xref: /openbmc/linux/net/sctp/outqueue.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  *
7  * This file is part of the SCTP kernel implementation
8  *
9  * These functions implement the sctp_outq class.   The outqueue handles
10  * bundling and queueing of outgoing SCTP chunks.
11  *
12  * This SCTP implementation is free software;
13  * you can redistribute it and/or modify it under the terms of
14  * the GNU General Public License as published by
15  * the Free Software Foundation; either version 2, or (at your option)
16  * any later version.
17  *
18  * This SCTP implementation is distributed in the hope that it
19  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20  *                 ************************
21  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22  * See the GNU General Public License for more details.
23  *
24  * You should have received a copy of the GNU General Public License
25  * along with GNU CC; see the file COPYING.  If not, see
26  * <http://www.gnu.org/licenses/>.
27  *
28  * Please send any bug reports or fixes you make to the
29  * email address(es):
30  *    lksctp developers <linux-sctp@vger.kernel.org>
31  *
32  * Written or modified by:
33  *    La Monte H.P. Yarroll <piggy@acm.org>
34  *    Karl Knutson          <karl@athena.chicago.il.us>
35  *    Perry Melange         <pmelange@null.cc.uic.edu>
36  *    Xingang Guo           <xingang.guo@intel.com>
37  *    Hui Huang 	    <hui.huang@nokia.com>
38  *    Sridhar Samudrala     <sri@us.ibm.com>
39  *    Jon Grimm             <jgrimm@us.ibm.com>
40  */
41 
42 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
43 
44 #include <linux/types.h>
45 #include <linux/list.h>   /* For struct list_head */
46 #include <linux/socket.h>
47 #include <linux/ip.h>
48 #include <linux/slab.h>
49 #include <net/sock.h>	  /* For skb_set_owner_w */
50 
51 #include <net/sctp/sctp.h>
52 #include <net/sctp/sm.h>
53 #include <net/sctp/stream_sched.h>
54 
55 /* Declare internal functions here.  */
56 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn);
57 static void sctp_check_transmitted(struct sctp_outq *q,
58 				   struct list_head *transmitted_queue,
59 				   struct sctp_transport *transport,
60 				   union sctp_addr *saddr,
61 				   struct sctp_sackhdr *sack,
62 				   __u32 *highest_new_tsn);
63 
64 static void sctp_mark_missing(struct sctp_outq *q,
65 			      struct list_head *transmitted_queue,
66 			      struct sctp_transport *transport,
67 			      __u32 highest_new_tsn,
68 			      int count_of_newacks);
69 
70 static void sctp_outq_flush(struct sctp_outq *q, int rtx_timeout, gfp_t gfp);
71 
72 /* Add data to the front of the queue. */
73 static inline void sctp_outq_head_data(struct sctp_outq *q,
74 				       struct sctp_chunk *ch)
75 {
76 	struct sctp_stream_out_ext *oute;
77 	__u16 stream;
78 
79 	list_add(&ch->list, &q->out_chunk_list);
80 	q->out_qlen += ch->skb->len;
81 
82 	stream = sctp_chunk_stream_no(ch);
83 	oute = SCTP_SO(&q->asoc->stream, stream)->ext;
84 	list_add(&ch->stream_list, &oute->outq);
85 }
86 
87 /* Take data from the front of the queue. */
88 static inline struct sctp_chunk *sctp_outq_dequeue_data(struct sctp_outq *q)
89 {
90 	return q->sched->dequeue(q);
91 }
92 
93 /* Add data chunk to the end of the queue. */
94 static inline void sctp_outq_tail_data(struct sctp_outq *q,
95 				       struct sctp_chunk *ch)
96 {
97 	struct sctp_stream_out_ext *oute;
98 	__u16 stream;
99 
100 	list_add_tail(&ch->list, &q->out_chunk_list);
101 	q->out_qlen += ch->skb->len;
102 
103 	stream = sctp_chunk_stream_no(ch);
104 	oute = SCTP_SO(&q->asoc->stream, stream)->ext;
105 	list_add_tail(&ch->stream_list, &oute->outq);
106 }
107 
108 /*
109  * SFR-CACC algorithm:
110  * D) If count_of_newacks is greater than or equal to 2
111  * and t was not sent to the current primary then the
112  * sender MUST NOT increment missing report count for t.
113  */
114 static inline int sctp_cacc_skip_3_1_d(struct sctp_transport *primary,
115 				       struct sctp_transport *transport,
116 				       int count_of_newacks)
117 {
118 	if (count_of_newacks >= 2 && transport != primary)
119 		return 1;
120 	return 0;
121 }
122 
123 /*
124  * SFR-CACC algorithm:
125  * F) If count_of_newacks is less than 2, let d be the
126  * destination to which t was sent. If cacc_saw_newack
127  * is 0 for destination d, then the sender MUST NOT
128  * increment missing report count for t.
129  */
130 static inline int sctp_cacc_skip_3_1_f(struct sctp_transport *transport,
131 				       int count_of_newacks)
132 {
133 	if (count_of_newacks < 2 &&
134 			(transport && !transport->cacc.cacc_saw_newack))
135 		return 1;
136 	return 0;
137 }
138 
139 /*
140  * SFR-CACC algorithm:
141  * 3.1) If CYCLING_CHANGEOVER is 0, the sender SHOULD
142  * execute steps C, D, F.
143  *
144  * C has been implemented in sctp_outq_sack
145  */
146 static inline int sctp_cacc_skip_3_1(struct sctp_transport *primary,
147 				     struct sctp_transport *transport,
148 				     int count_of_newacks)
149 {
150 	if (!primary->cacc.cycling_changeover) {
151 		if (sctp_cacc_skip_3_1_d(primary, transport, count_of_newacks))
152 			return 1;
153 		if (sctp_cacc_skip_3_1_f(transport, count_of_newacks))
154 			return 1;
155 		return 0;
156 	}
157 	return 0;
158 }
159 
160 /*
161  * SFR-CACC algorithm:
162  * 3.2) Else if CYCLING_CHANGEOVER is 1, and t is less
163  * than next_tsn_at_change of the current primary, then
164  * the sender MUST NOT increment missing report count
165  * for t.
166  */
167 static inline int sctp_cacc_skip_3_2(struct sctp_transport *primary, __u32 tsn)
168 {
169 	if (primary->cacc.cycling_changeover &&
170 	    TSN_lt(tsn, primary->cacc.next_tsn_at_change))
171 		return 1;
172 	return 0;
173 }
174 
175 /*
176  * SFR-CACC algorithm:
177  * 3) If the missing report count for TSN t is to be
178  * incremented according to [RFC2960] and
179  * [SCTP_STEWART-2002], and CHANGEOVER_ACTIVE is set,
180  * then the sender MUST further execute steps 3.1 and
181  * 3.2 to determine if the missing report count for
182  * TSN t SHOULD NOT be incremented.
183  *
184  * 3.3) If 3.1 and 3.2 do not dictate that the missing
185  * report count for t should not be incremented, then
186  * the sender SHOULD increment missing report count for
187  * t (according to [RFC2960] and [SCTP_STEWART_2002]).
188  */
189 static inline int sctp_cacc_skip(struct sctp_transport *primary,
190 				 struct sctp_transport *transport,
191 				 int count_of_newacks,
192 				 __u32 tsn)
193 {
194 	if (primary->cacc.changeover_active &&
195 	    (sctp_cacc_skip_3_1(primary, transport, count_of_newacks) ||
196 	     sctp_cacc_skip_3_2(primary, tsn)))
197 		return 1;
198 	return 0;
199 }
200 
201 /* Initialize an existing sctp_outq.  This does the boring stuff.
202  * You still need to define handlers if you really want to DO
203  * something with this structure...
204  */
205 void sctp_outq_init(struct sctp_association *asoc, struct sctp_outq *q)
206 {
207 	memset(q, 0, sizeof(struct sctp_outq));
208 
209 	q->asoc = asoc;
210 	INIT_LIST_HEAD(&q->out_chunk_list);
211 	INIT_LIST_HEAD(&q->control_chunk_list);
212 	INIT_LIST_HEAD(&q->retransmit);
213 	INIT_LIST_HEAD(&q->sacked);
214 	INIT_LIST_HEAD(&q->abandoned);
215 	sctp_sched_set_sched(asoc, sctp_sk(asoc->base.sk)->default_ss);
216 }
217 
218 /* Free the outqueue structure and any related pending chunks.
219  */
220 static void __sctp_outq_teardown(struct sctp_outq *q)
221 {
222 	struct sctp_transport *transport;
223 	struct list_head *lchunk, *temp;
224 	struct sctp_chunk *chunk, *tmp;
225 
226 	/* Throw away unacknowledged chunks. */
227 	list_for_each_entry(transport, &q->asoc->peer.transport_addr_list,
228 			transports) {
229 		while ((lchunk = sctp_list_dequeue(&transport->transmitted)) != NULL) {
230 			chunk = list_entry(lchunk, struct sctp_chunk,
231 					   transmitted_list);
232 			/* Mark as part of a failed message. */
233 			sctp_chunk_fail(chunk, q->error);
234 			sctp_chunk_free(chunk);
235 		}
236 	}
237 
238 	/* Throw away chunks that have been gap ACKed.  */
239 	list_for_each_safe(lchunk, temp, &q->sacked) {
240 		list_del_init(lchunk);
241 		chunk = list_entry(lchunk, struct sctp_chunk,
242 				   transmitted_list);
243 		sctp_chunk_fail(chunk, q->error);
244 		sctp_chunk_free(chunk);
245 	}
246 
247 	/* Throw away any chunks in the retransmit queue. */
248 	list_for_each_safe(lchunk, temp, &q->retransmit) {
249 		list_del_init(lchunk);
250 		chunk = list_entry(lchunk, struct sctp_chunk,
251 				   transmitted_list);
252 		sctp_chunk_fail(chunk, q->error);
253 		sctp_chunk_free(chunk);
254 	}
255 
256 	/* Throw away any chunks that are in the abandoned queue. */
257 	list_for_each_safe(lchunk, temp, &q->abandoned) {
258 		list_del_init(lchunk);
259 		chunk = list_entry(lchunk, struct sctp_chunk,
260 				   transmitted_list);
261 		sctp_chunk_fail(chunk, q->error);
262 		sctp_chunk_free(chunk);
263 	}
264 
265 	/* Throw away any leftover data chunks. */
266 	while ((chunk = sctp_outq_dequeue_data(q)) != NULL) {
267 		sctp_sched_dequeue_done(q, chunk);
268 
269 		/* Mark as send failure. */
270 		sctp_chunk_fail(chunk, q->error);
271 		sctp_chunk_free(chunk);
272 	}
273 
274 	/* Throw away any leftover control chunks. */
275 	list_for_each_entry_safe(chunk, tmp, &q->control_chunk_list, list) {
276 		list_del_init(&chunk->list);
277 		sctp_chunk_free(chunk);
278 	}
279 }
280 
281 void sctp_outq_teardown(struct sctp_outq *q)
282 {
283 	__sctp_outq_teardown(q);
284 	sctp_outq_init(q->asoc, q);
285 }
286 
287 /* Free the outqueue structure and any related pending chunks.  */
288 void sctp_outq_free(struct sctp_outq *q)
289 {
290 	/* Throw away leftover chunks. */
291 	__sctp_outq_teardown(q);
292 }
293 
294 /* Put a new chunk in an sctp_outq.  */
295 void sctp_outq_tail(struct sctp_outq *q, struct sctp_chunk *chunk, gfp_t gfp)
296 {
297 	struct net *net = sock_net(q->asoc->base.sk);
298 
299 	pr_debug("%s: outq:%p, chunk:%p[%s]\n", __func__, q, chunk,
300 		 chunk && chunk->chunk_hdr ?
301 		 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) :
302 		 "illegal chunk");
303 
304 	/* If it is data, queue it up, otherwise, send it
305 	 * immediately.
306 	 */
307 	if (sctp_chunk_is_data(chunk)) {
308 		pr_debug("%s: outqueueing: outq:%p, chunk:%p[%s])\n",
309 			 __func__, q, chunk, chunk && chunk->chunk_hdr ?
310 			 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) :
311 			 "illegal chunk");
312 
313 		sctp_outq_tail_data(q, chunk);
314 		if (chunk->asoc->peer.prsctp_capable &&
315 		    SCTP_PR_PRIO_ENABLED(chunk->sinfo.sinfo_flags))
316 			chunk->asoc->sent_cnt_removable++;
317 		if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED)
318 			SCTP_INC_STATS(net, SCTP_MIB_OUTUNORDERCHUNKS);
319 		else
320 			SCTP_INC_STATS(net, SCTP_MIB_OUTORDERCHUNKS);
321 	} else {
322 		list_add_tail(&chunk->list, &q->control_chunk_list);
323 		SCTP_INC_STATS(net, SCTP_MIB_OUTCTRLCHUNKS);
324 	}
325 
326 	if (!q->cork)
327 		sctp_outq_flush(q, 0, gfp);
328 }
329 
330 /* Insert a chunk into the sorted list based on the TSNs.  The retransmit list
331  * and the abandoned list are in ascending order.
332  */
333 static void sctp_insert_list(struct list_head *head, struct list_head *new)
334 {
335 	struct list_head *pos;
336 	struct sctp_chunk *nchunk, *lchunk;
337 	__u32 ntsn, ltsn;
338 	int done = 0;
339 
340 	nchunk = list_entry(new, struct sctp_chunk, transmitted_list);
341 	ntsn = ntohl(nchunk->subh.data_hdr->tsn);
342 
343 	list_for_each(pos, head) {
344 		lchunk = list_entry(pos, struct sctp_chunk, transmitted_list);
345 		ltsn = ntohl(lchunk->subh.data_hdr->tsn);
346 		if (TSN_lt(ntsn, ltsn)) {
347 			list_add(new, pos->prev);
348 			done = 1;
349 			break;
350 		}
351 	}
352 	if (!done)
353 		list_add_tail(new, head);
354 }
355 
356 static int sctp_prsctp_prune_sent(struct sctp_association *asoc,
357 				  struct sctp_sndrcvinfo *sinfo,
358 				  struct list_head *queue, int msg_len)
359 {
360 	struct sctp_chunk *chk, *temp;
361 
362 	list_for_each_entry_safe(chk, temp, queue, transmitted_list) {
363 		struct sctp_stream_out *streamout;
364 
365 		if (!chk->msg->abandoned &&
366 		    (!SCTP_PR_PRIO_ENABLED(chk->sinfo.sinfo_flags) ||
367 		     chk->sinfo.sinfo_timetolive <= sinfo->sinfo_timetolive))
368 			continue;
369 
370 		chk->msg->abandoned = 1;
371 		list_del_init(&chk->transmitted_list);
372 		sctp_insert_list(&asoc->outqueue.abandoned,
373 				 &chk->transmitted_list);
374 
375 		streamout = SCTP_SO(&asoc->stream, chk->sinfo.sinfo_stream);
376 		asoc->sent_cnt_removable--;
377 		asoc->abandoned_sent[SCTP_PR_INDEX(PRIO)]++;
378 		streamout->ext->abandoned_sent[SCTP_PR_INDEX(PRIO)]++;
379 
380 		if (queue != &asoc->outqueue.retransmit &&
381 		    !chk->tsn_gap_acked) {
382 			if (chk->transport)
383 				chk->transport->flight_size -=
384 						sctp_data_size(chk);
385 			asoc->outqueue.outstanding_bytes -= sctp_data_size(chk);
386 		}
387 
388 		msg_len -= chk->skb->truesize + sizeof(struct sctp_chunk);
389 		if (msg_len <= 0)
390 			break;
391 	}
392 
393 	return msg_len;
394 }
395 
396 static int sctp_prsctp_prune_unsent(struct sctp_association *asoc,
397 				    struct sctp_sndrcvinfo *sinfo, int msg_len)
398 {
399 	struct sctp_outq *q = &asoc->outqueue;
400 	struct sctp_chunk *chk, *temp;
401 
402 	q->sched->unsched_all(&asoc->stream);
403 
404 	list_for_each_entry_safe(chk, temp, &q->out_chunk_list, list) {
405 		if (!chk->msg->abandoned &&
406 		    (!(chk->chunk_hdr->flags & SCTP_DATA_FIRST_FRAG) ||
407 		     !SCTP_PR_PRIO_ENABLED(chk->sinfo.sinfo_flags) ||
408 		     chk->sinfo.sinfo_timetolive <= sinfo->sinfo_timetolive))
409 			continue;
410 
411 		chk->msg->abandoned = 1;
412 		sctp_sched_dequeue_common(q, chk);
413 		asoc->sent_cnt_removable--;
414 		asoc->abandoned_unsent[SCTP_PR_INDEX(PRIO)]++;
415 		if (chk->sinfo.sinfo_stream < asoc->stream.outcnt) {
416 			struct sctp_stream_out *streamout =
417 				SCTP_SO(&asoc->stream, chk->sinfo.sinfo_stream);
418 
419 			streamout->ext->abandoned_unsent[SCTP_PR_INDEX(PRIO)]++;
420 		}
421 
422 		msg_len -= chk->skb->truesize + sizeof(struct sctp_chunk);
423 		sctp_chunk_free(chk);
424 		if (msg_len <= 0)
425 			break;
426 	}
427 
428 	q->sched->sched_all(&asoc->stream);
429 
430 	return msg_len;
431 }
432 
433 /* Abandon the chunks according their priorities */
434 void sctp_prsctp_prune(struct sctp_association *asoc,
435 		       struct sctp_sndrcvinfo *sinfo, int msg_len)
436 {
437 	struct sctp_transport *transport;
438 
439 	if (!asoc->peer.prsctp_capable || !asoc->sent_cnt_removable)
440 		return;
441 
442 	msg_len = sctp_prsctp_prune_sent(asoc, sinfo,
443 					 &asoc->outqueue.retransmit,
444 					 msg_len);
445 	if (msg_len <= 0)
446 		return;
447 
448 	list_for_each_entry(transport, &asoc->peer.transport_addr_list,
449 			    transports) {
450 		msg_len = sctp_prsctp_prune_sent(asoc, sinfo,
451 						 &transport->transmitted,
452 						 msg_len);
453 		if (msg_len <= 0)
454 			return;
455 	}
456 
457 	sctp_prsctp_prune_unsent(asoc, sinfo, msg_len);
458 }
459 
460 /* Mark all the eligible packets on a transport for retransmission.  */
461 void sctp_retransmit_mark(struct sctp_outq *q,
462 			  struct sctp_transport *transport,
463 			  __u8 reason)
464 {
465 	struct list_head *lchunk, *ltemp;
466 	struct sctp_chunk *chunk;
467 
468 	/* Walk through the specified transmitted queue.  */
469 	list_for_each_safe(lchunk, ltemp, &transport->transmitted) {
470 		chunk = list_entry(lchunk, struct sctp_chunk,
471 				   transmitted_list);
472 
473 		/* If the chunk is abandoned, move it to abandoned list. */
474 		if (sctp_chunk_abandoned(chunk)) {
475 			list_del_init(lchunk);
476 			sctp_insert_list(&q->abandoned, lchunk);
477 
478 			/* If this chunk has not been previousely acked,
479 			 * stop considering it 'outstanding'.  Our peer
480 			 * will most likely never see it since it will
481 			 * not be retransmitted
482 			 */
483 			if (!chunk->tsn_gap_acked) {
484 				if (chunk->transport)
485 					chunk->transport->flight_size -=
486 							sctp_data_size(chunk);
487 				q->outstanding_bytes -= sctp_data_size(chunk);
488 				q->asoc->peer.rwnd += sctp_data_size(chunk);
489 			}
490 			continue;
491 		}
492 
493 		/* If we are doing  retransmission due to a timeout or pmtu
494 		 * discovery, only the  chunks that are not yet acked should
495 		 * be added to the retransmit queue.
496 		 */
497 		if ((reason == SCTP_RTXR_FAST_RTX  &&
498 			    (chunk->fast_retransmit == SCTP_NEED_FRTX)) ||
499 		    (reason != SCTP_RTXR_FAST_RTX  && !chunk->tsn_gap_acked)) {
500 			/* RFC 2960 6.2.1 Processing a Received SACK
501 			 *
502 			 * C) Any time a DATA chunk is marked for
503 			 * retransmission (via either T3-rtx timer expiration
504 			 * (Section 6.3.3) or via fast retransmit
505 			 * (Section 7.2.4)), add the data size of those
506 			 * chunks to the rwnd.
507 			 */
508 			q->asoc->peer.rwnd += sctp_data_size(chunk);
509 			q->outstanding_bytes -= sctp_data_size(chunk);
510 			if (chunk->transport)
511 				transport->flight_size -= sctp_data_size(chunk);
512 
513 			/* sctpimpguide-05 Section 2.8.2
514 			 * M5) If a T3-rtx timer expires, the
515 			 * 'TSN.Missing.Report' of all affected TSNs is set
516 			 * to 0.
517 			 */
518 			chunk->tsn_missing_report = 0;
519 
520 			/* If a chunk that is being used for RTT measurement
521 			 * has to be retransmitted, we cannot use this chunk
522 			 * anymore for RTT measurements. Reset rto_pending so
523 			 * that a new RTT measurement is started when a new
524 			 * data chunk is sent.
525 			 */
526 			if (chunk->rtt_in_progress) {
527 				chunk->rtt_in_progress = 0;
528 				transport->rto_pending = 0;
529 			}
530 
531 			/* Move the chunk to the retransmit queue. The chunks
532 			 * on the retransmit queue are always kept in order.
533 			 */
534 			list_del_init(lchunk);
535 			sctp_insert_list(&q->retransmit, lchunk);
536 		}
537 	}
538 
539 	pr_debug("%s: transport:%p, reason:%d, cwnd:%d, ssthresh:%d, "
540 		 "flight_size:%d, pba:%d\n", __func__, transport, reason,
541 		 transport->cwnd, transport->ssthresh, transport->flight_size,
542 		 transport->partial_bytes_acked);
543 }
544 
545 /* Mark all the eligible packets on a transport for retransmission and force
546  * one packet out.
547  */
548 void sctp_retransmit(struct sctp_outq *q, struct sctp_transport *transport,
549 		     enum sctp_retransmit_reason reason)
550 {
551 	struct net *net = sock_net(q->asoc->base.sk);
552 
553 	switch (reason) {
554 	case SCTP_RTXR_T3_RTX:
555 		SCTP_INC_STATS(net, SCTP_MIB_T3_RETRANSMITS);
556 		sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_T3_RTX);
557 		/* Update the retran path if the T3-rtx timer has expired for
558 		 * the current retran path.
559 		 */
560 		if (transport == transport->asoc->peer.retran_path)
561 			sctp_assoc_update_retran_path(transport->asoc);
562 		transport->asoc->rtx_data_chunks +=
563 			transport->asoc->unack_data;
564 		break;
565 	case SCTP_RTXR_FAST_RTX:
566 		SCTP_INC_STATS(net, SCTP_MIB_FAST_RETRANSMITS);
567 		sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_FAST_RTX);
568 		q->fast_rtx = 1;
569 		break;
570 	case SCTP_RTXR_PMTUD:
571 		SCTP_INC_STATS(net, SCTP_MIB_PMTUD_RETRANSMITS);
572 		break;
573 	case SCTP_RTXR_T1_RTX:
574 		SCTP_INC_STATS(net, SCTP_MIB_T1_RETRANSMITS);
575 		transport->asoc->init_retries++;
576 		break;
577 	default:
578 		BUG();
579 	}
580 
581 	sctp_retransmit_mark(q, transport, reason);
582 
583 	/* PR-SCTP A5) Any time the T3-rtx timer expires, on any destination,
584 	 * the sender SHOULD try to advance the "Advanced.Peer.Ack.Point" by
585 	 * following the procedures outlined in C1 - C5.
586 	 */
587 	if (reason == SCTP_RTXR_T3_RTX)
588 		q->asoc->stream.si->generate_ftsn(q, q->asoc->ctsn_ack_point);
589 
590 	/* Flush the queues only on timeout, since fast_rtx is only
591 	 * triggered during sack processing and the queue
592 	 * will be flushed at the end.
593 	 */
594 	if (reason != SCTP_RTXR_FAST_RTX)
595 		sctp_outq_flush(q, /* rtx_timeout */ 1, GFP_ATOMIC);
596 }
597 
598 /*
599  * Transmit DATA chunks on the retransmit queue.  Upon return from
600  * __sctp_outq_flush_rtx() the packet 'pkt' may contain chunks which
601  * need to be transmitted by the caller.
602  * We assume that pkt->transport has already been set.
603  *
604  * The return value is a normal kernel error return value.
605  */
606 static int __sctp_outq_flush_rtx(struct sctp_outq *q, struct sctp_packet *pkt,
607 				 int rtx_timeout, int *start_timer, gfp_t gfp)
608 {
609 	struct sctp_transport *transport = pkt->transport;
610 	struct sctp_chunk *chunk, *chunk1;
611 	struct list_head *lqueue;
612 	enum sctp_xmit status;
613 	int error = 0;
614 	int timer = 0;
615 	int done = 0;
616 	int fast_rtx;
617 
618 	lqueue = &q->retransmit;
619 	fast_rtx = q->fast_rtx;
620 
621 	/* This loop handles time-out retransmissions, fast retransmissions,
622 	 * and retransmissions due to opening of whindow.
623 	 *
624 	 * RFC 2960 6.3.3 Handle T3-rtx Expiration
625 	 *
626 	 * E3) Determine how many of the earliest (i.e., lowest TSN)
627 	 * outstanding DATA chunks for the address for which the
628 	 * T3-rtx has expired will fit into a single packet, subject
629 	 * to the MTU constraint for the path corresponding to the
630 	 * destination transport address to which the retransmission
631 	 * is being sent (this may be different from the address for
632 	 * which the timer expires [see Section 6.4]). Call this value
633 	 * K. Bundle and retransmit those K DATA chunks in a single
634 	 * packet to the destination endpoint.
635 	 *
636 	 * [Just to be painfully clear, if we are retransmitting
637 	 * because a timeout just happened, we should send only ONE
638 	 * packet of retransmitted data.]
639 	 *
640 	 * For fast retransmissions we also send only ONE packet.  However,
641 	 * if we are just flushing the queue due to open window, we'll
642 	 * try to send as much as possible.
643 	 */
644 	list_for_each_entry_safe(chunk, chunk1, lqueue, transmitted_list) {
645 		/* If the chunk is abandoned, move it to abandoned list. */
646 		if (sctp_chunk_abandoned(chunk)) {
647 			list_del_init(&chunk->transmitted_list);
648 			sctp_insert_list(&q->abandoned,
649 					 &chunk->transmitted_list);
650 			continue;
651 		}
652 
653 		/* Make sure that Gap Acked TSNs are not retransmitted.  A
654 		 * simple approach is just to move such TSNs out of the
655 		 * way and into a 'transmitted' queue and skip to the
656 		 * next chunk.
657 		 */
658 		if (chunk->tsn_gap_acked) {
659 			list_move_tail(&chunk->transmitted_list,
660 				       &transport->transmitted);
661 			continue;
662 		}
663 
664 		/* If we are doing fast retransmit, ignore non-fast_rtransmit
665 		 * chunks
666 		 */
667 		if (fast_rtx && !chunk->fast_retransmit)
668 			continue;
669 
670 redo:
671 		/* Attempt to append this chunk to the packet. */
672 		status = sctp_packet_append_chunk(pkt, chunk);
673 
674 		switch (status) {
675 		case SCTP_XMIT_PMTU_FULL:
676 			if (!pkt->has_data && !pkt->has_cookie_echo) {
677 				/* If this packet did not contain DATA then
678 				 * retransmission did not happen, so do it
679 				 * again.  We'll ignore the error here since
680 				 * control chunks are already freed so there
681 				 * is nothing we can do.
682 				 */
683 				sctp_packet_transmit(pkt, gfp);
684 				goto redo;
685 			}
686 
687 			/* Send this packet.  */
688 			error = sctp_packet_transmit(pkt, gfp);
689 
690 			/* If we are retransmitting, we should only
691 			 * send a single packet.
692 			 * Otherwise, try appending this chunk again.
693 			 */
694 			if (rtx_timeout || fast_rtx)
695 				done = 1;
696 			else
697 				goto redo;
698 
699 			/* Bundle next chunk in the next round.  */
700 			break;
701 
702 		case SCTP_XMIT_RWND_FULL:
703 			/* Send this packet. */
704 			error = sctp_packet_transmit(pkt, gfp);
705 
706 			/* Stop sending DATA as there is no more room
707 			 * at the receiver.
708 			 */
709 			done = 1;
710 			break;
711 
712 		case SCTP_XMIT_DELAY:
713 			/* Send this packet. */
714 			error = sctp_packet_transmit(pkt, gfp);
715 
716 			/* Stop sending DATA because of nagle delay. */
717 			done = 1;
718 			break;
719 
720 		default:
721 			/* The append was successful, so add this chunk to
722 			 * the transmitted list.
723 			 */
724 			list_move_tail(&chunk->transmitted_list,
725 				       &transport->transmitted);
726 
727 			/* Mark the chunk as ineligible for fast retransmit
728 			 * after it is retransmitted.
729 			 */
730 			if (chunk->fast_retransmit == SCTP_NEED_FRTX)
731 				chunk->fast_retransmit = SCTP_DONT_FRTX;
732 
733 			q->asoc->stats.rtxchunks++;
734 			break;
735 		}
736 
737 		/* Set the timer if there were no errors */
738 		if (!error && !timer)
739 			timer = 1;
740 
741 		if (done)
742 			break;
743 	}
744 
745 	/* If we are here due to a retransmit timeout or a fast
746 	 * retransmit and if there are any chunks left in the retransmit
747 	 * queue that could not fit in the PMTU sized packet, they need
748 	 * to be marked as ineligible for a subsequent fast retransmit.
749 	 */
750 	if (rtx_timeout || fast_rtx) {
751 		list_for_each_entry(chunk1, lqueue, transmitted_list) {
752 			if (chunk1->fast_retransmit == SCTP_NEED_FRTX)
753 				chunk1->fast_retransmit = SCTP_DONT_FRTX;
754 		}
755 	}
756 
757 	*start_timer = timer;
758 
759 	/* Clear fast retransmit hint */
760 	if (fast_rtx)
761 		q->fast_rtx = 0;
762 
763 	return error;
764 }
765 
766 /* Cork the outqueue so queued chunks are really queued. */
767 void sctp_outq_uncork(struct sctp_outq *q, gfp_t gfp)
768 {
769 	if (q->cork)
770 		q->cork = 0;
771 
772 	sctp_outq_flush(q, 0, gfp);
773 }
774 
775 static int sctp_packet_singleton(struct sctp_transport *transport,
776 				 struct sctp_chunk *chunk, gfp_t gfp)
777 {
778 	const struct sctp_association *asoc = transport->asoc;
779 	const __u16 sport = asoc->base.bind_addr.port;
780 	const __u16 dport = asoc->peer.port;
781 	const __u32 vtag = asoc->peer.i.init_tag;
782 	struct sctp_packet singleton;
783 
784 	sctp_packet_init(&singleton, transport, sport, dport);
785 	sctp_packet_config(&singleton, vtag, 0);
786 	sctp_packet_append_chunk(&singleton, chunk);
787 	return sctp_packet_transmit(&singleton, gfp);
788 }
789 
790 /* Struct to hold the context during sctp outq flush */
791 struct sctp_flush_ctx {
792 	struct sctp_outq *q;
793 	/* Current transport being used. It's NOT the same as curr active one */
794 	struct sctp_transport *transport;
795 	/* These transports have chunks to send. */
796 	struct list_head transport_list;
797 	struct sctp_association *asoc;
798 	/* Packet on the current transport above */
799 	struct sctp_packet *packet;
800 	gfp_t gfp;
801 };
802 
803 /* transport: current transport */
804 static void sctp_outq_select_transport(struct sctp_flush_ctx *ctx,
805 				       struct sctp_chunk *chunk)
806 {
807 	struct sctp_transport *new_transport = chunk->transport;
808 
809 	if (!new_transport) {
810 		if (!sctp_chunk_is_data(chunk)) {
811 			/* If we have a prior transport pointer, see if
812 			 * the destination address of the chunk
813 			 * matches the destination address of the
814 			 * current transport.  If not a match, then
815 			 * try to look up the transport with a given
816 			 * destination address.  We do this because
817 			 * after processing ASCONFs, we may have new
818 			 * transports created.
819 			 */
820 			if (ctx->transport && sctp_cmp_addr_exact(&chunk->dest,
821 							&ctx->transport->ipaddr))
822 				new_transport = ctx->transport;
823 			else
824 				new_transport = sctp_assoc_lookup_paddr(ctx->asoc,
825 								  &chunk->dest);
826 		}
827 
828 		/* if we still don't have a new transport, then
829 		 * use the current active path.
830 		 */
831 		if (!new_transport)
832 			new_transport = ctx->asoc->peer.active_path;
833 	} else {
834 		__u8 type;
835 
836 		switch (new_transport->state) {
837 		case SCTP_INACTIVE:
838 		case SCTP_UNCONFIRMED:
839 		case SCTP_PF:
840 			/* If the chunk is Heartbeat or Heartbeat Ack,
841 			 * send it to chunk->transport, even if it's
842 			 * inactive.
843 			 *
844 			 * 3.3.6 Heartbeat Acknowledgement:
845 			 * ...
846 			 * A HEARTBEAT ACK is always sent to the source IP
847 			 * address of the IP datagram containing the
848 			 * HEARTBEAT chunk to which this ack is responding.
849 			 * ...
850 			 *
851 			 * ASCONF_ACKs also must be sent to the source.
852 			 */
853 			type = chunk->chunk_hdr->type;
854 			if (type != SCTP_CID_HEARTBEAT &&
855 			    type != SCTP_CID_HEARTBEAT_ACK &&
856 			    type != SCTP_CID_ASCONF_ACK)
857 				new_transport = ctx->asoc->peer.active_path;
858 			break;
859 		default:
860 			break;
861 		}
862 	}
863 
864 	/* Are we switching transports? Take care of transport locks. */
865 	if (new_transport != ctx->transport) {
866 		ctx->transport = new_transport;
867 		ctx->packet = &ctx->transport->packet;
868 
869 		if (list_empty(&ctx->transport->send_ready))
870 			list_add_tail(&ctx->transport->send_ready,
871 				      &ctx->transport_list);
872 
873 		sctp_packet_config(ctx->packet,
874 				   ctx->asoc->peer.i.init_tag,
875 				   ctx->asoc->peer.ecn_capable);
876 		/* We've switched transports, so apply the
877 		 * Burst limit to the new transport.
878 		 */
879 		sctp_transport_burst_limited(ctx->transport);
880 	}
881 }
882 
883 static void sctp_outq_flush_ctrl(struct sctp_flush_ctx *ctx)
884 {
885 	struct sctp_chunk *chunk, *tmp;
886 	enum sctp_xmit status;
887 	int one_packet, error;
888 
889 	list_for_each_entry_safe(chunk, tmp, &ctx->q->control_chunk_list, list) {
890 		one_packet = 0;
891 
892 		/* RFC 5061, 5.3
893 		 * F1) This means that until such time as the ASCONF
894 		 * containing the add is acknowledged, the sender MUST
895 		 * NOT use the new IP address as a source for ANY SCTP
896 		 * packet except on carrying an ASCONF Chunk.
897 		 */
898 		if (ctx->asoc->src_out_of_asoc_ok &&
899 		    chunk->chunk_hdr->type != SCTP_CID_ASCONF)
900 			continue;
901 
902 		list_del_init(&chunk->list);
903 
904 		/* Pick the right transport to use. Should always be true for
905 		 * the first chunk as we don't have a transport by then.
906 		 */
907 		sctp_outq_select_transport(ctx, chunk);
908 
909 		switch (chunk->chunk_hdr->type) {
910 		/* 6.10 Bundling
911 		 *   ...
912 		 *   An endpoint MUST NOT bundle INIT, INIT ACK or SHUTDOWN
913 		 *   COMPLETE with any other chunks.  [Send them immediately.]
914 		 */
915 		case SCTP_CID_INIT:
916 		case SCTP_CID_INIT_ACK:
917 		case SCTP_CID_SHUTDOWN_COMPLETE:
918 			error = sctp_packet_singleton(ctx->transport, chunk,
919 						      ctx->gfp);
920 			if (error < 0) {
921 				ctx->asoc->base.sk->sk_err = -error;
922 				return;
923 			}
924 			break;
925 
926 		case SCTP_CID_ABORT:
927 			if (sctp_test_T_bit(chunk))
928 				ctx->packet->vtag = ctx->asoc->c.my_vtag;
929 			/* fallthru */
930 
931 		/* The following chunks are "response" chunks, i.e.
932 		 * they are generated in response to something we
933 		 * received.  If we are sending these, then we can
934 		 * send only 1 packet containing these chunks.
935 		 */
936 		case SCTP_CID_HEARTBEAT_ACK:
937 		case SCTP_CID_SHUTDOWN_ACK:
938 		case SCTP_CID_COOKIE_ACK:
939 		case SCTP_CID_COOKIE_ECHO:
940 		case SCTP_CID_ERROR:
941 		case SCTP_CID_ECN_CWR:
942 		case SCTP_CID_ASCONF_ACK:
943 			one_packet = 1;
944 			/* Fall through */
945 
946 		case SCTP_CID_SACK:
947 		case SCTP_CID_HEARTBEAT:
948 		case SCTP_CID_SHUTDOWN:
949 		case SCTP_CID_ECN_ECNE:
950 		case SCTP_CID_ASCONF:
951 		case SCTP_CID_FWD_TSN:
952 		case SCTP_CID_I_FWD_TSN:
953 		case SCTP_CID_RECONF:
954 			status = sctp_packet_transmit_chunk(ctx->packet, chunk,
955 							    one_packet, ctx->gfp);
956 			if (status != SCTP_XMIT_OK) {
957 				/* put the chunk back */
958 				list_add(&chunk->list, &ctx->q->control_chunk_list);
959 				break;
960 			}
961 
962 			ctx->asoc->stats.octrlchunks++;
963 			/* PR-SCTP C5) If a FORWARD TSN is sent, the
964 			 * sender MUST assure that at least one T3-rtx
965 			 * timer is running.
966 			 */
967 			if (chunk->chunk_hdr->type == SCTP_CID_FWD_TSN ||
968 			    chunk->chunk_hdr->type == SCTP_CID_I_FWD_TSN) {
969 				sctp_transport_reset_t3_rtx(ctx->transport);
970 				ctx->transport->last_time_sent = jiffies;
971 			}
972 
973 			if (chunk == ctx->asoc->strreset_chunk)
974 				sctp_transport_reset_reconf_timer(ctx->transport);
975 
976 			break;
977 
978 		default:
979 			/* We built a chunk with an illegal type! */
980 			BUG();
981 		}
982 	}
983 }
984 
985 /* Returns false if new data shouldn't be sent */
986 static bool sctp_outq_flush_rtx(struct sctp_flush_ctx *ctx,
987 				int rtx_timeout)
988 {
989 	int error, start_timer = 0;
990 
991 	if (ctx->asoc->peer.retran_path->state == SCTP_UNCONFIRMED)
992 		return false;
993 
994 	if (ctx->transport != ctx->asoc->peer.retran_path) {
995 		/* Switch transports & prepare the packet.  */
996 		ctx->transport = ctx->asoc->peer.retran_path;
997 		ctx->packet = &ctx->transport->packet;
998 
999 		if (list_empty(&ctx->transport->send_ready))
1000 			list_add_tail(&ctx->transport->send_ready,
1001 				      &ctx->transport_list);
1002 
1003 		sctp_packet_config(ctx->packet, ctx->asoc->peer.i.init_tag,
1004 				   ctx->asoc->peer.ecn_capable);
1005 	}
1006 
1007 	error = __sctp_outq_flush_rtx(ctx->q, ctx->packet, rtx_timeout,
1008 				      &start_timer, ctx->gfp);
1009 	if (error < 0)
1010 		ctx->asoc->base.sk->sk_err = -error;
1011 
1012 	if (start_timer) {
1013 		sctp_transport_reset_t3_rtx(ctx->transport);
1014 		ctx->transport->last_time_sent = jiffies;
1015 	}
1016 
1017 	/* This can happen on COOKIE-ECHO resend.  Only
1018 	 * one chunk can get bundled with a COOKIE-ECHO.
1019 	 */
1020 	if (ctx->packet->has_cookie_echo)
1021 		return false;
1022 
1023 	/* Don't send new data if there is still data
1024 	 * waiting to retransmit.
1025 	 */
1026 	if (!list_empty(&ctx->q->retransmit))
1027 		return false;
1028 
1029 	return true;
1030 }
1031 
1032 static void sctp_outq_flush_data(struct sctp_flush_ctx *ctx,
1033 				 int rtx_timeout)
1034 {
1035 	struct sctp_chunk *chunk;
1036 	enum sctp_xmit status;
1037 
1038 	/* Is it OK to send data chunks?  */
1039 	switch (ctx->asoc->state) {
1040 	case SCTP_STATE_COOKIE_ECHOED:
1041 		/* Only allow bundling when this packet has a COOKIE-ECHO
1042 		 * chunk.
1043 		 */
1044 		if (!ctx->packet || !ctx->packet->has_cookie_echo)
1045 			return;
1046 
1047 		/* fall through */
1048 	case SCTP_STATE_ESTABLISHED:
1049 	case SCTP_STATE_SHUTDOWN_PENDING:
1050 	case SCTP_STATE_SHUTDOWN_RECEIVED:
1051 		break;
1052 
1053 	default:
1054 		/* Do nothing. */
1055 		return;
1056 	}
1057 
1058 	/* RFC 2960 6.1  Transmission of DATA Chunks
1059 	 *
1060 	 * C) When the time comes for the sender to transmit,
1061 	 * before sending new DATA chunks, the sender MUST
1062 	 * first transmit any outstanding DATA chunks which
1063 	 * are marked for retransmission (limited by the
1064 	 * current cwnd).
1065 	 */
1066 	if (!list_empty(&ctx->q->retransmit) &&
1067 	    !sctp_outq_flush_rtx(ctx, rtx_timeout))
1068 		return;
1069 
1070 	/* Apply Max.Burst limitation to the current transport in
1071 	 * case it will be used for new data.  We are going to
1072 	 * rest it before we return, but we want to apply the limit
1073 	 * to the currently queued data.
1074 	 */
1075 	if (ctx->transport)
1076 		sctp_transport_burst_limited(ctx->transport);
1077 
1078 	/* Finally, transmit new packets.  */
1079 	while ((chunk = sctp_outq_dequeue_data(ctx->q)) != NULL) {
1080 		__u32 sid = ntohs(chunk->subh.data_hdr->stream);
1081 		__u8 stream_state = SCTP_SO(&ctx->asoc->stream, sid)->state;
1082 
1083 		/* Has this chunk expired? */
1084 		if (sctp_chunk_abandoned(chunk)) {
1085 			sctp_sched_dequeue_done(ctx->q, chunk);
1086 			sctp_chunk_fail(chunk, 0);
1087 			sctp_chunk_free(chunk);
1088 			continue;
1089 		}
1090 
1091 		if (stream_state == SCTP_STREAM_CLOSED) {
1092 			sctp_outq_head_data(ctx->q, chunk);
1093 			break;
1094 		}
1095 
1096 		sctp_outq_select_transport(ctx, chunk);
1097 
1098 		pr_debug("%s: outq:%p, chunk:%p[%s], tx-tsn:0x%x skb->head:%p skb->users:%d\n",
1099 			 __func__, ctx->q, chunk, chunk && chunk->chunk_hdr ?
1100 			 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) :
1101 			 "illegal chunk", ntohl(chunk->subh.data_hdr->tsn),
1102 			 chunk->skb ? chunk->skb->head : NULL, chunk->skb ?
1103 			 refcount_read(&chunk->skb->users) : -1);
1104 
1105 		/* Add the chunk to the packet.  */
1106 		status = sctp_packet_transmit_chunk(ctx->packet, chunk, 0,
1107 						    ctx->gfp);
1108 		if (status != SCTP_XMIT_OK) {
1109 			/* We could not append this chunk, so put
1110 			 * the chunk back on the output queue.
1111 			 */
1112 			pr_debug("%s: could not transmit tsn:0x%x, status:%d\n",
1113 				 __func__, ntohl(chunk->subh.data_hdr->tsn),
1114 				 status);
1115 
1116 			sctp_outq_head_data(ctx->q, chunk);
1117 			break;
1118 		}
1119 
1120 		/* The sender is in the SHUTDOWN-PENDING state,
1121 		 * The sender MAY set the I-bit in the DATA
1122 		 * chunk header.
1123 		 */
1124 		if (ctx->asoc->state == SCTP_STATE_SHUTDOWN_PENDING)
1125 			chunk->chunk_hdr->flags |= SCTP_DATA_SACK_IMM;
1126 		if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED)
1127 			ctx->asoc->stats.ouodchunks++;
1128 		else
1129 			ctx->asoc->stats.oodchunks++;
1130 
1131 		/* Only now it's safe to consider this
1132 		 * chunk as sent, sched-wise.
1133 		 */
1134 		sctp_sched_dequeue_done(ctx->q, chunk);
1135 
1136 		list_add_tail(&chunk->transmitted_list,
1137 			      &ctx->transport->transmitted);
1138 
1139 		sctp_transport_reset_t3_rtx(ctx->transport);
1140 		ctx->transport->last_time_sent = jiffies;
1141 
1142 		/* Only let one DATA chunk get bundled with a
1143 		 * COOKIE-ECHO chunk.
1144 		 */
1145 		if (ctx->packet->has_cookie_echo)
1146 			break;
1147 	}
1148 }
1149 
1150 static void sctp_outq_flush_transports(struct sctp_flush_ctx *ctx)
1151 {
1152 	struct list_head *ltransport;
1153 	struct sctp_packet *packet;
1154 	struct sctp_transport *t;
1155 	int error = 0;
1156 
1157 	while ((ltransport = sctp_list_dequeue(&ctx->transport_list)) != NULL) {
1158 		t = list_entry(ltransport, struct sctp_transport, send_ready);
1159 		packet = &t->packet;
1160 		if (!sctp_packet_empty(packet)) {
1161 			error = sctp_packet_transmit(packet, ctx->gfp);
1162 			if (error < 0)
1163 				ctx->q->asoc->base.sk->sk_err = -error;
1164 		}
1165 
1166 		/* Clear the burst limited state, if any */
1167 		sctp_transport_burst_reset(t);
1168 	}
1169 }
1170 
1171 /* Try to flush an outqueue.
1172  *
1173  * Description: Send everything in q which we legally can, subject to
1174  * congestion limitations.
1175  * * Note: This function can be called from multiple contexts so appropriate
1176  * locking concerns must be made.  Today we use the sock lock to protect
1177  * this function.
1178  */
1179 
1180 static void sctp_outq_flush(struct sctp_outq *q, int rtx_timeout, gfp_t gfp)
1181 {
1182 	struct sctp_flush_ctx ctx = {
1183 		.q = q,
1184 		.transport = NULL,
1185 		.transport_list = LIST_HEAD_INIT(ctx.transport_list),
1186 		.asoc = q->asoc,
1187 		.packet = NULL,
1188 		.gfp = gfp,
1189 	};
1190 
1191 	/* 6.10 Bundling
1192 	 *   ...
1193 	 *   When bundling control chunks with DATA chunks, an
1194 	 *   endpoint MUST place control chunks first in the outbound
1195 	 *   SCTP packet.  The transmitter MUST transmit DATA chunks
1196 	 *   within a SCTP packet in increasing order of TSN.
1197 	 *   ...
1198 	 */
1199 
1200 	sctp_outq_flush_ctrl(&ctx);
1201 
1202 	if (q->asoc->src_out_of_asoc_ok)
1203 		goto sctp_flush_out;
1204 
1205 	sctp_outq_flush_data(&ctx, rtx_timeout);
1206 
1207 sctp_flush_out:
1208 
1209 	sctp_outq_flush_transports(&ctx);
1210 }
1211 
1212 /* Update unack_data based on the incoming SACK chunk */
1213 static void sctp_sack_update_unack_data(struct sctp_association *assoc,
1214 					struct sctp_sackhdr *sack)
1215 {
1216 	union sctp_sack_variable *frags;
1217 	__u16 unack_data;
1218 	int i;
1219 
1220 	unack_data = assoc->next_tsn - assoc->ctsn_ack_point - 1;
1221 
1222 	frags = sack->variable;
1223 	for (i = 0; i < ntohs(sack->num_gap_ack_blocks); i++) {
1224 		unack_data -= ((ntohs(frags[i].gab.end) -
1225 				ntohs(frags[i].gab.start) + 1));
1226 	}
1227 
1228 	assoc->unack_data = unack_data;
1229 }
1230 
1231 /* This is where we REALLY process a SACK.
1232  *
1233  * Process the SACK against the outqueue.  Mostly, this just frees
1234  * things off the transmitted queue.
1235  */
1236 int sctp_outq_sack(struct sctp_outq *q, struct sctp_chunk *chunk)
1237 {
1238 	struct sctp_association *asoc = q->asoc;
1239 	struct sctp_sackhdr *sack = chunk->subh.sack_hdr;
1240 	struct sctp_transport *transport;
1241 	struct sctp_chunk *tchunk = NULL;
1242 	struct list_head *lchunk, *transport_list, *temp;
1243 	union sctp_sack_variable *frags = sack->variable;
1244 	__u32 sack_ctsn, ctsn, tsn;
1245 	__u32 highest_tsn, highest_new_tsn;
1246 	__u32 sack_a_rwnd;
1247 	unsigned int outstanding;
1248 	struct sctp_transport *primary = asoc->peer.primary_path;
1249 	int count_of_newacks = 0;
1250 	int gap_ack_blocks;
1251 	u8 accum_moved = 0;
1252 
1253 	/* Grab the association's destination address list. */
1254 	transport_list = &asoc->peer.transport_addr_list;
1255 
1256 	sack_ctsn = ntohl(sack->cum_tsn_ack);
1257 	gap_ack_blocks = ntohs(sack->num_gap_ack_blocks);
1258 	asoc->stats.gapcnt += gap_ack_blocks;
1259 	/*
1260 	 * SFR-CACC algorithm:
1261 	 * On receipt of a SACK the sender SHOULD execute the
1262 	 * following statements.
1263 	 *
1264 	 * 1) If the cumulative ack in the SACK passes next tsn_at_change
1265 	 * on the current primary, the CHANGEOVER_ACTIVE flag SHOULD be
1266 	 * cleared. The CYCLING_CHANGEOVER flag SHOULD also be cleared for
1267 	 * all destinations.
1268 	 * 2) If the SACK contains gap acks and the flag CHANGEOVER_ACTIVE
1269 	 * is set the receiver of the SACK MUST take the following actions:
1270 	 *
1271 	 * A) Initialize the cacc_saw_newack to 0 for all destination
1272 	 * addresses.
1273 	 *
1274 	 * Only bother if changeover_active is set. Otherwise, this is
1275 	 * totally suboptimal to do on every SACK.
1276 	 */
1277 	if (primary->cacc.changeover_active) {
1278 		u8 clear_cycling = 0;
1279 
1280 		if (TSN_lte(primary->cacc.next_tsn_at_change, sack_ctsn)) {
1281 			primary->cacc.changeover_active = 0;
1282 			clear_cycling = 1;
1283 		}
1284 
1285 		if (clear_cycling || gap_ack_blocks) {
1286 			list_for_each_entry(transport, transport_list,
1287 					transports) {
1288 				if (clear_cycling)
1289 					transport->cacc.cycling_changeover = 0;
1290 				if (gap_ack_blocks)
1291 					transport->cacc.cacc_saw_newack = 0;
1292 			}
1293 		}
1294 	}
1295 
1296 	/* Get the highest TSN in the sack. */
1297 	highest_tsn = sack_ctsn;
1298 	if (gap_ack_blocks)
1299 		highest_tsn += ntohs(frags[gap_ack_blocks - 1].gab.end);
1300 
1301 	if (TSN_lt(asoc->highest_sacked, highest_tsn))
1302 		asoc->highest_sacked = highest_tsn;
1303 
1304 	highest_new_tsn = sack_ctsn;
1305 
1306 	/* Run through the retransmit queue.  Credit bytes received
1307 	 * and free those chunks that we can.
1308 	 */
1309 	sctp_check_transmitted(q, &q->retransmit, NULL, NULL, sack, &highest_new_tsn);
1310 
1311 	/* Run through the transmitted queue.
1312 	 * Credit bytes received and free those chunks which we can.
1313 	 *
1314 	 * This is a MASSIVE candidate for optimization.
1315 	 */
1316 	list_for_each_entry(transport, transport_list, transports) {
1317 		sctp_check_transmitted(q, &transport->transmitted,
1318 				       transport, &chunk->source, sack,
1319 				       &highest_new_tsn);
1320 		/*
1321 		 * SFR-CACC algorithm:
1322 		 * C) Let count_of_newacks be the number of
1323 		 * destinations for which cacc_saw_newack is set.
1324 		 */
1325 		if (transport->cacc.cacc_saw_newack)
1326 			count_of_newacks++;
1327 	}
1328 
1329 	/* Move the Cumulative TSN Ack Point if appropriate.  */
1330 	if (TSN_lt(asoc->ctsn_ack_point, sack_ctsn)) {
1331 		asoc->ctsn_ack_point = sack_ctsn;
1332 		accum_moved = 1;
1333 	}
1334 
1335 	if (gap_ack_blocks) {
1336 
1337 		if (asoc->fast_recovery && accum_moved)
1338 			highest_new_tsn = highest_tsn;
1339 
1340 		list_for_each_entry(transport, transport_list, transports)
1341 			sctp_mark_missing(q, &transport->transmitted, transport,
1342 					  highest_new_tsn, count_of_newacks);
1343 	}
1344 
1345 	/* Update unack_data field in the assoc. */
1346 	sctp_sack_update_unack_data(asoc, sack);
1347 
1348 	ctsn = asoc->ctsn_ack_point;
1349 
1350 	/* Throw away stuff rotting on the sack queue.  */
1351 	list_for_each_safe(lchunk, temp, &q->sacked) {
1352 		tchunk = list_entry(lchunk, struct sctp_chunk,
1353 				    transmitted_list);
1354 		tsn = ntohl(tchunk->subh.data_hdr->tsn);
1355 		if (TSN_lte(tsn, ctsn)) {
1356 			list_del_init(&tchunk->transmitted_list);
1357 			if (asoc->peer.prsctp_capable &&
1358 			    SCTP_PR_PRIO_ENABLED(chunk->sinfo.sinfo_flags))
1359 				asoc->sent_cnt_removable--;
1360 			sctp_chunk_free(tchunk);
1361 		}
1362 	}
1363 
1364 	/* ii) Set rwnd equal to the newly received a_rwnd minus the
1365 	 *     number of bytes still outstanding after processing the
1366 	 *     Cumulative TSN Ack and the Gap Ack Blocks.
1367 	 */
1368 
1369 	sack_a_rwnd = ntohl(sack->a_rwnd);
1370 	asoc->peer.zero_window_announced = !sack_a_rwnd;
1371 	outstanding = q->outstanding_bytes;
1372 
1373 	if (outstanding < sack_a_rwnd)
1374 		sack_a_rwnd -= outstanding;
1375 	else
1376 		sack_a_rwnd = 0;
1377 
1378 	asoc->peer.rwnd = sack_a_rwnd;
1379 
1380 	asoc->stream.si->generate_ftsn(q, sack_ctsn);
1381 
1382 	pr_debug("%s: sack cumulative tsn ack:0x%x\n", __func__, sack_ctsn);
1383 	pr_debug("%s: cumulative tsn ack of assoc:%p is 0x%x, "
1384 		 "advertised peer ack point:0x%x\n", __func__, asoc, ctsn,
1385 		 asoc->adv_peer_ack_point);
1386 
1387 	return sctp_outq_is_empty(q);
1388 }
1389 
1390 /* Is the outqueue empty?
1391  * The queue is empty when we have not pending data, no in-flight data
1392  * and nothing pending retransmissions.
1393  */
1394 int sctp_outq_is_empty(const struct sctp_outq *q)
1395 {
1396 	return q->out_qlen == 0 && q->outstanding_bytes == 0 &&
1397 	       list_empty(&q->retransmit);
1398 }
1399 
1400 /********************************************************************
1401  * 2nd Level Abstractions
1402  ********************************************************************/
1403 
1404 /* Go through a transport's transmitted list or the association's retransmit
1405  * list and move chunks that are acked by the Cumulative TSN Ack to q->sacked.
1406  * The retransmit list will not have an associated transport.
1407  *
1408  * I added coherent debug information output.	--xguo
1409  *
1410  * Instead of printing 'sacked' or 'kept' for each TSN on the
1411  * transmitted_queue, we print a range: SACKED: TSN1-TSN2, TSN3, TSN4-TSN5.
1412  * KEPT TSN6-TSN7, etc.
1413  */
1414 static void sctp_check_transmitted(struct sctp_outq *q,
1415 				   struct list_head *transmitted_queue,
1416 				   struct sctp_transport *transport,
1417 				   union sctp_addr *saddr,
1418 				   struct sctp_sackhdr *sack,
1419 				   __u32 *highest_new_tsn_in_sack)
1420 {
1421 	struct list_head *lchunk;
1422 	struct sctp_chunk *tchunk;
1423 	struct list_head tlist;
1424 	__u32 tsn;
1425 	__u32 sack_ctsn;
1426 	__u32 rtt;
1427 	__u8 restart_timer = 0;
1428 	int bytes_acked = 0;
1429 	int migrate_bytes = 0;
1430 	bool forward_progress = false;
1431 
1432 	sack_ctsn = ntohl(sack->cum_tsn_ack);
1433 
1434 	INIT_LIST_HEAD(&tlist);
1435 
1436 	/* The while loop will skip empty transmitted queues. */
1437 	while (NULL != (lchunk = sctp_list_dequeue(transmitted_queue))) {
1438 		tchunk = list_entry(lchunk, struct sctp_chunk,
1439 				    transmitted_list);
1440 
1441 		if (sctp_chunk_abandoned(tchunk)) {
1442 			/* Move the chunk to abandoned list. */
1443 			sctp_insert_list(&q->abandoned, lchunk);
1444 
1445 			/* If this chunk has not been acked, stop
1446 			 * considering it as 'outstanding'.
1447 			 */
1448 			if (transmitted_queue != &q->retransmit &&
1449 			    !tchunk->tsn_gap_acked) {
1450 				if (tchunk->transport)
1451 					tchunk->transport->flight_size -=
1452 							sctp_data_size(tchunk);
1453 				q->outstanding_bytes -= sctp_data_size(tchunk);
1454 			}
1455 			continue;
1456 		}
1457 
1458 		tsn = ntohl(tchunk->subh.data_hdr->tsn);
1459 		if (sctp_acked(sack, tsn)) {
1460 			/* If this queue is the retransmit queue, the
1461 			 * retransmit timer has already reclaimed
1462 			 * the outstanding bytes for this chunk, so only
1463 			 * count bytes associated with a transport.
1464 			 */
1465 			if (transport && !tchunk->tsn_gap_acked) {
1466 				/* If this chunk is being used for RTT
1467 				 * measurement, calculate the RTT and update
1468 				 * the RTO using this value.
1469 				 *
1470 				 * 6.3.1 C5) Karn's algorithm: RTT measurements
1471 				 * MUST NOT be made using packets that were
1472 				 * retransmitted (and thus for which it is
1473 				 * ambiguous whether the reply was for the
1474 				 * first instance of the packet or a later
1475 				 * instance).
1476 				 */
1477 				if (!sctp_chunk_retransmitted(tchunk) &&
1478 				    tchunk->rtt_in_progress) {
1479 					tchunk->rtt_in_progress = 0;
1480 					rtt = jiffies - tchunk->sent_at;
1481 					sctp_transport_update_rto(transport,
1482 								  rtt);
1483 				}
1484 
1485 				if (TSN_lte(tsn, sack_ctsn)) {
1486 					/*
1487 					 * SFR-CACC algorithm:
1488 					 * 2) If the SACK contains gap acks
1489 					 * and the flag CHANGEOVER_ACTIVE is
1490 					 * set the receiver of the SACK MUST
1491 					 * take the following action:
1492 					 *
1493 					 * B) For each TSN t being acked that
1494 					 * has not been acked in any SACK so
1495 					 * far, set cacc_saw_newack to 1 for
1496 					 * the destination that the TSN was
1497 					 * sent to.
1498 					 */
1499 					if (sack->num_gap_ack_blocks &&
1500 					    q->asoc->peer.primary_path->cacc.
1501 					    changeover_active)
1502 						transport->cacc.cacc_saw_newack
1503 							= 1;
1504 				}
1505 			}
1506 
1507 			/* If the chunk hasn't been marked as ACKED,
1508 			 * mark it and account bytes_acked if the
1509 			 * chunk had a valid transport (it will not
1510 			 * have a transport if ASCONF had deleted it
1511 			 * while DATA was outstanding).
1512 			 */
1513 			if (!tchunk->tsn_gap_acked) {
1514 				tchunk->tsn_gap_acked = 1;
1515 				if (TSN_lt(*highest_new_tsn_in_sack, tsn))
1516 					*highest_new_tsn_in_sack = tsn;
1517 				bytes_acked += sctp_data_size(tchunk);
1518 				if (!tchunk->transport)
1519 					migrate_bytes += sctp_data_size(tchunk);
1520 				forward_progress = true;
1521 			}
1522 
1523 			if (TSN_lte(tsn, sack_ctsn)) {
1524 				/* RFC 2960  6.3.2 Retransmission Timer Rules
1525 				 *
1526 				 * R3) Whenever a SACK is received
1527 				 * that acknowledges the DATA chunk
1528 				 * with the earliest outstanding TSN
1529 				 * for that address, restart T3-rtx
1530 				 * timer for that address with its
1531 				 * current RTO.
1532 				 */
1533 				restart_timer = 1;
1534 				forward_progress = true;
1535 
1536 				list_add_tail(&tchunk->transmitted_list,
1537 					      &q->sacked);
1538 			} else {
1539 				/* RFC2960 7.2.4, sctpimpguide-05 2.8.2
1540 				 * M2) Each time a SACK arrives reporting
1541 				 * 'Stray DATA chunk(s)' record the highest TSN
1542 				 * reported as newly acknowledged, call this
1543 				 * value 'HighestTSNinSack'. A newly
1544 				 * acknowledged DATA chunk is one not
1545 				 * previously acknowledged in a SACK.
1546 				 *
1547 				 * When the SCTP sender of data receives a SACK
1548 				 * chunk that acknowledges, for the first time,
1549 				 * the receipt of a DATA chunk, all the still
1550 				 * unacknowledged DATA chunks whose TSN is
1551 				 * older than that newly acknowledged DATA
1552 				 * chunk, are qualified as 'Stray DATA chunks'.
1553 				 */
1554 				list_add_tail(lchunk, &tlist);
1555 			}
1556 		} else {
1557 			if (tchunk->tsn_gap_acked) {
1558 				pr_debug("%s: receiver reneged on data TSN:0x%x\n",
1559 					 __func__, tsn);
1560 
1561 				tchunk->tsn_gap_acked = 0;
1562 
1563 				if (tchunk->transport)
1564 					bytes_acked -= sctp_data_size(tchunk);
1565 
1566 				/* RFC 2960 6.3.2 Retransmission Timer Rules
1567 				 *
1568 				 * R4) Whenever a SACK is received missing a
1569 				 * TSN that was previously acknowledged via a
1570 				 * Gap Ack Block, start T3-rtx for the
1571 				 * destination address to which the DATA
1572 				 * chunk was originally
1573 				 * transmitted if it is not already running.
1574 				 */
1575 				restart_timer = 1;
1576 			}
1577 
1578 			list_add_tail(lchunk, &tlist);
1579 		}
1580 	}
1581 
1582 	if (transport) {
1583 		if (bytes_acked) {
1584 			struct sctp_association *asoc = transport->asoc;
1585 
1586 			/* We may have counted DATA that was migrated
1587 			 * to this transport due to DEL-IP operation.
1588 			 * Subtract those bytes, since the were never
1589 			 * send on this transport and shouldn't be
1590 			 * credited to this transport.
1591 			 */
1592 			bytes_acked -= migrate_bytes;
1593 
1594 			/* 8.2. When an outstanding TSN is acknowledged,
1595 			 * the endpoint shall clear the error counter of
1596 			 * the destination transport address to which the
1597 			 * DATA chunk was last sent.
1598 			 * The association's overall error counter is
1599 			 * also cleared.
1600 			 */
1601 			transport->error_count = 0;
1602 			transport->asoc->overall_error_count = 0;
1603 			forward_progress = true;
1604 
1605 			/*
1606 			 * While in SHUTDOWN PENDING, we may have started
1607 			 * the T5 shutdown guard timer after reaching the
1608 			 * retransmission limit. Stop that timer as soon
1609 			 * as the receiver acknowledged any data.
1610 			 */
1611 			if (asoc->state == SCTP_STATE_SHUTDOWN_PENDING &&
1612 			    del_timer(&asoc->timers
1613 				[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]))
1614 					sctp_association_put(asoc);
1615 
1616 			/* Mark the destination transport address as
1617 			 * active if it is not so marked.
1618 			 */
1619 			if ((transport->state == SCTP_INACTIVE ||
1620 			     transport->state == SCTP_UNCONFIRMED) &&
1621 			    sctp_cmp_addr_exact(&transport->ipaddr, saddr)) {
1622 				sctp_assoc_control_transport(
1623 					transport->asoc,
1624 					transport,
1625 					SCTP_TRANSPORT_UP,
1626 					SCTP_RECEIVED_SACK);
1627 			}
1628 
1629 			sctp_transport_raise_cwnd(transport, sack_ctsn,
1630 						  bytes_acked);
1631 
1632 			transport->flight_size -= bytes_acked;
1633 			if (transport->flight_size == 0)
1634 				transport->partial_bytes_acked = 0;
1635 			q->outstanding_bytes -= bytes_acked + migrate_bytes;
1636 		} else {
1637 			/* RFC 2960 6.1, sctpimpguide-06 2.15.2
1638 			 * When a sender is doing zero window probing, it
1639 			 * should not timeout the association if it continues
1640 			 * to receive new packets from the receiver. The
1641 			 * reason is that the receiver MAY keep its window
1642 			 * closed for an indefinite time.
1643 			 * A sender is doing zero window probing when the
1644 			 * receiver's advertised window is zero, and there is
1645 			 * only one data chunk in flight to the receiver.
1646 			 *
1647 			 * Allow the association to timeout while in SHUTDOWN
1648 			 * PENDING or SHUTDOWN RECEIVED in case the receiver
1649 			 * stays in zero window mode forever.
1650 			 */
1651 			if (!q->asoc->peer.rwnd &&
1652 			    !list_empty(&tlist) &&
1653 			    (sack_ctsn+2 == q->asoc->next_tsn) &&
1654 			    q->asoc->state < SCTP_STATE_SHUTDOWN_PENDING) {
1655 				pr_debug("%s: sack received for zero window "
1656 					 "probe:%u\n", __func__, sack_ctsn);
1657 
1658 				q->asoc->overall_error_count = 0;
1659 				transport->error_count = 0;
1660 			}
1661 		}
1662 
1663 		/* RFC 2960 6.3.2 Retransmission Timer Rules
1664 		 *
1665 		 * R2) Whenever all outstanding data sent to an address have
1666 		 * been acknowledged, turn off the T3-rtx timer of that
1667 		 * address.
1668 		 */
1669 		if (!transport->flight_size) {
1670 			if (del_timer(&transport->T3_rtx_timer))
1671 				sctp_transport_put(transport);
1672 		} else if (restart_timer) {
1673 			if (!mod_timer(&transport->T3_rtx_timer,
1674 				       jiffies + transport->rto))
1675 				sctp_transport_hold(transport);
1676 		}
1677 
1678 		if (forward_progress) {
1679 			if (transport->dst)
1680 				sctp_transport_dst_confirm(transport);
1681 		}
1682 	}
1683 
1684 	list_splice(&tlist, transmitted_queue);
1685 }
1686 
1687 /* Mark chunks as missing and consequently may get retransmitted. */
1688 static void sctp_mark_missing(struct sctp_outq *q,
1689 			      struct list_head *transmitted_queue,
1690 			      struct sctp_transport *transport,
1691 			      __u32 highest_new_tsn_in_sack,
1692 			      int count_of_newacks)
1693 {
1694 	struct sctp_chunk *chunk;
1695 	__u32 tsn;
1696 	char do_fast_retransmit = 0;
1697 	struct sctp_association *asoc = q->asoc;
1698 	struct sctp_transport *primary = asoc->peer.primary_path;
1699 
1700 	list_for_each_entry(chunk, transmitted_queue, transmitted_list) {
1701 
1702 		tsn = ntohl(chunk->subh.data_hdr->tsn);
1703 
1704 		/* RFC 2960 7.2.4, sctpimpguide-05 2.8.2 M3) Examine all
1705 		 * 'Unacknowledged TSN's', if the TSN number of an
1706 		 * 'Unacknowledged TSN' is smaller than the 'HighestTSNinSack'
1707 		 * value, increment the 'TSN.Missing.Report' count on that
1708 		 * chunk if it has NOT been fast retransmitted or marked for
1709 		 * fast retransmit already.
1710 		 */
1711 		if (chunk->fast_retransmit == SCTP_CAN_FRTX &&
1712 		    !chunk->tsn_gap_acked &&
1713 		    TSN_lt(tsn, highest_new_tsn_in_sack)) {
1714 
1715 			/* SFR-CACC may require us to skip marking
1716 			 * this chunk as missing.
1717 			 */
1718 			if (!transport || !sctp_cacc_skip(primary,
1719 						chunk->transport,
1720 						count_of_newacks, tsn)) {
1721 				chunk->tsn_missing_report++;
1722 
1723 				pr_debug("%s: tsn:0x%x missing counter:%d\n",
1724 					 __func__, tsn, chunk->tsn_missing_report);
1725 			}
1726 		}
1727 		/*
1728 		 * M4) If any DATA chunk is found to have a
1729 		 * 'TSN.Missing.Report'
1730 		 * value larger than or equal to 3, mark that chunk for
1731 		 * retransmission and start the fast retransmit procedure.
1732 		 */
1733 
1734 		if (chunk->tsn_missing_report >= 3) {
1735 			chunk->fast_retransmit = SCTP_NEED_FRTX;
1736 			do_fast_retransmit = 1;
1737 		}
1738 	}
1739 
1740 	if (transport) {
1741 		if (do_fast_retransmit)
1742 			sctp_retransmit(q, transport, SCTP_RTXR_FAST_RTX);
1743 
1744 		pr_debug("%s: transport:%p, cwnd:%d, ssthresh:%d, "
1745 			 "flight_size:%d, pba:%d\n",  __func__, transport,
1746 			 transport->cwnd, transport->ssthresh,
1747 			 transport->flight_size, transport->partial_bytes_acked);
1748 	}
1749 }
1750 
1751 /* Is the given TSN acked by this packet?  */
1752 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn)
1753 {
1754 	__u32 ctsn = ntohl(sack->cum_tsn_ack);
1755 	union sctp_sack_variable *frags;
1756 	__u16 tsn_offset, blocks;
1757 	int i;
1758 
1759 	if (TSN_lte(tsn, ctsn))
1760 		goto pass;
1761 
1762 	/* 3.3.4 Selective Acknowledgment (SACK) (3):
1763 	 *
1764 	 * Gap Ack Blocks:
1765 	 *  These fields contain the Gap Ack Blocks. They are repeated
1766 	 *  for each Gap Ack Block up to the number of Gap Ack Blocks
1767 	 *  defined in the Number of Gap Ack Blocks field. All DATA
1768 	 *  chunks with TSNs greater than or equal to (Cumulative TSN
1769 	 *  Ack + Gap Ack Block Start) and less than or equal to
1770 	 *  (Cumulative TSN Ack + Gap Ack Block End) of each Gap Ack
1771 	 *  Block are assumed to have been received correctly.
1772 	 */
1773 
1774 	frags = sack->variable;
1775 	blocks = ntohs(sack->num_gap_ack_blocks);
1776 	tsn_offset = tsn - ctsn;
1777 	for (i = 0; i < blocks; ++i) {
1778 		if (tsn_offset >= ntohs(frags[i].gab.start) &&
1779 		    tsn_offset <= ntohs(frags[i].gab.end))
1780 			goto pass;
1781 	}
1782 
1783 	return 0;
1784 pass:
1785 	return 1;
1786 }
1787 
1788 static inline int sctp_get_skip_pos(struct sctp_fwdtsn_skip *skiplist,
1789 				    int nskips, __be16 stream)
1790 {
1791 	int i;
1792 
1793 	for (i = 0; i < nskips; i++) {
1794 		if (skiplist[i].stream == stream)
1795 			return i;
1796 	}
1797 	return i;
1798 }
1799 
1800 /* Create and add a fwdtsn chunk to the outq's control queue if needed. */
1801 void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 ctsn)
1802 {
1803 	struct sctp_association *asoc = q->asoc;
1804 	struct sctp_chunk *ftsn_chunk = NULL;
1805 	struct sctp_fwdtsn_skip ftsn_skip_arr[10];
1806 	int nskips = 0;
1807 	int skip_pos = 0;
1808 	__u32 tsn;
1809 	struct sctp_chunk *chunk;
1810 	struct list_head *lchunk, *temp;
1811 
1812 	if (!asoc->peer.prsctp_capable)
1813 		return;
1814 
1815 	/* PR-SCTP C1) Let SackCumAck be the Cumulative TSN ACK carried in the
1816 	 * received SACK.
1817 	 *
1818 	 * If (Advanced.Peer.Ack.Point < SackCumAck), then update
1819 	 * Advanced.Peer.Ack.Point to be equal to SackCumAck.
1820 	 */
1821 	if (TSN_lt(asoc->adv_peer_ack_point, ctsn))
1822 		asoc->adv_peer_ack_point = ctsn;
1823 
1824 	/* PR-SCTP C2) Try to further advance the "Advanced.Peer.Ack.Point"
1825 	 * locally, that is, to move "Advanced.Peer.Ack.Point" up as long as
1826 	 * the chunk next in the out-queue space is marked as "abandoned" as
1827 	 * shown in the following example:
1828 	 *
1829 	 * Assuming that a SACK arrived with the Cumulative TSN ACK 102
1830 	 * and the Advanced.Peer.Ack.Point is updated to this value:
1831 	 *
1832 	 *   out-queue at the end of  ==>   out-queue after Adv.Ack.Point
1833 	 *   normal SACK processing           local advancement
1834 	 *                ...                           ...
1835 	 *   Adv.Ack.Pt-> 102 acked                     102 acked
1836 	 *                103 abandoned                 103 abandoned
1837 	 *                104 abandoned     Adv.Ack.P-> 104 abandoned
1838 	 *                105                           105
1839 	 *                106 acked                     106 acked
1840 	 *                ...                           ...
1841 	 *
1842 	 * In this example, the data sender successfully advanced the
1843 	 * "Advanced.Peer.Ack.Point" from 102 to 104 locally.
1844 	 */
1845 	list_for_each_safe(lchunk, temp, &q->abandoned) {
1846 		chunk = list_entry(lchunk, struct sctp_chunk,
1847 					transmitted_list);
1848 		tsn = ntohl(chunk->subh.data_hdr->tsn);
1849 
1850 		/* Remove any chunks in the abandoned queue that are acked by
1851 		 * the ctsn.
1852 		 */
1853 		if (TSN_lte(tsn, ctsn)) {
1854 			list_del_init(lchunk);
1855 			sctp_chunk_free(chunk);
1856 		} else {
1857 			if (TSN_lte(tsn, asoc->adv_peer_ack_point+1)) {
1858 				asoc->adv_peer_ack_point = tsn;
1859 				if (chunk->chunk_hdr->flags &
1860 					 SCTP_DATA_UNORDERED)
1861 					continue;
1862 				skip_pos = sctp_get_skip_pos(&ftsn_skip_arr[0],
1863 						nskips,
1864 						chunk->subh.data_hdr->stream);
1865 				ftsn_skip_arr[skip_pos].stream =
1866 					chunk->subh.data_hdr->stream;
1867 				ftsn_skip_arr[skip_pos].ssn =
1868 					 chunk->subh.data_hdr->ssn;
1869 				if (skip_pos == nskips)
1870 					nskips++;
1871 				if (nskips == 10)
1872 					break;
1873 			} else
1874 				break;
1875 		}
1876 	}
1877 
1878 	/* PR-SCTP C3) If, after step C1 and C2, the "Advanced.Peer.Ack.Point"
1879 	 * is greater than the Cumulative TSN ACK carried in the received
1880 	 * SACK, the data sender MUST send the data receiver a FORWARD TSN
1881 	 * chunk containing the latest value of the
1882 	 * "Advanced.Peer.Ack.Point".
1883 	 *
1884 	 * C4) For each "abandoned" TSN the sender of the FORWARD TSN SHOULD
1885 	 * list each stream and sequence number in the forwarded TSN. This
1886 	 * information will enable the receiver to easily find any
1887 	 * stranded TSN's waiting on stream reorder queues. Each stream
1888 	 * SHOULD only be reported once; this means that if multiple
1889 	 * abandoned messages occur in the same stream then only the
1890 	 * highest abandoned stream sequence number is reported. If the
1891 	 * total size of the FORWARD TSN does NOT fit in a single MTU then
1892 	 * the sender of the FORWARD TSN SHOULD lower the
1893 	 * Advanced.Peer.Ack.Point to the last TSN that will fit in a
1894 	 * single MTU.
1895 	 */
1896 	if (asoc->adv_peer_ack_point > ctsn)
1897 		ftsn_chunk = sctp_make_fwdtsn(asoc, asoc->adv_peer_ack_point,
1898 					      nskips, &ftsn_skip_arr[0]);
1899 
1900 	if (ftsn_chunk) {
1901 		list_add_tail(&ftsn_chunk->list, &q->control_chunk_list);
1902 		SCTP_INC_STATS(sock_net(asoc->base.sk), SCTP_MIB_OUTCTRLCHUNKS);
1903 	}
1904 }
1905