1 /* SCTP kernel implementation 2 * Copyright (c) 1999-2000 Cisco, Inc. 3 * Copyright (c) 1999-2001 Motorola, Inc. 4 * Copyright (c) 2001-2003 International Business Machines, Corp. 5 * Copyright (c) 2001 Intel Corp. 6 * Copyright (c) 2001 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions handle all input from the IP layer into SCTP. 12 * 13 * This SCTP implementation is free software; 14 * you can redistribute it and/or modify it under the terms of 15 * the GNU General Public License as published by 16 * the Free Software Foundation; either version 2, or (at your option) 17 * any later version. 18 * 19 * This SCTP implementation is distributed in the hope that it 20 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 21 * ************************ 22 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 23 * See the GNU General Public License for more details. 24 * 25 * You should have received a copy of the GNU General Public License 26 * along with GNU CC; see the file COPYING. If not, see 27 * <http://www.gnu.org/licenses/>. 28 * 29 * Please send any bug reports or fixes you make to the 30 * email address(es): 31 * lksctp developers <linux-sctp@vger.kernel.org> 32 * 33 * Written or modified by: 34 * La Monte H.P. Yarroll <piggy@acm.org> 35 * Karl Knutson <karl@athena.chicago.il.us> 36 * Xingang Guo <xingang.guo@intel.com> 37 * Jon Grimm <jgrimm@us.ibm.com> 38 * Hui Huang <hui.huang@nokia.com> 39 * Daisy Chang <daisyc@us.ibm.com> 40 * Sridhar Samudrala <sri@us.ibm.com> 41 * Ardelle Fan <ardelle.fan@intel.com> 42 */ 43 44 #include <linux/types.h> 45 #include <linux/list.h> /* For struct list_head */ 46 #include <linux/socket.h> 47 #include <linux/ip.h> 48 #include <linux/time.h> /* For struct timeval */ 49 #include <linux/slab.h> 50 #include <net/ip.h> 51 #include <net/icmp.h> 52 #include <net/snmp.h> 53 #include <net/sock.h> 54 #include <net/xfrm.h> 55 #include <net/sctp/sctp.h> 56 #include <net/sctp/sm.h> 57 #include <net/sctp/checksum.h> 58 #include <net/net_namespace.h> 59 60 /* Forward declarations for internal helpers. */ 61 static int sctp_rcv_ootb(struct sk_buff *); 62 static struct sctp_association *__sctp_rcv_lookup(struct net *net, 63 struct sk_buff *skb, 64 const union sctp_addr *paddr, 65 const union sctp_addr *laddr, 66 struct sctp_transport **transportp); 67 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net, 68 const union sctp_addr *laddr); 69 static struct sctp_association *__sctp_lookup_association( 70 struct net *net, 71 const union sctp_addr *local, 72 const union sctp_addr *peer, 73 struct sctp_transport **pt); 74 75 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb); 76 77 78 /* Calculate the SCTP checksum of an SCTP packet. */ 79 static inline int sctp_rcv_checksum(struct net *net, struct sk_buff *skb) 80 { 81 struct sctphdr *sh = sctp_hdr(skb); 82 __le32 cmp = sh->checksum; 83 __le32 val = sctp_compute_cksum(skb, 0); 84 85 if (val != cmp) { 86 /* CRC failure, dump it. */ 87 __SCTP_INC_STATS(net, SCTP_MIB_CHECKSUMERRORS); 88 return -1; 89 } 90 return 0; 91 } 92 93 /* 94 * This is the routine which IP calls when receiving an SCTP packet. 95 */ 96 int sctp_rcv(struct sk_buff *skb) 97 { 98 struct sock *sk; 99 struct sctp_association *asoc; 100 struct sctp_endpoint *ep = NULL; 101 struct sctp_ep_common *rcvr; 102 struct sctp_transport *transport = NULL; 103 struct sctp_chunk *chunk; 104 union sctp_addr src; 105 union sctp_addr dest; 106 int family; 107 struct sctp_af *af; 108 struct net *net = dev_net(skb->dev); 109 110 if (skb->pkt_type != PACKET_HOST) 111 goto discard_it; 112 113 __SCTP_INC_STATS(net, SCTP_MIB_INSCTPPACKS); 114 115 /* If packet is too small to contain a single chunk, let's not 116 * waste time on it anymore. 117 */ 118 if (skb->len < sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr) + 119 skb_transport_offset(skb)) 120 goto discard_it; 121 122 /* If the packet is fragmented and we need to do crc checking, 123 * it's better to just linearize it otherwise crc computing 124 * takes longer. 125 */ 126 if ((!(skb_shinfo(skb)->gso_type & SKB_GSO_SCTP) && 127 skb_linearize(skb)) || 128 !pskb_may_pull(skb, sizeof(struct sctphdr))) 129 goto discard_it; 130 131 /* Pull up the IP header. */ 132 __skb_pull(skb, skb_transport_offset(skb)); 133 134 skb->csum_valid = 0; /* Previous value not applicable */ 135 if (skb_csum_unnecessary(skb)) 136 __skb_decr_checksum_unnecessary(skb); 137 else if (!sctp_checksum_disable && 138 !(skb_shinfo(skb)->gso_type & SKB_GSO_SCTP) && 139 sctp_rcv_checksum(net, skb) < 0) 140 goto discard_it; 141 skb->csum_valid = 1; 142 143 __skb_pull(skb, sizeof(struct sctphdr)); 144 145 family = ipver2af(ip_hdr(skb)->version); 146 af = sctp_get_af_specific(family); 147 if (unlikely(!af)) 148 goto discard_it; 149 SCTP_INPUT_CB(skb)->af = af; 150 151 /* Initialize local addresses for lookups. */ 152 af->from_skb(&src, skb, 1); 153 af->from_skb(&dest, skb, 0); 154 155 /* If the packet is to or from a non-unicast address, 156 * silently discard the packet. 157 * 158 * This is not clearly defined in the RFC except in section 159 * 8.4 - OOTB handling. However, based on the book "Stream Control 160 * Transmission Protocol" 2.1, "It is important to note that the 161 * IP address of an SCTP transport address must be a routable 162 * unicast address. In other words, IP multicast addresses and 163 * IP broadcast addresses cannot be used in an SCTP transport 164 * address." 165 */ 166 if (!af->addr_valid(&src, NULL, skb) || 167 !af->addr_valid(&dest, NULL, skb)) 168 goto discard_it; 169 170 asoc = __sctp_rcv_lookup(net, skb, &src, &dest, &transport); 171 172 if (!asoc) 173 ep = __sctp_rcv_lookup_endpoint(net, &dest); 174 175 /* Retrieve the common input handling substructure. */ 176 rcvr = asoc ? &asoc->base : &ep->base; 177 sk = rcvr->sk; 178 179 /* 180 * If a frame arrives on an interface and the receiving socket is 181 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB 182 */ 183 if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb))) { 184 if (transport) { 185 sctp_transport_put(transport); 186 asoc = NULL; 187 transport = NULL; 188 } else { 189 sctp_endpoint_put(ep); 190 ep = NULL; 191 } 192 sk = net->sctp.ctl_sock; 193 ep = sctp_sk(sk)->ep; 194 sctp_endpoint_hold(ep); 195 rcvr = &ep->base; 196 } 197 198 /* 199 * RFC 2960, 8.4 - Handle "Out of the blue" Packets. 200 * An SCTP packet is called an "out of the blue" (OOTB) 201 * packet if it is correctly formed, i.e., passed the 202 * receiver's checksum check, but the receiver is not 203 * able to identify the association to which this 204 * packet belongs. 205 */ 206 if (!asoc) { 207 if (sctp_rcv_ootb(skb)) { 208 __SCTP_INC_STATS(net, SCTP_MIB_OUTOFBLUES); 209 goto discard_release; 210 } 211 } 212 213 if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family)) 214 goto discard_release; 215 nf_reset(skb); 216 217 if (sk_filter(sk, skb)) 218 goto discard_release; 219 220 /* Create an SCTP packet structure. */ 221 chunk = sctp_chunkify(skb, asoc, sk, GFP_ATOMIC); 222 if (!chunk) 223 goto discard_release; 224 SCTP_INPUT_CB(skb)->chunk = chunk; 225 226 /* Remember what endpoint is to handle this packet. */ 227 chunk->rcvr = rcvr; 228 229 /* Remember the SCTP header. */ 230 chunk->sctp_hdr = sctp_hdr(skb); 231 232 /* Set the source and destination addresses of the incoming chunk. */ 233 sctp_init_addrs(chunk, &src, &dest); 234 235 /* Remember where we came from. */ 236 chunk->transport = transport; 237 238 /* Acquire access to the sock lock. Note: We are safe from other 239 * bottom halves on this lock, but a user may be in the lock too, 240 * so check if it is busy. 241 */ 242 bh_lock_sock(sk); 243 244 if (sk != rcvr->sk) { 245 /* Our cached sk is different from the rcvr->sk. This is 246 * because migrate()/accept() may have moved the association 247 * to a new socket and released all the sockets. So now we 248 * are holding a lock on the old socket while the user may 249 * be doing something with the new socket. Switch our veiw 250 * of the current sk. 251 */ 252 bh_unlock_sock(sk); 253 sk = rcvr->sk; 254 bh_lock_sock(sk); 255 } 256 257 if (sock_owned_by_user(sk)) { 258 if (sctp_add_backlog(sk, skb)) { 259 bh_unlock_sock(sk); 260 sctp_chunk_free(chunk); 261 skb = NULL; /* sctp_chunk_free already freed the skb */ 262 goto discard_release; 263 } 264 __SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_BACKLOG); 265 } else { 266 __SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_SOFTIRQ); 267 sctp_inq_push(&chunk->rcvr->inqueue, chunk); 268 } 269 270 bh_unlock_sock(sk); 271 272 /* Release the asoc/ep ref we took in the lookup calls. */ 273 if (transport) 274 sctp_transport_put(transport); 275 else 276 sctp_endpoint_put(ep); 277 278 return 0; 279 280 discard_it: 281 __SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_DISCARDS); 282 kfree_skb(skb); 283 return 0; 284 285 discard_release: 286 /* Release the asoc/ep ref we took in the lookup calls. */ 287 if (transport) 288 sctp_transport_put(transport); 289 else 290 sctp_endpoint_put(ep); 291 292 goto discard_it; 293 } 294 295 /* Process the backlog queue of the socket. Every skb on 296 * the backlog holds a ref on an association or endpoint. 297 * We hold this ref throughout the state machine to make 298 * sure that the structure we need is still around. 299 */ 300 int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb) 301 { 302 struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk; 303 struct sctp_inq *inqueue = &chunk->rcvr->inqueue; 304 struct sctp_transport *t = chunk->transport; 305 struct sctp_ep_common *rcvr = NULL; 306 int backloged = 0; 307 308 rcvr = chunk->rcvr; 309 310 /* If the rcvr is dead then the association or endpoint 311 * has been deleted and we can safely drop the chunk 312 * and refs that we are holding. 313 */ 314 if (rcvr->dead) { 315 sctp_chunk_free(chunk); 316 goto done; 317 } 318 319 if (unlikely(rcvr->sk != sk)) { 320 /* In this case, the association moved from one socket to 321 * another. We are currently sitting on the backlog of the 322 * old socket, so we need to move. 323 * However, since we are here in the process context we 324 * need to take make sure that the user doesn't own 325 * the new socket when we process the packet. 326 * If the new socket is user-owned, queue the chunk to the 327 * backlog of the new socket without dropping any refs. 328 * Otherwise, we can safely push the chunk on the inqueue. 329 */ 330 331 sk = rcvr->sk; 332 local_bh_disable(); 333 bh_lock_sock(sk); 334 335 if (sock_owned_by_user(sk)) { 336 if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) 337 sctp_chunk_free(chunk); 338 else 339 backloged = 1; 340 } else 341 sctp_inq_push(inqueue, chunk); 342 343 bh_unlock_sock(sk); 344 local_bh_enable(); 345 346 /* If the chunk was backloged again, don't drop refs */ 347 if (backloged) 348 return 0; 349 } else { 350 sctp_inq_push(inqueue, chunk); 351 } 352 353 done: 354 /* Release the refs we took in sctp_add_backlog */ 355 if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type) 356 sctp_transport_put(t); 357 else if (SCTP_EP_TYPE_SOCKET == rcvr->type) 358 sctp_endpoint_put(sctp_ep(rcvr)); 359 else 360 BUG(); 361 362 return 0; 363 } 364 365 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb) 366 { 367 struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk; 368 struct sctp_transport *t = chunk->transport; 369 struct sctp_ep_common *rcvr = chunk->rcvr; 370 int ret; 371 372 ret = sk_add_backlog(sk, skb, sk->sk_rcvbuf); 373 if (!ret) { 374 /* Hold the assoc/ep while hanging on the backlog queue. 375 * This way, we know structures we need will not disappear 376 * from us 377 */ 378 if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type) 379 sctp_transport_hold(t); 380 else if (SCTP_EP_TYPE_SOCKET == rcvr->type) 381 sctp_endpoint_hold(sctp_ep(rcvr)); 382 else 383 BUG(); 384 } 385 return ret; 386 387 } 388 389 /* Handle icmp frag needed error. */ 390 void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc, 391 struct sctp_transport *t, __u32 pmtu) 392 { 393 if (!t || (t->pathmtu <= pmtu)) 394 return; 395 396 if (sock_owned_by_user(sk)) { 397 asoc->pmtu_pending = 1; 398 t->pmtu_pending = 1; 399 return; 400 } 401 402 if (!(t->param_flags & SPP_PMTUD_ENABLE)) 403 /* We can't allow retransmitting in such case, as the 404 * retransmission would be sized just as before, and thus we 405 * would get another icmp, and retransmit again. 406 */ 407 return; 408 409 /* Update transports view of the MTU. Return if no update was needed. 410 * If an update wasn't needed/possible, it also doesn't make sense to 411 * try to retransmit now. 412 */ 413 if (!sctp_transport_update_pmtu(t, pmtu)) 414 return; 415 416 /* Update association pmtu. */ 417 sctp_assoc_sync_pmtu(asoc); 418 419 /* Retransmit with the new pmtu setting. */ 420 sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD); 421 } 422 423 void sctp_icmp_redirect(struct sock *sk, struct sctp_transport *t, 424 struct sk_buff *skb) 425 { 426 struct dst_entry *dst; 427 428 if (sock_owned_by_user(sk) || !t) 429 return; 430 dst = sctp_transport_dst_check(t); 431 if (dst) 432 dst->ops->redirect(dst, sk, skb); 433 } 434 435 /* 436 * SCTP Implementer's Guide, 2.37 ICMP handling procedures 437 * 438 * ICMP8) If the ICMP code is a "Unrecognized next header type encountered" 439 * or a "Protocol Unreachable" treat this message as an abort 440 * with the T bit set. 441 * 442 * This function sends an event to the state machine, which will abort the 443 * association. 444 * 445 */ 446 void sctp_icmp_proto_unreachable(struct sock *sk, 447 struct sctp_association *asoc, 448 struct sctp_transport *t) 449 { 450 if (sock_owned_by_user(sk)) { 451 if (timer_pending(&t->proto_unreach_timer)) 452 return; 453 else { 454 if (!mod_timer(&t->proto_unreach_timer, 455 jiffies + (HZ/20))) 456 sctp_association_hold(asoc); 457 } 458 } else { 459 struct net *net = sock_net(sk); 460 461 pr_debug("%s: unrecognized next header type " 462 "encountered!\n", __func__); 463 464 if (del_timer(&t->proto_unreach_timer)) 465 sctp_association_put(asoc); 466 467 sctp_do_sm(net, SCTP_EVENT_T_OTHER, 468 SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH), 469 asoc->state, asoc->ep, asoc, t, 470 GFP_ATOMIC); 471 } 472 } 473 474 /* Common lookup code for icmp/icmpv6 error handler. */ 475 struct sock *sctp_err_lookup(struct net *net, int family, struct sk_buff *skb, 476 struct sctphdr *sctphdr, 477 struct sctp_association **app, 478 struct sctp_transport **tpp) 479 { 480 struct sctp_init_chunk *chunkhdr, _chunkhdr; 481 union sctp_addr saddr; 482 union sctp_addr daddr; 483 struct sctp_af *af; 484 struct sock *sk = NULL; 485 struct sctp_association *asoc; 486 struct sctp_transport *transport = NULL; 487 __u32 vtag = ntohl(sctphdr->vtag); 488 489 *app = NULL; *tpp = NULL; 490 491 af = sctp_get_af_specific(family); 492 if (unlikely(!af)) { 493 return NULL; 494 } 495 496 /* Initialize local addresses for lookups. */ 497 af->from_skb(&saddr, skb, 1); 498 af->from_skb(&daddr, skb, 0); 499 500 /* Look for an association that matches the incoming ICMP error 501 * packet. 502 */ 503 asoc = __sctp_lookup_association(net, &saddr, &daddr, &transport); 504 if (!asoc) 505 return NULL; 506 507 sk = asoc->base.sk; 508 509 /* RFC 4960, Appendix C. ICMP Handling 510 * 511 * ICMP6) An implementation MUST validate that the Verification Tag 512 * contained in the ICMP message matches the Verification Tag of 513 * the peer. If the Verification Tag is not 0 and does NOT 514 * match, discard the ICMP message. If it is 0 and the ICMP 515 * message contains enough bytes to verify that the chunk type is 516 * an INIT chunk and that the Initiate Tag matches the tag of the 517 * peer, continue with ICMP7. If the ICMP message is too short 518 * or the chunk type or the Initiate Tag does not match, silently 519 * discard the packet. 520 */ 521 if (vtag == 0) { 522 /* chunk header + first 4 octects of init header */ 523 chunkhdr = skb_header_pointer(skb, skb_transport_offset(skb) + 524 sizeof(struct sctphdr), 525 sizeof(struct sctp_chunkhdr) + 526 sizeof(__be32), &_chunkhdr); 527 if (!chunkhdr || 528 chunkhdr->chunk_hdr.type != SCTP_CID_INIT || 529 ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag) 530 goto out; 531 532 } else if (vtag != asoc->c.peer_vtag) { 533 goto out; 534 } 535 536 bh_lock_sock(sk); 537 538 /* If too many ICMPs get dropped on busy 539 * servers this needs to be solved differently. 540 */ 541 if (sock_owned_by_user(sk)) 542 __NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS); 543 544 *app = asoc; 545 *tpp = transport; 546 return sk; 547 548 out: 549 sctp_transport_put(transport); 550 return NULL; 551 } 552 553 /* Common cleanup code for icmp/icmpv6 error handler. */ 554 void sctp_err_finish(struct sock *sk, struct sctp_transport *t) 555 { 556 bh_unlock_sock(sk); 557 sctp_transport_put(t); 558 } 559 560 /* 561 * This routine is called by the ICMP module when it gets some 562 * sort of error condition. If err < 0 then the socket should 563 * be closed and the error returned to the user. If err > 0 564 * it's just the icmp type << 8 | icmp code. After adjustment 565 * header points to the first 8 bytes of the sctp header. We need 566 * to find the appropriate port. 567 * 568 * The locking strategy used here is very "optimistic". When 569 * someone else accesses the socket the ICMP is just dropped 570 * and for some paths there is no check at all. 571 * A more general error queue to queue errors for later handling 572 * is probably better. 573 * 574 */ 575 void sctp_v4_err(struct sk_buff *skb, __u32 info) 576 { 577 const struct iphdr *iph = (const struct iphdr *)skb->data; 578 const int ihlen = iph->ihl * 4; 579 const int type = icmp_hdr(skb)->type; 580 const int code = icmp_hdr(skb)->code; 581 struct sock *sk; 582 struct sctp_association *asoc = NULL; 583 struct sctp_transport *transport; 584 struct inet_sock *inet; 585 __u16 saveip, savesctp; 586 int err; 587 struct net *net = dev_net(skb->dev); 588 589 /* Fix up skb to look at the embedded net header. */ 590 saveip = skb->network_header; 591 savesctp = skb->transport_header; 592 skb_reset_network_header(skb); 593 skb_set_transport_header(skb, ihlen); 594 sk = sctp_err_lookup(net, AF_INET, skb, sctp_hdr(skb), &asoc, &transport); 595 /* Put back, the original values. */ 596 skb->network_header = saveip; 597 skb->transport_header = savesctp; 598 if (!sk) { 599 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 600 return; 601 } 602 /* Warning: The sock lock is held. Remember to call 603 * sctp_err_finish! 604 */ 605 606 switch (type) { 607 case ICMP_PARAMETERPROB: 608 err = EPROTO; 609 break; 610 case ICMP_DEST_UNREACH: 611 if (code > NR_ICMP_UNREACH) 612 goto out_unlock; 613 614 /* PMTU discovery (RFC1191) */ 615 if (ICMP_FRAG_NEEDED == code) { 616 sctp_icmp_frag_needed(sk, asoc, transport, 617 SCTP_TRUNC4(info)); 618 goto out_unlock; 619 } else { 620 if (ICMP_PROT_UNREACH == code) { 621 sctp_icmp_proto_unreachable(sk, asoc, 622 transport); 623 goto out_unlock; 624 } 625 } 626 err = icmp_err_convert[code].errno; 627 break; 628 case ICMP_TIME_EXCEEDED: 629 /* Ignore any time exceeded errors due to fragment reassembly 630 * timeouts. 631 */ 632 if (ICMP_EXC_FRAGTIME == code) 633 goto out_unlock; 634 635 err = EHOSTUNREACH; 636 break; 637 case ICMP_REDIRECT: 638 sctp_icmp_redirect(sk, transport, skb); 639 /* Fall through to out_unlock. */ 640 default: 641 goto out_unlock; 642 } 643 644 inet = inet_sk(sk); 645 if (!sock_owned_by_user(sk) && inet->recverr) { 646 sk->sk_err = err; 647 sk->sk_error_report(sk); 648 } else { /* Only an error on timeout */ 649 sk->sk_err_soft = err; 650 } 651 652 out_unlock: 653 sctp_err_finish(sk, transport); 654 } 655 656 /* 657 * RFC 2960, 8.4 - Handle "Out of the blue" Packets. 658 * 659 * This function scans all the chunks in the OOTB packet to determine if 660 * the packet should be discarded right away. If a response might be needed 661 * for this packet, or, if further processing is possible, the packet will 662 * be queued to a proper inqueue for the next phase of handling. 663 * 664 * Output: 665 * Return 0 - If further processing is needed. 666 * Return 1 - If the packet can be discarded right away. 667 */ 668 static int sctp_rcv_ootb(struct sk_buff *skb) 669 { 670 struct sctp_chunkhdr *ch, _ch; 671 int ch_end, offset = 0; 672 673 /* Scan through all the chunks in the packet. */ 674 do { 675 /* Make sure we have at least the header there */ 676 if (offset + sizeof(_ch) > skb->len) 677 break; 678 679 ch = skb_header_pointer(skb, offset, sizeof(*ch), &_ch); 680 681 /* Break out if chunk length is less then minimal. */ 682 if (ntohs(ch->length) < sizeof(_ch)) 683 break; 684 685 ch_end = offset + SCTP_PAD4(ntohs(ch->length)); 686 if (ch_end > skb->len) 687 break; 688 689 /* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the 690 * receiver MUST silently discard the OOTB packet and take no 691 * further action. 692 */ 693 if (SCTP_CID_ABORT == ch->type) 694 goto discard; 695 696 /* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE 697 * chunk, the receiver should silently discard the packet 698 * and take no further action. 699 */ 700 if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type) 701 goto discard; 702 703 /* RFC 4460, 2.11.2 704 * This will discard packets with INIT chunk bundled as 705 * subsequent chunks in the packet. When INIT is first, 706 * the normal INIT processing will discard the chunk. 707 */ 708 if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data) 709 goto discard; 710 711 offset = ch_end; 712 } while (ch_end < skb->len); 713 714 return 0; 715 716 discard: 717 return 1; 718 } 719 720 /* Insert endpoint into the hash table. */ 721 static void __sctp_hash_endpoint(struct sctp_endpoint *ep) 722 { 723 struct net *net = sock_net(ep->base.sk); 724 struct sctp_ep_common *epb; 725 struct sctp_hashbucket *head; 726 727 epb = &ep->base; 728 729 epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port); 730 head = &sctp_ep_hashtable[epb->hashent]; 731 732 write_lock(&head->lock); 733 hlist_add_head(&epb->node, &head->chain); 734 write_unlock(&head->lock); 735 } 736 737 /* Add an endpoint to the hash. Local BH-safe. */ 738 void sctp_hash_endpoint(struct sctp_endpoint *ep) 739 { 740 local_bh_disable(); 741 __sctp_hash_endpoint(ep); 742 local_bh_enable(); 743 } 744 745 /* Remove endpoint from the hash table. */ 746 static void __sctp_unhash_endpoint(struct sctp_endpoint *ep) 747 { 748 struct net *net = sock_net(ep->base.sk); 749 struct sctp_hashbucket *head; 750 struct sctp_ep_common *epb; 751 752 epb = &ep->base; 753 754 epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port); 755 756 head = &sctp_ep_hashtable[epb->hashent]; 757 758 write_lock(&head->lock); 759 hlist_del_init(&epb->node); 760 write_unlock(&head->lock); 761 } 762 763 /* Remove endpoint from the hash. Local BH-safe. */ 764 void sctp_unhash_endpoint(struct sctp_endpoint *ep) 765 { 766 local_bh_disable(); 767 __sctp_unhash_endpoint(ep); 768 local_bh_enable(); 769 } 770 771 /* Look up an endpoint. */ 772 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net, 773 const union sctp_addr *laddr) 774 { 775 struct sctp_hashbucket *head; 776 struct sctp_ep_common *epb; 777 struct sctp_endpoint *ep; 778 int hash; 779 780 hash = sctp_ep_hashfn(net, ntohs(laddr->v4.sin_port)); 781 head = &sctp_ep_hashtable[hash]; 782 read_lock(&head->lock); 783 sctp_for_each_hentry(epb, &head->chain) { 784 ep = sctp_ep(epb); 785 if (sctp_endpoint_is_match(ep, net, laddr)) 786 goto hit; 787 } 788 789 ep = sctp_sk(net->sctp.ctl_sock)->ep; 790 791 hit: 792 sctp_endpoint_hold(ep); 793 read_unlock(&head->lock); 794 return ep; 795 } 796 797 /* rhashtable for transport */ 798 struct sctp_hash_cmp_arg { 799 const union sctp_addr *paddr; 800 const struct net *net; 801 __be16 lport; 802 }; 803 804 static inline int sctp_hash_cmp(struct rhashtable_compare_arg *arg, 805 const void *ptr) 806 { 807 struct sctp_transport *t = (struct sctp_transport *)ptr; 808 const struct sctp_hash_cmp_arg *x = arg->key; 809 int err = 1; 810 811 if (!sctp_cmp_addr_exact(&t->ipaddr, x->paddr)) 812 return err; 813 if (!sctp_transport_hold(t)) 814 return err; 815 816 if (!net_eq(sock_net(t->asoc->base.sk), x->net)) 817 goto out; 818 if (x->lport != htons(t->asoc->base.bind_addr.port)) 819 goto out; 820 821 err = 0; 822 out: 823 sctp_transport_put(t); 824 return err; 825 } 826 827 static inline __u32 sctp_hash_obj(const void *data, u32 len, u32 seed) 828 { 829 const struct sctp_transport *t = data; 830 const union sctp_addr *paddr = &t->ipaddr; 831 const struct net *net = sock_net(t->asoc->base.sk); 832 __be16 lport = htons(t->asoc->base.bind_addr.port); 833 __u32 addr; 834 835 if (paddr->sa.sa_family == AF_INET6) 836 addr = jhash(&paddr->v6.sin6_addr, 16, seed); 837 else 838 addr = (__force __u32)paddr->v4.sin_addr.s_addr; 839 840 return jhash_3words(addr, ((__force __u32)paddr->v4.sin_port) << 16 | 841 (__force __u32)lport, net_hash_mix(net), seed); 842 } 843 844 static inline __u32 sctp_hash_key(const void *data, u32 len, u32 seed) 845 { 846 const struct sctp_hash_cmp_arg *x = data; 847 const union sctp_addr *paddr = x->paddr; 848 const struct net *net = x->net; 849 __be16 lport = x->lport; 850 __u32 addr; 851 852 if (paddr->sa.sa_family == AF_INET6) 853 addr = jhash(&paddr->v6.sin6_addr, 16, seed); 854 else 855 addr = (__force __u32)paddr->v4.sin_addr.s_addr; 856 857 return jhash_3words(addr, ((__force __u32)paddr->v4.sin_port) << 16 | 858 (__force __u32)lport, net_hash_mix(net), seed); 859 } 860 861 static const struct rhashtable_params sctp_hash_params = { 862 .head_offset = offsetof(struct sctp_transport, node), 863 .hashfn = sctp_hash_key, 864 .obj_hashfn = sctp_hash_obj, 865 .obj_cmpfn = sctp_hash_cmp, 866 .automatic_shrinking = true, 867 }; 868 869 int sctp_transport_hashtable_init(void) 870 { 871 return rhltable_init(&sctp_transport_hashtable, &sctp_hash_params); 872 } 873 874 void sctp_transport_hashtable_destroy(void) 875 { 876 rhltable_destroy(&sctp_transport_hashtable); 877 } 878 879 int sctp_hash_transport(struct sctp_transport *t) 880 { 881 struct sctp_transport *transport; 882 struct rhlist_head *tmp, *list; 883 struct sctp_hash_cmp_arg arg; 884 int err; 885 886 if (t->asoc->temp) 887 return 0; 888 889 arg.net = sock_net(t->asoc->base.sk); 890 arg.paddr = &t->ipaddr; 891 arg.lport = htons(t->asoc->base.bind_addr.port); 892 893 rcu_read_lock(); 894 list = rhltable_lookup(&sctp_transport_hashtable, &arg, 895 sctp_hash_params); 896 897 rhl_for_each_entry_rcu(transport, tmp, list, node) 898 if (transport->asoc->ep == t->asoc->ep) { 899 rcu_read_unlock(); 900 return -EEXIST; 901 } 902 rcu_read_unlock(); 903 904 err = rhltable_insert_key(&sctp_transport_hashtable, &arg, 905 &t->node, sctp_hash_params); 906 if (err) 907 pr_err_once("insert transport fail, errno %d\n", err); 908 909 return err; 910 } 911 912 void sctp_unhash_transport(struct sctp_transport *t) 913 { 914 if (t->asoc->temp) 915 return; 916 917 rhltable_remove(&sctp_transport_hashtable, &t->node, 918 sctp_hash_params); 919 } 920 921 /* return a transport with holding it */ 922 struct sctp_transport *sctp_addrs_lookup_transport( 923 struct net *net, 924 const union sctp_addr *laddr, 925 const union sctp_addr *paddr) 926 { 927 struct rhlist_head *tmp, *list; 928 struct sctp_transport *t; 929 struct sctp_hash_cmp_arg arg = { 930 .paddr = paddr, 931 .net = net, 932 .lport = laddr->v4.sin_port, 933 }; 934 935 list = rhltable_lookup(&sctp_transport_hashtable, &arg, 936 sctp_hash_params); 937 938 rhl_for_each_entry_rcu(t, tmp, list, node) { 939 if (!sctp_transport_hold(t)) 940 continue; 941 942 if (sctp_bind_addr_match(&t->asoc->base.bind_addr, 943 laddr, sctp_sk(t->asoc->base.sk))) 944 return t; 945 sctp_transport_put(t); 946 } 947 948 return NULL; 949 } 950 951 /* return a transport without holding it, as it's only used under sock lock */ 952 struct sctp_transport *sctp_epaddr_lookup_transport( 953 const struct sctp_endpoint *ep, 954 const union sctp_addr *paddr) 955 { 956 struct net *net = sock_net(ep->base.sk); 957 struct rhlist_head *tmp, *list; 958 struct sctp_transport *t; 959 struct sctp_hash_cmp_arg arg = { 960 .paddr = paddr, 961 .net = net, 962 .lport = htons(ep->base.bind_addr.port), 963 }; 964 965 list = rhltable_lookup(&sctp_transport_hashtable, &arg, 966 sctp_hash_params); 967 968 rhl_for_each_entry_rcu(t, tmp, list, node) 969 if (ep == t->asoc->ep) 970 return t; 971 972 return NULL; 973 } 974 975 /* Look up an association. */ 976 static struct sctp_association *__sctp_lookup_association( 977 struct net *net, 978 const union sctp_addr *local, 979 const union sctp_addr *peer, 980 struct sctp_transport **pt) 981 { 982 struct sctp_transport *t; 983 struct sctp_association *asoc = NULL; 984 985 t = sctp_addrs_lookup_transport(net, local, peer); 986 if (!t) 987 goto out; 988 989 asoc = t->asoc; 990 *pt = t; 991 992 out: 993 return asoc; 994 } 995 996 /* Look up an association. protected by RCU read lock */ 997 static 998 struct sctp_association *sctp_lookup_association(struct net *net, 999 const union sctp_addr *laddr, 1000 const union sctp_addr *paddr, 1001 struct sctp_transport **transportp) 1002 { 1003 struct sctp_association *asoc; 1004 1005 rcu_read_lock(); 1006 asoc = __sctp_lookup_association(net, laddr, paddr, transportp); 1007 rcu_read_unlock(); 1008 1009 return asoc; 1010 } 1011 1012 /* Is there an association matching the given local and peer addresses? */ 1013 int sctp_has_association(struct net *net, 1014 const union sctp_addr *laddr, 1015 const union sctp_addr *paddr) 1016 { 1017 struct sctp_association *asoc; 1018 struct sctp_transport *transport; 1019 1020 if ((asoc = sctp_lookup_association(net, laddr, paddr, &transport))) { 1021 sctp_transport_put(transport); 1022 return 1; 1023 } 1024 1025 return 0; 1026 } 1027 1028 /* 1029 * SCTP Implementors Guide, 2.18 Handling of address 1030 * parameters within the INIT or INIT-ACK. 1031 * 1032 * D) When searching for a matching TCB upon reception of an INIT 1033 * or INIT-ACK chunk the receiver SHOULD use not only the 1034 * source address of the packet (containing the INIT or 1035 * INIT-ACK) but the receiver SHOULD also use all valid 1036 * address parameters contained within the chunk. 1037 * 1038 * 2.18.3 Solution description 1039 * 1040 * This new text clearly specifies to an implementor the need 1041 * to look within the INIT or INIT-ACK. Any implementation that 1042 * does not do this, may not be able to establish associations 1043 * in certain circumstances. 1044 * 1045 */ 1046 static struct sctp_association *__sctp_rcv_init_lookup(struct net *net, 1047 struct sk_buff *skb, 1048 const union sctp_addr *laddr, struct sctp_transport **transportp) 1049 { 1050 struct sctp_association *asoc; 1051 union sctp_addr addr; 1052 union sctp_addr *paddr = &addr; 1053 struct sctphdr *sh = sctp_hdr(skb); 1054 union sctp_params params; 1055 struct sctp_init_chunk *init; 1056 struct sctp_af *af; 1057 1058 /* 1059 * This code will NOT touch anything inside the chunk--it is 1060 * strictly READ-ONLY. 1061 * 1062 * RFC 2960 3 SCTP packet Format 1063 * 1064 * Multiple chunks can be bundled into one SCTP packet up to 1065 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN 1066 * COMPLETE chunks. These chunks MUST NOT be bundled with any 1067 * other chunk in a packet. See Section 6.10 for more details 1068 * on chunk bundling. 1069 */ 1070 1071 /* Find the start of the TLVs and the end of the chunk. This is 1072 * the region we search for address parameters. 1073 */ 1074 init = (struct sctp_init_chunk *)skb->data; 1075 1076 /* Walk the parameters looking for embedded addresses. */ 1077 sctp_walk_params(params, init, init_hdr.params) { 1078 1079 /* Note: Ignoring hostname addresses. */ 1080 af = sctp_get_af_specific(param_type2af(params.p->type)); 1081 if (!af) 1082 continue; 1083 1084 af->from_addr_param(paddr, params.addr, sh->source, 0); 1085 1086 asoc = __sctp_lookup_association(net, laddr, paddr, transportp); 1087 if (asoc) 1088 return asoc; 1089 } 1090 1091 return NULL; 1092 } 1093 1094 /* ADD-IP, Section 5.2 1095 * When an endpoint receives an ASCONF Chunk from the remote peer 1096 * special procedures may be needed to identify the association the 1097 * ASCONF Chunk is associated with. To properly find the association 1098 * the following procedures SHOULD be followed: 1099 * 1100 * D2) If the association is not found, use the address found in the 1101 * Address Parameter TLV combined with the port number found in the 1102 * SCTP common header. If found proceed to rule D4. 1103 * 1104 * D2-ext) If more than one ASCONF Chunks are packed together, use the 1105 * address found in the ASCONF Address Parameter TLV of each of the 1106 * subsequent ASCONF Chunks. If found, proceed to rule D4. 1107 */ 1108 static struct sctp_association *__sctp_rcv_asconf_lookup( 1109 struct net *net, 1110 struct sctp_chunkhdr *ch, 1111 const union sctp_addr *laddr, 1112 __be16 peer_port, 1113 struct sctp_transport **transportp) 1114 { 1115 struct sctp_addip_chunk *asconf = (struct sctp_addip_chunk *)ch; 1116 struct sctp_af *af; 1117 union sctp_addr_param *param; 1118 union sctp_addr paddr; 1119 1120 /* Skip over the ADDIP header and find the Address parameter */ 1121 param = (union sctp_addr_param *)(asconf + 1); 1122 1123 af = sctp_get_af_specific(param_type2af(param->p.type)); 1124 if (unlikely(!af)) 1125 return NULL; 1126 1127 af->from_addr_param(&paddr, param, peer_port, 0); 1128 1129 return __sctp_lookup_association(net, laddr, &paddr, transportp); 1130 } 1131 1132 1133 /* SCTP-AUTH, Section 6.3: 1134 * If the receiver does not find a STCB for a packet containing an AUTH 1135 * chunk as the first chunk and not a COOKIE-ECHO chunk as the second 1136 * chunk, it MUST use the chunks after the AUTH chunk to look up an existing 1137 * association. 1138 * 1139 * This means that any chunks that can help us identify the association need 1140 * to be looked at to find this association. 1141 */ 1142 static struct sctp_association *__sctp_rcv_walk_lookup(struct net *net, 1143 struct sk_buff *skb, 1144 const union sctp_addr *laddr, 1145 struct sctp_transport **transportp) 1146 { 1147 struct sctp_association *asoc = NULL; 1148 struct sctp_chunkhdr *ch; 1149 int have_auth = 0; 1150 unsigned int chunk_num = 1; 1151 __u8 *ch_end; 1152 1153 /* Walk through the chunks looking for AUTH or ASCONF chunks 1154 * to help us find the association. 1155 */ 1156 ch = (struct sctp_chunkhdr *)skb->data; 1157 do { 1158 /* Break out if chunk length is less then minimal. */ 1159 if (ntohs(ch->length) < sizeof(*ch)) 1160 break; 1161 1162 ch_end = ((__u8 *)ch) + SCTP_PAD4(ntohs(ch->length)); 1163 if (ch_end > skb_tail_pointer(skb)) 1164 break; 1165 1166 switch (ch->type) { 1167 case SCTP_CID_AUTH: 1168 have_auth = chunk_num; 1169 break; 1170 1171 case SCTP_CID_COOKIE_ECHO: 1172 /* If a packet arrives containing an AUTH chunk as 1173 * a first chunk, a COOKIE-ECHO chunk as the second 1174 * chunk, and possibly more chunks after them, and 1175 * the receiver does not have an STCB for that 1176 * packet, then authentication is based on 1177 * the contents of the COOKIE- ECHO chunk. 1178 */ 1179 if (have_auth == 1 && chunk_num == 2) 1180 return NULL; 1181 break; 1182 1183 case SCTP_CID_ASCONF: 1184 if (have_auth || net->sctp.addip_noauth) 1185 asoc = __sctp_rcv_asconf_lookup( 1186 net, ch, laddr, 1187 sctp_hdr(skb)->source, 1188 transportp); 1189 default: 1190 break; 1191 } 1192 1193 if (asoc) 1194 break; 1195 1196 ch = (struct sctp_chunkhdr *)ch_end; 1197 chunk_num++; 1198 } while (ch_end < skb_tail_pointer(skb)); 1199 1200 return asoc; 1201 } 1202 1203 /* 1204 * There are circumstances when we need to look inside the SCTP packet 1205 * for information to help us find the association. Examples 1206 * include looking inside of INIT/INIT-ACK chunks or after the AUTH 1207 * chunks. 1208 */ 1209 static struct sctp_association *__sctp_rcv_lookup_harder(struct net *net, 1210 struct sk_buff *skb, 1211 const union sctp_addr *laddr, 1212 struct sctp_transport **transportp) 1213 { 1214 struct sctp_chunkhdr *ch; 1215 1216 /* We do not allow GSO frames here as we need to linearize and 1217 * then cannot guarantee frame boundaries. This shouldn't be an 1218 * issue as packets hitting this are mostly INIT or INIT-ACK and 1219 * those cannot be on GSO-style anyway. 1220 */ 1221 if ((skb_shinfo(skb)->gso_type & SKB_GSO_SCTP) == SKB_GSO_SCTP) 1222 return NULL; 1223 1224 ch = (struct sctp_chunkhdr *)skb->data; 1225 1226 /* The code below will attempt to walk the chunk and extract 1227 * parameter information. Before we do that, we need to verify 1228 * that the chunk length doesn't cause overflow. Otherwise, we'll 1229 * walk off the end. 1230 */ 1231 if (SCTP_PAD4(ntohs(ch->length)) > skb->len) 1232 return NULL; 1233 1234 /* If this is INIT/INIT-ACK look inside the chunk too. */ 1235 if (ch->type == SCTP_CID_INIT || ch->type == SCTP_CID_INIT_ACK) 1236 return __sctp_rcv_init_lookup(net, skb, laddr, transportp); 1237 1238 return __sctp_rcv_walk_lookup(net, skb, laddr, transportp); 1239 } 1240 1241 /* Lookup an association for an inbound skb. */ 1242 static struct sctp_association *__sctp_rcv_lookup(struct net *net, 1243 struct sk_buff *skb, 1244 const union sctp_addr *paddr, 1245 const union sctp_addr *laddr, 1246 struct sctp_transport **transportp) 1247 { 1248 struct sctp_association *asoc; 1249 1250 asoc = __sctp_lookup_association(net, laddr, paddr, transportp); 1251 if (asoc) 1252 goto out; 1253 1254 /* Further lookup for INIT/INIT-ACK packets. 1255 * SCTP Implementors Guide, 2.18 Handling of address 1256 * parameters within the INIT or INIT-ACK. 1257 */ 1258 asoc = __sctp_rcv_lookup_harder(net, skb, laddr, transportp); 1259 if (asoc) 1260 goto out; 1261 1262 if (paddr->sa.sa_family == AF_INET) 1263 pr_debug("sctp: asoc not found for src:%pI4:%d dst:%pI4:%d\n", 1264 &laddr->v4.sin_addr, ntohs(laddr->v4.sin_port), 1265 &paddr->v4.sin_addr, ntohs(paddr->v4.sin_port)); 1266 else 1267 pr_debug("sctp: asoc not found for src:%pI6:%d dst:%pI6:%d\n", 1268 &laddr->v6.sin6_addr, ntohs(laddr->v6.sin6_port), 1269 &paddr->v6.sin6_addr, ntohs(paddr->v6.sin6_port)); 1270 1271 out: 1272 return asoc; 1273 } 1274