479 		 * discovery, only the  chunks that are not yet acked should
480 		 * be added to the retransmit queue.
481 		 */
482 		if ((reason == SCTP_RTXR_FAST_RTX  &&
483 			    (chunk->fast_retransmit == SCTP_NEED_FRTX)) ||
484 		    (reason != SCTP_RTXR_FAST_RTX  && !chunk->tsn_gap_acked)) {
485 			/* RFC 2960 6.2.1 Processing a Received SACK
486 			 *
487 			 * C) Any time a DATA chunk is marked for
488 			 * retransmission (via either T3-rtx timer expiration
489 			 * (Section 6.3.3) or via fast retransmit
490 			 * (Section 7.2.4)), add the data size of those
491 			 * chunks to the rwnd.
492 			 */
493 			q->asoc->peer.rwnd += sctp_data_size(chunk);
494 			q->outstanding_bytes -= sctp_data_size(chunk);
495 			if (chunk->transport)
496 				transport->flight_size -= sctp_data_size(chunk);
497 
498 			/* sctpimpguide-05 Section 2.8.2
499 			 * M5) If a T3-rtx timer expires, the
500 			 * 'TSN.Missing.Report' of all affected TSNs is set
501 			 * to 0.
502 			 */
503 			chunk->tsn_missing_report = 0;
504 
505 			/* If a chunk that is being used for RTT measurement
506 			 * has to be retransmitted, we cannot use this chunk
507 			 * anymore for RTT measurements. Reset rto_pending so
508 			 * that a new RTT measurement is started when a new
509 			 * data chunk is sent.
510 			 */
511 			if (chunk->rtt_in_progress) {
512 				chunk->rtt_in_progress = 0;
513 				transport->rto_pending = 0;
514 			}
515 
516 			/* Move the chunk to the retransmit queue. The chunks
517 			 * on the retransmit queue are always kept in order.
518 			 */
519 			list_del_init(lchunk);
520 			sctp_insert_list(&q->retransmit, lchunk);
521 		}
522 	}
523 
524 	pr_debug("%s: transport:%p, reason:%d, cwnd:%d, ssthresh:%d, "
525 		 "flight_size:%d, pba:%d\n", __func__, transport, reason,
526 		 transport->cwnd, transport->ssthresh, transport->flight_size,
527 		 transport->partial_bytes_acked);
528 }
529 
530 /* Mark all the eligible packets on a transport for retransmission and force
531  * one packet out.
532  */
533 void sctp_retransmit(struct sctp_outq *q, struct sctp_transport *transport,
534 		     enum sctp_retransmit_reason reason)
535 {
536 	struct net *net = sock_net(q->asoc->base.sk);
537 
538 	switch (reason) {
539 	case SCTP_RTXR_T3_RTX:
540 		SCTP_INC_STATS(net, SCTP_MIB_T3_RETRANSMITS);
541 		sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_T3_RTX);
542 		/* Update the retran path if the T3-rtx timer has expired for
543 		 * the current retran path.
544 		 */
545 		if (transport == transport->asoc->peer.retran_path)
546 			sctp_assoc_update_retran_path(transport->asoc);
547 		transport->asoc->rtx_data_chunks +=
548 			transport->asoc->unack_data;
549 		break;
550 	case SCTP_RTXR_FAST_RTX:
551 		SCTP_INC_STATS(net, SCTP_MIB_FAST_RETRANSMITS);
552 		sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_FAST_RTX);
553 		q->fast_rtx = 1;
554 		break;
555 	case SCTP_RTXR_PMTUD:
556 		SCTP_INC_STATS(net, SCTP_MIB_PMTUD_RETRANSMITS);
557 		break;
558 	case SCTP_RTXR_T1_RTX:
559 		SCTP_INC_STATS(net, SCTP_MIB_T1_RETRANSMITS);
560 		transport->asoc->init_retries++;
561 		break;
562 	default:
563 		BUG();
564 	}
565 
566 	sctp_retransmit_mark(q, transport, reason);
567 
568 	/* PR-SCTP A5) Any time the T3-rtx timer expires, on any destination,
569 	 * the sender SHOULD try to advance the "Advanced.Peer.Ack.Point" by
570 	 * following the procedures outlined in C1 - C5.
571 	 */
572 	if (reason == SCTP_RTXR_T3_RTX)
573 		q->asoc->stream.si->generate_ftsn(q, q->asoc->ctsn_ack_point);
574 
575 	/* Flush the queues only on timeout, since fast_rtx is only
576 	 * triggered during sack processing and the queue
577 	 * will be flushed at the end.
578 	 */
579 	if (reason != SCTP_RTXR_FAST_RTX)
580 		sctp_outq_flush(q, /* rtx_timeout */ 1, GFP_ATOMIC);
581 }
582 
583 /*
584  * Transmit DATA chunks on the retransmit queue.  Upon return from
585  * __sctp_outq_flush_rtx() the packet 'pkt' may contain chunks which
586  * need to be transmitted by the caller.
587  * We assume that pkt->transport has already been set.
588  *
589  * The return value is a normal kernel error return value.
590  */
591 static int __sctp_outq_flush_rtx(struct sctp_outq *q, struct sctp_packet *pkt,
592 				 int rtx_timeout, int *start_timer, gfp_t gfp)
593 {
594 	struct sctp_transport *transport = pkt->transport;
595 	struct sctp_chunk *chunk, *chunk1;
596 	struct list_head *lqueue;
597 	enum sctp_xmit status;
598 	int error = 0;
599 	int timer = 0;
600 	int done = 0;
601 	int fast_rtx;
602 
603 	lqueue = &q->retransmit;
604 	fast_rtx = q->fast_rtx;
605 
606 	/* This loop handles time-out retransmissions, fast retransmissions,
607 	 * and retransmissions due to opening of whindow.
608 	 *
609 	 * RFC 2960 6.3.3 Handle T3-rtx Expiration
610 	 *
611 	 * E3) Determine how many of the earliest (i.e., lowest TSN)
612 	 * outstanding DATA chunks for the address for which the
613 	 * T3-rtx has expired will fit into a single packet, subject
614 	 * to the MTU constraint for the path corresponding to the
615 	 * destination transport address to which the retransmission
616 	 * is being sent (this may be different from the address for
617 	 * which the timer expires [see Section 6.4]). Call this value
618 	 * K. Bundle and retransmit those K DATA chunks in a single
619 	 * packet to the destination endpoint.
620 	 *
621 	 * [Just to be painfully clear, if we are retransmitting
622 	 * because a timeout just happened, we should send only ONE
623 	 * packet of retransmitted data.]
624 	 *
625 	 * For fast retransmissions we also send only ONE packet.  However,
626 	 * if we are just flushing the queue due to open window, we'll
627 	 * try to send as much as possible.
628 	 */
629 	list_for_each_entry_safe(chunk, chunk1, lqueue, transmitted_list) {
630 		/* If the chunk is abandoned, move it to abandoned list. */
631 		if (sctp_chunk_abandoned(chunk)) {
632 			list_del_init(&chunk->transmitted_list);
633 			sctp_insert_list(&q->abandoned,
634 					 &chunk->transmitted_list);
635 			continue;
636 		}
637 
638 		/* Make sure that Gap Acked TSNs are not retransmitted.  A
639 		 * simple approach is just to move such TSNs out of the
640 		 * way and into a 'transmitted' queue and skip to the
641 		 * next chunk.
642 		 */
643 		if (chunk->tsn_gap_acked) {
644 			list_move_tail(&chunk->transmitted_list,
645 				       &transport->transmitted);
646 			continue;
647 		}
648 
649 		/* If we are doing fast retransmit, ignore non-fast_rtransmit
650 		 * chunks
651 		 */
652 		if (fast_rtx && !chunk->fast_retransmit)
653 			continue;
654 
655 redo:
656 		/* Attempt to append this chunk to the packet. */
657 		status = sctp_packet_append_chunk(pkt, chunk);
658 
659 		switch (status) {
660 		case SCTP_XMIT_PMTU_FULL:
661 			if (!pkt->has_data && !pkt->has_cookie_echo) {
662 				/* If this packet did not contain DATA then
663 				 * retransmission did not happen, so do it
664 				 * again.  We'll ignore the error here since
665 				 * control chunks are already freed so there
666 				 * is nothing we can do.
667 				 */
668 				sctp_packet_transmit(pkt, gfp);
669 				goto redo;
670 			}
671 
672 			/* Send this packet.  */
673 			error = sctp_packet_transmit(pkt, gfp);
674 
675 			/* If we are retransmitting, we should only
676 			 * send a single packet.
677 			 * Otherwise, try appending this chunk again.
678 			 */
679 			if (rtx_timeout || fast_rtx)
680 				done = 1;
681 			else
682 				goto redo;
683 
684 			/* Bundle next chunk in the next round.  */
685 			break;
686 
687 		case SCTP_XMIT_RWND_FULL:
688 			/* Send this packet. */
689 			error = sctp_packet_transmit(pkt, gfp);
690 
691 			/* Stop sending DATA as there is no more room
692 			 * at the receiver.
693 			 */
694 			done = 1;
695 			break;
696 
697 		case SCTP_XMIT_DELAY:
698 			/* Send this packet. */
699 			error = sctp_packet_transmit(pkt, gfp);
700 
701 			/* Stop sending DATA because of nagle delay. */
702 			done = 1;
703 			break;
704 
705 		default:
706 			/* The append was successful, so add this chunk to
707 			 * the transmitted list.
708 			 */
709 			list_move_tail(&chunk->transmitted_list,
710 				       &transport->transmitted);
711 
712 			/* Mark the chunk as ineligible for fast retransmit
713 			 * after it is retransmitted.
714 			 */
715 			if (chunk->fast_retransmit == SCTP_NEED_FRTX)
716 				chunk->fast_retransmit = SCTP_DONT_FRTX;
717 
718 			q->asoc->stats.rtxchunks++;
719 			break;
720 		}
721 
722 		/* Set the timer if there were no errors */
723 		if (!error && !timer)
724 			timer = 1;
725 
726 		if (done)
727 			break;
728 	}
729 
730 	/* If we are here due to a retransmit timeout or a fast
731 	 * retransmit and if there are any chunks left in the retransmit
732 	 * queue that could not fit in the PMTU sized packet, they need
733 	 * to be marked as ineligible for a subsequent fast retransmit.
734 	 */
735 	if (rtx_timeout || fast_rtx) {
736 		list_for_each_entry(chunk1, lqueue, transmitted_list) {
737 			if (chunk1->fast_retransmit == SCTP_NEED_FRTX)
738 				chunk1->fast_retransmit = SCTP_DONT_FRTX;
739 		}
740 	}
741 
742 	*start_timer = timer;
743 
744 	/* Clear fast retransmit hint */
745 	if (fast_rtx)
746 		q->fast_rtx = 0;
747 
748 	return error;
749 }
750 
751 /* Cork the outqueue so queued chunks are really queued. */
752 void sctp_outq_uncork(struct sctp_outq *q, gfp_t gfp)
753 {
754 	if (q->cork)
755 		q->cork = 0;
756 
757 	sctp_outq_flush(q, 0, gfp);
758 }
759 
760 static int sctp_packet_singleton(struct sctp_transport *transport,
761 				 struct sctp_chunk *chunk, gfp_t gfp)
762 {
763 	const struct sctp_association *asoc = transport->asoc;
764 	const __u16 sport = asoc->base.bind_addr.port;
765 	const __u16 dport = asoc->peer.port;
766 	const __u32 vtag = asoc->peer.i.init_tag;
767 	struct sctp_packet singleton;
768 
769 	sctp_packet_init(&singleton, transport, sport, dport);
770 	sctp_packet_config(&singleton, vtag, 0);
771 	sctp_packet_append_chunk(&singleton, chunk);
772 	return sctp_packet_transmit(&singleton, gfp);
773 }
774 
775 /* Struct to hold the context during sctp outq flush */
776 struct sctp_flush_ctx {
777 	struct sctp_outq *q;
778 	/* Current transport being used. It's NOT the same as curr active one */
779 	struct sctp_transport *transport;
780 	/* These transports have chunks to send. */
781 	struct list_head transport_list;
782 	struct sctp_association *asoc;
783 	/* Packet on the current transport above */
784 	struct sctp_packet *packet;
785 	gfp_t gfp;
786 };
787 
788 /* transport: current transport */
789 static void sctp_outq_select_transport(struct sctp_flush_ctx *ctx,
790 				       struct sctp_chunk *chunk)
791 {
792 	struct sctp_transport *new_transport = chunk->transport;
793 
794 	if (!new_transport) {
795 		if (!sctp_chunk_is_data(chunk)) {
796 			/* If we have a prior transport pointer, see if
797 			 * the destination address of the chunk
798 			 * matches the destination address of the
799 			 * current transport.  If not a match, then
800 			 * try to look up the transport with a given
801 			 * destination address.  We do this because
802 			 * after processing ASCONFs, we may have new
803 			 * transports created.
804 			 */
805 			if (ctx->transport && sctp_cmp_addr_exact(&chunk->dest,
806 							&ctx->transport->ipaddr))
807 				new_transport = ctx->transport;
808 			else
809 				new_transport = sctp_assoc_lookup_paddr(ctx->asoc,
810 								  &chunk->dest);
811 		}
812 
813 		/* if we still don't have a new transport, then
814 		 * use the current active path.
815 		 */
816 		if (!new_transport)
817 			new_transport = ctx->asoc->peer.active_path;
818 	} else {
819 		__u8 type;
820 
821 		switch (new_transport->state) {
822 		case SCTP_INACTIVE:
823 		case SCTP_UNCONFIRMED:
824 		case SCTP_PF:
825 			/* If the chunk is Heartbeat or Heartbeat Ack,
826 			 * send it to chunk->transport, even if it's
827 			 * inactive.
828 			 *
829 			 * 3.3.6 Heartbeat Acknowledgement:
830 			 * ...
831 			 * A HEARTBEAT ACK is always sent to the source IP
832 			 * address of the IP datagram containing the
833 			 * HEARTBEAT chunk to which this ack is responding.
834 			 * ...
835 			 *
836 			 * ASCONF_ACKs also must be sent to the source.
837 			 */
838 			type = chunk->chunk_hdr->type;
839 			if (type != SCTP_CID_HEARTBEAT &&
840 			    type != SCTP_CID_HEARTBEAT_ACK &&
841 			    type != SCTP_CID_ASCONF_ACK)
842 				new_transport = ctx->asoc->peer.active_path;
843 			break;
844 		default:
845 			break;
846 		}
847 	}
848 
849 	/* Are we switching transports? Take care of transport locks. */
850 	if (new_transport != ctx->transport) {
851 		ctx->transport = new_transport;
852 		ctx->packet = &ctx->transport->packet;
853 
854 		if (list_empty(&ctx->transport->send_ready))
855 			list_add_tail(&ctx->transport->send_ready,
856 				      &ctx->transport_list);
857 
858 		sctp_packet_config(ctx->packet,
859 				   ctx->asoc->peer.i.init_tag,
860 				   ctx->asoc->peer.ecn_capable);
861 		/* We've switched transports, so apply the
862 		 * Burst limit to the new transport.
863 		 */
864 		sctp_transport_burst_limited(ctx->transport);
865 	}
866 }
867 
868 static void sctp_outq_flush_ctrl(struct sctp_flush_ctx *ctx)
869 {
870 	struct sctp_chunk *chunk, *tmp;
871 	enum sctp_xmit status;
872 	int one_packet, error;
873 
874 	list_for_each_entry_safe(chunk, tmp, &ctx->q->control_chunk_list, list) {
875 		one_packet = 0;
876 
877 		/* RFC 5061, 5.3
878 		 * F1) This means that until such time as the ASCONF
879 		 * containing the add is acknowledged, the sender MUST
880 		 * NOT use the new IP address as a source for ANY SCTP
881 		 * packet except on carrying an ASCONF Chunk.
882 		 */
883 		if (ctx->asoc->src_out_of_asoc_ok &&
884 		    chunk->chunk_hdr->type != SCTP_CID_ASCONF)
885 			continue;
886 
887 		list_del_init(&chunk->list);
888 
889 		/* Pick the right transport to use. Should always be true for
890 		 * the first chunk as we don't have a transport by then.
891 		 */
892 		sctp_outq_select_transport(ctx, chunk);
893 
894 		switch (chunk->chunk_hdr->type) {
895 		/* 6.10 Bundling
896 		 *   ...
897 		 *   An endpoint MUST NOT bundle INIT, INIT ACK or SHUTDOWN
898 		 *   COMPLETE with any other chunks.  [Send them immediately.]
899 		 */
900 		case SCTP_CID_INIT:
901 		case SCTP_CID_INIT_ACK:
902 		case SCTP_CID_SHUTDOWN_COMPLETE:
903 			error = sctp_packet_singleton(ctx->transport, chunk,
904 						      ctx->gfp);
905 			if (error < 0) {
906 				ctx->asoc->base.sk->sk_err = -error;
907 				return;
908 			}
909 			break;
910 
911 		case SCTP_CID_ABORT:
912 			if (sctp_test_T_bit(chunk))
913 				ctx->packet->vtag = ctx->asoc->c.my_vtag;
914 			/* fallthru */
915 
916 		/* The following chunks are "response" chunks, i.e.
917 		 * they are generated in response to something we
918 		 * received.  If we are sending these, then we can
919 		 * send only 1 packet containing these chunks.
920 		 */
921 		case SCTP_CID_HEARTBEAT_ACK:
922 		case SCTP_CID_SHUTDOWN_ACK:
923 		case SCTP_CID_COOKIE_ACK:
924 		case SCTP_CID_COOKIE_ECHO:
925 		case SCTP_CID_ERROR:
926 		case SCTP_CID_ECN_CWR:
927 		case SCTP_CID_ASCONF_ACK:
928 			one_packet = 1;
929 			/* Fall through */
930 
931 		case SCTP_CID_SACK:
932 		case SCTP_CID_HEARTBEAT:
933 		case SCTP_CID_SHUTDOWN:
934 		case SCTP_CID_ECN_ECNE:
935 		case SCTP_CID_ASCONF:
936 		case SCTP_CID_FWD_TSN:
937 		case SCTP_CID_I_FWD_TSN:
938 		case SCTP_CID_RECONF:
939 			status = sctp_packet_transmit_chunk(ctx->packet, chunk,
940 							    one_packet, ctx->gfp);
941 			if (status != SCTP_XMIT_OK) {
942 				/* put the chunk back */
943 				list_add(&chunk->list, &ctx->q->control_chunk_list);
944 				break;
945 			}
946 
947 			ctx->asoc->stats.octrlchunks++;
948 			/* PR-SCTP C5) If a FORWARD TSN is sent, the
949 			 * sender MUST assure that at least one T3-rtx
950 			 * timer is running.
951 			 */
952 			if (chunk->chunk_hdr->type == SCTP_CID_FWD_TSN ||
953 			    chunk->chunk_hdr->type == SCTP_CID_I_FWD_TSN) {
954 				sctp_transport_reset_t3_rtx(ctx->transport);
955 				ctx->transport->last_time_sent = jiffies;
956 			}
957 
958 			if (chunk == ctx->asoc->strreset_chunk)
959 				sctp_transport_reset_reconf_timer(ctx->transport);
960 
961 			break;
962 
963 		default:
964 			/* We built a chunk with an illegal type! */
965 			BUG();
966 		}
967 	}
968 }
969 
970 /* Returns false if new data shouldn't be sent */
971 static bool sctp_outq_flush_rtx(struct sctp_flush_ctx *ctx,
972 				int rtx_timeout)
973 {
974 	int error, start_timer = 0;
975 
976 	if (ctx->asoc->peer.retran_path->state == SCTP_UNCONFIRMED)
977 		return false;
978 
979 	if (ctx->transport != ctx->asoc->peer.retran_path) {
980 		/* Switch transports & prepare the packet.  */
981 		ctx->transport = ctx->asoc->peer.retran_path;
982 		ctx->packet = &ctx->transport->packet;
983 
984 		if (list_empty(&ctx->transport->send_ready))
985 			list_add_tail(&ctx->transport->send_ready,
986 				      &ctx->transport_list);
987 
988 		sctp_packet_config(ctx->packet, ctx->asoc->peer.i.init_tag,
989 				   ctx->asoc->peer.ecn_capable);
990 	}
991 
992 	error = __sctp_outq_flush_rtx(ctx->q, ctx->packet, rtx_timeout,
993 				      &start_timer, ctx->gfp);
994 	if (error < 0)
995 		ctx->asoc->base.sk->sk_err = -error;
996 
997 	if (start_timer) {
998 		sctp_transport_reset_t3_rtx(ctx->transport);
999 		ctx->transport->last_time_sent = jiffies;
1000 	}
1001 
1002 	/* This can happen on COOKIE-ECHO resend.  Only
1003 	 * one chunk can get bundled with a COOKIE-ECHO.
1004 	 */
1005 	if (ctx->packet->has_cookie_echo)
1006 		return false;
1007 
1008 	/* Don't send new data if there is still data
1009 	 * waiting to retransmit.
1010 	 */
1011 	if (!list_empty(&ctx->q->retransmit))
1012 		return false;
1013 
1014 	return true;
1015 }
1016 
1017 static void sctp_outq_flush_data(struct sctp_flush_ctx *ctx,
1018 				 int rtx_timeout)
1019 {
1020 	struct sctp_chunk *chunk;
1021 	enum sctp_xmit status;
1022 
1023 	/* Is it OK to send data chunks?  */
1024 	switch (ctx->asoc->state) {
1025 	case SCTP_STATE_COOKIE_ECHOED:
1026 		/* Only allow bundling when this packet has a COOKIE-ECHO
1027 		 * chunk.
1028 		 */
1029 		if (!ctx->packet || !ctx->packet->has_cookie_echo)
1030 			return;
1031 
1032 		/* fall through */
1033 	case SCTP_STATE_ESTABLISHED:
1034 	case SCTP_STATE_SHUTDOWN_PENDING:
1035 	case SCTP_STATE_SHUTDOWN_RECEIVED:
1036 		break;
1037 
1038 	default:
1039 		/* Do nothing. */
1040 		return;
1041 	}
1042 
1043 	/* RFC 2960 6.1  Transmission of DATA Chunks
1044 	 *
1045 	 * C) When the time comes for the sender to transmit,
1046 	 * before sending new DATA chunks, the sender MUST
1047 	 * first transmit any outstanding DATA chunks which
1048 	 * are marked for retransmission (limited by the
1049 	 * current cwnd).
1050 	 */
1051 	if (!list_empty(&ctx->q->retransmit) &&
1052 	    !sctp_outq_flush_rtx(ctx, rtx_timeout))
1053 		return;
1054 
1055 	/* Apply Max.Burst limitation to the current transport in
1056 	 * case it will be used for new data.  We are going to
1057 	 * rest it before we return, but we want to apply the limit
1058 	 * to the currently queued data.
1059 	 */
1060 	if (ctx->transport)
1061 		sctp_transport_burst_limited(ctx->transport);
1062 
1063 	/* Finally, transmit new packets.  */
1064 	while ((chunk = sctp_outq_dequeue_data(ctx->q)) != NULL) {
1065 		__u32 sid = ntohs(chunk->subh.data_hdr->stream);
1066 		__u8 stream_state = SCTP_SO(&ctx->asoc->stream, sid)->state;
1067 
1068 		/* Has this chunk expired? */
1069 		if (sctp_chunk_abandoned(chunk)) {
1070 			sctp_sched_dequeue_done(ctx->q, chunk);
1071 			sctp_chunk_fail(chunk, 0);
1072 			sctp_chunk_free(chunk);
1073 			continue;
1074 		}
1075 
1076 		if (stream_state == SCTP_STREAM_CLOSED) {
1077 			sctp_outq_head_data(ctx->q, chunk);
1078 			break;
1079 		}
1080 
1081 		sctp_outq_select_transport(ctx, chunk);
1082 
1083 		pr_debug("%s: outq:%p, chunk:%p[%s], tx-tsn:0x%x skb->head:%p skb->users:%d\n",
1084 			 __func__, ctx->q, chunk, chunk && chunk->chunk_hdr ?
1085 			 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) :
1086 			 "illegal chunk", ntohl(chunk->subh.data_hdr->tsn),
1087 			 chunk->skb ? chunk->skb->head : NULL, chunk->skb ?
1088 			 refcount_read(&chunk->skb->users) : -1);
1089 
1090 		/* Add the chunk to the packet.  */
1091 		status = sctp_packet_transmit_chunk(ctx->packet, chunk, 0,
1092 						    ctx->gfp);
1093 		if (status != SCTP_XMIT_OK) {
1094 			/* We could not append this chunk, so put
1095 			 * the chunk back on the output queue.
1096 			 */
1097 			pr_debug("%s: could not transmit tsn:0x%x, status:%d\n",
1098 				 __func__, ntohl(chunk->subh.data_hdr->tsn),
1099 				 status);
1100 
1101 			sctp_outq_head_data(ctx->q, chunk);
1102 			break;
1103 		}
1104 
1105 		/* The sender is in the SHUTDOWN-PENDING state,
1106 		 * The sender MAY set the I-bit in the DATA
1107 		 * chunk header.
1108 		 */
1109 		if (ctx->asoc->state == SCTP_STATE_SHUTDOWN_PENDING)
1110 			chunk->chunk_hdr->flags |= SCTP_DATA_SACK_IMM;
1111 		if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED)
1112 			ctx->asoc->stats.ouodchunks++;
1113 		else
1114 			ctx->asoc->stats.oodchunks++;
1115 
1116 		/* Only now it's safe to consider this
1117 		 * chunk as sent, sched-wise.
1118 		 */
1119 		sctp_sched_dequeue_done(ctx->q, chunk);
1120 
1121 		list_add_tail(&chunk->transmitted_list,
1122 			      &ctx->transport->transmitted);
1123 
1124 		sctp_transport_reset_t3_rtx(ctx->transport);
1125 		ctx->transport->last_time_sent = jiffies;
1126 
1127 		/* Only let one DATA chunk get bundled with a
1128 		 * COOKIE-ECHO chunk.
1129 		 */
1130 		if (ctx->packet->has_cookie_echo)
1131 			break;
1132 	}
1133 }
1134 
1135 static void sctp_outq_flush_transports(struct sctp_flush_ctx *ctx)
1136 {
1137 	struct list_head *ltransport;
1138 	struct sctp_packet *packet;
1139 	struct sctp_transport *t;
1140 	int error = 0;
1141 
1142 	while ((ltransport = sctp_list_dequeue(&ctx->transport_list)) != NULL) {
1143 		t = list_entry(ltransport, struct sctp_transport, send_ready);
1144 		packet = &t->packet;
1145 		if (!sctp_packet_empty(packet)) {
1146 			error = sctp_packet_transmit(packet, ctx->gfp);
1147 			if (error < 0)
1148 				ctx->q->asoc->base.sk->sk_err = -error;
1149 		}
1150 
1151 		/* Clear the burst limited state, if any */
1152 		sctp_transport_burst_reset(t);
1153 	}
1154 }
1155 
1156 /* Try to flush an outqueue.
1157  *
1158  * Description: Send everything in q which we legally can, subject to
1159  * congestion limitations.
1160  * * Note: This function can be called from multiple contexts so appropriate
1161  * locking concerns must be made.  Today we use the sock lock to protect
1162  * this function.
1163  */
1164 
1165 static void sctp_outq_flush(struct sctp_outq *q, int rtx_timeout, gfp_t gfp)
1166 {
1167 	struct sctp_flush_ctx ctx = {
1168 		.q = q,
1169 		.transport = NULL,
1170 		.transport_list = LIST_HEAD_INIT(ctx.transport_list),
1171 		.asoc = q->asoc,
1172 		.packet = NULL,
1173 		.gfp = gfp,
1174 	};
1175 
1176 	/* 6.10 Bundling
1177 	 *   ...
1178 	 *   When bundling control chunks with DATA chunks, an
1179 	 *   endpoint MUST place control chunks first in the outbound
1180 	 *   SCTP packet.  The transmitter MUST transmit DATA chunks
1181 	 *   within a SCTP packet in increasing order of TSN.
1182 	 *   ...
1183 	 */
1184 
1185 	sctp_outq_flush_ctrl(&ctx);
1186 
1187 	if (q->asoc->src_out_of_asoc_ok)
1188 		goto sctp_flush_out;
1189 
1190 	sctp_outq_flush_data(&ctx, rtx_timeout);
1191 
1192 sctp_flush_out:
1193 
1194 	sctp_outq_flush_transports(&ctx);
1195 }
1196 
1197 /* Update unack_data based on the incoming SACK chunk */
1198 static void sctp_sack_update_unack_data(struct sctp_association *assoc,
1199 					struct sctp_sackhdr *sack)
1200 {
1201 	union sctp_sack_variable *frags;
1202 	__u16 unack_data;
1203 	int i;
1204 
1205 	unack_data = assoc->next_tsn - assoc->ctsn_ack_point - 1;
1206 
1207 	frags = sack->variable;
1208 	for (i = 0; i < ntohs(sack->num_gap_ack_blocks); i++) {
1209 		unack_data -= ((ntohs(frags[i].gab.end) -
1210 				ntohs(frags[i].gab.start) + 1));
1211 	}
1212 
1213 	assoc->unack_data = unack_data;
1214 }
1215 
1216 /* This is where we REALLY process a SACK.
1217  *
1218  * Process the SACK against the outqueue.  Mostly, this just frees
1219  * things off the transmitted queue.
1220  */
1221 int sctp_outq_sack(struct sctp_outq *q, struct sctp_chunk *chunk)
1222 {
1223 	struct sctp_association *asoc = q->asoc;
1224 	struct sctp_sackhdr *sack = chunk->subh.sack_hdr;
1225 	struct sctp_transport *transport;
1226 	struct sctp_chunk *tchunk = NULL;
1227 	struct list_head *lchunk, *transport_list, *temp;
1228 	union sctp_sack_variable *frags = sack->variable;
1229 	__u32 sack_ctsn, ctsn, tsn;
1230 	__u32 highest_tsn, highest_new_tsn;
1231 	__u32 sack_a_rwnd;
1232 	unsigned int outstanding;
1233 	struct sctp_transport *primary = asoc->peer.primary_path;
1234 	int count_of_newacks = 0;
1235 	int gap_ack_blocks;
1236 	u8 accum_moved = 0;
1237 
1238 	/* Grab the association's destination address list. */
1239 	transport_list = &asoc->peer.transport_addr_list;
1240 
1241 	sack_ctsn = ntohl(sack->cum_tsn_ack);
1242 	gap_ack_blocks = ntohs(sack->num_gap_ack_blocks);
1243 	asoc->stats.gapcnt += gap_ack_blocks;
1244 	/*
1245 	 * SFR-CACC algorithm:
1246 	 * On receipt of a SACK the sender SHOULD execute the
1247 	 * following statements.
1248 	 *
1249 	 * 1) If the cumulative ack in the SACK passes next tsn_at_change
1250 	 * on the current primary, the CHANGEOVER_ACTIVE flag SHOULD be
1251 	 * cleared. The CYCLING_CHANGEOVER flag SHOULD also be cleared for
1252 	 * all destinations.
1253 	 * 2) If the SACK contains gap acks and the flag CHANGEOVER_ACTIVE
1254 	 * is set the receiver of the SACK MUST take the following actions:
1255 	 *
1256 	 * A) Initialize the cacc_saw_newack to 0 for all destination
1257 	 * addresses.
1258 	 *
1259 	 * Only bother if changeover_active is set. Otherwise, this is
1260 	 * totally suboptimal to do on every SACK.
1261 	 */
1262 	if (primary->cacc.changeover_active) {
1263 		u8 clear_cycling = 0;
1264 
1265 		if (TSN_lte(primary->cacc.next_tsn_at_change, sack_ctsn)) {
1266 			primary->cacc.changeover_active = 0;
1267 			clear_cycling = 1;
1268 		}
1269 
1270 		if (clear_cycling || gap_ack_blocks) {
1271 			list_for_each_entry(transport, transport_list,
1272 					transports) {
1273 				if (clear_cycling)
1274 					transport->cacc.cycling_changeover = 0;
1275 				if (gap_ack_blocks)
1276 					transport->cacc.cacc_saw_newack = 0;
1277 			}
1278 		}
1279 	}
1280 
1281 	/* Get the highest TSN in the sack. */
1282 	highest_tsn = sack_ctsn;
1283 	if (gap_ack_blocks)
1284 		highest_tsn += ntohs(frags[gap_ack_blocks - 1].gab.end);
1285 
1286 	if (TSN_lt(asoc->highest_sacked, highest_tsn))
1287 		asoc->highest_sacked = highest_tsn;
1288 
1289 	highest_new_tsn = sack_ctsn;
1290 
1291 	/* Run through the retransmit queue.  Credit bytes received
1292 	 * and free those chunks that we can.
1293 	 */
1294 	sctp_check_transmitted(q, &q->retransmit, NULL, NULL, sack, &highest_new_tsn);
1295 
1296 	/* Run through the transmitted queue.
1297 	 * Credit bytes received and free those chunks which we can.
1298 	 *
1299 	 * This is a MASSIVE candidate for optimization.
1300 	 */
1301 	list_for_each_entry(transport, transport_list, transports) {
1302 		sctp_check_transmitted(q, &transport->transmitted,
1303 				       transport, &chunk->source, sack,
1304 				       &highest_new_tsn);
1305 		/*
1306 		 * SFR-CACC algorithm:
1307 		 * C) Let count_of_newacks be the number of
1308 		 * destinations for which cacc_saw_newack is set.
1309 		 */
1310 		if (transport->cacc.cacc_saw_newack)
1311 			count_of_newacks++;
1312 	}
1313 
1314 	/* Move the Cumulative TSN Ack Point if appropriate.  */
1315 	if (TSN_lt(asoc->ctsn_ack_point, sack_ctsn)) {
1316 		asoc->ctsn_ack_point = sack_ctsn;
1317 		accum_moved = 1;
1318 	}
1319 
1320 	if (gap_ack_blocks) {
1321 
1322 		if (asoc->fast_recovery && accum_moved)
1323 			highest_new_tsn = highest_tsn;
1324 
1325 		list_for_each_entry(transport, transport_list, transports)
1326 			sctp_mark_missing(q, &transport->transmitted, transport,
1327 					  highest_new_tsn, count_of_newacks);
1328 	}
1329 
1330 	/* Update unack_data field in the assoc. */
1331 	sctp_sack_update_unack_data(asoc, sack);
1332 
1333 	ctsn = asoc->ctsn_ack_point;
1334 
1335 	/* Throw away stuff rotting on the sack queue.  */
1336 	list_for_each_safe(lchunk, temp, &q->sacked) {
1337 		tchunk = list_entry(lchunk, struct sctp_chunk,
1338 				    transmitted_list);
1339 		tsn = ntohl(tchunk->subh.data_hdr->tsn);
1340 		if (TSN_lte(tsn, ctsn)) {
1341 			list_del_init(&tchunk->transmitted_list);
1342 			if (asoc->peer.prsctp_capable &&
1343 			    SCTP_PR_PRIO_ENABLED(chunk->sinfo.sinfo_flags))
1344 				asoc->sent_cnt_removable--;
1345 			sctp_chunk_free(tchunk);
1346 		}
1347 	}
1348 
1349 	/* ii) Set rwnd equal to the newly received a_rwnd minus the
1350 	 *     number of bytes still outstanding after processing the
1351 	 *     Cumulative TSN Ack and the Gap Ack Blocks.
1352 	 */
1353 
1354 	sack_a_rwnd = ntohl(sack->a_rwnd);
1355 	asoc->peer.zero_window_announced = !sack_a_rwnd;
1356 	outstanding = q->outstanding_bytes;
1357 
1358 	if (outstanding < sack_a_rwnd)
1359 		sack_a_rwnd -= outstanding;
1360 	else
1361 		sack_a_rwnd = 0;
1362 
1363 	asoc->peer.rwnd = sack_a_rwnd;
1364 
1365 	asoc->stream.si->generate_ftsn(q, sack_ctsn);
1366 
1367 	pr_debug("%s: sack cumulative tsn ack:0x%x\n", __func__, sack_ctsn);
1368 	pr_debug("%s: cumulative tsn ack of assoc:%p is 0x%x, "
1369 		 "advertised peer ack point:0x%x\n", __func__, asoc, ctsn,
1370 		 asoc->adv_peer_ack_point);
1371 
1372 	return sctp_outq_is_empty(q);
1373 }
1374 
1375 /* Is the outqueue empty?
1376  * The queue is empty when we have not pending data, no in-flight data
1377  * and nothing pending retransmissions.
1378  */
1379 int sctp_outq_is_empty(const struct sctp_outq *q)
1380 {
1381 	return q->out_qlen == 0 && q->outstanding_bytes == 0 &&
1382 	       list_empty(&q->retransmit);
1383 }
1384 
1385 /********************************************************************
1386  * 2nd Level Abstractions
1387  ********************************************************************/
1388 
1389 /* Go through a transport's transmitted list or the association's retransmit
1390  * list and move chunks that are acked by the Cumulative TSN Ack to q->sacked.
1391  * The retransmit list will not have an associated transport.
1392  *
1393  * I added coherent debug information output.	--xguo
1394  *
1395  * Instead of printing 'sacked' or 'kept' for each TSN on the
1396  * transmitted_queue, we print a range: SACKED: TSN1-TSN2, TSN3, TSN4-TSN5.
1397  * KEPT TSN6-TSN7, etc.
1398  */
1399 static void sctp_check_transmitted(struct sctp_outq *q,
1400 				   struct list_head *transmitted_queue,
1401 				   struct sctp_transport *transport,
1402 				   union sctp_addr *saddr,
1403 				   struct sctp_sackhdr *sack,
1404 				   __u32 *highest_new_tsn_in_sack)
1405 {
1406 	struct list_head *lchunk;
1407 	struct sctp_chunk *tchunk;
1408 	struct list_head tlist;
1409 	__u32 tsn;
1410 	__u32 sack_ctsn;
1411 	__u32 rtt;
1412 	__u8 restart_timer = 0;
1413 	int bytes_acked = 0;
1414 	int migrate_bytes = 0;
1415 	bool forward_progress = false;
1416 
1417 	sack_ctsn = ntohl(sack->cum_tsn_ack);
1418 
1419 	INIT_LIST_HEAD(&tlist);
1420 
1421 	/* The while loop will skip empty transmitted queues. */
1422 	while (NULL != (lchunk = sctp_list_dequeue(transmitted_queue))) {
1423 		tchunk = list_entry(lchunk, struct sctp_chunk,
1424 				    transmitted_list);
1425 
1426 		if (sctp_chunk_abandoned(tchunk)) {
1427 			/* Move the chunk to abandoned list. */
1428 			sctp_insert_list(&q->abandoned, lchunk);
1429 
1430 			/* If this chunk has not been acked, stop
1431 			 * considering it as 'outstanding'.
1432 			 */
1433 			if (transmitted_queue != &q->retransmit &&
1434 			    !tchunk->tsn_gap_acked) {
1435 				if (tchunk->transport)
1436 					tchunk->transport->flight_size -=
1437 							sctp_data_size(tchunk);
1438 				q->outstanding_bytes -= sctp_data_size(tchunk);
1439 			}
1440 			continue;
1441 		}
1442 
1443 		tsn = ntohl(tchunk->subh.data_hdr->tsn);
1444 		if (sctp_acked(sack, tsn)) {
1445 			/* If this queue is the retransmit queue, the
1446 			 * retransmit timer has already reclaimed
1447 			 * the outstanding bytes for this chunk, so only
1448 			 * count bytes associated with a transport.
1449 			 */
1450 			if (transport && !tchunk->tsn_gap_acked) {
1451 				/* If this chunk is being used for RTT
1452 				 * measurement, calculate the RTT and update
1453 				 * the RTO using this value.
1454 				 *
1455 				 * 6.3.1 C5) Karn's algorithm: RTT measurements
1456 				 * MUST NOT be made using packets that were
1457 				 * retransmitted (and thus for which it is
1458 				 * ambiguous whether the reply was for the
1459 				 * first instance of the packet or a later
1460 				 * instance).
1461 				 */
1462 				if (!sctp_chunk_retransmitted(tchunk) &&
1463 				    tchunk->rtt_in_progress) {
1464 					tchunk->rtt_in_progress = 0;
1465 					rtt = jiffies - tchunk->sent_at;
1466 					sctp_transport_update_rto(transport,
1467 								  rtt);
1468 				}
1469 
1470 				if (TSN_lte(tsn, sack_ctsn)) {
1471 					/*
1472 					 * SFR-CACC algorithm:
1473 					 * 2) If the SACK contains gap acks
1474 					 * and the flag CHANGEOVER_ACTIVE is
1475 					 * set the receiver of the SACK MUST
1476 					 * take the following action:
1477 					 *
1478 					 * B) For each TSN t being acked that
1479 					 * has not been acked in any SACK so
1480 					 * far, set cacc_saw_newack to 1 for
1481 					 * the destination that the TSN was
1482 					 * sent to.
1483 					 */
1484 					if (sack->num_gap_ack_blocks &&
1485 					    q->asoc->peer.primary_path->cacc.
1486 					    changeover_active)
1487 						transport->cacc.cacc_saw_newack
1488 							= 1;
1489 				}
1490 			}
1491 
1492 			/* If the chunk hasn't been marked as ACKED,
1493 			 * mark it and account bytes_acked if the
1494 			 * chunk had a valid transport (it will not
1495 			 * have a transport if ASCONF had deleted it
1496 			 * while DATA was outstanding).
1497 			 */
1498 			if (!tchunk->tsn_gap_acked) {
1499 				tchunk->tsn_gap_acked = 1;
1500 				if (TSN_lt(*highest_new_tsn_in_sack, tsn))
1501 					*highest_new_tsn_in_sack = tsn;
1502 				bytes_acked += sctp_data_size(tchunk);
1503 				if (!tchunk->transport)
1504 					migrate_bytes += sctp_data_size(tchunk);
1505 				forward_progress = true;
1506 			}
1507 
1508 			if (TSN_lte(tsn, sack_ctsn)) {
1509 				/* RFC 2960  6.3.2 Retransmission Timer Rules
1510 				 *
1511 				 * R3) Whenever a SACK is received
1512 				 * that acknowledges the DATA chunk
1513 				 * with the earliest outstanding TSN
1514 				 * for that address, restart T3-rtx
1515 				 * timer for that address with its
1516 				 * current RTO.
1517 				 */
1518 				restart_timer = 1;
1519 				forward_progress = true;
1520 
1521 				list_add_tail(&tchunk->transmitted_list,
1522 					      &q->sacked);
1523 			} else {
1524 				/* RFC2960 7.2.4, sctpimpguide-05 2.8.2
1525 				 * M2) Each time a SACK arrives reporting
1526 				 * 'Stray DATA chunk(s)' record the highest TSN
1527 				 * reported as newly acknowledged, call this
1528 				 * value 'HighestTSNinSack'. A newly
1529 				 * acknowledged DATA chunk is one not
1530 				 * previously acknowledged in a SACK.
1531 				 *
1532 				 * When the SCTP sender of data receives a SACK
1533 				 * chunk that acknowledges, for the first time,
1534 				 * the receipt of a DATA chunk, all the still
1535 				 * unacknowledged DATA chunks whose TSN is
1536 				 * older than that newly acknowledged DATA
1537 				 * chunk, are qualified as 'Stray DATA chunks'.
1538 				 */
1539 				list_add_tail(lchunk, &tlist);
1540 			}
1541 		} else {
1542 			if (tchunk->tsn_gap_acked) {
1543 				pr_debug("%s: receiver reneged on data TSN:0x%x\n",
1544 					 __func__, tsn);
1545 
1546 				tchunk->tsn_gap_acked = 0;
1547 
1548 				if (tchunk->transport)
1549 					bytes_acked -= sctp_data_size(tchunk);
1550 
1551 				/* RFC 2960 6.3.2 Retransmission Timer Rules
1552 				 *
1553 				 * R4) Whenever a SACK is received missing a
1554 				 * TSN that was previously acknowledged via a
1555 				 * Gap Ack Block, start T3-rtx for the
1556 				 * destination address to which the DATA
1557 				 * chunk was originally
1558 				 * transmitted if it is not already running.
1559 				 */
1560 				restart_timer = 1;
1561 			}
1562 
1563 			list_add_tail(lchunk, &tlist);
1564 		}
1565 	}
1566 
1567 	if (transport) {
1568 		if (bytes_acked) {
1569 			struct sctp_association *asoc = transport->asoc;
1570 
1571 			/* We may have counted DATA that was migrated
1572 			 * to this transport due to DEL-IP operation.
1573 			 * Subtract those bytes, since the were never
1574 			 * send on this transport and shouldn't be
1575 			 * credited to this transport.
1576 			 */
1577 			bytes_acked -= migrate_bytes;
1578 
1579 			/* 8.2. When an outstanding TSN is acknowledged,
1580 			 * the endpoint shall clear the error counter of
1581 			 * the destination transport address to which the
1582 			 * DATA chunk was last sent.
1583 			 * The association's overall error counter is
1584 			 * also cleared.
1585 			 */
1586 			transport->error_count = 0;
1587 			transport->asoc->overall_error_count = 0;
1588 			forward_progress = true;
1589 
1590 			/*
1591 			 * While in SHUTDOWN PENDING, we may have started
1592 			 * the T5 shutdown guard timer after reaching the
1593 			 * retransmission limit. Stop that timer as soon
1594 			 * as the receiver acknowledged any data.
1595 			 */
1596 			if (asoc->state == SCTP_STATE_SHUTDOWN_PENDING &&
1597 			    del_timer(&asoc->timers
1598 				[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]))
1599 					sctp_association_put(asoc);
1600 
1601 			/* Mark the destination transport address as
1602 			 * active if it is not so marked.
1603 			 */
1604 			if ((transport->state == SCTP_INACTIVE ||
1605 			     transport->state == SCTP_UNCONFIRMED) &&
1606 			    sctp_cmp_addr_exact(&transport->ipaddr, saddr)) {
1607 				sctp_assoc_control_transport(
1608 					transport->asoc,
1609 					transport,
1610 					SCTP_TRANSPORT_UP,
1611 					SCTP_RECEIVED_SACK);
1612 			}
1613 
1614 			sctp_transport_raise_cwnd(transport, sack_ctsn,
1615 						  bytes_acked);
1616 
1617 			transport->flight_size -= bytes_acked;
1618 			if (transport->flight_size == 0)
1619 				transport->partial_bytes_acked = 0;
1620 			q->outstanding_bytes -= bytes_acked + migrate_bytes;
1621 		} else {
1622 			/* RFC 2960 6.1, sctpimpguide-06 2.15.2
1623 			 * When a sender is doing zero window probing, it
1624 			 * should not timeout the association if it continues
1625 			 * to receive new packets from the receiver. The
1626 			 * reason is that the receiver MAY keep its window
1627 			 * closed for an indefinite time.
1628 			 * A sender is doing zero window probing when the
1629 			 * receiver's advertised window is zero, and there is
1630 			 * only one data chunk in flight to the receiver.
1631 			 *
1632 			 * Allow the association to timeout while in SHUTDOWN
1633 			 * PENDING or SHUTDOWN RECEIVED in case the receiver
1634 			 * stays in zero window mode forever.
1635 			 */
1636 			if (!q->asoc->peer.rwnd &&
1637 			    !list_empty(&tlist) &&
1638 			    (sack_ctsn+2 == q->asoc->next_tsn) &&
1639 			    q->asoc->state < SCTP_STATE_SHUTDOWN_PENDING) {
1640 				pr_debug("%s: sack received for zero window "
1641 					 "probe:%u\n", __func__, sack_ctsn);
1642 
1643 				q->asoc->overall_error_count = 0;
1644 				transport->error_count = 0;
1645 			}
1646 		}
1647 
1648 		/* RFC 2960 6.3.2 Retransmission Timer Rules
1649 		 *
1650 		 * R2) Whenever all outstanding data sent to an address have
1651 		 * been acknowledged, turn off the T3-rtx timer of that
1652 		 * address.
1653 		 */
1654 		if (!transport->flight_size) {
1655 			if (del_timer(&transport->T3_rtx_timer))
1656 				sctp_transport_put(transport);
1657 		} else if (restart_timer) {
1658 			if (!mod_timer(&transport->T3_rtx_timer,
1659 				       jiffies + transport->rto))
1660 				sctp_transport_hold(transport);
1661 		}
1662 
1663 		if (forward_progress) {
1664 			if (transport->dst)
1665 				sctp_transport_dst_confirm(transport);
1666 		}
1667 	}
1668 
1669 	list_splice(&tlist, transmitted_queue);
1670 }
1671 
1672 /* Mark chunks as missing and consequently may get retransmitted. */
1673 static void sctp_mark_missing(struct sctp_outq *q,
1674 			      struct list_head *transmitted_queue,
1675 			      struct sctp_transport *transport,
1676 			      __u32 highest_new_tsn_in_sack,
1677 			      int count_of_newacks)
1678 {
1679 	struct sctp_chunk *chunk;
1680 	__u32 tsn;
1681 	char do_fast_retransmit = 0;
1682 	struct sctp_association *asoc = q->asoc;
1683 	struct sctp_transport *primary = asoc->peer.primary_path;
1684 
1685 	list_for_each_entry(chunk, transmitted_queue, transmitted_list) {
1686 
1687 		tsn = ntohl(chunk->subh.data_hdr->tsn);
1688 
1689 		/* RFC 2960 7.2.4, sctpimpguide-05 2.8.2 M3) Examine all
1690 		 * 'Unacknowledged TSN's', if the TSN number of an
1691 		 * 'Unacknowledged TSN' is smaller than the 'HighestTSNinSack'
1692 		 * value, increment the 'TSN.Missing.Report' count on that
1693 		 * chunk if it has NOT been fast retransmitted or marked for
1694 		 * fast retransmit already.
1695 		 */
1696 		if (chunk->fast_retransmit == SCTP_CAN_FRTX &&
1697 		    !chunk->tsn_gap_acked &&
1698 		    TSN_lt(tsn, highest_new_tsn_in_sack)) {
1699 
1700 			/* SFR-CACC may require us to skip marking
1701 			 * this chunk as missing.
1702 			 */
1703 			if (!transport || !sctp_cacc_skip(primary,
1704 						chunk->transport,
1705 						count_of_newacks, tsn)) {
1706 				chunk->tsn_missing_report++;
1707 
1708 				pr_debug("%s: tsn:0x%x missing counter:%d\n",
1709 					 __func__, tsn, chunk->tsn_missing_report);
1710 			}
1711 		}
1712 		/*
1713 		 * M4) If any DATA chunk is found to have a
1714 		 * 'TSN.Missing.Report'
1715 		 * value larger than or equal to 3, mark that chunk for
1716 		 * retransmission and start the fast retransmit procedure.
1717 		 */
1718 
1719 		if (chunk->tsn_missing_report >= 3) {
1720 			chunk->fast_retransmit = SCTP_NEED_FRTX;
1721 			do_fast_retransmit = 1;
1722 		}
1723 	}
1724 
1725 	if (transport) {
1726 		if (do_fast_retransmit)
1727 			sctp_retransmit(q, transport, SCTP_RTXR_FAST_RTX);
1728 
1729 		pr_debug("%s: transport:%p, cwnd:%d, ssthresh:%d, "
1730 			 "flight_size:%d, pba:%d\n",  __func__, transport,
1731 			 transport->cwnd, transport->ssthresh,
1732 			 transport->flight_size, transport->partial_bytes_acked);
1733 	}
1734 }
1735 
1736 /* Is the given TSN acked by this packet?  */
1737 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn)
1738 {
1739 	__u32 ctsn = ntohl(sack->cum_tsn_ack);
1740 	union sctp_sack_variable *frags;
1741 	__u16 tsn_offset, blocks;
1742 	int i;
1743 
1744 	if (TSN_lte(tsn, ctsn))
1745 		goto pass;
1746 
1747 	/* 3.3.4 Selective Acknowledgment (SACK) (3):
1748 	 *
1749 	 * Gap Ack Blocks:
1750 	 *  These fields contain the Gap Ack Blocks. They are repeated
1751 	 *  for each Gap Ack Block up to the number of Gap Ack Blocks
1752 	 *  defined in the Number of Gap Ack Blocks field. All DATA
1753 	 *  chunks with TSNs greater than or equal to (Cumulative TSN
1754 	 *  Ack + Gap Ack Block Start) and less than or equal to
1755 	 *  (Cumulative TSN Ack + Gap Ack Block End) of each Gap Ack
1756 	 *  Block are assumed to have been received correctly.
1757 	 */
1758 
1759 	frags = sack->variable;
1760 	blocks = ntohs(sack->num_gap_ack_blocks);
1761 	tsn_offset = tsn - ctsn;
1762 	for (i = 0; i < blocks; ++i) {
1763 		if (tsn_offset >= ntohs(frags[i].gab.start) &&
1764 		    tsn_offset <= ntohs(frags[i].gab.end))
1765 			goto pass;
1766 	}
1767 
1768 	return 0;
1769 pass:
1770 	return 1;
1771 }
1772 
1773 static inline int sctp_get_skip_pos(struct sctp_fwdtsn_skip *skiplist,
1774 				    int nskips, __be16 stream)
1775 {
1776 	int i;
1777 
1778 	for (i = 0; i < nskips; i++) {
1779 		if (skiplist[i].stream == stream)
1780 			return i;
1781 	}
1782 	return i;
1783 }
1784 
1785 /* Create and add a fwdtsn chunk to the outq's control queue if needed. */
1786 void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 ctsn)
1787 {
1788 	struct sctp_association *asoc = q->asoc;
1789 	struct sctp_chunk *ftsn_chunk = NULL;
1790 	struct sctp_fwdtsn_skip ftsn_skip_arr[10];
1791 	int nskips = 0;
1792 	int skip_pos = 0;
1793 	__u32 tsn;
1794 	struct sctp_chunk *chunk;
1795 	struct list_head *lchunk, *temp;
1796 
1797 	if (!asoc->peer.prsctp_capable)
1798 		return;
1799 
1800 	/* PR-SCTP C1) Let SackCumAck be the Cumulative TSN ACK carried in the
1801 	 * received SACK.
1802 	 *
1803 	 * If (Advanced.Peer.Ack.Point < SackCumAck), then update
1804 	 * Advanced.Peer.Ack.Point to be equal to SackCumAck.
1805 	 */
1806 	if (TSN_lt(asoc->adv_peer_ack_point, ctsn))
1807 		asoc->adv_peer_ack_point = ctsn;
1808 
1809 	/* PR-SCTP C2) Try to further advance the "Advanced.Peer.Ack.Point"
1810 	 * locally, that is, to move "Advanced.Peer.Ack.Point" up as long as
1811 	 * the chunk next in the out-queue space is marked as "abandoned" as
1812 	 * shown in the following example:
1813 	 *
1814 	 * Assuming that a SACK arrived with the Cumulative TSN ACK 102
1815 	 * and the Advanced.Peer.Ack.Point is updated to this value:
1816 	 *
1817 	 *   out-queue at the end of  ==>   out-queue after Adv.Ack.Point
1818 	 *   normal SACK processing           local advancement
1819 	 *                ...                           ...
1820 	 *   Adv.Ack.Pt-> 102 acked                     102 acked
1821 	 *                103 abandoned                 103 abandoned
1822 	 *                104 abandoned     Adv.Ack.P-> 104 abandoned
1823 	 *                105                           105
1824 	 *                106 acked                     106 acked
1825 	 *                ...                           ...
1826 	 *
1827 	 * In this example, the data sender successfully advanced the
1828 	 * "Advanced.Peer.Ack.Point" from 102 to 104 locally.
1829 	 */
1830 	list_for_each_safe(lchunk, temp, &q->abandoned) {
1831 		chunk = list_entry(lchunk, struct sctp_chunk,
1832 					transmitted_list);
1833 		tsn = ntohl(chunk->subh.data_hdr->tsn);
1834 
1835 		/* Remove any chunks in the abandoned queue that are acked by
1836 		 * the ctsn.
1837 		 */
1838 		if (TSN_lte(tsn, ctsn)) {
1839 			list_del_init(lchunk);
1840 			sctp_chunk_free(chunk);
1841 		} else {
1842 			if (TSN_lte(tsn, asoc->adv_peer_ack_point+1)) {
1843 				asoc->adv_peer_ack_point = tsn;
1844 				if (chunk->chunk_hdr->flags &
1845 					 SCTP_DATA_UNORDERED)
1846 					continue;
1847 				skip_pos = sctp_get_skip_pos(&ftsn_skip_arr[0],
1848 						nskips,
1849 						chunk->subh.data_hdr->stream);
1850 				ftsn_skip_arr[skip_pos].stream =
1851 					chunk->subh.data_hdr->stream;
1852 				ftsn_skip_arr[skip_pos].ssn =
1853 					 chunk->subh.data_hdr->ssn;
1854 				if (skip_pos == nskips)
1855 					nskips++;
1856 				if (nskips == 10)
1857 					break;
1858 			} else
1859 				break;
1860 		}
1861 	}
1862 
1863 	/* PR-SCTP C3) If, after step C1 and C2, the "Advanced.Peer.Ack.Point"
1864 	 * is greater than the Cumulative TSN ACK carried in the received
1865 	 * SACK, the data sender MUST send the data receiver a FORWARD TSN
1866 	 * chunk containing the latest value of the
1867 	 * "Advanced.Peer.Ack.Point".
1868 	 *
1869 	 * C4) For each "abandoned" TSN the sender of the FORWARD TSN SHOULD
1870 	 * list each stream and sequence number in the forwarded TSN. This
1871 	 * information will enable the receiver to easily find any
1872 	 * stranded TSN's waiting on stream reorder queues. Each stream
1873 	 * SHOULD only be reported once; this means that if multiple
1874 	 * abandoned messages occur in the same stream then only the
1875 	 * highest abandoned stream sequence number is reported. If the
1876 	 * total size of the FORWARD TSN does NOT fit in a single MTU then
1877 	 * the sender of the FORWARD TSN SHOULD lower the
1878 	 * Advanced.Peer.Ack.Point to the last TSN that will fit in a
1879 	 * single MTU.
1880 	 */
1881 	if (asoc->adv_peer_ack_point > ctsn)
1882 		ftsn_chunk = sctp_make_fwdtsn(asoc, asoc->adv_peer_ack_point,
1883 					      nskips, &ftsn_skip_arr[0]);
1884 
1885 	if (ftsn_chunk) {
1886 		list_add_tail(&ftsn_chunk->list, &q->control_chunk_list);
1887 		SCTP_INC_STATS(sock_net(asoc->base.sk), SCTP_MIB_OUTCTRLCHUNKS);
1888 	}
1889 }
1890