1 /* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * 7 * This file is part of the SCTP kernel implementation 8 * 9 * These functions implement the sctp_outq class. The outqueue handles 10 * bundling and queueing of outgoing SCTP chunks. 11 * 12 * This SCTP implementation is free software; 13 * you can redistribute it and/or modify it under the terms of 14 * the GNU General Public License as published by 15 * the Free Software Foundation; either version 2, or (at your option) 16 * any later version. 17 * 18 * This SCTP implementation is distributed in the hope that it 19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 20 * ************************ 21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 22 * See the GNU General Public License for more details. 23 * 24 * You should have received a copy of the GNU General Public License 25 * along with GNU CC; see the file COPYING. If not, write to 26 * the Free Software Foundation, 59 Temple Place - Suite 330, 27 * Boston, MA 02111-1307, USA. 28 * 29 * Please send any bug reports or fixes you make to the 30 * email address(es): 31 * lksctp developers <lksctp-developers@lists.sourceforge.net> 32 * 33 * Or submit a bug report through the following website: 34 * http://www.sf.net/projects/lksctp 35 * 36 * Written or modified by: 37 * La Monte H.P. Yarroll <piggy@acm.org> 38 * Karl Knutson <karl@athena.chicago.il.us> 39 * Perry Melange <pmelange@null.cc.uic.edu> 40 * Xingang Guo <xingang.guo@intel.com> 41 * Hui Huang <hui.huang@nokia.com> 42 * Sridhar Samudrala <sri@us.ibm.com> 43 * Jon Grimm <jgrimm@us.ibm.com> 44 * 45 * Any bugs reported given to us we will try to fix... any fixes shared will 46 * be incorporated into the next SCTP release. 47 */ 48 49 #include <linux/types.h> 50 #include <linux/list.h> /* For struct list_head */ 51 #include <linux/socket.h> 52 #include <linux/ip.h> 53 #include <net/sock.h> /* For skb_set_owner_w */ 54 55 #include <net/sctp/sctp.h> 56 #include <net/sctp/sm.h> 57 58 /* Declare internal functions here. */ 59 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn); 60 static void sctp_check_transmitted(struct sctp_outq *q, 61 struct list_head *transmitted_queue, 62 struct sctp_transport *transport, 63 struct sctp_sackhdr *sack, 64 __u32 highest_new_tsn); 65 66 static void sctp_mark_missing(struct sctp_outq *q, 67 struct list_head *transmitted_queue, 68 struct sctp_transport *transport, 69 __u32 highest_new_tsn, 70 int count_of_newacks); 71 72 static void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 sack_ctsn); 73 74 /* Add data to the front of the queue. */ 75 static inline void sctp_outq_head_data(struct sctp_outq *q, 76 struct sctp_chunk *ch) 77 { 78 list_add(&ch->list, &q->out_chunk_list); 79 q->out_qlen += ch->skb->len; 80 return; 81 } 82 83 /* Take data from the front of the queue. */ 84 static inline struct sctp_chunk *sctp_outq_dequeue_data(struct sctp_outq *q) 85 { 86 struct sctp_chunk *ch = NULL; 87 88 if (!list_empty(&q->out_chunk_list)) { 89 struct list_head *entry = q->out_chunk_list.next; 90 91 ch = list_entry(entry, struct sctp_chunk, list); 92 list_del_init(entry); 93 q->out_qlen -= ch->skb->len; 94 } 95 return ch; 96 } 97 /* Add data chunk to the end of the queue. */ 98 static inline void sctp_outq_tail_data(struct sctp_outq *q, 99 struct sctp_chunk *ch) 100 { 101 list_add_tail(&ch->list, &q->out_chunk_list); 102 q->out_qlen += ch->skb->len; 103 return; 104 } 105 106 /* 107 * SFR-CACC algorithm: 108 * D) If count_of_newacks is greater than or equal to 2 109 * and t was not sent to the current primary then the 110 * sender MUST NOT increment missing report count for t. 111 */ 112 static inline int sctp_cacc_skip_3_1_d(struct sctp_transport *primary, 113 struct sctp_transport *transport, 114 int count_of_newacks) 115 { 116 if (count_of_newacks >=2 && transport != primary) 117 return 1; 118 return 0; 119 } 120 121 /* 122 * SFR-CACC algorithm: 123 * F) If count_of_newacks is less than 2, let d be the 124 * destination to which t was sent. If cacc_saw_newack 125 * is 0 for destination d, then the sender MUST NOT 126 * increment missing report count for t. 127 */ 128 static inline int sctp_cacc_skip_3_1_f(struct sctp_transport *transport, 129 int count_of_newacks) 130 { 131 if (count_of_newacks < 2 && !transport->cacc.cacc_saw_newack) 132 return 1; 133 return 0; 134 } 135 136 /* 137 * SFR-CACC algorithm: 138 * 3.1) If CYCLING_CHANGEOVER is 0, the sender SHOULD 139 * execute steps C, D, F. 140 * 141 * C has been implemented in sctp_outq_sack 142 */ 143 static inline int sctp_cacc_skip_3_1(struct sctp_transport *primary, 144 struct sctp_transport *transport, 145 int count_of_newacks) 146 { 147 if (!primary->cacc.cycling_changeover) { 148 if (sctp_cacc_skip_3_1_d(primary, transport, count_of_newacks)) 149 return 1; 150 if (sctp_cacc_skip_3_1_f(transport, count_of_newacks)) 151 return 1; 152 return 0; 153 } 154 return 0; 155 } 156 157 /* 158 * SFR-CACC algorithm: 159 * 3.2) Else if CYCLING_CHANGEOVER is 1, and t is less 160 * than next_tsn_at_change of the current primary, then 161 * the sender MUST NOT increment missing report count 162 * for t. 163 */ 164 static inline int sctp_cacc_skip_3_2(struct sctp_transport *primary, __u32 tsn) 165 { 166 if (primary->cacc.cycling_changeover && 167 TSN_lt(tsn, primary->cacc.next_tsn_at_change)) 168 return 1; 169 return 0; 170 } 171 172 /* 173 * SFR-CACC algorithm: 174 * 3) If the missing report count for TSN t is to be 175 * incremented according to [RFC2960] and 176 * [SCTP_STEWART-2002], and CHANGEOVER_ACTIVE is set, 177 * then the sender MUST futher execute steps 3.1 and 178 * 3.2 to determine if the missing report count for 179 * TSN t SHOULD NOT be incremented. 180 * 181 * 3.3) If 3.1 and 3.2 do not dictate that the missing 182 * report count for t should not be incremented, then 183 * the sender SOULD increment missing report count for 184 * t (according to [RFC2960] and [SCTP_STEWART_2002]). 185 */ 186 static inline int sctp_cacc_skip(struct sctp_transport *primary, 187 struct sctp_transport *transport, 188 int count_of_newacks, 189 __u32 tsn) 190 { 191 if (primary->cacc.changeover_active && 192 (sctp_cacc_skip_3_1(primary, transport, count_of_newacks) 193 || sctp_cacc_skip_3_2(primary, tsn))) 194 return 1; 195 return 0; 196 } 197 198 /* Initialize an existing sctp_outq. This does the boring stuff. 199 * You still need to define handlers if you really want to DO 200 * something with this structure... 201 */ 202 void sctp_outq_init(struct sctp_association *asoc, struct sctp_outq *q) 203 { 204 q->asoc = asoc; 205 INIT_LIST_HEAD(&q->out_chunk_list); 206 INIT_LIST_HEAD(&q->control_chunk_list); 207 INIT_LIST_HEAD(&q->retransmit); 208 INIT_LIST_HEAD(&q->sacked); 209 INIT_LIST_HEAD(&q->abandoned); 210 211 q->outstanding_bytes = 0; 212 q->empty = 1; 213 q->cork = 0; 214 215 q->malloced = 0; 216 q->out_qlen = 0; 217 } 218 219 /* Free the outqueue structure and any related pending chunks. 220 */ 221 void sctp_outq_teardown(struct sctp_outq *q) 222 { 223 struct sctp_transport *transport; 224 struct list_head *lchunk, *temp; 225 struct sctp_chunk *chunk, *tmp; 226 227 /* Throw away unacknowledged chunks. */ 228 list_for_each_entry(transport, &q->asoc->peer.transport_addr_list, 229 transports) { 230 while ((lchunk = sctp_list_dequeue(&transport->transmitted)) != NULL) { 231 chunk = list_entry(lchunk, struct sctp_chunk, 232 transmitted_list); 233 /* Mark as part of a failed message. */ 234 sctp_chunk_fail(chunk, q->error); 235 sctp_chunk_free(chunk); 236 } 237 } 238 239 /* Throw away chunks that have been gap ACKed. */ 240 list_for_each_safe(lchunk, temp, &q->sacked) { 241 list_del_init(lchunk); 242 chunk = list_entry(lchunk, struct sctp_chunk, 243 transmitted_list); 244 sctp_chunk_fail(chunk, q->error); 245 sctp_chunk_free(chunk); 246 } 247 248 /* Throw away any chunks in the retransmit queue. */ 249 list_for_each_safe(lchunk, temp, &q->retransmit) { 250 list_del_init(lchunk); 251 chunk = list_entry(lchunk, struct sctp_chunk, 252 transmitted_list); 253 sctp_chunk_fail(chunk, q->error); 254 sctp_chunk_free(chunk); 255 } 256 257 /* Throw away any chunks that are in the abandoned queue. */ 258 list_for_each_safe(lchunk, temp, &q->abandoned) { 259 list_del_init(lchunk); 260 chunk = list_entry(lchunk, struct sctp_chunk, 261 transmitted_list); 262 sctp_chunk_fail(chunk, q->error); 263 sctp_chunk_free(chunk); 264 } 265 266 /* Throw away any leftover data chunks. */ 267 while ((chunk = sctp_outq_dequeue_data(q)) != NULL) { 268 269 /* Mark as send failure. */ 270 sctp_chunk_fail(chunk, q->error); 271 sctp_chunk_free(chunk); 272 } 273 274 q->error = 0; 275 276 /* Throw away any leftover control chunks. */ 277 list_for_each_entry_safe(chunk, tmp, &q->control_chunk_list, list) { 278 list_del_init(&chunk->list); 279 sctp_chunk_free(chunk); 280 } 281 } 282 283 /* Free the outqueue structure and any related pending chunks. */ 284 void sctp_outq_free(struct sctp_outq *q) 285 { 286 /* Throw away leftover chunks. */ 287 sctp_outq_teardown(q); 288 289 /* If we were kmalloc()'d, free the memory. */ 290 if (q->malloced) 291 kfree(q); 292 } 293 294 /* Put a new chunk in an sctp_outq. */ 295 int sctp_outq_tail(struct sctp_outq *q, struct sctp_chunk *chunk) 296 { 297 int error = 0; 298 299 SCTP_DEBUG_PRINTK("sctp_outq_tail(%p, %p[%s])\n", 300 q, chunk, chunk && chunk->chunk_hdr ? 301 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) 302 : "Illegal Chunk"); 303 304 /* If it is data, queue it up, otherwise, send it 305 * immediately. 306 */ 307 if (SCTP_CID_DATA == chunk->chunk_hdr->type) { 308 /* Is it OK to queue data chunks? */ 309 /* From 9. Termination of Association 310 * 311 * When either endpoint performs a shutdown, the 312 * association on each peer will stop accepting new 313 * data from its user and only deliver data in queue 314 * at the time of sending or receiving the SHUTDOWN 315 * chunk. 316 */ 317 switch (q->asoc->state) { 318 case SCTP_STATE_EMPTY: 319 case SCTP_STATE_CLOSED: 320 case SCTP_STATE_SHUTDOWN_PENDING: 321 case SCTP_STATE_SHUTDOWN_SENT: 322 case SCTP_STATE_SHUTDOWN_RECEIVED: 323 case SCTP_STATE_SHUTDOWN_ACK_SENT: 324 /* Cannot send after transport endpoint shutdown */ 325 error = -ESHUTDOWN; 326 break; 327 328 default: 329 SCTP_DEBUG_PRINTK("outqueueing (%p, %p[%s])\n", 330 q, chunk, chunk && chunk->chunk_hdr ? 331 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) 332 : "Illegal Chunk"); 333 334 sctp_outq_tail_data(q, chunk); 335 if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED) 336 SCTP_INC_STATS(SCTP_MIB_OUTUNORDERCHUNKS); 337 else 338 SCTP_INC_STATS(SCTP_MIB_OUTORDERCHUNKS); 339 q->empty = 0; 340 break; 341 } 342 } else { 343 list_add_tail(&chunk->list, &q->control_chunk_list); 344 SCTP_INC_STATS(SCTP_MIB_OUTCTRLCHUNKS); 345 } 346 347 if (error < 0) 348 return error; 349 350 if (!q->cork) 351 error = sctp_outq_flush(q, 0); 352 353 return error; 354 } 355 356 /* Insert a chunk into the sorted list based on the TSNs. The retransmit list 357 * and the abandoned list are in ascending order. 358 */ 359 static void sctp_insert_list(struct list_head *head, struct list_head *new) 360 { 361 struct list_head *pos; 362 struct sctp_chunk *nchunk, *lchunk; 363 __u32 ntsn, ltsn; 364 int done = 0; 365 366 nchunk = list_entry(new, struct sctp_chunk, transmitted_list); 367 ntsn = ntohl(nchunk->subh.data_hdr->tsn); 368 369 list_for_each(pos, head) { 370 lchunk = list_entry(pos, struct sctp_chunk, transmitted_list); 371 ltsn = ntohl(lchunk->subh.data_hdr->tsn); 372 if (TSN_lt(ntsn, ltsn)) { 373 list_add(new, pos->prev); 374 done = 1; 375 break; 376 } 377 } 378 if (!done) 379 list_add_tail(new, head); 380 } 381 382 /* Mark all the eligible packets on a transport for retransmission. */ 383 void sctp_retransmit_mark(struct sctp_outq *q, 384 struct sctp_transport *transport, 385 __u8 reason) 386 { 387 struct list_head *lchunk, *ltemp; 388 struct sctp_chunk *chunk; 389 390 /* Walk through the specified transmitted queue. */ 391 list_for_each_safe(lchunk, ltemp, &transport->transmitted) { 392 chunk = list_entry(lchunk, struct sctp_chunk, 393 transmitted_list); 394 395 /* If the chunk is abandoned, move it to abandoned list. */ 396 if (sctp_chunk_abandoned(chunk)) { 397 list_del_init(lchunk); 398 sctp_insert_list(&q->abandoned, lchunk); 399 400 /* If this chunk has not been previousely acked, 401 * stop considering it 'outstanding'. Our peer 402 * will most likely never see it since it will 403 * not be retransmitted 404 */ 405 if (!chunk->tsn_gap_acked) { 406 chunk->transport->flight_size -= 407 sctp_data_size(chunk); 408 q->outstanding_bytes -= sctp_data_size(chunk); 409 q->asoc->peer.rwnd += (sctp_data_size(chunk) + 410 sizeof(struct sk_buff)); 411 } 412 continue; 413 } 414 415 /* If we are doing retransmission due to a timeout or pmtu 416 * discovery, only the chunks that are not yet acked should 417 * be added to the retransmit queue. 418 */ 419 if ((reason == SCTP_RTXR_FAST_RTX && 420 (chunk->fast_retransmit > 0)) || 421 (reason != SCTP_RTXR_FAST_RTX && !chunk->tsn_gap_acked)) { 422 /* If this chunk was sent less then 1 rto ago, do not 423 * retransmit this chunk, but give the peer time 424 * to acknowlege it. Do this only when 425 * retransmitting due to T3 timeout. 426 */ 427 if (reason == SCTP_RTXR_T3_RTX && 428 (jiffies - chunk->sent_at) < transport->last_rto) 429 continue; 430 431 /* RFC 2960 6.2.1 Processing a Received SACK 432 * 433 * C) Any time a DATA chunk is marked for 434 * retransmission (via either T3-rtx timer expiration 435 * (Section 6.3.3) or via fast retransmit 436 * (Section 7.2.4)), add the data size of those 437 * chunks to the rwnd. 438 */ 439 q->asoc->peer.rwnd += (sctp_data_size(chunk) + 440 sizeof(struct sk_buff)); 441 q->outstanding_bytes -= sctp_data_size(chunk); 442 transport->flight_size -= sctp_data_size(chunk); 443 444 /* sctpimpguide-05 Section 2.8.2 445 * M5) If a T3-rtx timer expires, the 446 * 'TSN.Missing.Report' of all affected TSNs is set 447 * to 0. 448 */ 449 chunk->tsn_missing_report = 0; 450 451 /* If a chunk that is being used for RTT measurement 452 * has to be retransmitted, we cannot use this chunk 453 * anymore for RTT measurements. Reset rto_pending so 454 * that a new RTT measurement is started when a new 455 * data chunk is sent. 456 */ 457 if (chunk->rtt_in_progress) { 458 chunk->rtt_in_progress = 0; 459 transport->rto_pending = 0; 460 } 461 462 /* Move the chunk to the retransmit queue. The chunks 463 * on the retransmit queue are always kept in order. 464 */ 465 list_del_init(lchunk); 466 sctp_insert_list(&q->retransmit, lchunk); 467 } 468 } 469 470 SCTP_DEBUG_PRINTK("%s: transport: %p, reason: %d, " 471 "cwnd: %d, ssthresh: %d, flight_size: %d, " 472 "pba: %d\n", __func__, 473 transport, reason, 474 transport->cwnd, transport->ssthresh, 475 transport->flight_size, 476 transport->partial_bytes_acked); 477 478 } 479 480 /* Mark all the eligible packets on a transport for retransmission and force 481 * one packet out. 482 */ 483 void sctp_retransmit(struct sctp_outq *q, struct sctp_transport *transport, 484 sctp_retransmit_reason_t reason) 485 { 486 int error = 0; 487 488 switch(reason) { 489 case SCTP_RTXR_T3_RTX: 490 SCTP_INC_STATS(SCTP_MIB_T3_RETRANSMITS); 491 sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_T3_RTX); 492 /* Update the retran path if the T3-rtx timer has expired for 493 * the current retran path. 494 */ 495 if (transport == transport->asoc->peer.retran_path) 496 sctp_assoc_update_retran_path(transport->asoc); 497 transport->asoc->rtx_data_chunks += 498 transport->asoc->unack_data; 499 break; 500 case SCTP_RTXR_FAST_RTX: 501 SCTP_INC_STATS(SCTP_MIB_FAST_RETRANSMITS); 502 sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_FAST_RTX); 503 break; 504 case SCTP_RTXR_PMTUD: 505 SCTP_INC_STATS(SCTP_MIB_PMTUD_RETRANSMITS); 506 break; 507 case SCTP_RTXR_T1_RTX: 508 SCTP_INC_STATS(SCTP_MIB_T1_RETRANSMITS); 509 transport->asoc->init_retries++; 510 break; 511 default: 512 BUG(); 513 } 514 515 sctp_retransmit_mark(q, transport, reason); 516 517 /* PR-SCTP A5) Any time the T3-rtx timer expires, on any destination, 518 * the sender SHOULD try to advance the "Advanced.Peer.Ack.Point" by 519 * following the procedures outlined in C1 - C5. 520 */ 521 sctp_generate_fwdtsn(q, q->asoc->ctsn_ack_point); 522 523 error = sctp_outq_flush(q, /* rtx_timeout */ 1); 524 525 if (error) 526 q->asoc->base.sk->sk_err = -error; 527 } 528 529 /* 530 * Transmit DATA chunks on the retransmit queue. Upon return from 531 * sctp_outq_flush_rtx() the packet 'pkt' may contain chunks which 532 * need to be transmitted by the caller. 533 * We assume that pkt->transport has already been set. 534 * 535 * The return value is a normal kernel error return value. 536 */ 537 static int sctp_outq_flush_rtx(struct sctp_outq *q, struct sctp_packet *pkt, 538 int rtx_timeout, int *start_timer) 539 { 540 struct list_head *lqueue; 541 struct list_head *lchunk; 542 struct sctp_transport *transport = pkt->transport; 543 sctp_xmit_t status; 544 struct sctp_chunk *chunk, *chunk1; 545 struct sctp_association *asoc; 546 int error = 0; 547 548 asoc = q->asoc; 549 lqueue = &q->retransmit; 550 551 /* RFC 2960 6.3.3 Handle T3-rtx Expiration 552 * 553 * E3) Determine how many of the earliest (i.e., lowest TSN) 554 * outstanding DATA chunks for the address for which the 555 * T3-rtx has expired will fit into a single packet, subject 556 * to the MTU constraint for the path corresponding to the 557 * destination transport address to which the retransmission 558 * is being sent (this may be different from the address for 559 * which the timer expires [see Section 6.4]). Call this value 560 * K. Bundle and retransmit those K DATA chunks in a single 561 * packet to the destination endpoint. 562 * 563 * [Just to be painfully clear, if we are retransmitting 564 * because a timeout just happened, we should send only ONE 565 * packet of retransmitted data.] 566 */ 567 lchunk = sctp_list_dequeue(lqueue); 568 569 while (lchunk) { 570 chunk = list_entry(lchunk, struct sctp_chunk, 571 transmitted_list); 572 573 /* Make sure that Gap Acked TSNs are not retransmitted. A 574 * simple approach is just to move such TSNs out of the 575 * way and into a 'transmitted' queue and skip to the 576 * next chunk. 577 */ 578 if (chunk->tsn_gap_acked) { 579 list_add_tail(lchunk, &transport->transmitted); 580 lchunk = sctp_list_dequeue(lqueue); 581 continue; 582 } 583 584 /* Attempt to append this chunk to the packet. */ 585 status = sctp_packet_append_chunk(pkt, chunk); 586 587 switch (status) { 588 case SCTP_XMIT_PMTU_FULL: 589 /* Send this packet. */ 590 if ((error = sctp_packet_transmit(pkt)) == 0) 591 *start_timer = 1; 592 593 /* If we are retransmitting, we should only 594 * send a single packet. 595 */ 596 if (rtx_timeout) { 597 list_add(lchunk, lqueue); 598 lchunk = NULL; 599 } 600 601 /* Bundle lchunk in the next round. */ 602 break; 603 604 case SCTP_XMIT_RWND_FULL: 605 /* Send this packet. */ 606 if ((error = sctp_packet_transmit(pkt)) == 0) 607 *start_timer = 1; 608 609 /* Stop sending DATA as there is no more room 610 * at the receiver. 611 */ 612 list_add(lchunk, lqueue); 613 lchunk = NULL; 614 break; 615 616 case SCTP_XMIT_NAGLE_DELAY: 617 /* Send this packet. */ 618 if ((error = sctp_packet_transmit(pkt)) == 0) 619 *start_timer = 1; 620 621 /* Stop sending DATA because of nagle delay. */ 622 list_add(lchunk, lqueue); 623 lchunk = NULL; 624 break; 625 626 default: 627 /* The append was successful, so add this chunk to 628 * the transmitted list. 629 */ 630 list_add_tail(lchunk, &transport->transmitted); 631 632 /* Mark the chunk as ineligible for fast retransmit 633 * after it is retransmitted. 634 */ 635 if (chunk->fast_retransmit > 0) 636 chunk->fast_retransmit = -1; 637 638 *start_timer = 1; 639 q->empty = 0; 640 641 /* Retrieve a new chunk to bundle. */ 642 lchunk = sctp_list_dequeue(lqueue); 643 break; 644 } 645 646 /* If we are here due to a retransmit timeout or a fast 647 * retransmit and if there are any chunks left in the retransmit 648 * queue that could not fit in the PMTU sized packet, they need 649 * to be marked as ineligible for a subsequent fast retransmit. 650 */ 651 if (rtx_timeout && !lchunk) { 652 list_for_each_entry(chunk1, lqueue, transmitted_list) { 653 if (chunk1->fast_retransmit > 0) 654 chunk1->fast_retransmit = -1; 655 } 656 } 657 } 658 659 return error; 660 } 661 662 /* Cork the outqueue so queued chunks are really queued. */ 663 int sctp_outq_uncork(struct sctp_outq *q) 664 { 665 int error = 0; 666 if (q->cork) 667 q->cork = 0; 668 error = sctp_outq_flush(q, 0); 669 return error; 670 } 671 672 /* 673 * Try to flush an outqueue. 674 * 675 * Description: Send everything in q which we legally can, subject to 676 * congestion limitations. 677 * * Note: This function can be called from multiple contexts so appropriate 678 * locking concerns must be made. Today we use the sock lock to protect 679 * this function. 680 */ 681 int sctp_outq_flush(struct sctp_outq *q, int rtx_timeout) 682 { 683 struct sctp_packet *packet; 684 struct sctp_packet singleton; 685 struct sctp_association *asoc = q->asoc; 686 __u16 sport = asoc->base.bind_addr.port; 687 __u16 dport = asoc->peer.port; 688 __u32 vtag = asoc->peer.i.init_tag; 689 struct sctp_transport *transport = NULL; 690 struct sctp_transport *new_transport; 691 struct sctp_chunk *chunk, *tmp; 692 sctp_xmit_t status; 693 int error = 0; 694 int start_timer = 0; 695 696 /* These transports have chunks to send. */ 697 struct list_head transport_list; 698 struct list_head *ltransport; 699 700 INIT_LIST_HEAD(&transport_list); 701 packet = NULL; 702 703 /* 704 * 6.10 Bundling 705 * ... 706 * When bundling control chunks with DATA chunks, an 707 * endpoint MUST place control chunks first in the outbound 708 * SCTP packet. The transmitter MUST transmit DATA chunks 709 * within a SCTP packet in increasing order of TSN. 710 * ... 711 */ 712 713 list_for_each_entry_safe(chunk, tmp, &q->control_chunk_list, list) { 714 list_del_init(&chunk->list); 715 716 /* Pick the right transport to use. */ 717 new_transport = chunk->transport; 718 719 if (!new_transport) { 720 /* 721 * If we have a prior transport pointer, see if 722 * the destination address of the chunk 723 * matches the destination address of the 724 * current transport. If not a match, then 725 * try to look up the transport with a given 726 * destination address. We do this because 727 * after processing ASCONFs, we may have new 728 * transports created. 729 */ 730 if (transport && 731 sctp_cmp_addr_exact(&chunk->dest, 732 &transport->ipaddr)) 733 new_transport = transport; 734 else 735 new_transport = sctp_assoc_lookup_paddr(asoc, 736 &chunk->dest); 737 738 /* if we still don't have a new transport, then 739 * use the current active path. 740 */ 741 if (!new_transport) 742 new_transport = asoc->peer.active_path; 743 } else if ((new_transport->state == SCTP_INACTIVE) || 744 (new_transport->state == SCTP_UNCONFIRMED)) { 745 /* If the chunk is Heartbeat or Heartbeat Ack, 746 * send it to chunk->transport, even if it's 747 * inactive. 748 * 749 * 3.3.6 Heartbeat Acknowledgement: 750 * ... 751 * A HEARTBEAT ACK is always sent to the source IP 752 * address of the IP datagram containing the 753 * HEARTBEAT chunk to which this ack is responding. 754 * ... 755 * 756 * ASCONF_ACKs also must be sent to the source. 757 */ 758 if (chunk->chunk_hdr->type != SCTP_CID_HEARTBEAT && 759 chunk->chunk_hdr->type != SCTP_CID_HEARTBEAT_ACK && 760 chunk->chunk_hdr->type != SCTP_CID_ASCONF_ACK) 761 new_transport = asoc->peer.active_path; 762 } 763 764 /* Are we switching transports? 765 * Take care of transport locks. 766 */ 767 if (new_transport != transport) { 768 transport = new_transport; 769 if (list_empty(&transport->send_ready)) { 770 list_add_tail(&transport->send_ready, 771 &transport_list); 772 } 773 packet = &transport->packet; 774 sctp_packet_config(packet, vtag, 775 asoc->peer.ecn_capable); 776 } 777 778 switch (chunk->chunk_hdr->type) { 779 /* 780 * 6.10 Bundling 781 * ... 782 * An endpoint MUST NOT bundle INIT, INIT ACK or SHUTDOWN 783 * COMPLETE with any other chunks. [Send them immediately.] 784 */ 785 case SCTP_CID_INIT: 786 case SCTP_CID_INIT_ACK: 787 case SCTP_CID_SHUTDOWN_COMPLETE: 788 sctp_packet_init(&singleton, transport, sport, dport); 789 sctp_packet_config(&singleton, vtag, 0); 790 sctp_packet_append_chunk(&singleton, chunk); 791 error = sctp_packet_transmit(&singleton); 792 if (error < 0) 793 return error; 794 break; 795 796 case SCTP_CID_ABORT: 797 if (sctp_test_T_bit(chunk)) { 798 packet->vtag = asoc->c.my_vtag; 799 } 800 case SCTP_CID_SACK: 801 case SCTP_CID_HEARTBEAT: 802 case SCTP_CID_HEARTBEAT_ACK: 803 case SCTP_CID_SHUTDOWN: 804 case SCTP_CID_SHUTDOWN_ACK: 805 case SCTP_CID_ERROR: 806 case SCTP_CID_COOKIE_ECHO: 807 case SCTP_CID_COOKIE_ACK: 808 case SCTP_CID_ECN_ECNE: 809 case SCTP_CID_ECN_CWR: 810 case SCTP_CID_ASCONF: 811 case SCTP_CID_ASCONF_ACK: 812 case SCTP_CID_FWD_TSN: 813 sctp_packet_transmit_chunk(packet, chunk); 814 break; 815 816 default: 817 /* We built a chunk with an illegal type! */ 818 BUG(); 819 } 820 } 821 822 /* Is it OK to send data chunks? */ 823 switch (asoc->state) { 824 case SCTP_STATE_COOKIE_ECHOED: 825 /* Only allow bundling when this packet has a COOKIE-ECHO 826 * chunk. 827 */ 828 if (!packet || !packet->has_cookie_echo) 829 break; 830 831 /* fallthru */ 832 case SCTP_STATE_ESTABLISHED: 833 case SCTP_STATE_SHUTDOWN_PENDING: 834 case SCTP_STATE_SHUTDOWN_RECEIVED: 835 /* 836 * RFC 2960 6.1 Transmission of DATA Chunks 837 * 838 * C) When the time comes for the sender to transmit, 839 * before sending new DATA chunks, the sender MUST 840 * first transmit any outstanding DATA chunks which 841 * are marked for retransmission (limited by the 842 * current cwnd). 843 */ 844 if (!list_empty(&q->retransmit)) { 845 if (transport == asoc->peer.retran_path) 846 goto retran; 847 848 /* Switch transports & prepare the packet. */ 849 850 transport = asoc->peer.retran_path; 851 852 if (list_empty(&transport->send_ready)) { 853 list_add_tail(&transport->send_ready, 854 &transport_list); 855 } 856 857 packet = &transport->packet; 858 sctp_packet_config(packet, vtag, 859 asoc->peer.ecn_capable); 860 retran: 861 error = sctp_outq_flush_rtx(q, packet, 862 rtx_timeout, &start_timer); 863 864 if (start_timer) 865 sctp_transport_reset_timers(transport); 866 867 /* This can happen on COOKIE-ECHO resend. Only 868 * one chunk can get bundled with a COOKIE-ECHO. 869 */ 870 if (packet->has_cookie_echo) 871 goto sctp_flush_out; 872 873 /* Don't send new data if there is still data 874 * waiting to retransmit. 875 */ 876 if (!list_empty(&q->retransmit)) 877 goto sctp_flush_out; 878 } 879 880 /* Finally, transmit new packets. */ 881 start_timer = 0; 882 while ((chunk = sctp_outq_dequeue_data(q)) != NULL) { 883 /* RFC 2960 6.5 Every DATA chunk MUST carry a valid 884 * stream identifier. 885 */ 886 if (chunk->sinfo.sinfo_stream >= 887 asoc->c.sinit_num_ostreams) { 888 889 /* Mark as failed send. */ 890 sctp_chunk_fail(chunk, SCTP_ERROR_INV_STRM); 891 sctp_chunk_free(chunk); 892 continue; 893 } 894 895 /* Has this chunk expired? */ 896 if (sctp_chunk_abandoned(chunk)) { 897 sctp_chunk_fail(chunk, 0); 898 sctp_chunk_free(chunk); 899 continue; 900 } 901 902 /* If there is a specified transport, use it. 903 * Otherwise, we want to use the active path. 904 */ 905 new_transport = chunk->transport; 906 if (!new_transport || 907 ((new_transport->state == SCTP_INACTIVE) || 908 (new_transport->state == SCTP_UNCONFIRMED))) 909 new_transport = asoc->peer.active_path; 910 911 /* Change packets if necessary. */ 912 if (new_transport != transport) { 913 transport = new_transport; 914 915 /* Schedule to have this transport's 916 * packet flushed. 917 */ 918 if (list_empty(&transport->send_ready)) { 919 list_add_tail(&transport->send_ready, 920 &transport_list); 921 } 922 923 packet = &transport->packet; 924 sctp_packet_config(packet, vtag, 925 asoc->peer.ecn_capable); 926 } 927 928 SCTP_DEBUG_PRINTK("sctp_outq_flush(%p, %p[%s]), ", 929 q, chunk, 930 chunk && chunk->chunk_hdr ? 931 sctp_cname(SCTP_ST_CHUNK( 932 chunk->chunk_hdr->type)) 933 : "Illegal Chunk"); 934 935 SCTP_DEBUG_PRINTK("TX TSN 0x%x skb->head " 936 "%p skb->users %d.\n", 937 ntohl(chunk->subh.data_hdr->tsn), 938 chunk->skb ?chunk->skb->head : NULL, 939 chunk->skb ? 940 atomic_read(&chunk->skb->users) : -1); 941 942 /* Add the chunk to the packet. */ 943 status = sctp_packet_transmit_chunk(packet, chunk); 944 945 switch (status) { 946 case SCTP_XMIT_PMTU_FULL: 947 case SCTP_XMIT_RWND_FULL: 948 case SCTP_XMIT_NAGLE_DELAY: 949 /* We could not append this chunk, so put 950 * the chunk back on the output queue. 951 */ 952 SCTP_DEBUG_PRINTK("sctp_outq_flush: could " 953 "not transmit TSN: 0x%x, status: %d\n", 954 ntohl(chunk->subh.data_hdr->tsn), 955 status); 956 sctp_outq_head_data(q, chunk); 957 goto sctp_flush_out; 958 break; 959 960 case SCTP_XMIT_OK: 961 break; 962 963 default: 964 BUG(); 965 } 966 967 /* BUG: We assume that the sctp_packet_transmit() 968 * call below will succeed all the time and add the 969 * chunk to the transmitted list and restart the 970 * timers. 971 * It is possible that the call can fail under OOM 972 * conditions. 973 * 974 * Is this really a problem? Won't this behave 975 * like a lost TSN? 976 */ 977 list_add_tail(&chunk->transmitted_list, 978 &transport->transmitted); 979 980 sctp_transport_reset_timers(transport); 981 982 q->empty = 0; 983 984 /* Only let one DATA chunk get bundled with a 985 * COOKIE-ECHO chunk. 986 */ 987 if (packet->has_cookie_echo) 988 goto sctp_flush_out; 989 } 990 break; 991 992 default: 993 /* Do nothing. */ 994 break; 995 } 996 997 sctp_flush_out: 998 999 /* Before returning, examine all the transports touched in 1000 * this call. Right now, we bluntly force clear all the 1001 * transports. Things might change after we implement Nagle. 1002 * But such an examination is still required. 1003 * 1004 * --xguo 1005 */ 1006 while ((ltransport = sctp_list_dequeue(&transport_list)) != NULL ) { 1007 struct sctp_transport *t = list_entry(ltransport, 1008 struct sctp_transport, 1009 send_ready); 1010 packet = &t->packet; 1011 if (!sctp_packet_empty(packet)) 1012 error = sctp_packet_transmit(packet); 1013 } 1014 1015 return error; 1016 } 1017 1018 /* Update unack_data based on the incoming SACK chunk */ 1019 static void sctp_sack_update_unack_data(struct sctp_association *assoc, 1020 struct sctp_sackhdr *sack) 1021 { 1022 sctp_sack_variable_t *frags; 1023 __u16 unack_data; 1024 int i; 1025 1026 unack_data = assoc->next_tsn - assoc->ctsn_ack_point - 1; 1027 1028 frags = sack->variable; 1029 for (i = 0; i < ntohs(sack->num_gap_ack_blocks); i++) { 1030 unack_data -= ((ntohs(frags[i].gab.end) - 1031 ntohs(frags[i].gab.start) + 1)); 1032 } 1033 1034 assoc->unack_data = unack_data; 1035 } 1036 1037 /* Return the highest new tsn that is acknowledged by the given SACK chunk. */ 1038 static __u32 sctp_highest_new_tsn(struct sctp_sackhdr *sack, 1039 struct sctp_association *asoc) 1040 { 1041 struct sctp_transport *transport; 1042 struct sctp_chunk *chunk; 1043 __u32 highest_new_tsn, tsn; 1044 struct list_head *transport_list = &asoc->peer.transport_addr_list; 1045 1046 highest_new_tsn = ntohl(sack->cum_tsn_ack); 1047 1048 list_for_each_entry(transport, transport_list, transports) { 1049 list_for_each_entry(chunk, &transport->transmitted, 1050 transmitted_list) { 1051 tsn = ntohl(chunk->subh.data_hdr->tsn); 1052 1053 if (!chunk->tsn_gap_acked && 1054 TSN_lt(highest_new_tsn, tsn) && 1055 sctp_acked(sack, tsn)) 1056 highest_new_tsn = tsn; 1057 } 1058 } 1059 1060 return highest_new_tsn; 1061 } 1062 1063 /* This is where we REALLY process a SACK. 1064 * 1065 * Process the SACK against the outqueue. Mostly, this just frees 1066 * things off the transmitted queue. 1067 */ 1068 int sctp_outq_sack(struct sctp_outq *q, struct sctp_sackhdr *sack) 1069 { 1070 struct sctp_association *asoc = q->asoc; 1071 struct sctp_transport *transport; 1072 struct sctp_chunk *tchunk = NULL; 1073 struct list_head *lchunk, *transport_list, *temp; 1074 sctp_sack_variable_t *frags = sack->variable; 1075 __u32 sack_ctsn, ctsn, tsn; 1076 __u32 highest_tsn, highest_new_tsn; 1077 __u32 sack_a_rwnd; 1078 unsigned outstanding; 1079 struct sctp_transport *primary = asoc->peer.primary_path; 1080 int count_of_newacks = 0; 1081 1082 /* Grab the association's destination address list. */ 1083 transport_list = &asoc->peer.transport_addr_list; 1084 1085 sack_ctsn = ntohl(sack->cum_tsn_ack); 1086 1087 /* 1088 * SFR-CACC algorithm: 1089 * On receipt of a SACK the sender SHOULD execute the 1090 * following statements. 1091 * 1092 * 1) If the cumulative ack in the SACK passes next tsn_at_change 1093 * on the current primary, the CHANGEOVER_ACTIVE flag SHOULD be 1094 * cleared. The CYCLING_CHANGEOVER flag SHOULD also be cleared for 1095 * all destinations. 1096 */ 1097 if (TSN_lte(primary->cacc.next_tsn_at_change, sack_ctsn)) { 1098 primary->cacc.changeover_active = 0; 1099 list_for_each_entry(transport, transport_list, 1100 transports) { 1101 transport->cacc.cycling_changeover = 0; 1102 } 1103 } 1104 1105 /* 1106 * SFR-CACC algorithm: 1107 * 2) If the SACK contains gap acks and the flag CHANGEOVER_ACTIVE 1108 * is set the receiver of the SACK MUST take the following actions: 1109 * 1110 * A) Initialize the cacc_saw_newack to 0 for all destination 1111 * addresses. 1112 */ 1113 if (sack->num_gap_ack_blocks && 1114 primary->cacc.changeover_active) { 1115 list_for_each_entry(transport, transport_list, transports) { 1116 transport->cacc.cacc_saw_newack = 0; 1117 } 1118 } 1119 1120 /* Get the highest TSN in the sack. */ 1121 highest_tsn = sack_ctsn; 1122 if (sack->num_gap_ack_blocks) 1123 highest_tsn += 1124 ntohs(frags[ntohs(sack->num_gap_ack_blocks) - 1].gab.end); 1125 1126 if (TSN_lt(asoc->highest_sacked, highest_tsn)) { 1127 highest_new_tsn = highest_tsn; 1128 asoc->highest_sacked = highest_tsn; 1129 } else { 1130 highest_new_tsn = sctp_highest_new_tsn(sack, asoc); 1131 } 1132 1133 /* Run through the retransmit queue. Credit bytes received 1134 * and free those chunks that we can. 1135 */ 1136 sctp_check_transmitted(q, &q->retransmit, NULL, sack, highest_new_tsn); 1137 sctp_mark_missing(q, &q->retransmit, NULL, highest_new_tsn, 0); 1138 1139 /* Run through the transmitted queue. 1140 * Credit bytes received and free those chunks which we can. 1141 * 1142 * This is a MASSIVE candidate for optimization. 1143 */ 1144 list_for_each_entry(transport, transport_list, transports) { 1145 sctp_check_transmitted(q, &transport->transmitted, 1146 transport, sack, highest_new_tsn); 1147 /* 1148 * SFR-CACC algorithm: 1149 * C) Let count_of_newacks be the number of 1150 * destinations for which cacc_saw_newack is set. 1151 */ 1152 if (transport->cacc.cacc_saw_newack) 1153 count_of_newacks ++; 1154 } 1155 1156 list_for_each_entry(transport, transport_list, transports) { 1157 sctp_mark_missing(q, &transport->transmitted, transport, 1158 highest_new_tsn, count_of_newacks); 1159 } 1160 1161 /* Move the Cumulative TSN Ack Point if appropriate. */ 1162 if (TSN_lt(asoc->ctsn_ack_point, sack_ctsn)) 1163 asoc->ctsn_ack_point = sack_ctsn; 1164 1165 /* Update unack_data field in the assoc. */ 1166 sctp_sack_update_unack_data(asoc, sack); 1167 1168 ctsn = asoc->ctsn_ack_point; 1169 1170 /* Throw away stuff rotting on the sack queue. */ 1171 list_for_each_safe(lchunk, temp, &q->sacked) { 1172 tchunk = list_entry(lchunk, struct sctp_chunk, 1173 transmitted_list); 1174 tsn = ntohl(tchunk->subh.data_hdr->tsn); 1175 if (TSN_lte(tsn, ctsn)) { 1176 list_del_init(&tchunk->transmitted_list); 1177 sctp_chunk_free(tchunk); 1178 } 1179 } 1180 1181 /* ii) Set rwnd equal to the newly received a_rwnd minus the 1182 * number of bytes still outstanding after processing the 1183 * Cumulative TSN Ack and the Gap Ack Blocks. 1184 */ 1185 1186 sack_a_rwnd = ntohl(sack->a_rwnd); 1187 outstanding = q->outstanding_bytes; 1188 1189 if (outstanding < sack_a_rwnd) 1190 sack_a_rwnd -= outstanding; 1191 else 1192 sack_a_rwnd = 0; 1193 1194 asoc->peer.rwnd = sack_a_rwnd; 1195 1196 sctp_generate_fwdtsn(q, sack_ctsn); 1197 1198 SCTP_DEBUG_PRINTK("%s: sack Cumulative TSN Ack is 0x%x.\n", 1199 __func__, sack_ctsn); 1200 SCTP_DEBUG_PRINTK("%s: Cumulative TSN Ack of association, " 1201 "%p is 0x%x. Adv peer ack point: 0x%x\n", 1202 __func__, asoc, ctsn, asoc->adv_peer_ack_point); 1203 1204 /* See if all chunks are acked. 1205 * Make sure the empty queue handler will get run later. 1206 */ 1207 q->empty = (list_empty(&q->out_chunk_list) && 1208 list_empty(&q->control_chunk_list) && 1209 list_empty(&q->retransmit)); 1210 if (!q->empty) 1211 goto finish; 1212 1213 list_for_each_entry(transport, transport_list, transports) { 1214 q->empty = q->empty && list_empty(&transport->transmitted); 1215 if (!q->empty) 1216 goto finish; 1217 } 1218 1219 SCTP_DEBUG_PRINTK("sack queue is empty.\n"); 1220 finish: 1221 return q->empty; 1222 } 1223 1224 /* Is the outqueue empty? */ 1225 int sctp_outq_is_empty(const struct sctp_outq *q) 1226 { 1227 return q->empty; 1228 } 1229 1230 /******************************************************************** 1231 * 2nd Level Abstractions 1232 ********************************************************************/ 1233 1234 /* Go through a transport's transmitted list or the association's retransmit 1235 * list and move chunks that are acked by the Cumulative TSN Ack to q->sacked. 1236 * The retransmit list will not have an associated transport. 1237 * 1238 * I added coherent debug information output. --xguo 1239 * 1240 * Instead of printing 'sacked' or 'kept' for each TSN on the 1241 * transmitted_queue, we print a range: SACKED: TSN1-TSN2, TSN3, TSN4-TSN5. 1242 * KEPT TSN6-TSN7, etc. 1243 */ 1244 static void sctp_check_transmitted(struct sctp_outq *q, 1245 struct list_head *transmitted_queue, 1246 struct sctp_transport *transport, 1247 struct sctp_sackhdr *sack, 1248 __u32 highest_new_tsn_in_sack) 1249 { 1250 struct list_head *lchunk; 1251 struct sctp_chunk *tchunk; 1252 struct list_head tlist; 1253 __u32 tsn; 1254 __u32 sack_ctsn; 1255 __u32 rtt; 1256 __u8 restart_timer = 0; 1257 int bytes_acked = 0; 1258 1259 /* These state variables are for coherent debug output. --xguo */ 1260 1261 #if SCTP_DEBUG 1262 __u32 dbg_ack_tsn = 0; /* An ACKed TSN range starts here... */ 1263 __u32 dbg_last_ack_tsn = 0; /* ...and finishes here. */ 1264 __u32 dbg_kept_tsn = 0; /* An un-ACKed range starts here... */ 1265 __u32 dbg_last_kept_tsn = 0; /* ...and finishes here. */ 1266 1267 /* 0 : The last TSN was ACKed. 1268 * 1 : The last TSN was NOT ACKed (i.e. KEPT). 1269 * -1: We need to initialize. 1270 */ 1271 int dbg_prt_state = -1; 1272 #endif /* SCTP_DEBUG */ 1273 1274 sack_ctsn = ntohl(sack->cum_tsn_ack); 1275 1276 INIT_LIST_HEAD(&tlist); 1277 1278 /* The while loop will skip empty transmitted queues. */ 1279 while (NULL != (lchunk = sctp_list_dequeue(transmitted_queue))) { 1280 tchunk = list_entry(lchunk, struct sctp_chunk, 1281 transmitted_list); 1282 1283 if (sctp_chunk_abandoned(tchunk)) { 1284 /* Move the chunk to abandoned list. */ 1285 sctp_insert_list(&q->abandoned, lchunk); 1286 1287 /* If this chunk has not been acked, stop 1288 * considering it as 'outstanding'. 1289 */ 1290 if (!tchunk->tsn_gap_acked) { 1291 tchunk->transport->flight_size -= 1292 sctp_data_size(tchunk); 1293 q->outstanding_bytes -= sctp_data_size(tchunk); 1294 } 1295 continue; 1296 } 1297 1298 tsn = ntohl(tchunk->subh.data_hdr->tsn); 1299 if (sctp_acked(sack, tsn)) { 1300 /* If this queue is the retransmit queue, the 1301 * retransmit timer has already reclaimed 1302 * the outstanding bytes for this chunk, so only 1303 * count bytes associated with a transport. 1304 */ 1305 if (transport) { 1306 /* If this chunk is being used for RTT 1307 * measurement, calculate the RTT and update 1308 * the RTO using this value. 1309 * 1310 * 6.3.1 C5) Karn's algorithm: RTT measurements 1311 * MUST NOT be made using packets that were 1312 * retransmitted (and thus for which it is 1313 * ambiguous whether the reply was for the 1314 * first instance of the packet or a later 1315 * instance). 1316 */ 1317 if (!tchunk->tsn_gap_acked && 1318 !tchunk->resent && 1319 tchunk->rtt_in_progress) { 1320 tchunk->rtt_in_progress = 0; 1321 rtt = jiffies - tchunk->sent_at; 1322 sctp_transport_update_rto(transport, 1323 rtt); 1324 } 1325 } 1326 if (TSN_lte(tsn, sack_ctsn)) { 1327 /* RFC 2960 6.3.2 Retransmission Timer Rules 1328 * 1329 * R3) Whenever a SACK is received 1330 * that acknowledges the DATA chunk 1331 * with the earliest outstanding TSN 1332 * for that address, restart T3-rtx 1333 * timer for that address with its 1334 * current RTO. 1335 */ 1336 restart_timer = 1; 1337 1338 if (!tchunk->tsn_gap_acked) { 1339 tchunk->tsn_gap_acked = 1; 1340 bytes_acked += sctp_data_size(tchunk); 1341 /* 1342 * SFR-CACC algorithm: 1343 * 2) If the SACK contains gap acks 1344 * and the flag CHANGEOVER_ACTIVE is 1345 * set the receiver of the SACK MUST 1346 * take the following action: 1347 * 1348 * B) For each TSN t being acked that 1349 * has not been acked in any SACK so 1350 * far, set cacc_saw_newack to 1 for 1351 * the destination that the TSN was 1352 * sent to. 1353 */ 1354 if (transport && 1355 sack->num_gap_ack_blocks && 1356 q->asoc->peer.primary_path->cacc. 1357 changeover_active) 1358 transport->cacc.cacc_saw_newack 1359 = 1; 1360 } 1361 1362 list_add_tail(&tchunk->transmitted_list, 1363 &q->sacked); 1364 } else { 1365 /* RFC2960 7.2.4, sctpimpguide-05 2.8.2 1366 * M2) Each time a SACK arrives reporting 1367 * 'Stray DATA chunk(s)' record the highest TSN 1368 * reported as newly acknowledged, call this 1369 * value 'HighestTSNinSack'. A newly 1370 * acknowledged DATA chunk is one not 1371 * previously acknowledged in a SACK. 1372 * 1373 * When the SCTP sender of data receives a SACK 1374 * chunk that acknowledges, for the first time, 1375 * the receipt of a DATA chunk, all the still 1376 * unacknowledged DATA chunks whose TSN is 1377 * older than that newly acknowledged DATA 1378 * chunk, are qualified as 'Stray DATA chunks'. 1379 */ 1380 if (!tchunk->tsn_gap_acked) { 1381 tchunk->tsn_gap_acked = 1; 1382 bytes_acked += sctp_data_size(tchunk); 1383 } 1384 list_add_tail(lchunk, &tlist); 1385 } 1386 1387 #if SCTP_DEBUG 1388 switch (dbg_prt_state) { 1389 case 0: /* last TSN was ACKed */ 1390 if (dbg_last_ack_tsn + 1 == tsn) { 1391 /* This TSN belongs to the 1392 * current ACK range. 1393 */ 1394 break; 1395 } 1396 1397 if (dbg_last_ack_tsn != dbg_ack_tsn) { 1398 /* Display the end of the 1399 * current range. 1400 */ 1401 SCTP_DEBUG_PRINTK("-%08x", 1402 dbg_last_ack_tsn); 1403 } 1404 1405 /* Start a new range. */ 1406 SCTP_DEBUG_PRINTK(",%08x", tsn); 1407 dbg_ack_tsn = tsn; 1408 break; 1409 1410 case 1: /* The last TSN was NOT ACKed. */ 1411 if (dbg_last_kept_tsn != dbg_kept_tsn) { 1412 /* Display the end of current range. */ 1413 SCTP_DEBUG_PRINTK("-%08x", 1414 dbg_last_kept_tsn); 1415 } 1416 1417 SCTP_DEBUG_PRINTK("\n"); 1418 1419 /* FALL THROUGH... */ 1420 default: 1421 /* This is the first-ever TSN we examined. */ 1422 /* Start a new range of ACK-ed TSNs. */ 1423 SCTP_DEBUG_PRINTK("ACKed: %08x", tsn); 1424 dbg_prt_state = 0; 1425 dbg_ack_tsn = tsn; 1426 } 1427 1428 dbg_last_ack_tsn = tsn; 1429 #endif /* SCTP_DEBUG */ 1430 1431 } else { 1432 if (tchunk->tsn_gap_acked) { 1433 SCTP_DEBUG_PRINTK("%s: Receiver reneged on " 1434 "data TSN: 0x%x\n", 1435 __func__, 1436 tsn); 1437 tchunk->tsn_gap_acked = 0; 1438 1439 bytes_acked -= sctp_data_size(tchunk); 1440 1441 /* RFC 2960 6.3.2 Retransmission Timer Rules 1442 * 1443 * R4) Whenever a SACK is received missing a 1444 * TSN that was previously acknowledged via a 1445 * Gap Ack Block, start T3-rtx for the 1446 * destination address to which the DATA 1447 * chunk was originally 1448 * transmitted if it is not already running. 1449 */ 1450 restart_timer = 1; 1451 } 1452 1453 list_add_tail(lchunk, &tlist); 1454 1455 #if SCTP_DEBUG 1456 /* See the above comments on ACK-ed TSNs. */ 1457 switch (dbg_prt_state) { 1458 case 1: 1459 if (dbg_last_kept_tsn + 1 == tsn) 1460 break; 1461 1462 if (dbg_last_kept_tsn != dbg_kept_tsn) 1463 SCTP_DEBUG_PRINTK("-%08x", 1464 dbg_last_kept_tsn); 1465 1466 SCTP_DEBUG_PRINTK(",%08x", tsn); 1467 dbg_kept_tsn = tsn; 1468 break; 1469 1470 case 0: 1471 if (dbg_last_ack_tsn != dbg_ack_tsn) 1472 SCTP_DEBUG_PRINTK("-%08x", 1473 dbg_last_ack_tsn); 1474 SCTP_DEBUG_PRINTK("\n"); 1475 1476 /* FALL THROUGH... */ 1477 default: 1478 SCTP_DEBUG_PRINTK("KEPT: %08x",tsn); 1479 dbg_prt_state = 1; 1480 dbg_kept_tsn = tsn; 1481 } 1482 1483 dbg_last_kept_tsn = tsn; 1484 #endif /* SCTP_DEBUG */ 1485 } 1486 } 1487 1488 #if SCTP_DEBUG 1489 /* Finish off the last range, displaying its ending TSN. */ 1490 switch (dbg_prt_state) { 1491 case 0: 1492 if (dbg_last_ack_tsn != dbg_ack_tsn) { 1493 SCTP_DEBUG_PRINTK("-%08x\n", dbg_last_ack_tsn); 1494 } else { 1495 SCTP_DEBUG_PRINTK("\n"); 1496 } 1497 break; 1498 1499 case 1: 1500 if (dbg_last_kept_tsn != dbg_kept_tsn) { 1501 SCTP_DEBUG_PRINTK("-%08x\n", dbg_last_kept_tsn); 1502 } else { 1503 SCTP_DEBUG_PRINTK("\n"); 1504 } 1505 } 1506 #endif /* SCTP_DEBUG */ 1507 if (transport) { 1508 if (bytes_acked) { 1509 /* 8.2. When an outstanding TSN is acknowledged, 1510 * the endpoint shall clear the error counter of 1511 * the destination transport address to which the 1512 * DATA chunk was last sent. 1513 * The association's overall error counter is 1514 * also cleared. 1515 */ 1516 transport->error_count = 0; 1517 transport->asoc->overall_error_count = 0; 1518 1519 /* Mark the destination transport address as 1520 * active if it is not so marked. 1521 */ 1522 if ((transport->state == SCTP_INACTIVE) || 1523 (transport->state == SCTP_UNCONFIRMED)) { 1524 sctp_assoc_control_transport( 1525 transport->asoc, 1526 transport, 1527 SCTP_TRANSPORT_UP, 1528 SCTP_RECEIVED_SACK); 1529 } 1530 1531 sctp_transport_raise_cwnd(transport, sack_ctsn, 1532 bytes_acked); 1533 1534 transport->flight_size -= bytes_acked; 1535 if (transport->flight_size == 0) 1536 transport->partial_bytes_acked = 0; 1537 q->outstanding_bytes -= bytes_acked; 1538 } else { 1539 /* RFC 2960 6.1, sctpimpguide-06 2.15.2 1540 * When a sender is doing zero window probing, it 1541 * should not timeout the association if it continues 1542 * to receive new packets from the receiver. The 1543 * reason is that the receiver MAY keep its window 1544 * closed for an indefinite time. 1545 * A sender is doing zero window probing when the 1546 * receiver's advertised window is zero, and there is 1547 * only one data chunk in flight to the receiver. 1548 */ 1549 if (!q->asoc->peer.rwnd && 1550 !list_empty(&tlist) && 1551 (sack_ctsn+2 == q->asoc->next_tsn)) { 1552 SCTP_DEBUG_PRINTK("%s: SACK received for zero " 1553 "window probe: %u\n", 1554 __func__, sack_ctsn); 1555 q->asoc->overall_error_count = 0; 1556 transport->error_count = 0; 1557 } 1558 } 1559 1560 /* RFC 2960 6.3.2 Retransmission Timer Rules 1561 * 1562 * R2) Whenever all outstanding data sent to an address have 1563 * been acknowledged, turn off the T3-rtx timer of that 1564 * address. 1565 */ 1566 if (!transport->flight_size) { 1567 if (timer_pending(&transport->T3_rtx_timer) && 1568 del_timer(&transport->T3_rtx_timer)) { 1569 sctp_transport_put(transport); 1570 } 1571 } else if (restart_timer) { 1572 if (!mod_timer(&transport->T3_rtx_timer, 1573 jiffies + transport->rto)) 1574 sctp_transport_hold(transport); 1575 } 1576 } 1577 1578 list_splice(&tlist, transmitted_queue); 1579 } 1580 1581 /* Mark chunks as missing and consequently may get retransmitted. */ 1582 static void sctp_mark_missing(struct sctp_outq *q, 1583 struct list_head *transmitted_queue, 1584 struct sctp_transport *transport, 1585 __u32 highest_new_tsn_in_sack, 1586 int count_of_newacks) 1587 { 1588 struct sctp_chunk *chunk; 1589 __u32 tsn; 1590 char do_fast_retransmit = 0; 1591 struct sctp_transport *primary = q->asoc->peer.primary_path; 1592 1593 list_for_each_entry(chunk, transmitted_queue, transmitted_list) { 1594 1595 tsn = ntohl(chunk->subh.data_hdr->tsn); 1596 1597 /* RFC 2960 7.2.4, sctpimpguide-05 2.8.2 M3) Examine all 1598 * 'Unacknowledged TSN's', if the TSN number of an 1599 * 'Unacknowledged TSN' is smaller than the 'HighestTSNinSack' 1600 * value, increment the 'TSN.Missing.Report' count on that 1601 * chunk if it has NOT been fast retransmitted or marked for 1602 * fast retransmit already. 1603 */ 1604 if (!chunk->fast_retransmit && 1605 !chunk->tsn_gap_acked && 1606 TSN_lt(tsn, highest_new_tsn_in_sack)) { 1607 1608 /* SFR-CACC may require us to skip marking 1609 * this chunk as missing. 1610 */ 1611 if (!transport || !sctp_cacc_skip(primary, transport, 1612 count_of_newacks, tsn)) { 1613 chunk->tsn_missing_report++; 1614 1615 SCTP_DEBUG_PRINTK( 1616 "%s: TSN 0x%x missing counter: %d\n", 1617 __func__, tsn, 1618 chunk->tsn_missing_report); 1619 } 1620 } 1621 /* 1622 * M4) If any DATA chunk is found to have a 1623 * 'TSN.Missing.Report' 1624 * value larger than or equal to 3, mark that chunk for 1625 * retransmission and start the fast retransmit procedure. 1626 */ 1627 1628 if (chunk->tsn_missing_report >= 3) { 1629 chunk->fast_retransmit = 1; 1630 do_fast_retransmit = 1; 1631 } 1632 } 1633 1634 if (transport) { 1635 if (do_fast_retransmit) 1636 sctp_retransmit(q, transport, SCTP_RTXR_FAST_RTX); 1637 1638 SCTP_DEBUG_PRINTK("%s: transport: %p, cwnd: %d, " 1639 "ssthresh: %d, flight_size: %d, pba: %d\n", 1640 __func__, transport, transport->cwnd, 1641 transport->ssthresh, transport->flight_size, 1642 transport->partial_bytes_acked); 1643 } 1644 } 1645 1646 /* Is the given TSN acked by this packet? */ 1647 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn) 1648 { 1649 int i; 1650 sctp_sack_variable_t *frags; 1651 __u16 gap; 1652 __u32 ctsn = ntohl(sack->cum_tsn_ack); 1653 1654 if (TSN_lte(tsn, ctsn)) 1655 goto pass; 1656 1657 /* 3.3.4 Selective Acknowledgement (SACK) (3): 1658 * 1659 * Gap Ack Blocks: 1660 * These fields contain the Gap Ack Blocks. They are repeated 1661 * for each Gap Ack Block up to the number of Gap Ack Blocks 1662 * defined in the Number of Gap Ack Blocks field. All DATA 1663 * chunks with TSNs greater than or equal to (Cumulative TSN 1664 * Ack + Gap Ack Block Start) and less than or equal to 1665 * (Cumulative TSN Ack + Gap Ack Block End) of each Gap Ack 1666 * Block are assumed to have been received correctly. 1667 */ 1668 1669 frags = sack->variable; 1670 gap = tsn - ctsn; 1671 for (i = 0; i < ntohs(sack->num_gap_ack_blocks); ++i) { 1672 if (TSN_lte(ntohs(frags[i].gab.start), gap) && 1673 TSN_lte(gap, ntohs(frags[i].gab.end))) 1674 goto pass; 1675 } 1676 1677 return 0; 1678 pass: 1679 return 1; 1680 } 1681 1682 static inline int sctp_get_skip_pos(struct sctp_fwdtsn_skip *skiplist, 1683 int nskips, __be16 stream) 1684 { 1685 int i; 1686 1687 for (i = 0; i < nskips; i++) { 1688 if (skiplist[i].stream == stream) 1689 return i; 1690 } 1691 return i; 1692 } 1693 1694 /* Create and add a fwdtsn chunk to the outq's control queue if needed. */ 1695 static void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 ctsn) 1696 { 1697 struct sctp_association *asoc = q->asoc; 1698 struct sctp_chunk *ftsn_chunk = NULL; 1699 struct sctp_fwdtsn_skip ftsn_skip_arr[10]; 1700 int nskips = 0; 1701 int skip_pos = 0; 1702 __u32 tsn; 1703 struct sctp_chunk *chunk; 1704 struct list_head *lchunk, *temp; 1705 1706 /* PR-SCTP C1) Let SackCumAck be the Cumulative TSN ACK carried in the 1707 * received SACK. 1708 * 1709 * If (Advanced.Peer.Ack.Point < SackCumAck), then update 1710 * Advanced.Peer.Ack.Point to be equal to SackCumAck. 1711 */ 1712 if (TSN_lt(asoc->adv_peer_ack_point, ctsn)) 1713 asoc->adv_peer_ack_point = ctsn; 1714 1715 /* PR-SCTP C2) Try to further advance the "Advanced.Peer.Ack.Point" 1716 * locally, that is, to move "Advanced.Peer.Ack.Point" up as long as 1717 * the chunk next in the out-queue space is marked as "abandoned" as 1718 * shown in the following example: 1719 * 1720 * Assuming that a SACK arrived with the Cumulative TSN ACK 102 1721 * and the Advanced.Peer.Ack.Point is updated to this value: 1722 * 1723 * out-queue at the end of ==> out-queue after Adv.Ack.Point 1724 * normal SACK processing local advancement 1725 * ... ... 1726 * Adv.Ack.Pt-> 102 acked 102 acked 1727 * 103 abandoned 103 abandoned 1728 * 104 abandoned Adv.Ack.P-> 104 abandoned 1729 * 105 105 1730 * 106 acked 106 acked 1731 * ... ... 1732 * 1733 * In this example, the data sender successfully advanced the 1734 * "Advanced.Peer.Ack.Point" from 102 to 104 locally. 1735 */ 1736 list_for_each_safe(lchunk, temp, &q->abandoned) { 1737 chunk = list_entry(lchunk, struct sctp_chunk, 1738 transmitted_list); 1739 tsn = ntohl(chunk->subh.data_hdr->tsn); 1740 1741 /* Remove any chunks in the abandoned queue that are acked by 1742 * the ctsn. 1743 */ 1744 if (TSN_lte(tsn, ctsn)) { 1745 list_del_init(lchunk); 1746 sctp_chunk_free(chunk); 1747 } else { 1748 if (TSN_lte(tsn, asoc->adv_peer_ack_point+1)) { 1749 asoc->adv_peer_ack_point = tsn; 1750 if (chunk->chunk_hdr->flags & 1751 SCTP_DATA_UNORDERED) 1752 continue; 1753 skip_pos = sctp_get_skip_pos(&ftsn_skip_arr[0], 1754 nskips, 1755 chunk->subh.data_hdr->stream); 1756 ftsn_skip_arr[skip_pos].stream = 1757 chunk->subh.data_hdr->stream; 1758 ftsn_skip_arr[skip_pos].ssn = 1759 chunk->subh.data_hdr->ssn; 1760 if (skip_pos == nskips) 1761 nskips++; 1762 if (nskips == 10) 1763 break; 1764 } else 1765 break; 1766 } 1767 } 1768 1769 /* PR-SCTP C3) If, after step C1 and C2, the "Advanced.Peer.Ack.Point" 1770 * is greater than the Cumulative TSN ACK carried in the received 1771 * SACK, the data sender MUST send the data receiver a FORWARD TSN 1772 * chunk containing the latest value of the 1773 * "Advanced.Peer.Ack.Point". 1774 * 1775 * C4) For each "abandoned" TSN the sender of the FORWARD TSN SHOULD 1776 * list each stream and sequence number in the forwarded TSN. This 1777 * information will enable the receiver to easily find any 1778 * stranded TSN's waiting on stream reorder queues. Each stream 1779 * SHOULD only be reported once; this means that if multiple 1780 * abandoned messages occur in the same stream then only the 1781 * highest abandoned stream sequence number is reported. If the 1782 * total size of the FORWARD TSN does NOT fit in a single MTU then 1783 * the sender of the FORWARD TSN SHOULD lower the 1784 * Advanced.Peer.Ack.Point to the last TSN that will fit in a 1785 * single MTU. 1786 */ 1787 if (asoc->adv_peer_ack_point > ctsn) 1788 ftsn_chunk = sctp_make_fwdtsn(asoc, asoc->adv_peer_ack_point, 1789 nskips, &ftsn_skip_arr[0]); 1790 1791 if (ftsn_chunk) { 1792 list_add_tail(&ftsn_chunk->list, &q->control_chunk_list); 1793 SCTP_INC_STATS(SCTP_MIB_OUTCTRLCHUNKS); 1794 } 1795 } 1796