xref: /openbmc/linux/net/sctp/input.c (revision f79e4d5f92a129a1159c973735007d4ddc8541f3)
1 /* SCTP kernel implementation
2  * Copyright (c) 1999-2000 Cisco, Inc.
3  * Copyright (c) 1999-2001 Motorola, Inc.
4  * Copyright (c) 2001-2003 International Business Machines, Corp.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions handle all input from the IP layer into SCTP.
12  *
13  * This SCTP implementation is free software;
14  * you can redistribute it and/or modify it under the terms of
15  * the GNU General Public License as published by
16  * the Free Software Foundation; either version 2, or (at your option)
17  * any later version.
18  *
19  * This SCTP implementation is distributed in the hope that it
20  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
21  *                 ************************
22  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
23  * See the GNU General Public License for more details.
24  *
25  * You should have received a copy of the GNU General Public License
26  * along with GNU CC; see the file COPYING.  If not, see
27  * <http://www.gnu.org/licenses/>.
28  *
29  * Please send any bug reports or fixes you make to the
30  * email address(es):
31  *    lksctp developers <linux-sctp@vger.kernel.org>
32  *
33  * Written or modified by:
34  *    La Monte H.P. Yarroll <piggy@acm.org>
35  *    Karl Knutson <karl@athena.chicago.il.us>
36  *    Xingang Guo <xingang.guo@intel.com>
37  *    Jon Grimm <jgrimm@us.ibm.com>
38  *    Hui Huang <hui.huang@nokia.com>
39  *    Daisy Chang <daisyc@us.ibm.com>
40  *    Sridhar Samudrala <sri@us.ibm.com>
41  *    Ardelle Fan <ardelle.fan@intel.com>
42  */
43 
44 #include <linux/types.h>
45 #include <linux/list.h> /* For struct list_head */
46 #include <linux/socket.h>
47 #include <linux/ip.h>
48 #include <linux/time.h> /* For struct timeval */
49 #include <linux/slab.h>
50 #include <net/ip.h>
51 #include <net/icmp.h>
52 #include <net/snmp.h>
53 #include <net/sock.h>
54 #include <net/xfrm.h>
55 #include <net/sctp/sctp.h>
56 #include <net/sctp/sm.h>
57 #include <net/sctp/checksum.h>
58 #include <net/net_namespace.h>
59 
60 /* Forward declarations for internal helpers. */
61 static int sctp_rcv_ootb(struct sk_buff *);
62 static struct sctp_association *__sctp_rcv_lookup(struct net *net,
63 				      struct sk_buff *skb,
64 				      const union sctp_addr *paddr,
65 				      const union sctp_addr *laddr,
66 				      struct sctp_transport **transportp);
67 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net,
68 						const union sctp_addr *laddr);
69 static struct sctp_association *__sctp_lookup_association(
70 					struct net *net,
71 					const union sctp_addr *local,
72 					const union sctp_addr *peer,
73 					struct sctp_transport **pt);
74 
75 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb);
76 
77 
78 /* Calculate the SCTP checksum of an SCTP packet.  */
79 static inline int sctp_rcv_checksum(struct net *net, struct sk_buff *skb)
80 {
81 	struct sctphdr *sh = sctp_hdr(skb);
82 	__le32 cmp = sh->checksum;
83 	__le32 val = sctp_compute_cksum(skb, 0);
84 
85 	if (val != cmp) {
86 		/* CRC failure, dump it. */
87 		__SCTP_INC_STATS(net, SCTP_MIB_CHECKSUMERRORS);
88 		return -1;
89 	}
90 	return 0;
91 }
92 
93 /*
94  * This is the routine which IP calls when receiving an SCTP packet.
95  */
96 int sctp_rcv(struct sk_buff *skb)
97 {
98 	struct sock *sk;
99 	struct sctp_association *asoc;
100 	struct sctp_endpoint *ep = NULL;
101 	struct sctp_ep_common *rcvr;
102 	struct sctp_transport *transport = NULL;
103 	struct sctp_chunk *chunk;
104 	union sctp_addr src;
105 	union sctp_addr dest;
106 	int family;
107 	struct sctp_af *af;
108 	struct net *net = dev_net(skb->dev);
109 	bool is_gso = skb_is_gso(skb) && skb_is_gso_sctp(skb);
110 
111 	if (skb->pkt_type != PACKET_HOST)
112 		goto discard_it;
113 
114 	__SCTP_INC_STATS(net, SCTP_MIB_INSCTPPACKS);
115 
116 	/* If packet is too small to contain a single chunk, let's not
117 	 * waste time on it anymore.
118 	 */
119 	if (skb->len < sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr) +
120 		       skb_transport_offset(skb))
121 		goto discard_it;
122 
123 	/* If the packet is fragmented and we need to do crc checking,
124 	 * it's better to just linearize it otherwise crc computing
125 	 * takes longer.
126 	 */
127 	if ((!is_gso && skb_linearize(skb)) ||
128 	    !pskb_may_pull(skb, sizeof(struct sctphdr)))
129 		goto discard_it;
130 
131 	/* Pull up the IP header. */
132 	__skb_pull(skb, skb_transport_offset(skb));
133 
134 	skb->csum_valid = 0; /* Previous value not applicable */
135 	if (skb_csum_unnecessary(skb))
136 		__skb_decr_checksum_unnecessary(skb);
137 	else if (!sctp_checksum_disable &&
138 		 !is_gso &&
139 		 sctp_rcv_checksum(net, skb) < 0)
140 		goto discard_it;
141 	skb->csum_valid = 1;
142 
143 	__skb_pull(skb, sizeof(struct sctphdr));
144 
145 	family = ipver2af(ip_hdr(skb)->version);
146 	af = sctp_get_af_specific(family);
147 	if (unlikely(!af))
148 		goto discard_it;
149 	SCTP_INPUT_CB(skb)->af = af;
150 
151 	/* Initialize local addresses for lookups. */
152 	af->from_skb(&src, skb, 1);
153 	af->from_skb(&dest, skb, 0);
154 
155 	/* If the packet is to or from a non-unicast address,
156 	 * silently discard the packet.
157 	 *
158 	 * This is not clearly defined in the RFC except in section
159 	 * 8.4 - OOTB handling.  However, based on the book "Stream Control
160 	 * Transmission Protocol" 2.1, "It is important to note that the
161 	 * IP address of an SCTP transport address must be a routable
162 	 * unicast address.  In other words, IP multicast addresses and
163 	 * IP broadcast addresses cannot be used in an SCTP transport
164 	 * address."
165 	 */
166 	if (!af->addr_valid(&src, NULL, skb) ||
167 	    !af->addr_valid(&dest, NULL, skb))
168 		goto discard_it;
169 
170 	asoc = __sctp_rcv_lookup(net, skb, &src, &dest, &transport);
171 
172 	if (!asoc)
173 		ep = __sctp_rcv_lookup_endpoint(net, &dest);
174 
175 	/* Retrieve the common input handling substructure. */
176 	rcvr = asoc ? &asoc->base : &ep->base;
177 	sk = rcvr->sk;
178 
179 	/*
180 	 * If a frame arrives on an interface and the receiving socket is
181 	 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB
182 	 */
183 	if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb))) {
184 		if (transport) {
185 			sctp_transport_put(transport);
186 			asoc = NULL;
187 			transport = NULL;
188 		} else {
189 			sctp_endpoint_put(ep);
190 			ep = NULL;
191 		}
192 		sk = net->sctp.ctl_sock;
193 		ep = sctp_sk(sk)->ep;
194 		sctp_endpoint_hold(ep);
195 		rcvr = &ep->base;
196 	}
197 
198 	/*
199 	 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
200 	 * An SCTP packet is called an "out of the blue" (OOTB)
201 	 * packet if it is correctly formed, i.e., passed the
202 	 * receiver's checksum check, but the receiver is not
203 	 * able to identify the association to which this
204 	 * packet belongs.
205 	 */
206 	if (!asoc) {
207 		if (sctp_rcv_ootb(skb)) {
208 			__SCTP_INC_STATS(net, SCTP_MIB_OUTOFBLUES);
209 			goto discard_release;
210 		}
211 	}
212 
213 	if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family))
214 		goto discard_release;
215 	nf_reset(skb);
216 
217 	if (sk_filter(sk, skb))
218 		goto discard_release;
219 
220 	/* Create an SCTP packet structure. */
221 	chunk = sctp_chunkify(skb, asoc, sk, GFP_ATOMIC);
222 	if (!chunk)
223 		goto discard_release;
224 	SCTP_INPUT_CB(skb)->chunk = chunk;
225 
226 	/* Remember what endpoint is to handle this packet. */
227 	chunk->rcvr = rcvr;
228 
229 	/* Remember the SCTP header. */
230 	chunk->sctp_hdr = sctp_hdr(skb);
231 
232 	/* Set the source and destination addresses of the incoming chunk.  */
233 	sctp_init_addrs(chunk, &src, &dest);
234 
235 	/* Remember where we came from.  */
236 	chunk->transport = transport;
237 
238 	/* Acquire access to the sock lock. Note: We are safe from other
239 	 * bottom halves on this lock, but a user may be in the lock too,
240 	 * so check if it is busy.
241 	 */
242 	bh_lock_sock(sk);
243 
244 	if (sk != rcvr->sk) {
245 		/* Our cached sk is different from the rcvr->sk.  This is
246 		 * because migrate()/accept() may have moved the association
247 		 * to a new socket and released all the sockets.  So now we
248 		 * are holding a lock on the old socket while the user may
249 		 * be doing something with the new socket.  Switch our veiw
250 		 * of the current sk.
251 		 */
252 		bh_unlock_sock(sk);
253 		sk = rcvr->sk;
254 		bh_lock_sock(sk);
255 	}
256 
257 	if (sock_owned_by_user(sk)) {
258 		if (sctp_add_backlog(sk, skb)) {
259 			bh_unlock_sock(sk);
260 			sctp_chunk_free(chunk);
261 			skb = NULL; /* sctp_chunk_free already freed the skb */
262 			goto discard_release;
263 		}
264 		__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_BACKLOG);
265 	} else {
266 		__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_SOFTIRQ);
267 		sctp_inq_push(&chunk->rcvr->inqueue, chunk);
268 	}
269 
270 	bh_unlock_sock(sk);
271 
272 	/* Release the asoc/ep ref we took in the lookup calls. */
273 	if (transport)
274 		sctp_transport_put(transport);
275 	else
276 		sctp_endpoint_put(ep);
277 
278 	return 0;
279 
280 discard_it:
281 	__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_DISCARDS);
282 	kfree_skb(skb);
283 	return 0;
284 
285 discard_release:
286 	/* Release the asoc/ep ref we took in the lookup calls. */
287 	if (transport)
288 		sctp_transport_put(transport);
289 	else
290 		sctp_endpoint_put(ep);
291 
292 	goto discard_it;
293 }
294 
295 /* Process the backlog queue of the socket.  Every skb on
296  * the backlog holds a ref on an association or endpoint.
297  * We hold this ref throughout the state machine to make
298  * sure that the structure we need is still around.
299  */
300 int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
301 {
302 	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
303 	struct sctp_inq *inqueue = &chunk->rcvr->inqueue;
304 	struct sctp_transport *t = chunk->transport;
305 	struct sctp_ep_common *rcvr = NULL;
306 	int backloged = 0;
307 
308 	rcvr = chunk->rcvr;
309 
310 	/* If the rcvr is dead then the association or endpoint
311 	 * has been deleted and we can safely drop the chunk
312 	 * and refs that we are holding.
313 	 */
314 	if (rcvr->dead) {
315 		sctp_chunk_free(chunk);
316 		goto done;
317 	}
318 
319 	if (unlikely(rcvr->sk != sk)) {
320 		/* In this case, the association moved from one socket to
321 		 * another.  We are currently sitting on the backlog of the
322 		 * old socket, so we need to move.
323 		 * However, since we are here in the process context we
324 		 * need to take make sure that the user doesn't own
325 		 * the new socket when we process the packet.
326 		 * If the new socket is user-owned, queue the chunk to the
327 		 * backlog of the new socket without dropping any refs.
328 		 * Otherwise, we can safely push the chunk on the inqueue.
329 		 */
330 
331 		sk = rcvr->sk;
332 		local_bh_disable();
333 		bh_lock_sock(sk);
334 
335 		if (sock_owned_by_user(sk)) {
336 			if (sk_add_backlog(sk, skb, sk->sk_rcvbuf))
337 				sctp_chunk_free(chunk);
338 			else
339 				backloged = 1;
340 		} else
341 			sctp_inq_push(inqueue, chunk);
342 
343 		bh_unlock_sock(sk);
344 		local_bh_enable();
345 
346 		/* If the chunk was backloged again, don't drop refs */
347 		if (backloged)
348 			return 0;
349 	} else {
350 		sctp_inq_push(inqueue, chunk);
351 	}
352 
353 done:
354 	/* Release the refs we took in sctp_add_backlog */
355 	if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
356 		sctp_transport_put(t);
357 	else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
358 		sctp_endpoint_put(sctp_ep(rcvr));
359 	else
360 		BUG();
361 
362 	return 0;
363 }
364 
365 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb)
366 {
367 	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
368 	struct sctp_transport *t = chunk->transport;
369 	struct sctp_ep_common *rcvr = chunk->rcvr;
370 	int ret;
371 
372 	ret = sk_add_backlog(sk, skb, sk->sk_rcvbuf);
373 	if (!ret) {
374 		/* Hold the assoc/ep while hanging on the backlog queue.
375 		 * This way, we know structures we need will not disappear
376 		 * from us
377 		 */
378 		if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
379 			sctp_transport_hold(t);
380 		else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
381 			sctp_endpoint_hold(sctp_ep(rcvr));
382 		else
383 			BUG();
384 	}
385 	return ret;
386 
387 }
388 
389 /* Handle icmp frag needed error. */
390 void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
391 			   struct sctp_transport *t, __u32 pmtu)
392 {
393 	if (!t || (t->pathmtu <= pmtu))
394 		return;
395 
396 	if (sock_owned_by_user(sk)) {
397 		asoc->pmtu_pending = 1;
398 		t->pmtu_pending = 1;
399 		return;
400 	}
401 
402 	if (!(t->param_flags & SPP_PMTUD_ENABLE))
403 		/* We can't allow retransmitting in such case, as the
404 		 * retransmission would be sized just as before, and thus we
405 		 * would get another icmp, and retransmit again.
406 		 */
407 		return;
408 
409 	/* Update transports view of the MTU. Return if no update was needed.
410 	 * If an update wasn't needed/possible, it also doesn't make sense to
411 	 * try to retransmit now.
412 	 */
413 	if (!sctp_transport_update_pmtu(t, pmtu))
414 		return;
415 
416 	/* Update association pmtu. */
417 	sctp_assoc_sync_pmtu(asoc);
418 
419 	/* Retransmit with the new pmtu setting. */
420 	sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD);
421 }
422 
423 void sctp_icmp_redirect(struct sock *sk, struct sctp_transport *t,
424 			struct sk_buff *skb)
425 {
426 	struct dst_entry *dst;
427 
428 	if (sock_owned_by_user(sk) || !t)
429 		return;
430 	dst = sctp_transport_dst_check(t);
431 	if (dst)
432 		dst->ops->redirect(dst, sk, skb);
433 }
434 
435 /*
436  * SCTP Implementer's Guide, 2.37 ICMP handling procedures
437  *
438  * ICMP8) If the ICMP code is a "Unrecognized next header type encountered"
439  *        or a "Protocol Unreachable" treat this message as an abort
440  *        with the T bit set.
441  *
442  * This function sends an event to the state machine, which will abort the
443  * association.
444  *
445  */
446 void sctp_icmp_proto_unreachable(struct sock *sk,
447 			   struct sctp_association *asoc,
448 			   struct sctp_transport *t)
449 {
450 	if (sock_owned_by_user(sk)) {
451 		if (timer_pending(&t->proto_unreach_timer))
452 			return;
453 		else {
454 			if (!mod_timer(&t->proto_unreach_timer,
455 						jiffies + (HZ/20)))
456 				sctp_association_hold(asoc);
457 		}
458 	} else {
459 		struct net *net = sock_net(sk);
460 
461 		pr_debug("%s: unrecognized next header type "
462 			 "encountered!\n", __func__);
463 
464 		if (del_timer(&t->proto_unreach_timer))
465 			sctp_association_put(asoc);
466 
467 		sctp_do_sm(net, SCTP_EVENT_T_OTHER,
468 			   SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
469 			   asoc->state, asoc->ep, asoc, t,
470 			   GFP_ATOMIC);
471 	}
472 }
473 
474 /* Common lookup code for icmp/icmpv6 error handler. */
475 struct sock *sctp_err_lookup(struct net *net, int family, struct sk_buff *skb,
476 			     struct sctphdr *sctphdr,
477 			     struct sctp_association **app,
478 			     struct sctp_transport **tpp)
479 {
480 	struct sctp_init_chunk *chunkhdr, _chunkhdr;
481 	union sctp_addr saddr;
482 	union sctp_addr daddr;
483 	struct sctp_af *af;
484 	struct sock *sk = NULL;
485 	struct sctp_association *asoc;
486 	struct sctp_transport *transport = NULL;
487 	__u32 vtag = ntohl(sctphdr->vtag);
488 
489 	*app = NULL; *tpp = NULL;
490 
491 	af = sctp_get_af_specific(family);
492 	if (unlikely(!af)) {
493 		return NULL;
494 	}
495 
496 	/* Initialize local addresses for lookups. */
497 	af->from_skb(&saddr, skb, 1);
498 	af->from_skb(&daddr, skb, 0);
499 
500 	/* Look for an association that matches the incoming ICMP error
501 	 * packet.
502 	 */
503 	asoc = __sctp_lookup_association(net, &saddr, &daddr, &transport);
504 	if (!asoc)
505 		return NULL;
506 
507 	sk = asoc->base.sk;
508 
509 	/* RFC 4960, Appendix C. ICMP Handling
510 	 *
511 	 * ICMP6) An implementation MUST validate that the Verification Tag
512 	 * contained in the ICMP message matches the Verification Tag of
513 	 * the peer.  If the Verification Tag is not 0 and does NOT
514 	 * match, discard the ICMP message.  If it is 0 and the ICMP
515 	 * message contains enough bytes to verify that the chunk type is
516 	 * an INIT chunk and that the Initiate Tag matches the tag of the
517 	 * peer, continue with ICMP7.  If the ICMP message is too short
518 	 * or the chunk type or the Initiate Tag does not match, silently
519 	 * discard the packet.
520 	 */
521 	if (vtag == 0) {
522 		/* chunk header + first 4 octects of init header */
523 		chunkhdr = skb_header_pointer(skb, skb_transport_offset(skb) +
524 					      sizeof(struct sctphdr),
525 					      sizeof(struct sctp_chunkhdr) +
526 					      sizeof(__be32), &_chunkhdr);
527 		if (!chunkhdr ||
528 		    chunkhdr->chunk_hdr.type != SCTP_CID_INIT ||
529 		    ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag)
530 			goto out;
531 
532 	} else if (vtag != asoc->c.peer_vtag) {
533 		goto out;
534 	}
535 
536 	bh_lock_sock(sk);
537 
538 	/* If too many ICMPs get dropped on busy
539 	 * servers this needs to be solved differently.
540 	 */
541 	if (sock_owned_by_user(sk))
542 		__NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
543 
544 	*app = asoc;
545 	*tpp = transport;
546 	return sk;
547 
548 out:
549 	sctp_transport_put(transport);
550 	return NULL;
551 }
552 
553 /* Common cleanup code for icmp/icmpv6 error handler. */
554 void sctp_err_finish(struct sock *sk, struct sctp_transport *t)
555 {
556 	bh_unlock_sock(sk);
557 	sctp_transport_put(t);
558 }
559 
560 /*
561  * This routine is called by the ICMP module when it gets some
562  * sort of error condition.  If err < 0 then the socket should
563  * be closed and the error returned to the user.  If err > 0
564  * it's just the icmp type << 8 | icmp code.  After adjustment
565  * header points to the first 8 bytes of the sctp header.  We need
566  * to find the appropriate port.
567  *
568  * The locking strategy used here is very "optimistic". When
569  * someone else accesses the socket the ICMP is just dropped
570  * and for some paths there is no check at all.
571  * A more general error queue to queue errors for later handling
572  * is probably better.
573  *
574  */
575 void sctp_v4_err(struct sk_buff *skb, __u32 info)
576 {
577 	const struct iphdr *iph = (const struct iphdr *)skb->data;
578 	const int ihlen = iph->ihl * 4;
579 	const int type = icmp_hdr(skb)->type;
580 	const int code = icmp_hdr(skb)->code;
581 	struct sock *sk;
582 	struct sctp_association *asoc = NULL;
583 	struct sctp_transport *transport;
584 	struct inet_sock *inet;
585 	__u16 saveip, savesctp;
586 	int err;
587 	struct net *net = dev_net(skb->dev);
588 
589 	/* Fix up skb to look at the embedded net header. */
590 	saveip = skb->network_header;
591 	savesctp = skb->transport_header;
592 	skb_reset_network_header(skb);
593 	skb_set_transport_header(skb, ihlen);
594 	sk = sctp_err_lookup(net, AF_INET, skb, sctp_hdr(skb), &asoc, &transport);
595 	/* Put back, the original values. */
596 	skb->network_header = saveip;
597 	skb->transport_header = savesctp;
598 	if (!sk) {
599 		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
600 		return;
601 	}
602 	/* Warning:  The sock lock is held.  Remember to call
603 	 * sctp_err_finish!
604 	 */
605 
606 	switch (type) {
607 	case ICMP_PARAMETERPROB:
608 		err = EPROTO;
609 		break;
610 	case ICMP_DEST_UNREACH:
611 		if (code > NR_ICMP_UNREACH)
612 			goto out_unlock;
613 
614 		/* PMTU discovery (RFC1191) */
615 		if (ICMP_FRAG_NEEDED == code) {
616 			sctp_icmp_frag_needed(sk, asoc, transport,
617 					      SCTP_TRUNC4(info));
618 			goto out_unlock;
619 		} else {
620 			if (ICMP_PROT_UNREACH == code) {
621 				sctp_icmp_proto_unreachable(sk, asoc,
622 							    transport);
623 				goto out_unlock;
624 			}
625 		}
626 		err = icmp_err_convert[code].errno;
627 		break;
628 	case ICMP_TIME_EXCEEDED:
629 		/* Ignore any time exceeded errors due to fragment reassembly
630 		 * timeouts.
631 		 */
632 		if (ICMP_EXC_FRAGTIME == code)
633 			goto out_unlock;
634 
635 		err = EHOSTUNREACH;
636 		break;
637 	case ICMP_REDIRECT:
638 		sctp_icmp_redirect(sk, transport, skb);
639 		/* Fall through to out_unlock. */
640 	default:
641 		goto out_unlock;
642 	}
643 
644 	inet = inet_sk(sk);
645 	if (!sock_owned_by_user(sk) && inet->recverr) {
646 		sk->sk_err = err;
647 		sk->sk_error_report(sk);
648 	} else {  /* Only an error on timeout */
649 		sk->sk_err_soft = err;
650 	}
651 
652 out_unlock:
653 	sctp_err_finish(sk, transport);
654 }
655 
656 /*
657  * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
658  *
659  * This function scans all the chunks in the OOTB packet to determine if
660  * the packet should be discarded right away.  If a response might be needed
661  * for this packet, or, if further processing is possible, the packet will
662  * be queued to a proper inqueue for the next phase of handling.
663  *
664  * Output:
665  * Return 0 - If further processing is needed.
666  * Return 1 - If the packet can be discarded right away.
667  */
668 static int sctp_rcv_ootb(struct sk_buff *skb)
669 {
670 	struct sctp_chunkhdr *ch, _ch;
671 	int ch_end, offset = 0;
672 
673 	/* Scan through all the chunks in the packet.  */
674 	do {
675 		/* Make sure we have at least the header there */
676 		if (offset + sizeof(_ch) > skb->len)
677 			break;
678 
679 		ch = skb_header_pointer(skb, offset, sizeof(*ch), &_ch);
680 
681 		/* Break out if chunk length is less then minimal. */
682 		if (ntohs(ch->length) < sizeof(_ch))
683 			break;
684 
685 		ch_end = offset + SCTP_PAD4(ntohs(ch->length));
686 		if (ch_end > skb->len)
687 			break;
688 
689 		/* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the
690 		 * receiver MUST silently discard the OOTB packet and take no
691 		 * further action.
692 		 */
693 		if (SCTP_CID_ABORT == ch->type)
694 			goto discard;
695 
696 		/* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE
697 		 * chunk, the receiver should silently discard the packet
698 		 * and take no further action.
699 		 */
700 		if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type)
701 			goto discard;
702 
703 		/* RFC 4460, 2.11.2
704 		 * This will discard packets with INIT chunk bundled as
705 		 * subsequent chunks in the packet.  When INIT is first,
706 		 * the normal INIT processing will discard the chunk.
707 		 */
708 		if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data)
709 			goto discard;
710 
711 		offset = ch_end;
712 	} while (ch_end < skb->len);
713 
714 	return 0;
715 
716 discard:
717 	return 1;
718 }
719 
720 /* Insert endpoint into the hash table.  */
721 static void __sctp_hash_endpoint(struct sctp_endpoint *ep)
722 {
723 	struct net *net = sock_net(ep->base.sk);
724 	struct sctp_ep_common *epb;
725 	struct sctp_hashbucket *head;
726 
727 	epb = &ep->base;
728 
729 	epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port);
730 	head = &sctp_ep_hashtable[epb->hashent];
731 
732 	write_lock(&head->lock);
733 	hlist_add_head(&epb->node, &head->chain);
734 	write_unlock(&head->lock);
735 }
736 
737 /* Add an endpoint to the hash. Local BH-safe. */
738 void sctp_hash_endpoint(struct sctp_endpoint *ep)
739 {
740 	local_bh_disable();
741 	__sctp_hash_endpoint(ep);
742 	local_bh_enable();
743 }
744 
745 /* Remove endpoint from the hash table.  */
746 static void __sctp_unhash_endpoint(struct sctp_endpoint *ep)
747 {
748 	struct net *net = sock_net(ep->base.sk);
749 	struct sctp_hashbucket *head;
750 	struct sctp_ep_common *epb;
751 
752 	epb = &ep->base;
753 
754 	epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port);
755 
756 	head = &sctp_ep_hashtable[epb->hashent];
757 
758 	write_lock(&head->lock);
759 	hlist_del_init(&epb->node);
760 	write_unlock(&head->lock);
761 }
762 
763 /* Remove endpoint from the hash.  Local BH-safe. */
764 void sctp_unhash_endpoint(struct sctp_endpoint *ep)
765 {
766 	local_bh_disable();
767 	__sctp_unhash_endpoint(ep);
768 	local_bh_enable();
769 }
770 
771 /* Look up an endpoint. */
772 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net,
773 						const union sctp_addr *laddr)
774 {
775 	struct sctp_hashbucket *head;
776 	struct sctp_ep_common *epb;
777 	struct sctp_endpoint *ep;
778 	int hash;
779 
780 	hash = sctp_ep_hashfn(net, ntohs(laddr->v4.sin_port));
781 	head = &sctp_ep_hashtable[hash];
782 	read_lock(&head->lock);
783 	sctp_for_each_hentry(epb, &head->chain) {
784 		ep = sctp_ep(epb);
785 		if (sctp_endpoint_is_match(ep, net, laddr))
786 			goto hit;
787 	}
788 
789 	ep = sctp_sk(net->sctp.ctl_sock)->ep;
790 
791 hit:
792 	sctp_endpoint_hold(ep);
793 	read_unlock(&head->lock);
794 	return ep;
795 }
796 
797 /* rhashtable for transport */
798 struct sctp_hash_cmp_arg {
799 	const union sctp_addr	*paddr;
800 	const struct net	*net;
801 	__be16			lport;
802 };
803 
804 static inline int sctp_hash_cmp(struct rhashtable_compare_arg *arg,
805 				const void *ptr)
806 {
807 	struct sctp_transport *t = (struct sctp_transport *)ptr;
808 	const struct sctp_hash_cmp_arg *x = arg->key;
809 	int err = 1;
810 
811 	if (!sctp_cmp_addr_exact(&t->ipaddr, x->paddr))
812 		return err;
813 	if (!sctp_transport_hold(t))
814 		return err;
815 
816 	if (!net_eq(sock_net(t->asoc->base.sk), x->net))
817 		goto out;
818 	if (x->lport != htons(t->asoc->base.bind_addr.port))
819 		goto out;
820 
821 	err = 0;
822 out:
823 	sctp_transport_put(t);
824 	return err;
825 }
826 
827 static inline __u32 sctp_hash_obj(const void *data, u32 len, u32 seed)
828 {
829 	const struct sctp_transport *t = data;
830 	const union sctp_addr *paddr = &t->ipaddr;
831 	const struct net *net = sock_net(t->asoc->base.sk);
832 	__be16 lport = htons(t->asoc->base.bind_addr.port);
833 	__u32 addr;
834 
835 	if (paddr->sa.sa_family == AF_INET6)
836 		addr = jhash(&paddr->v6.sin6_addr, 16, seed);
837 	else
838 		addr = (__force __u32)paddr->v4.sin_addr.s_addr;
839 
840 	return  jhash_3words(addr, ((__force __u32)paddr->v4.sin_port) << 16 |
841 			     (__force __u32)lport, net_hash_mix(net), seed);
842 }
843 
844 static inline __u32 sctp_hash_key(const void *data, u32 len, u32 seed)
845 {
846 	const struct sctp_hash_cmp_arg *x = data;
847 	const union sctp_addr *paddr = x->paddr;
848 	const struct net *net = x->net;
849 	__be16 lport = x->lport;
850 	__u32 addr;
851 
852 	if (paddr->sa.sa_family == AF_INET6)
853 		addr = jhash(&paddr->v6.sin6_addr, 16, seed);
854 	else
855 		addr = (__force __u32)paddr->v4.sin_addr.s_addr;
856 
857 	return  jhash_3words(addr, ((__force __u32)paddr->v4.sin_port) << 16 |
858 			     (__force __u32)lport, net_hash_mix(net), seed);
859 }
860 
861 static const struct rhashtable_params sctp_hash_params = {
862 	.head_offset		= offsetof(struct sctp_transport, node),
863 	.hashfn			= sctp_hash_key,
864 	.obj_hashfn		= sctp_hash_obj,
865 	.obj_cmpfn		= sctp_hash_cmp,
866 	.automatic_shrinking	= true,
867 };
868 
869 int sctp_transport_hashtable_init(void)
870 {
871 	return rhltable_init(&sctp_transport_hashtable, &sctp_hash_params);
872 }
873 
874 void sctp_transport_hashtable_destroy(void)
875 {
876 	rhltable_destroy(&sctp_transport_hashtable);
877 }
878 
879 int sctp_hash_transport(struct sctp_transport *t)
880 {
881 	struct sctp_transport *transport;
882 	struct rhlist_head *tmp, *list;
883 	struct sctp_hash_cmp_arg arg;
884 	int err;
885 
886 	if (t->asoc->temp)
887 		return 0;
888 
889 	arg.net   = sock_net(t->asoc->base.sk);
890 	arg.paddr = &t->ipaddr;
891 	arg.lport = htons(t->asoc->base.bind_addr.port);
892 
893 	rcu_read_lock();
894 	list = rhltable_lookup(&sctp_transport_hashtable, &arg,
895 			       sctp_hash_params);
896 
897 	rhl_for_each_entry_rcu(transport, tmp, list, node)
898 		if (transport->asoc->ep == t->asoc->ep) {
899 			rcu_read_unlock();
900 			return -EEXIST;
901 		}
902 	rcu_read_unlock();
903 
904 	err = rhltable_insert_key(&sctp_transport_hashtable, &arg,
905 				  &t->node, sctp_hash_params);
906 	if (err)
907 		pr_err_once("insert transport fail, errno %d\n", err);
908 
909 	return err;
910 }
911 
912 void sctp_unhash_transport(struct sctp_transport *t)
913 {
914 	if (t->asoc->temp)
915 		return;
916 
917 	rhltable_remove(&sctp_transport_hashtable, &t->node,
918 			sctp_hash_params);
919 }
920 
921 /* return a transport with holding it */
922 struct sctp_transport *sctp_addrs_lookup_transport(
923 				struct net *net,
924 				const union sctp_addr *laddr,
925 				const union sctp_addr *paddr)
926 {
927 	struct rhlist_head *tmp, *list;
928 	struct sctp_transport *t;
929 	struct sctp_hash_cmp_arg arg = {
930 		.paddr = paddr,
931 		.net   = net,
932 		.lport = laddr->v4.sin_port,
933 	};
934 
935 	list = rhltable_lookup(&sctp_transport_hashtable, &arg,
936 			       sctp_hash_params);
937 
938 	rhl_for_each_entry_rcu(t, tmp, list, node) {
939 		if (!sctp_transport_hold(t))
940 			continue;
941 
942 		if (sctp_bind_addr_match(&t->asoc->base.bind_addr,
943 					 laddr, sctp_sk(t->asoc->base.sk)))
944 			return t;
945 		sctp_transport_put(t);
946 	}
947 
948 	return NULL;
949 }
950 
951 /* return a transport without holding it, as it's only used under sock lock */
952 struct sctp_transport *sctp_epaddr_lookup_transport(
953 				const struct sctp_endpoint *ep,
954 				const union sctp_addr *paddr)
955 {
956 	struct net *net = sock_net(ep->base.sk);
957 	struct rhlist_head *tmp, *list;
958 	struct sctp_transport *t;
959 	struct sctp_hash_cmp_arg arg = {
960 		.paddr = paddr,
961 		.net   = net,
962 		.lport = htons(ep->base.bind_addr.port),
963 	};
964 
965 	list = rhltable_lookup(&sctp_transport_hashtable, &arg,
966 			       sctp_hash_params);
967 
968 	rhl_for_each_entry_rcu(t, tmp, list, node)
969 		if (ep == t->asoc->ep)
970 			return t;
971 
972 	return NULL;
973 }
974 
975 /* Look up an association. */
976 static struct sctp_association *__sctp_lookup_association(
977 					struct net *net,
978 					const union sctp_addr *local,
979 					const union sctp_addr *peer,
980 					struct sctp_transport **pt)
981 {
982 	struct sctp_transport *t;
983 	struct sctp_association *asoc = NULL;
984 
985 	t = sctp_addrs_lookup_transport(net, local, peer);
986 	if (!t)
987 		goto out;
988 
989 	asoc = t->asoc;
990 	*pt = t;
991 
992 out:
993 	return asoc;
994 }
995 
996 /* Look up an association. protected by RCU read lock */
997 static
998 struct sctp_association *sctp_lookup_association(struct net *net,
999 						 const union sctp_addr *laddr,
1000 						 const union sctp_addr *paddr,
1001 						 struct sctp_transport **transportp)
1002 {
1003 	struct sctp_association *asoc;
1004 
1005 	rcu_read_lock();
1006 	asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1007 	rcu_read_unlock();
1008 
1009 	return asoc;
1010 }
1011 
1012 /* Is there an association matching the given local and peer addresses? */
1013 bool sctp_has_association(struct net *net,
1014 			  const union sctp_addr *laddr,
1015 			  const union sctp_addr *paddr)
1016 {
1017 	struct sctp_transport *transport;
1018 
1019 	if (sctp_lookup_association(net, laddr, paddr, &transport)) {
1020 		sctp_transport_put(transport);
1021 		return true;
1022 	}
1023 
1024 	return false;
1025 }
1026 
1027 /*
1028  * SCTP Implementors Guide, 2.18 Handling of address
1029  * parameters within the INIT or INIT-ACK.
1030  *
1031  * D) When searching for a matching TCB upon reception of an INIT
1032  *    or INIT-ACK chunk the receiver SHOULD use not only the
1033  *    source address of the packet (containing the INIT or
1034  *    INIT-ACK) but the receiver SHOULD also use all valid
1035  *    address parameters contained within the chunk.
1036  *
1037  * 2.18.3 Solution description
1038  *
1039  * This new text clearly specifies to an implementor the need
1040  * to look within the INIT or INIT-ACK. Any implementation that
1041  * does not do this, may not be able to establish associations
1042  * in certain circumstances.
1043  *
1044  */
1045 static struct sctp_association *__sctp_rcv_init_lookup(struct net *net,
1046 	struct sk_buff *skb,
1047 	const union sctp_addr *laddr, struct sctp_transport **transportp)
1048 {
1049 	struct sctp_association *asoc;
1050 	union sctp_addr addr;
1051 	union sctp_addr *paddr = &addr;
1052 	struct sctphdr *sh = sctp_hdr(skb);
1053 	union sctp_params params;
1054 	struct sctp_init_chunk *init;
1055 	struct sctp_af *af;
1056 
1057 	/*
1058 	 * This code will NOT touch anything inside the chunk--it is
1059 	 * strictly READ-ONLY.
1060 	 *
1061 	 * RFC 2960 3  SCTP packet Format
1062 	 *
1063 	 * Multiple chunks can be bundled into one SCTP packet up to
1064 	 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN
1065 	 * COMPLETE chunks.  These chunks MUST NOT be bundled with any
1066 	 * other chunk in a packet.  See Section 6.10 for more details
1067 	 * on chunk bundling.
1068 	 */
1069 
1070 	/* Find the start of the TLVs and the end of the chunk.  This is
1071 	 * the region we search for address parameters.
1072 	 */
1073 	init = (struct sctp_init_chunk *)skb->data;
1074 
1075 	/* Walk the parameters looking for embedded addresses. */
1076 	sctp_walk_params(params, init, init_hdr.params) {
1077 
1078 		/* Note: Ignoring hostname addresses. */
1079 		af = sctp_get_af_specific(param_type2af(params.p->type));
1080 		if (!af)
1081 			continue;
1082 
1083 		af->from_addr_param(paddr, params.addr, sh->source, 0);
1084 
1085 		asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1086 		if (asoc)
1087 			return asoc;
1088 	}
1089 
1090 	return NULL;
1091 }
1092 
1093 /* ADD-IP, Section 5.2
1094  * When an endpoint receives an ASCONF Chunk from the remote peer
1095  * special procedures may be needed to identify the association the
1096  * ASCONF Chunk is associated with. To properly find the association
1097  * the following procedures SHOULD be followed:
1098  *
1099  * D2) If the association is not found, use the address found in the
1100  * Address Parameter TLV combined with the port number found in the
1101  * SCTP common header. If found proceed to rule D4.
1102  *
1103  * D2-ext) If more than one ASCONF Chunks are packed together, use the
1104  * address found in the ASCONF Address Parameter TLV of each of the
1105  * subsequent ASCONF Chunks. If found, proceed to rule D4.
1106  */
1107 static struct sctp_association *__sctp_rcv_asconf_lookup(
1108 					struct net *net,
1109 					struct sctp_chunkhdr *ch,
1110 					const union sctp_addr *laddr,
1111 					__be16 peer_port,
1112 					struct sctp_transport **transportp)
1113 {
1114 	struct sctp_addip_chunk *asconf = (struct sctp_addip_chunk *)ch;
1115 	struct sctp_af *af;
1116 	union sctp_addr_param *param;
1117 	union sctp_addr paddr;
1118 
1119 	/* Skip over the ADDIP header and find the Address parameter */
1120 	param = (union sctp_addr_param *)(asconf + 1);
1121 
1122 	af = sctp_get_af_specific(param_type2af(param->p.type));
1123 	if (unlikely(!af))
1124 		return NULL;
1125 
1126 	af->from_addr_param(&paddr, param, peer_port, 0);
1127 
1128 	return __sctp_lookup_association(net, laddr, &paddr, transportp);
1129 }
1130 
1131 
1132 /* SCTP-AUTH, Section 6.3:
1133 *    If the receiver does not find a STCB for a packet containing an AUTH
1134 *    chunk as the first chunk and not a COOKIE-ECHO chunk as the second
1135 *    chunk, it MUST use the chunks after the AUTH chunk to look up an existing
1136 *    association.
1137 *
1138 * This means that any chunks that can help us identify the association need
1139 * to be looked at to find this association.
1140 */
1141 static struct sctp_association *__sctp_rcv_walk_lookup(struct net *net,
1142 				      struct sk_buff *skb,
1143 				      const union sctp_addr *laddr,
1144 				      struct sctp_transport **transportp)
1145 {
1146 	struct sctp_association *asoc = NULL;
1147 	struct sctp_chunkhdr *ch;
1148 	int have_auth = 0;
1149 	unsigned int chunk_num = 1;
1150 	__u8 *ch_end;
1151 
1152 	/* Walk through the chunks looking for AUTH or ASCONF chunks
1153 	 * to help us find the association.
1154 	 */
1155 	ch = (struct sctp_chunkhdr *)skb->data;
1156 	do {
1157 		/* Break out if chunk length is less then minimal. */
1158 		if (ntohs(ch->length) < sizeof(*ch))
1159 			break;
1160 
1161 		ch_end = ((__u8 *)ch) + SCTP_PAD4(ntohs(ch->length));
1162 		if (ch_end > skb_tail_pointer(skb))
1163 			break;
1164 
1165 		switch (ch->type) {
1166 		case SCTP_CID_AUTH:
1167 			have_auth = chunk_num;
1168 			break;
1169 
1170 		case SCTP_CID_COOKIE_ECHO:
1171 			/* If a packet arrives containing an AUTH chunk as
1172 			 * a first chunk, a COOKIE-ECHO chunk as the second
1173 			 * chunk, and possibly more chunks after them, and
1174 			 * the receiver does not have an STCB for that
1175 			 * packet, then authentication is based on
1176 			 * the contents of the COOKIE- ECHO chunk.
1177 			 */
1178 			if (have_auth == 1 && chunk_num == 2)
1179 				return NULL;
1180 			break;
1181 
1182 		case SCTP_CID_ASCONF:
1183 			if (have_auth || net->sctp.addip_noauth)
1184 				asoc = __sctp_rcv_asconf_lookup(
1185 						net, ch, laddr,
1186 						sctp_hdr(skb)->source,
1187 						transportp);
1188 		default:
1189 			break;
1190 		}
1191 
1192 		if (asoc)
1193 			break;
1194 
1195 		ch = (struct sctp_chunkhdr *)ch_end;
1196 		chunk_num++;
1197 	} while (ch_end < skb_tail_pointer(skb));
1198 
1199 	return asoc;
1200 }
1201 
1202 /*
1203  * There are circumstances when we need to look inside the SCTP packet
1204  * for information to help us find the association.   Examples
1205  * include looking inside of INIT/INIT-ACK chunks or after the AUTH
1206  * chunks.
1207  */
1208 static struct sctp_association *__sctp_rcv_lookup_harder(struct net *net,
1209 				      struct sk_buff *skb,
1210 				      const union sctp_addr *laddr,
1211 				      struct sctp_transport **transportp)
1212 {
1213 	struct sctp_chunkhdr *ch;
1214 
1215 	/* We do not allow GSO frames here as we need to linearize and
1216 	 * then cannot guarantee frame boundaries. This shouldn't be an
1217 	 * issue as packets hitting this are mostly INIT or INIT-ACK and
1218 	 * those cannot be on GSO-style anyway.
1219 	 */
1220 	if (skb_is_gso(skb) && skb_is_gso_sctp(skb))
1221 		return NULL;
1222 
1223 	ch = (struct sctp_chunkhdr *)skb->data;
1224 
1225 	/* The code below will attempt to walk the chunk and extract
1226 	 * parameter information.  Before we do that, we need to verify
1227 	 * that the chunk length doesn't cause overflow.  Otherwise, we'll
1228 	 * walk off the end.
1229 	 */
1230 	if (SCTP_PAD4(ntohs(ch->length)) > skb->len)
1231 		return NULL;
1232 
1233 	/* If this is INIT/INIT-ACK look inside the chunk too. */
1234 	if (ch->type == SCTP_CID_INIT || ch->type == SCTP_CID_INIT_ACK)
1235 		return __sctp_rcv_init_lookup(net, skb, laddr, transportp);
1236 
1237 	return __sctp_rcv_walk_lookup(net, skb, laddr, transportp);
1238 }
1239 
1240 /* Lookup an association for an inbound skb. */
1241 static struct sctp_association *__sctp_rcv_lookup(struct net *net,
1242 				      struct sk_buff *skb,
1243 				      const union sctp_addr *paddr,
1244 				      const union sctp_addr *laddr,
1245 				      struct sctp_transport **transportp)
1246 {
1247 	struct sctp_association *asoc;
1248 
1249 	asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1250 	if (asoc)
1251 		goto out;
1252 
1253 	/* Further lookup for INIT/INIT-ACK packets.
1254 	 * SCTP Implementors Guide, 2.18 Handling of address
1255 	 * parameters within the INIT or INIT-ACK.
1256 	 */
1257 	asoc = __sctp_rcv_lookup_harder(net, skb, laddr, transportp);
1258 	if (asoc)
1259 		goto out;
1260 
1261 	if (paddr->sa.sa_family == AF_INET)
1262 		pr_debug("sctp: asoc not found for src:%pI4:%d dst:%pI4:%d\n",
1263 			 &laddr->v4.sin_addr, ntohs(laddr->v4.sin_port),
1264 			 &paddr->v4.sin_addr, ntohs(paddr->v4.sin_port));
1265 	else
1266 		pr_debug("sctp: asoc not found for src:%pI6:%d dst:%pI6:%d\n",
1267 			 &laddr->v6.sin6_addr, ntohs(laddr->v6.sin6_port),
1268 			 &paddr->v6.sin6_addr, ntohs(paddr->v6.sin6_port));
1269 
1270 out:
1271 	return asoc;
1272 }
1273