xref: /openbmc/linux/net/sctp/input.c (revision f3a8b664)
1 /* SCTP kernel implementation
2  * Copyright (c) 1999-2000 Cisco, Inc.
3  * Copyright (c) 1999-2001 Motorola, Inc.
4  * Copyright (c) 2001-2003 International Business Machines, Corp.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions handle all input from the IP layer into SCTP.
12  *
13  * This SCTP implementation is free software;
14  * you can redistribute it and/or modify it under the terms of
15  * the GNU General Public License as published by
16  * the Free Software Foundation; either version 2, or (at your option)
17  * any later version.
18  *
19  * This SCTP implementation is distributed in the hope that it
20  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
21  *                 ************************
22  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
23  * See the GNU General Public License for more details.
24  *
25  * You should have received a copy of the GNU General Public License
26  * along with GNU CC; see the file COPYING.  If not, see
27  * <http://www.gnu.org/licenses/>.
28  *
29  * Please send any bug reports or fixes you make to the
30  * email address(es):
31  *    lksctp developers <linux-sctp@vger.kernel.org>
32  *
33  * Written or modified by:
34  *    La Monte H.P. Yarroll <piggy@acm.org>
35  *    Karl Knutson <karl@athena.chicago.il.us>
36  *    Xingang Guo <xingang.guo@intel.com>
37  *    Jon Grimm <jgrimm@us.ibm.com>
38  *    Hui Huang <hui.huang@nokia.com>
39  *    Daisy Chang <daisyc@us.ibm.com>
40  *    Sridhar Samudrala <sri@us.ibm.com>
41  *    Ardelle Fan <ardelle.fan@intel.com>
42  */
43 
44 #include <linux/types.h>
45 #include <linux/list.h> /* For struct list_head */
46 #include <linux/socket.h>
47 #include <linux/ip.h>
48 #include <linux/time.h> /* For struct timeval */
49 #include <linux/slab.h>
50 #include <net/ip.h>
51 #include <net/icmp.h>
52 #include <net/snmp.h>
53 #include <net/sock.h>
54 #include <net/xfrm.h>
55 #include <net/sctp/sctp.h>
56 #include <net/sctp/sm.h>
57 #include <net/sctp/checksum.h>
58 #include <net/net_namespace.h>
59 
60 /* Forward declarations for internal helpers. */
61 static int sctp_rcv_ootb(struct sk_buff *);
62 static struct sctp_association *__sctp_rcv_lookup(struct net *net,
63 				      struct sk_buff *skb,
64 				      const union sctp_addr *paddr,
65 				      const union sctp_addr *laddr,
66 				      struct sctp_transport **transportp);
67 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net,
68 						const union sctp_addr *laddr);
69 static struct sctp_association *__sctp_lookup_association(
70 					struct net *net,
71 					const union sctp_addr *local,
72 					const union sctp_addr *peer,
73 					struct sctp_transport **pt);
74 
75 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb);
76 
77 
78 /* Calculate the SCTP checksum of an SCTP packet.  */
79 static inline int sctp_rcv_checksum(struct net *net, struct sk_buff *skb)
80 {
81 	struct sctphdr *sh = sctp_hdr(skb);
82 	__le32 cmp = sh->checksum;
83 	__le32 val = sctp_compute_cksum(skb, 0);
84 
85 	if (val != cmp) {
86 		/* CRC failure, dump it. */
87 		__SCTP_INC_STATS(net, SCTP_MIB_CHECKSUMERRORS);
88 		return -1;
89 	}
90 	return 0;
91 }
92 
93 /*
94  * This is the routine which IP calls when receiving an SCTP packet.
95  */
96 int sctp_rcv(struct sk_buff *skb)
97 {
98 	struct sock *sk;
99 	struct sctp_association *asoc;
100 	struct sctp_endpoint *ep = NULL;
101 	struct sctp_ep_common *rcvr;
102 	struct sctp_transport *transport = NULL;
103 	struct sctp_chunk *chunk;
104 	union sctp_addr src;
105 	union sctp_addr dest;
106 	int family;
107 	struct sctp_af *af;
108 	struct net *net = dev_net(skb->dev);
109 
110 	if (skb->pkt_type != PACKET_HOST)
111 		goto discard_it;
112 
113 	__SCTP_INC_STATS(net, SCTP_MIB_INSCTPPACKS);
114 
115 	/* If packet is too small to contain a single chunk, let's not
116 	 * waste time on it anymore.
117 	 */
118 	if (skb->len < sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr) +
119 		       skb_transport_offset(skb))
120 		goto discard_it;
121 
122 	/* If the packet is fragmented and we need to do crc checking,
123 	 * it's better to just linearize it otherwise crc computing
124 	 * takes longer.
125 	 */
126 	if ((!(skb_shinfo(skb)->gso_type & SKB_GSO_SCTP) &&
127 	     skb_linearize(skb)) ||
128 	    !pskb_may_pull(skb, sizeof(struct sctphdr)))
129 		goto discard_it;
130 
131 	/* Pull up the IP header. */
132 	__skb_pull(skb, skb_transport_offset(skb));
133 
134 	skb->csum_valid = 0; /* Previous value not applicable */
135 	if (skb_csum_unnecessary(skb))
136 		__skb_decr_checksum_unnecessary(skb);
137 	else if (!sctp_checksum_disable &&
138 		 !(skb_shinfo(skb)->gso_type & SKB_GSO_SCTP) &&
139 		 sctp_rcv_checksum(net, skb) < 0)
140 		goto discard_it;
141 	skb->csum_valid = 1;
142 
143 	__skb_pull(skb, sizeof(struct sctphdr));
144 
145 	family = ipver2af(ip_hdr(skb)->version);
146 	af = sctp_get_af_specific(family);
147 	if (unlikely(!af))
148 		goto discard_it;
149 	SCTP_INPUT_CB(skb)->af = af;
150 
151 	/* Initialize local addresses for lookups. */
152 	af->from_skb(&src, skb, 1);
153 	af->from_skb(&dest, skb, 0);
154 
155 	/* If the packet is to or from a non-unicast address,
156 	 * silently discard the packet.
157 	 *
158 	 * This is not clearly defined in the RFC except in section
159 	 * 8.4 - OOTB handling.  However, based on the book "Stream Control
160 	 * Transmission Protocol" 2.1, "It is important to note that the
161 	 * IP address of an SCTP transport address must be a routable
162 	 * unicast address.  In other words, IP multicast addresses and
163 	 * IP broadcast addresses cannot be used in an SCTP transport
164 	 * address."
165 	 */
166 	if (!af->addr_valid(&src, NULL, skb) ||
167 	    !af->addr_valid(&dest, NULL, skb))
168 		goto discard_it;
169 
170 	asoc = __sctp_rcv_lookup(net, skb, &src, &dest, &transport);
171 
172 	if (!asoc)
173 		ep = __sctp_rcv_lookup_endpoint(net, &dest);
174 
175 	/* Retrieve the common input handling substructure. */
176 	rcvr = asoc ? &asoc->base : &ep->base;
177 	sk = rcvr->sk;
178 
179 	/*
180 	 * If a frame arrives on an interface and the receiving socket is
181 	 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB
182 	 */
183 	if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb))) {
184 		if (asoc) {
185 			sctp_association_put(asoc);
186 			asoc = NULL;
187 		} else {
188 			sctp_endpoint_put(ep);
189 			ep = NULL;
190 		}
191 		sk = net->sctp.ctl_sock;
192 		ep = sctp_sk(sk)->ep;
193 		sctp_endpoint_hold(ep);
194 		rcvr = &ep->base;
195 	}
196 
197 	/*
198 	 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
199 	 * An SCTP packet is called an "out of the blue" (OOTB)
200 	 * packet if it is correctly formed, i.e., passed the
201 	 * receiver's checksum check, but the receiver is not
202 	 * able to identify the association to which this
203 	 * packet belongs.
204 	 */
205 	if (!asoc) {
206 		if (sctp_rcv_ootb(skb)) {
207 			__SCTP_INC_STATS(net, SCTP_MIB_OUTOFBLUES);
208 			goto discard_release;
209 		}
210 	}
211 
212 	if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family))
213 		goto discard_release;
214 	nf_reset(skb);
215 
216 	if (sk_filter(sk, skb))
217 		goto discard_release;
218 
219 	/* Create an SCTP packet structure. */
220 	chunk = sctp_chunkify(skb, asoc, sk, GFP_ATOMIC);
221 	if (!chunk)
222 		goto discard_release;
223 	SCTP_INPUT_CB(skb)->chunk = chunk;
224 
225 	/* Remember what endpoint is to handle this packet. */
226 	chunk->rcvr = rcvr;
227 
228 	/* Remember the SCTP header. */
229 	chunk->sctp_hdr = sctp_hdr(skb);
230 
231 	/* Set the source and destination addresses of the incoming chunk.  */
232 	sctp_init_addrs(chunk, &src, &dest);
233 
234 	/* Remember where we came from.  */
235 	chunk->transport = transport;
236 
237 	/* Acquire access to the sock lock. Note: We are safe from other
238 	 * bottom halves on this lock, but a user may be in the lock too,
239 	 * so check if it is busy.
240 	 */
241 	bh_lock_sock(sk);
242 
243 	if (sk != rcvr->sk) {
244 		/* Our cached sk is different from the rcvr->sk.  This is
245 		 * because migrate()/accept() may have moved the association
246 		 * to a new socket and released all the sockets.  So now we
247 		 * are holding a lock on the old socket while the user may
248 		 * be doing something with the new socket.  Switch our veiw
249 		 * of the current sk.
250 		 */
251 		bh_unlock_sock(sk);
252 		sk = rcvr->sk;
253 		bh_lock_sock(sk);
254 	}
255 
256 	if (sock_owned_by_user(sk)) {
257 		if (sctp_add_backlog(sk, skb)) {
258 			bh_unlock_sock(sk);
259 			sctp_chunk_free(chunk);
260 			skb = NULL; /* sctp_chunk_free already freed the skb */
261 			goto discard_release;
262 		}
263 		__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_BACKLOG);
264 	} else {
265 		__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_SOFTIRQ);
266 		sctp_inq_push(&chunk->rcvr->inqueue, chunk);
267 	}
268 
269 	bh_unlock_sock(sk);
270 
271 	/* Release the asoc/ep ref we took in the lookup calls. */
272 	if (asoc)
273 		sctp_association_put(asoc);
274 	else
275 		sctp_endpoint_put(ep);
276 
277 	return 0;
278 
279 discard_it:
280 	__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_DISCARDS);
281 	kfree_skb(skb);
282 	return 0;
283 
284 discard_release:
285 	/* Release the asoc/ep ref we took in the lookup calls. */
286 	if (asoc)
287 		sctp_association_put(asoc);
288 	else
289 		sctp_endpoint_put(ep);
290 
291 	goto discard_it;
292 }
293 
294 /* Process the backlog queue of the socket.  Every skb on
295  * the backlog holds a ref on an association or endpoint.
296  * We hold this ref throughout the state machine to make
297  * sure that the structure we need is still around.
298  */
299 int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
300 {
301 	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
302 	struct sctp_inq *inqueue = &chunk->rcvr->inqueue;
303 	struct sctp_ep_common *rcvr = NULL;
304 	int backloged = 0;
305 
306 	rcvr = chunk->rcvr;
307 
308 	/* If the rcvr is dead then the association or endpoint
309 	 * has been deleted and we can safely drop the chunk
310 	 * and refs that we are holding.
311 	 */
312 	if (rcvr->dead) {
313 		sctp_chunk_free(chunk);
314 		goto done;
315 	}
316 
317 	if (unlikely(rcvr->sk != sk)) {
318 		/* In this case, the association moved from one socket to
319 		 * another.  We are currently sitting on the backlog of the
320 		 * old socket, so we need to move.
321 		 * However, since we are here in the process context we
322 		 * need to take make sure that the user doesn't own
323 		 * the new socket when we process the packet.
324 		 * If the new socket is user-owned, queue the chunk to the
325 		 * backlog of the new socket without dropping any refs.
326 		 * Otherwise, we can safely push the chunk on the inqueue.
327 		 */
328 
329 		sk = rcvr->sk;
330 		local_bh_disable();
331 		bh_lock_sock(sk);
332 
333 		if (sock_owned_by_user(sk)) {
334 			if (sk_add_backlog(sk, skb, sk->sk_rcvbuf))
335 				sctp_chunk_free(chunk);
336 			else
337 				backloged = 1;
338 		} else
339 			sctp_inq_push(inqueue, chunk);
340 
341 		bh_unlock_sock(sk);
342 		local_bh_enable();
343 
344 		/* If the chunk was backloged again, don't drop refs */
345 		if (backloged)
346 			return 0;
347 	} else {
348 		sctp_inq_push(inqueue, chunk);
349 	}
350 
351 done:
352 	/* Release the refs we took in sctp_add_backlog */
353 	if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
354 		sctp_association_put(sctp_assoc(rcvr));
355 	else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
356 		sctp_endpoint_put(sctp_ep(rcvr));
357 	else
358 		BUG();
359 
360 	return 0;
361 }
362 
363 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb)
364 {
365 	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
366 	struct sctp_ep_common *rcvr = chunk->rcvr;
367 	int ret;
368 
369 	ret = sk_add_backlog(sk, skb, sk->sk_rcvbuf);
370 	if (!ret) {
371 		/* Hold the assoc/ep while hanging on the backlog queue.
372 		 * This way, we know structures we need will not disappear
373 		 * from us
374 		 */
375 		if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
376 			sctp_association_hold(sctp_assoc(rcvr));
377 		else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
378 			sctp_endpoint_hold(sctp_ep(rcvr));
379 		else
380 			BUG();
381 	}
382 	return ret;
383 
384 }
385 
386 /* Handle icmp frag needed error. */
387 void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
388 			   struct sctp_transport *t, __u32 pmtu)
389 {
390 	if (!t || (t->pathmtu <= pmtu))
391 		return;
392 
393 	if (sock_owned_by_user(sk)) {
394 		asoc->pmtu_pending = 1;
395 		t->pmtu_pending = 1;
396 		return;
397 	}
398 
399 	if (t->param_flags & SPP_PMTUD_ENABLE) {
400 		/* Update transports view of the MTU */
401 		sctp_transport_update_pmtu(sk, t, pmtu);
402 
403 		/* Update association pmtu. */
404 		sctp_assoc_sync_pmtu(sk, asoc);
405 	}
406 
407 	/* Retransmit with the new pmtu setting.
408 	 * Normally, if PMTU discovery is disabled, an ICMP Fragmentation
409 	 * Needed will never be sent, but if a message was sent before
410 	 * PMTU discovery was disabled that was larger than the PMTU, it
411 	 * would not be fragmented, so it must be re-transmitted fragmented.
412 	 */
413 	sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD);
414 }
415 
416 void sctp_icmp_redirect(struct sock *sk, struct sctp_transport *t,
417 			struct sk_buff *skb)
418 {
419 	struct dst_entry *dst;
420 
421 	if (!t)
422 		return;
423 	dst = sctp_transport_dst_check(t);
424 	if (dst)
425 		dst->ops->redirect(dst, sk, skb);
426 }
427 
428 /*
429  * SCTP Implementer's Guide, 2.37 ICMP handling procedures
430  *
431  * ICMP8) If the ICMP code is a "Unrecognized next header type encountered"
432  *        or a "Protocol Unreachable" treat this message as an abort
433  *        with the T bit set.
434  *
435  * This function sends an event to the state machine, which will abort the
436  * association.
437  *
438  */
439 void sctp_icmp_proto_unreachable(struct sock *sk,
440 			   struct sctp_association *asoc,
441 			   struct sctp_transport *t)
442 {
443 	if (sock_owned_by_user(sk)) {
444 		if (timer_pending(&t->proto_unreach_timer))
445 			return;
446 		else {
447 			if (!mod_timer(&t->proto_unreach_timer,
448 						jiffies + (HZ/20)))
449 				sctp_association_hold(asoc);
450 		}
451 	} else {
452 		struct net *net = sock_net(sk);
453 
454 		pr_debug("%s: unrecognized next header type "
455 			 "encountered!\n", __func__);
456 
457 		if (del_timer(&t->proto_unreach_timer))
458 			sctp_association_put(asoc);
459 
460 		sctp_do_sm(net, SCTP_EVENT_T_OTHER,
461 			   SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
462 			   asoc->state, asoc->ep, asoc, t,
463 			   GFP_ATOMIC);
464 	}
465 }
466 
467 /* Common lookup code for icmp/icmpv6 error handler. */
468 struct sock *sctp_err_lookup(struct net *net, int family, struct sk_buff *skb,
469 			     struct sctphdr *sctphdr,
470 			     struct sctp_association **app,
471 			     struct sctp_transport **tpp)
472 {
473 	union sctp_addr saddr;
474 	union sctp_addr daddr;
475 	struct sctp_af *af;
476 	struct sock *sk = NULL;
477 	struct sctp_association *asoc;
478 	struct sctp_transport *transport = NULL;
479 	struct sctp_init_chunk *chunkhdr;
480 	__u32 vtag = ntohl(sctphdr->vtag);
481 	int len = skb->len - ((void *)sctphdr - (void *)skb->data);
482 
483 	*app = NULL; *tpp = NULL;
484 
485 	af = sctp_get_af_specific(family);
486 	if (unlikely(!af)) {
487 		return NULL;
488 	}
489 
490 	/* Initialize local addresses for lookups. */
491 	af->from_skb(&saddr, skb, 1);
492 	af->from_skb(&daddr, skb, 0);
493 
494 	/* Look for an association that matches the incoming ICMP error
495 	 * packet.
496 	 */
497 	asoc = __sctp_lookup_association(net, &saddr, &daddr, &transport);
498 	if (!asoc)
499 		return NULL;
500 
501 	sk = asoc->base.sk;
502 
503 	/* RFC 4960, Appendix C. ICMP Handling
504 	 *
505 	 * ICMP6) An implementation MUST validate that the Verification Tag
506 	 * contained in the ICMP message matches the Verification Tag of
507 	 * the peer.  If the Verification Tag is not 0 and does NOT
508 	 * match, discard the ICMP message.  If it is 0 and the ICMP
509 	 * message contains enough bytes to verify that the chunk type is
510 	 * an INIT chunk and that the Initiate Tag matches the tag of the
511 	 * peer, continue with ICMP7.  If the ICMP message is too short
512 	 * or the chunk type or the Initiate Tag does not match, silently
513 	 * discard the packet.
514 	 */
515 	if (vtag == 0) {
516 		chunkhdr = (void *)sctphdr + sizeof(struct sctphdr);
517 		if (len < sizeof(struct sctphdr) + sizeof(sctp_chunkhdr_t)
518 			  + sizeof(__be32) ||
519 		    chunkhdr->chunk_hdr.type != SCTP_CID_INIT ||
520 		    ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag) {
521 			goto out;
522 		}
523 	} else if (vtag != asoc->c.peer_vtag) {
524 		goto out;
525 	}
526 
527 	bh_lock_sock(sk);
528 
529 	/* If too many ICMPs get dropped on busy
530 	 * servers this needs to be solved differently.
531 	 */
532 	if (sock_owned_by_user(sk))
533 		__NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
534 
535 	*app = asoc;
536 	*tpp = transport;
537 	return sk;
538 
539 out:
540 	sctp_association_put(asoc);
541 	return NULL;
542 }
543 
544 /* Common cleanup code for icmp/icmpv6 error handler. */
545 void sctp_err_finish(struct sock *sk, struct sctp_association *asoc)
546 {
547 	bh_unlock_sock(sk);
548 	sctp_association_put(asoc);
549 }
550 
551 /*
552  * This routine is called by the ICMP module when it gets some
553  * sort of error condition.  If err < 0 then the socket should
554  * be closed and the error returned to the user.  If err > 0
555  * it's just the icmp type << 8 | icmp code.  After adjustment
556  * header points to the first 8 bytes of the sctp header.  We need
557  * to find the appropriate port.
558  *
559  * The locking strategy used here is very "optimistic". When
560  * someone else accesses the socket the ICMP is just dropped
561  * and for some paths there is no check at all.
562  * A more general error queue to queue errors for later handling
563  * is probably better.
564  *
565  */
566 void sctp_v4_err(struct sk_buff *skb, __u32 info)
567 {
568 	const struct iphdr *iph = (const struct iphdr *)skb->data;
569 	const int ihlen = iph->ihl * 4;
570 	const int type = icmp_hdr(skb)->type;
571 	const int code = icmp_hdr(skb)->code;
572 	struct sock *sk;
573 	struct sctp_association *asoc = NULL;
574 	struct sctp_transport *transport;
575 	struct inet_sock *inet;
576 	__u16 saveip, savesctp;
577 	int err;
578 	struct net *net = dev_net(skb->dev);
579 
580 	/* Fix up skb to look at the embedded net header. */
581 	saveip = skb->network_header;
582 	savesctp = skb->transport_header;
583 	skb_reset_network_header(skb);
584 	skb_set_transport_header(skb, ihlen);
585 	sk = sctp_err_lookup(net, AF_INET, skb, sctp_hdr(skb), &asoc, &transport);
586 	/* Put back, the original values. */
587 	skb->network_header = saveip;
588 	skb->transport_header = savesctp;
589 	if (!sk) {
590 		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
591 		return;
592 	}
593 	/* Warning:  The sock lock is held.  Remember to call
594 	 * sctp_err_finish!
595 	 */
596 
597 	switch (type) {
598 	case ICMP_PARAMETERPROB:
599 		err = EPROTO;
600 		break;
601 	case ICMP_DEST_UNREACH:
602 		if (code > NR_ICMP_UNREACH)
603 			goto out_unlock;
604 
605 		/* PMTU discovery (RFC1191) */
606 		if (ICMP_FRAG_NEEDED == code) {
607 			sctp_icmp_frag_needed(sk, asoc, transport,
608 					      SCTP_TRUNC4(info));
609 			goto out_unlock;
610 		} else {
611 			if (ICMP_PROT_UNREACH == code) {
612 				sctp_icmp_proto_unreachable(sk, asoc,
613 							    transport);
614 				goto out_unlock;
615 			}
616 		}
617 		err = icmp_err_convert[code].errno;
618 		break;
619 	case ICMP_TIME_EXCEEDED:
620 		/* Ignore any time exceeded errors due to fragment reassembly
621 		 * timeouts.
622 		 */
623 		if (ICMP_EXC_FRAGTIME == code)
624 			goto out_unlock;
625 
626 		err = EHOSTUNREACH;
627 		break;
628 	case ICMP_REDIRECT:
629 		sctp_icmp_redirect(sk, transport, skb);
630 		/* Fall through to out_unlock. */
631 	default:
632 		goto out_unlock;
633 	}
634 
635 	inet = inet_sk(sk);
636 	if (!sock_owned_by_user(sk) && inet->recverr) {
637 		sk->sk_err = err;
638 		sk->sk_error_report(sk);
639 	} else {  /* Only an error on timeout */
640 		sk->sk_err_soft = err;
641 	}
642 
643 out_unlock:
644 	sctp_err_finish(sk, asoc);
645 }
646 
647 /*
648  * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
649  *
650  * This function scans all the chunks in the OOTB packet to determine if
651  * the packet should be discarded right away.  If a response might be needed
652  * for this packet, or, if further processing is possible, the packet will
653  * be queued to a proper inqueue for the next phase of handling.
654  *
655  * Output:
656  * Return 0 - If further processing is needed.
657  * Return 1 - If the packet can be discarded right away.
658  */
659 static int sctp_rcv_ootb(struct sk_buff *skb)
660 {
661 	sctp_chunkhdr_t *ch, _ch;
662 	int ch_end, offset = 0;
663 
664 	/* Scan through all the chunks in the packet.  */
665 	do {
666 		/* Make sure we have at least the header there */
667 		if (offset + sizeof(sctp_chunkhdr_t) > skb->len)
668 			break;
669 
670 		ch = skb_header_pointer(skb, offset, sizeof(*ch), &_ch);
671 
672 		/* Break out if chunk length is less then minimal. */
673 		if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t))
674 			break;
675 
676 		ch_end = offset + SCTP_PAD4(ntohs(ch->length));
677 		if (ch_end > skb->len)
678 			break;
679 
680 		/* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the
681 		 * receiver MUST silently discard the OOTB packet and take no
682 		 * further action.
683 		 */
684 		if (SCTP_CID_ABORT == ch->type)
685 			goto discard;
686 
687 		/* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE
688 		 * chunk, the receiver should silently discard the packet
689 		 * and take no further action.
690 		 */
691 		if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type)
692 			goto discard;
693 
694 		/* RFC 4460, 2.11.2
695 		 * This will discard packets with INIT chunk bundled as
696 		 * subsequent chunks in the packet.  When INIT is first,
697 		 * the normal INIT processing will discard the chunk.
698 		 */
699 		if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data)
700 			goto discard;
701 
702 		offset = ch_end;
703 	} while (ch_end < skb->len);
704 
705 	return 0;
706 
707 discard:
708 	return 1;
709 }
710 
711 /* Insert endpoint into the hash table.  */
712 static void __sctp_hash_endpoint(struct sctp_endpoint *ep)
713 {
714 	struct net *net = sock_net(ep->base.sk);
715 	struct sctp_ep_common *epb;
716 	struct sctp_hashbucket *head;
717 
718 	epb = &ep->base;
719 
720 	epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port);
721 	head = &sctp_ep_hashtable[epb->hashent];
722 
723 	write_lock(&head->lock);
724 	hlist_add_head(&epb->node, &head->chain);
725 	write_unlock(&head->lock);
726 }
727 
728 /* Add an endpoint to the hash. Local BH-safe. */
729 void sctp_hash_endpoint(struct sctp_endpoint *ep)
730 {
731 	local_bh_disable();
732 	__sctp_hash_endpoint(ep);
733 	local_bh_enable();
734 }
735 
736 /* Remove endpoint from the hash table.  */
737 static void __sctp_unhash_endpoint(struct sctp_endpoint *ep)
738 {
739 	struct net *net = sock_net(ep->base.sk);
740 	struct sctp_hashbucket *head;
741 	struct sctp_ep_common *epb;
742 
743 	epb = &ep->base;
744 
745 	epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port);
746 
747 	head = &sctp_ep_hashtable[epb->hashent];
748 
749 	write_lock(&head->lock);
750 	hlist_del_init(&epb->node);
751 	write_unlock(&head->lock);
752 }
753 
754 /* Remove endpoint from the hash.  Local BH-safe. */
755 void sctp_unhash_endpoint(struct sctp_endpoint *ep)
756 {
757 	local_bh_disable();
758 	__sctp_unhash_endpoint(ep);
759 	local_bh_enable();
760 }
761 
762 /* Look up an endpoint. */
763 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net,
764 						const union sctp_addr *laddr)
765 {
766 	struct sctp_hashbucket *head;
767 	struct sctp_ep_common *epb;
768 	struct sctp_endpoint *ep;
769 	int hash;
770 
771 	hash = sctp_ep_hashfn(net, ntohs(laddr->v4.sin_port));
772 	head = &sctp_ep_hashtable[hash];
773 	read_lock(&head->lock);
774 	sctp_for_each_hentry(epb, &head->chain) {
775 		ep = sctp_ep(epb);
776 		if (sctp_endpoint_is_match(ep, net, laddr))
777 			goto hit;
778 	}
779 
780 	ep = sctp_sk(net->sctp.ctl_sock)->ep;
781 
782 hit:
783 	sctp_endpoint_hold(ep);
784 	read_unlock(&head->lock);
785 	return ep;
786 }
787 
788 /* rhashtable for transport */
789 struct sctp_hash_cmp_arg {
790 	const struct sctp_endpoint	*ep;
791 	const union sctp_addr		*laddr;
792 	const union sctp_addr		*paddr;
793 	const struct net		*net;
794 };
795 
796 static inline int sctp_hash_cmp(struct rhashtable_compare_arg *arg,
797 				const void *ptr)
798 {
799 	struct sctp_transport *t = (struct sctp_transport *)ptr;
800 	const struct sctp_hash_cmp_arg *x = arg->key;
801 	struct sctp_association *asoc;
802 	int err = 1;
803 
804 	if (!sctp_cmp_addr_exact(&t->ipaddr, x->paddr))
805 		return err;
806 	if (!sctp_transport_hold(t))
807 		return err;
808 
809 	asoc = t->asoc;
810 	if (!net_eq(sock_net(asoc->base.sk), x->net))
811 		goto out;
812 	if (x->ep) {
813 		if (x->ep != asoc->ep)
814 			goto out;
815 	} else {
816 		if (x->laddr->v4.sin_port != htons(asoc->base.bind_addr.port))
817 			goto out;
818 		if (!sctp_bind_addr_match(&asoc->base.bind_addr,
819 					  x->laddr, sctp_sk(asoc->base.sk)))
820 			goto out;
821 	}
822 
823 	err = 0;
824 out:
825 	sctp_transport_put(t);
826 	return err;
827 }
828 
829 static inline u32 sctp_hash_obj(const void *data, u32 len, u32 seed)
830 {
831 	const struct sctp_transport *t = data;
832 	const union sctp_addr *paddr = &t->ipaddr;
833 	const struct net *net = sock_net(t->asoc->base.sk);
834 	u16 lport = htons(t->asoc->base.bind_addr.port);
835 	u32 addr;
836 
837 	if (paddr->sa.sa_family == AF_INET6)
838 		addr = jhash(&paddr->v6.sin6_addr, 16, seed);
839 	else
840 		addr = paddr->v4.sin_addr.s_addr;
841 
842 	return  jhash_3words(addr, ((__u32)paddr->v4.sin_port) << 16 |
843 			     (__force __u32)lport, net_hash_mix(net), seed);
844 }
845 
846 static inline u32 sctp_hash_key(const void *data, u32 len, u32 seed)
847 {
848 	const struct sctp_hash_cmp_arg *x = data;
849 	const union sctp_addr *paddr = x->paddr;
850 	const struct net *net = x->net;
851 	u16 lport;
852 	u32 addr;
853 
854 	lport = x->ep ? htons(x->ep->base.bind_addr.port) :
855 			x->laddr->v4.sin_port;
856 	if (paddr->sa.sa_family == AF_INET6)
857 		addr = jhash(&paddr->v6.sin6_addr, 16, seed);
858 	else
859 		addr = paddr->v4.sin_addr.s_addr;
860 
861 	return  jhash_3words(addr, ((__u32)paddr->v4.sin_port) << 16 |
862 			     (__force __u32)lport, net_hash_mix(net), seed);
863 }
864 
865 static const struct rhashtable_params sctp_hash_params = {
866 	.head_offset		= offsetof(struct sctp_transport, node),
867 	.hashfn			= sctp_hash_key,
868 	.obj_hashfn		= sctp_hash_obj,
869 	.obj_cmpfn		= sctp_hash_cmp,
870 	.automatic_shrinking	= true,
871 };
872 
873 int sctp_transport_hashtable_init(void)
874 {
875 	return rhashtable_init(&sctp_transport_hashtable, &sctp_hash_params);
876 }
877 
878 void sctp_transport_hashtable_destroy(void)
879 {
880 	rhashtable_destroy(&sctp_transport_hashtable);
881 }
882 
883 void sctp_hash_transport(struct sctp_transport *t)
884 {
885 	struct sctp_hash_cmp_arg arg;
886 
887 	if (t->asoc->temp)
888 		return;
889 
890 	arg.ep = t->asoc->ep;
891 	arg.paddr = &t->ipaddr;
892 	arg.net   = sock_net(t->asoc->base.sk);
893 
894 reinsert:
895 	if (rhashtable_lookup_insert_key(&sctp_transport_hashtable, &arg,
896 					 &t->node, sctp_hash_params) == -EBUSY)
897 		goto reinsert;
898 }
899 
900 void sctp_unhash_transport(struct sctp_transport *t)
901 {
902 	if (t->asoc->temp)
903 		return;
904 
905 	rhashtable_remove_fast(&sctp_transport_hashtable, &t->node,
906 			       sctp_hash_params);
907 }
908 
909 struct sctp_transport *sctp_addrs_lookup_transport(
910 				struct net *net,
911 				const union sctp_addr *laddr,
912 				const union sctp_addr *paddr)
913 {
914 	struct sctp_hash_cmp_arg arg = {
915 		.ep    = NULL,
916 		.laddr = laddr,
917 		.paddr = paddr,
918 		.net   = net,
919 	};
920 
921 	return rhashtable_lookup_fast(&sctp_transport_hashtable, &arg,
922 				      sctp_hash_params);
923 }
924 
925 struct sctp_transport *sctp_epaddr_lookup_transport(
926 				const struct sctp_endpoint *ep,
927 				const union sctp_addr *paddr)
928 {
929 	struct net *net = sock_net(ep->base.sk);
930 	struct sctp_hash_cmp_arg arg = {
931 		.ep    = ep,
932 		.paddr = paddr,
933 		.net   = net,
934 	};
935 
936 	return rhashtable_lookup_fast(&sctp_transport_hashtable, &arg,
937 				      sctp_hash_params);
938 }
939 
940 /* Look up an association. */
941 static struct sctp_association *__sctp_lookup_association(
942 					struct net *net,
943 					const union sctp_addr *local,
944 					const union sctp_addr *peer,
945 					struct sctp_transport **pt)
946 {
947 	struct sctp_transport *t;
948 	struct sctp_association *asoc = NULL;
949 
950 	t = sctp_addrs_lookup_transport(net, local, peer);
951 	if (!t || !sctp_transport_hold(t))
952 		goto out;
953 
954 	asoc = t->asoc;
955 	sctp_association_hold(asoc);
956 	*pt = t;
957 
958 	sctp_transport_put(t);
959 
960 out:
961 	return asoc;
962 }
963 
964 /* Look up an association. protected by RCU read lock */
965 static
966 struct sctp_association *sctp_lookup_association(struct net *net,
967 						 const union sctp_addr *laddr,
968 						 const union sctp_addr *paddr,
969 						 struct sctp_transport **transportp)
970 {
971 	struct sctp_association *asoc;
972 
973 	rcu_read_lock();
974 	asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
975 	rcu_read_unlock();
976 
977 	return asoc;
978 }
979 
980 /* Is there an association matching the given local and peer addresses? */
981 int sctp_has_association(struct net *net,
982 			 const union sctp_addr *laddr,
983 			 const union sctp_addr *paddr)
984 {
985 	struct sctp_association *asoc;
986 	struct sctp_transport *transport;
987 
988 	if ((asoc = sctp_lookup_association(net, laddr, paddr, &transport))) {
989 		sctp_association_put(asoc);
990 		return 1;
991 	}
992 
993 	return 0;
994 }
995 
996 /*
997  * SCTP Implementors Guide, 2.18 Handling of address
998  * parameters within the INIT or INIT-ACK.
999  *
1000  * D) When searching for a matching TCB upon reception of an INIT
1001  *    or INIT-ACK chunk the receiver SHOULD use not only the
1002  *    source address of the packet (containing the INIT or
1003  *    INIT-ACK) but the receiver SHOULD also use all valid
1004  *    address parameters contained within the chunk.
1005  *
1006  * 2.18.3 Solution description
1007  *
1008  * This new text clearly specifies to an implementor the need
1009  * to look within the INIT or INIT-ACK. Any implementation that
1010  * does not do this, may not be able to establish associations
1011  * in certain circumstances.
1012  *
1013  */
1014 static struct sctp_association *__sctp_rcv_init_lookup(struct net *net,
1015 	struct sk_buff *skb,
1016 	const union sctp_addr *laddr, struct sctp_transport **transportp)
1017 {
1018 	struct sctp_association *asoc;
1019 	union sctp_addr addr;
1020 	union sctp_addr *paddr = &addr;
1021 	struct sctphdr *sh = sctp_hdr(skb);
1022 	union sctp_params params;
1023 	sctp_init_chunk_t *init;
1024 	struct sctp_transport *transport;
1025 	struct sctp_af *af;
1026 
1027 	/*
1028 	 * This code will NOT touch anything inside the chunk--it is
1029 	 * strictly READ-ONLY.
1030 	 *
1031 	 * RFC 2960 3  SCTP packet Format
1032 	 *
1033 	 * Multiple chunks can be bundled into one SCTP packet up to
1034 	 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN
1035 	 * COMPLETE chunks.  These chunks MUST NOT be bundled with any
1036 	 * other chunk in a packet.  See Section 6.10 for more details
1037 	 * on chunk bundling.
1038 	 */
1039 
1040 	/* Find the start of the TLVs and the end of the chunk.  This is
1041 	 * the region we search for address parameters.
1042 	 */
1043 	init = (sctp_init_chunk_t *)skb->data;
1044 
1045 	/* Walk the parameters looking for embedded addresses. */
1046 	sctp_walk_params(params, init, init_hdr.params) {
1047 
1048 		/* Note: Ignoring hostname addresses. */
1049 		af = sctp_get_af_specific(param_type2af(params.p->type));
1050 		if (!af)
1051 			continue;
1052 
1053 		af->from_addr_param(paddr, params.addr, sh->source, 0);
1054 
1055 		asoc = __sctp_lookup_association(net, laddr, paddr, &transport);
1056 		if (asoc)
1057 			return asoc;
1058 	}
1059 
1060 	return NULL;
1061 }
1062 
1063 /* ADD-IP, Section 5.2
1064  * When an endpoint receives an ASCONF Chunk from the remote peer
1065  * special procedures may be needed to identify the association the
1066  * ASCONF Chunk is associated with. To properly find the association
1067  * the following procedures SHOULD be followed:
1068  *
1069  * D2) If the association is not found, use the address found in the
1070  * Address Parameter TLV combined with the port number found in the
1071  * SCTP common header. If found proceed to rule D4.
1072  *
1073  * D2-ext) If more than one ASCONF Chunks are packed together, use the
1074  * address found in the ASCONF Address Parameter TLV of each of the
1075  * subsequent ASCONF Chunks. If found, proceed to rule D4.
1076  */
1077 static struct sctp_association *__sctp_rcv_asconf_lookup(
1078 					struct net *net,
1079 					sctp_chunkhdr_t *ch,
1080 					const union sctp_addr *laddr,
1081 					__be16 peer_port,
1082 					struct sctp_transport **transportp)
1083 {
1084 	sctp_addip_chunk_t *asconf = (struct sctp_addip_chunk *)ch;
1085 	struct sctp_af *af;
1086 	union sctp_addr_param *param;
1087 	union sctp_addr paddr;
1088 
1089 	/* Skip over the ADDIP header and find the Address parameter */
1090 	param = (union sctp_addr_param *)(asconf + 1);
1091 
1092 	af = sctp_get_af_specific(param_type2af(param->p.type));
1093 	if (unlikely(!af))
1094 		return NULL;
1095 
1096 	af->from_addr_param(&paddr, param, peer_port, 0);
1097 
1098 	return __sctp_lookup_association(net, laddr, &paddr, transportp);
1099 }
1100 
1101 
1102 /* SCTP-AUTH, Section 6.3:
1103 *    If the receiver does not find a STCB for a packet containing an AUTH
1104 *    chunk as the first chunk and not a COOKIE-ECHO chunk as the second
1105 *    chunk, it MUST use the chunks after the AUTH chunk to look up an existing
1106 *    association.
1107 *
1108 * This means that any chunks that can help us identify the association need
1109 * to be looked at to find this association.
1110 */
1111 static struct sctp_association *__sctp_rcv_walk_lookup(struct net *net,
1112 				      struct sk_buff *skb,
1113 				      const union sctp_addr *laddr,
1114 				      struct sctp_transport **transportp)
1115 {
1116 	struct sctp_association *asoc = NULL;
1117 	sctp_chunkhdr_t *ch;
1118 	int have_auth = 0;
1119 	unsigned int chunk_num = 1;
1120 	__u8 *ch_end;
1121 
1122 	/* Walk through the chunks looking for AUTH or ASCONF chunks
1123 	 * to help us find the association.
1124 	 */
1125 	ch = (sctp_chunkhdr_t *) skb->data;
1126 	do {
1127 		/* Break out if chunk length is less then minimal. */
1128 		if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t))
1129 			break;
1130 
1131 		ch_end = ((__u8 *)ch) + SCTP_PAD4(ntohs(ch->length));
1132 		if (ch_end > skb_tail_pointer(skb))
1133 			break;
1134 
1135 		switch (ch->type) {
1136 		case SCTP_CID_AUTH:
1137 			have_auth = chunk_num;
1138 			break;
1139 
1140 		case SCTP_CID_COOKIE_ECHO:
1141 			/* If a packet arrives containing an AUTH chunk as
1142 			 * a first chunk, a COOKIE-ECHO chunk as the second
1143 			 * chunk, and possibly more chunks after them, and
1144 			 * the receiver does not have an STCB for that
1145 			 * packet, then authentication is based on
1146 			 * the contents of the COOKIE- ECHO chunk.
1147 			 */
1148 			if (have_auth == 1 && chunk_num == 2)
1149 				return NULL;
1150 			break;
1151 
1152 		case SCTP_CID_ASCONF:
1153 			if (have_auth || net->sctp.addip_noauth)
1154 				asoc = __sctp_rcv_asconf_lookup(
1155 						net, ch, laddr,
1156 						sctp_hdr(skb)->source,
1157 						transportp);
1158 		default:
1159 			break;
1160 		}
1161 
1162 		if (asoc)
1163 			break;
1164 
1165 		ch = (sctp_chunkhdr_t *) ch_end;
1166 		chunk_num++;
1167 	} while (ch_end < skb_tail_pointer(skb));
1168 
1169 	return asoc;
1170 }
1171 
1172 /*
1173  * There are circumstances when we need to look inside the SCTP packet
1174  * for information to help us find the association.   Examples
1175  * include looking inside of INIT/INIT-ACK chunks or after the AUTH
1176  * chunks.
1177  */
1178 static struct sctp_association *__sctp_rcv_lookup_harder(struct net *net,
1179 				      struct sk_buff *skb,
1180 				      const union sctp_addr *laddr,
1181 				      struct sctp_transport **transportp)
1182 {
1183 	sctp_chunkhdr_t *ch;
1184 
1185 	/* We do not allow GSO frames here as we need to linearize and
1186 	 * then cannot guarantee frame boundaries. This shouldn't be an
1187 	 * issue as packets hitting this are mostly INIT or INIT-ACK and
1188 	 * those cannot be on GSO-style anyway.
1189 	 */
1190 	if ((skb_shinfo(skb)->gso_type & SKB_GSO_SCTP) == SKB_GSO_SCTP)
1191 		return NULL;
1192 
1193 	ch = (sctp_chunkhdr_t *) skb->data;
1194 
1195 	/* The code below will attempt to walk the chunk and extract
1196 	 * parameter information.  Before we do that, we need to verify
1197 	 * that the chunk length doesn't cause overflow.  Otherwise, we'll
1198 	 * walk off the end.
1199 	 */
1200 	if (SCTP_PAD4(ntohs(ch->length)) > skb->len)
1201 		return NULL;
1202 
1203 	/* If this is INIT/INIT-ACK look inside the chunk too. */
1204 	if (ch->type == SCTP_CID_INIT || ch->type == SCTP_CID_INIT_ACK)
1205 		return __sctp_rcv_init_lookup(net, skb, laddr, transportp);
1206 
1207 	return __sctp_rcv_walk_lookup(net, skb, laddr, transportp);
1208 }
1209 
1210 /* Lookup an association for an inbound skb. */
1211 static struct sctp_association *__sctp_rcv_lookup(struct net *net,
1212 				      struct sk_buff *skb,
1213 				      const union sctp_addr *paddr,
1214 				      const union sctp_addr *laddr,
1215 				      struct sctp_transport **transportp)
1216 {
1217 	struct sctp_association *asoc;
1218 
1219 	asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1220 
1221 	/* Further lookup for INIT/INIT-ACK packets.
1222 	 * SCTP Implementors Guide, 2.18 Handling of address
1223 	 * parameters within the INIT or INIT-ACK.
1224 	 */
1225 	if (!asoc)
1226 		asoc = __sctp_rcv_lookup_harder(net, skb, laddr, transportp);
1227 
1228 	return asoc;
1229 }
1230