xref: /openbmc/linux/net/sctp/input.c (revision cd354f1a)
1 /* SCTP kernel reference Implementation
2  * Copyright (c) 1999-2000 Cisco, Inc.
3  * Copyright (c) 1999-2001 Motorola, Inc.
4  * Copyright (c) 2001-2003 International Business Machines, Corp.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel reference Implementation
10  *
11  * These functions handle all input from the IP layer into SCTP.
12  *
13  * The SCTP reference implementation is free software;
14  * you can redistribute it and/or modify it under the terms of
15  * the GNU General Public License as published by
16  * the Free Software Foundation; either version 2, or (at your option)
17  * any later version.
18  *
19  * The SCTP reference implementation is distributed in the hope that it
20  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
21  *                 ************************
22  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
23  * See the GNU General Public License for more details.
24  *
25  * You should have received a copy of the GNU General Public License
26  * along with GNU CC; see the file COPYING.  If not, write to
27  * the Free Software Foundation, 59 Temple Place - Suite 330,
28  * Boston, MA 02111-1307, USA.
29  *
30  * Please send any bug reports or fixes you make to the
31  * email address(es):
32  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
33  *
34  * Or submit a bug report through the following website:
35  *    http://www.sf.net/projects/lksctp
36  *
37  * Written or modified by:
38  *    La Monte H.P. Yarroll <piggy@acm.org>
39  *    Karl Knutson <karl@athena.chicago.il.us>
40  *    Xingang Guo <xingang.guo@intel.com>
41  *    Jon Grimm <jgrimm@us.ibm.com>
42  *    Hui Huang <hui.huang@nokia.com>
43  *    Daisy Chang <daisyc@us.ibm.com>
44  *    Sridhar Samudrala <sri@us.ibm.com>
45  *    Ardelle Fan <ardelle.fan@intel.com>
46  *
47  * Any bugs reported given to us we will try to fix... any fixes shared will
48  * be incorporated into the next SCTP release.
49  */
50 
51 #include <linux/types.h>
52 #include <linux/list.h> /* For struct list_head */
53 #include <linux/socket.h>
54 #include <linux/ip.h>
55 #include <linux/time.h> /* For struct timeval */
56 #include <net/ip.h>
57 #include <net/icmp.h>
58 #include <net/snmp.h>
59 #include <net/sock.h>
60 #include <net/xfrm.h>
61 #include <net/sctp/sctp.h>
62 #include <net/sctp/sm.h>
63 
64 /* Forward declarations for internal helpers. */
65 static int sctp_rcv_ootb(struct sk_buff *);
66 static struct sctp_association *__sctp_rcv_lookup(struct sk_buff *skb,
67 				      const union sctp_addr *laddr,
68 				      const union sctp_addr *paddr,
69 				      struct sctp_transport **transportp);
70 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(const union sctp_addr *laddr);
71 static struct sctp_association *__sctp_lookup_association(
72 					const union sctp_addr *local,
73 					const union sctp_addr *peer,
74 					struct sctp_transport **pt);
75 
76 static void sctp_add_backlog(struct sock *sk, struct sk_buff *skb);
77 
78 
79 /* Calculate the SCTP checksum of an SCTP packet.  */
80 static inline int sctp_rcv_checksum(struct sk_buff *skb)
81 {
82 	struct sctphdr *sh;
83 	__u32 cmp, val;
84 	struct sk_buff *list = skb_shinfo(skb)->frag_list;
85 
86 	sh = (struct sctphdr *) skb->h.raw;
87 	cmp = ntohl(sh->checksum);
88 
89 	val = sctp_start_cksum((__u8 *)sh, skb_headlen(skb));
90 
91 	for (; list; list = list->next)
92 		val = sctp_update_cksum((__u8 *)list->data, skb_headlen(list),
93 					val);
94 
95 	val = sctp_end_cksum(val);
96 
97 	if (val != cmp) {
98 		/* CRC failure, dump it. */
99 		SCTP_INC_STATS_BH(SCTP_MIB_CHECKSUMERRORS);
100 		return -1;
101 	}
102 	return 0;
103 }
104 
105 struct sctp_input_cb {
106 	union {
107 		struct inet_skb_parm	h4;
108 #if defined(CONFIG_IPV6) || defined (CONFIG_IPV6_MODULE)
109 		struct inet6_skb_parm	h6;
110 #endif
111 	} header;
112 	struct sctp_chunk *chunk;
113 };
114 #define SCTP_INPUT_CB(__skb)	((struct sctp_input_cb *)&((__skb)->cb[0]))
115 
116 /*
117  * This is the routine which IP calls when receiving an SCTP packet.
118  */
119 int sctp_rcv(struct sk_buff *skb)
120 {
121 	struct sock *sk;
122 	struct sctp_association *asoc;
123 	struct sctp_endpoint *ep = NULL;
124 	struct sctp_ep_common *rcvr;
125 	struct sctp_transport *transport = NULL;
126 	struct sctp_chunk *chunk;
127 	struct sctphdr *sh;
128 	union sctp_addr src;
129 	union sctp_addr dest;
130 	int family;
131 	struct sctp_af *af;
132 
133 	if (skb->pkt_type!=PACKET_HOST)
134 		goto discard_it;
135 
136 	SCTP_INC_STATS_BH(SCTP_MIB_INSCTPPACKS);
137 
138 	if (skb_linearize(skb))
139 		goto discard_it;
140 
141 	sh = (struct sctphdr *) skb->h.raw;
142 
143 	/* Pull up the IP and SCTP headers. */
144 	__skb_pull(skb, skb->h.raw - skb->data);
145 	if (skb->len < sizeof(struct sctphdr))
146 		goto discard_it;
147 	if ((skb->ip_summed != CHECKSUM_UNNECESSARY) &&
148 	    (sctp_rcv_checksum(skb) < 0))
149 		goto discard_it;
150 
151 	skb_pull(skb, sizeof(struct sctphdr));
152 
153 	/* Make sure we at least have chunk headers worth of data left. */
154 	if (skb->len < sizeof(struct sctp_chunkhdr))
155 		goto discard_it;
156 
157 	family = ipver2af(skb->nh.iph->version);
158 	af = sctp_get_af_specific(family);
159 	if (unlikely(!af))
160 		goto discard_it;
161 
162 	/* Initialize local addresses for lookups. */
163 	af->from_skb(&src, skb, 1);
164 	af->from_skb(&dest, skb, 0);
165 
166 	/* If the packet is to or from a non-unicast address,
167 	 * silently discard the packet.
168 	 *
169 	 * This is not clearly defined in the RFC except in section
170 	 * 8.4 - OOTB handling.  However, based on the book "Stream Control
171 	 * Transmission Protocol" 2.1, "It is important to note that the
172 	 * IP address of an SCTP transport address must be a routable
173 	 * unicast address.  In other words, IP multicast addresses and
174 	 * IP broadcast addresses cannot be used in an SCTP transport
175 	 * address."
176 	 */
177 	if (!af->addr_valid(&src, NULL, skb) ||
178 	    !af->addr_valid(&dest, NULL, skb))
179 		goto discard_it;
180 
181 	asoc = __sctp_rcv_lookup(skb, &src, &dest, &transport);
182 
183 	if (!asoc)
184 		ep = __sctp_rcv_lookup_endpoint(&dest);
185 
186 	/* Retrieve the common input handling substructure. */
187 	rcvr = asoc ? &asoc->base : &ep->base;
188 	sk = rcvr->sk;
189 
190 	/*
191 	 * If a frame arrives on an interface and the receiving socket is
192 	 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB
193 	 */
194 	if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb)))
195 	{
196 		if (asoc) {
197 			sctp_association_put(asoc);
198 			asoc = NULL;
199 		} else {
200 			sctp_endpoint_put(ep);
201 			ep = NULL;
202 		}
203 		sk = sctp_get_ctl_sock();
204 		ep = sctp_sk(sk)->ep;
205 		sctp_endpoint_hold(ep);
206 		rcvr = &ep->base;
207 	}
208 
209 	/*
210 	 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
211 	 * An SCTP packet is called an "out of the blue" (OOTB)
212 	 * packet if it is correctly formed, i.e., passed the
213 	 * receiver's checksum check, but the receiver is not
214 	 * able to identify the association to which this
215 	 * packet belongs.
216 	 */
217 	if (!asoc) {
218 		if (sctp_rcv_ootb(skb)) {
219 			SCTP_INC_STATS_BH(SCTP_MIB_OUTOFBLUES);
220 			goto discard_release;
221 		}
222 	}
223 
224 	if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family))
225 		goto discard_release;
226 	nf_reset(skb);
227 
228 	if (sk_filter(sk, skb))
229 		goto discard_release;
230 
231 	/* Create an SCTP packet structure. */
232 	chunk = sctp_chunkify(skb, asoc, sk);
233 	if (!chunk)
234 		goto discard_release;
235 	SCTP_INPUT_CB(skb)->chunk = chunk;
236 
237 	/* Remember what endpoint is to handle this packet. */
238 	chunk->rcvr = rcvr;
239 
240 	/* Remember the SCTP header. */
241 	chunk->sctp_hdr = sh;
242 
243 	/* Set the source and destination addresses of the incoming chunk.  */
244 	sctp_init_addrs(chunk, &src, &dest);
245 
246 	/* Remember where we came from.  */
247 	chunk->transport = transport;
248 
249 	/* Acquire access to the sock lock. Note: We are safe from other
250 	 * bottom halves on this lock, but a user may be in the lock too,
251 	 * so check if it is busy.
252 	 */
253 	sctp_bh_lock_sock(sk);
254 
255 	if (sock_owned_by_user(sk)) {
256 		SCTP_INC_STATS_BH(SCTP_MIB_IN_PKT_BACKLOG);
257 		sctp_add_backlog(sk, skb);
258 	} else {
259 		SCTP_INC_STATS_BH(SCTP_MIB_IN_PKT_SOFTIRQ);
260 		sctp_inq_push(&chunk->rcvr->inqueue, chunk);
261 	}
262 
263 	sctp_bh_unlock_sock(sk);
264 
265 	/* Release the asoc/ep ref we took in the lookup calls. */
266 	if (asoc)
267 		sctp_association_put(asoc);
268 	else
269 		sctp_endpoint_put(ep);
270 
271 	return 0;
272 
273 discard_it:
274 	SCTP_INC_STATS_BH(SCTP_MIB_IN_PKT_DISCARDS);
275 	kfree_skb(skb);
276 	return 0;
277 
278 discard_release:
279 	/* Release the asoc/ep ref we took in the lookup calls. */
280 	if (asoc)
281 		sctp_association_put(asoc);
282 	else
283 		sctp_endpoint_put(ep);
284 
285 	goto discard_it;
286 }
287 
288 /* Process the backlog queue of the socket.  Every skb on
289  * the backlog holds a ref on an association or endpoint.
290  * We hold this ref throughout the state machine to make
291  * sure that the structure we need is still around.
292  */
293 int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
294 {
295 	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
296 	struct sctp_inq *inqueue = &chunk->rcvr->inqueue;
297 	struct sctp_ep_common *rcvr = NULL;
298 	int backloged = 0;
299 
300 	rcvr = chunk->rcvr;
301 
302 	/* If the rcvr is dead then the association or endpoint
303 	 * has been deleted and we can safely drop the chunk
304 	 * and refs that we are holding.
305 	 */
306 	if (rcvr->dead) {
307 		sctp_chunk_free(chunk);
308 		goto done;
309 	}
310 
311 	if (unlikely(rcvr->sk != sk)) {
312 		/* In this case, the association moved from one socket to
313 		 * another.  We are currently sitting on the backlog of the
314 		 * old socket, so we need to move.
315 		 * However, since we are here in the process context we
316 		 * need to take make sure that the user doesn't own
317 		 * the new socket when we process the packet.
318 		 * If the new socket is user-owned, queue the chunk to the
319 		 * backlog of the new socket without dropping any refs.
320 		 * Otherwise, we can safely push the chunk on the inqueue.
321 		 */
322 
323 		sk = rcvr->sk;
324 		sctp_bh_lock_sock(sk);
325 
326 		if (sock_owned_by_user(sk)) {
327 			sk_add_backlog(sk, skb);
328 			backloged = 1;
329 		} else
330 			sctp_inq_push(inqueue, chunk);
331 
332 		sctp_bh_unlock_sock(sk);
333 
334 		/* If the chunk was backloged again, don't drop refs */
335 		if (backloged)
336 			return 0;
337 	} else {
338 		sctp_inq_push(inqueue, chunk);
339 	}
340 
341 done:
342 	/* Release the refs we took in sctp_add_backlog */
343 	if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
344 		sctp_association_put(sctp_assoc(rcvr));
345 	else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
346 		sctp_endpoint_put(sctp_ep(rcvr));
347 	else
348 		BUG();
349 
350 	return 0;
351 }
352 
353 static void sctp_add_backlog(struct sock *sk, struct sk_buff *skb)
354 {
355 	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
356 	struct sctp_ep_common *rcvr = chunk->rcvr;
357 
358 	/* Hold the assoc/ep while hanging on the backlog queue.
359 	 * This way, we know structures we need will not disappear from us
360 	 */
361 	if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
362 		sctp_association_hold(sctp_assoc(rcvr));
363 	else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
364 		sctp_endpoint_hold(sctp_ep(rcvr));
365 	else
366 		BUG();
367 
368 	sk_add_backlog(sk, skb);
369 }
370 
371 /* Handle icmp frag needed error. */
372 void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
373 			   struct sctp_transport *t, __u32 pmtu)
374 {
375 	if (sock_owned_by_user(sk) || !t || (t->pathmtu == pmtu))
376 		return;
377 
378 	if (t->param_flags & SPP_PMTUD_ENABLE) {
379 		if (unlikely(pmtu < SCTP_DEFAULT_MINSEGMENT)) {
380 			printk(KERN_WARNING "%s: Reported pmtu %d too low, "
381 			       "using default minimum of %d\n",
382 			       __FUNCTION__, pmtu,
383 			       SCTP_DEFAULT_MINSEGMENT);
384 			/* Use default minimum segment size and disable
385 			 * pmtu discovery on this transport.
386 			 */
387 			t->pathmtu = SCTP_DEFAULT_MINSEGMENT;
388 			t->param_flags = (t->param_flags & ~SPP_PMTUD) |
389 				SPP_PMTUD_DISABLE;
390 		} else {
391 			t->pathmtu = pmtu;
392 		}
393 
394 		/* Update association pmtu. */
395 		sctp_assoc_sync_pmtu(asoc);
396 	}
397 
398 	/* Retransmit with the new pmtu setting.
399 	 * Normally, if PMTU discovery is disabled, an ICMP Fragmentation
400 	 * Needed will never be sent, but if a message was sent before
401 	 * PMTU discovery was disabled that was larger than the PMTU, it
402 	 * would not be fragmented, so it must be re-transmitted fragmented.
403 	 */
404 	sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD);
405 }
406 
407 /*
408  * SCTP Implementer's Guide, 2.37 ICMP handling procedures
409  *
410  * ICMP8) If the ICMP code is a "Unrecognized next header type encountered"
411  *        or a "Protocol Unreachable" treat this message as an abort
412  *        with the T bit set.
413  *
414  * This function sends an event to the state machine, which will abort the
415  * association.
416  *
417  */
418 void sctp_icmp_proto_unreachable(struct sock *sk,
419 			   struct sctp_association *asoc,
420 			   struct sctp_transport *t)
421 {
422 	SCTP_DEBUG_PRINTK("%s\n",  __FUNCTION__);
423 
424 	sctp_do_sm(SCTP_EVENT_T_OTHER,
425 		   SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
426 		   asoc->state, asoc->ep, asoc, t,
427 		   GFP_ATOMIC);
428 
429 }
430 
431 /* Common lookup code for icmp/icmpv6 error handler. */
432 struct sock *sctp_err_lookup(int family, struct sk_buff *skb,
433 			     struct sctphdr *sctphdr,
434 			     struct sctp_association **app,
435 			     struct sctp_transport **tpp)
436 {
437 	union sctp_addr saddr;
438 	union sctp_addr daddr;
439 	struct sctp_af *af;
440 	struct sock *sk = NULL;
441 	struct sctp_association *asoc;
442 	struct sctp_transport *transport = NULL;
443 
444 	*app = NULL; *tpp = NULL;
445 
446 	af = sctp_get_af_specific(family);
447 	if (unlikely(!af)) {
448 		return NULL;
449 	}
450 
451 	/* Initialize local addresses for lookups. */
452 	af->from_skb(&saddr, skb, 1);
453 	af->from_skb(&daddr, skb, 0);
454 
455 	/* Look for an association that matches the incoming ICMP error
456 	 * packet.
457 	 */
458 	asoc = __sctp_lookup_association(&saddr, &daddr, &transport);
459 	if (!asoc)
460 		return NULL;
461 
462 	sk = asoc->base.sk;
463 
464 	if (ntohl(sctphdr->vtag) != asoc->c.peer_vtag) {
465 		ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
466 		goto out;
467 	}
468 
469 	sctp_bh_lock_sock(sk);
470 
471 	/* If too many ICMPs get dropped on busy
472 	 * servers this needs to be solved differently.
473 	 */
474 	if (sock_owned_by_user(sk))
475 		NET_INC_STATS_BH(LINUX_MIB_LOCKDROPPEDICMPS);
476 
477 	*app = asoc;
478 	*tpp = transport;
479 	return sk;
480 
481 out:
482 	if (asoc)
483 		sctp_association_put(asoc);
484 	return NULL;
485 }
486 
487 /* Common cleanup code for icmp/icmpv6 error handler. */
488 void sctp_err_finish(struct sock *sk, struct sctp_association *asoc)
489 {
490 	sctp_bh_unlock_sock(sk);
491 	if (asoc)
492 		sctp_association_put(asoc);
493 }
494 
495 /*
496  * This routine is called by the ICMP module when it gets some
497  * sort of error condition.  If err < 0 then the socket should
498  * be closed and the error returned to the user.  If err > 0
499  * it's just the icmp type << 8 | icmp code.  After adjustment
500  * header points to the first 8 bytes of the sctp header.  We need
501  * to find the appropriate port.
502  *
503  * The locking strategy used here is very "optimistic". When
504  * someone else accesses the socket the ICMP is just dropped
505  * and for some paths there is no check at all.
506  * A more general error queue to queue errors for later handling
507  * is probably better.
508  *
509  */
510 void sctp_v4_err(struct sk_buff *skb, __u32 info)
511 {
512 	struct iphdr *iph = (struct iphdr *)skb->data;
513 	struct sctphdr *sh = (struct sctphdr *)(skb->data + (iph->ihl <<2));
514 	int type = skb->h.icmph->type;
515 	int code = skb->h.icmph->code;
516 	struct sock *sk;
517 	struct sctp_association *asoc = NULL;
518 	struct sctp_transport *transport;
519 	struct inet_sock *inet;
520 	char *saveip, *savesctp;
521 	int err;
522 
523 	if (skb->len < ((iph->ihl << 2) + 8)) {
524 		ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
525 		return;
526 	}
527 
528 	/* Fix up skb to look at the embedded net header. */
529 	saveip = skb->nh.raw;
530 	savesctp  = skb->h.raw;
531 	skb->nh.iph = iph;
532 	skb->h.raw = (char *)sh;
533 	sk = sctp_err_lookup(AF_INET, skb, sh, &asoc, &transport);
534 	/* Put back, the original pointers. */
535 	skb->nh.raw = saveip;
536 	skb->h.raw = savesctp;
537 	if (!sk) {
538 		ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
539 		return;
540 	}
541 	/* Warning:  The sock lock is held.  Remember to call
542 	 * sctp_err_finish!
543 	 */
544 
545 	switch (type) {
546 	case ICMP_PARAMETERPROB:
547 		err = EPROTO;
548 		break;
549 	case ICMP_DEST_UNREACH:
550 		if (code > NR_ICMP_UNREACH)
551 			goto out_unlock;
552 
553 		/* PMTU discovery (RFC1191) */
554 		if (ICMP_FRAG_NEEDED == code) {
555 			sctp_icmp_frag_needed(sk, asoc, transport, info);
556 			goto out_unlock;
557 		}
558 		else {
559 			if (ICMP_PROT_UNREACH == code) {
560 				sctp_icmp_proto_unreachable(sk, asoc,
561 							    transport);
562 				goto out_unlock;
563 			}
564 		}
565 		err = icmp_err_convert[code].errno;
566 		break;
567 	case ICMP_TIME_EXCEEDED:
568 		/* Ignore any time exceeded errors due to fragment reassembly
569 		 * timeouts.
570 		 */
571 		if (ICMP_EXC_FRAGTIME == code)
572 			goto out_unlock;
573 
574 		err = EHOSTUNREACH;
575 		break;
576 	default:
577 		goto out_unlock;
578 	}
579 
580 	inet = inet_sk(sk);
581 	if (!sock_owned_by_user(sk) && inet->recverr) {
582 		sk->sk_err = err;
583 		sk->sk_error_report(sk);
584 	} else {  /* Only an error on timeout */
585 		sk->sk_err_soft = err;
586 	}
587 
588 out_unlock:
589 	sctp_err_finish(sk, asoc);
590 }
591 
592 /*
593  * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
594  *
595  * This function scans all the chunks in the OOTB packet to determine if
596  * the packet should be discarded right away.  If a response might be needed
597  * for this packet, or, if further processing is possible, the packet will
598  * be queued to a proper inqueue for the next phase of handling.
599  *
600  * Output:
601  * Return 0 - If further processing is needed.
602  * Return 1 - If the packet can be discarded right away.
603  */
604 int sctp_rcv_ootb(struct sk_buff *skb)
605 {
606 	sctp_chunkhdr_t *ch;
607 	__u8 *ch_end;
608 	sctp_errhdr_t *err;
609 
610 	ch = (sctp_chunkhdr_t *) skb->data;
611 
612 	/* Scan through all the chunks in the packet.  */
613 	do {
614 		/* Break out if chunk length is less then minimal. */
615 		if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t))
616 			break;
617 
618 		ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length));
619 		if (ch_end > skb->tail)
620 			break;
621 
622 		/* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the
623 		 * receiver MUST silently discard the OOTB packet and take no
624 		 * further action.
625 		 */
626 		if (SCTP_CID_ABORT == ch->type)
627 			goto discard;
628 
629 		/* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE
630 		 * chunk, the receiver should silently discard the packet
631 		 * and take no further action.
632 		 */
633 		if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type)
634 			goto discard;
635 
636 		/* RFC 8.4, 7) If the packet contains a "Stale cookie" ERROR
637 		 * or a COOKIE ACK the SCTP Packet should be silently
638 		 * discarded.
639 		 */
640 		if (SCTP_CID_COOKIE_ACK == ch->type)
641 			goto discard;
642 
643 		if (SCTP_CID_ERROR == ch->type) {
644 			sctp_walk_errors(err, ch) {
645 				if (SCTP_ERROR_STALE_COOKIE == err->cause)
646 					goto discard;
647 			}
648 		}
649 
650 		ch = (sctp_chunkhdr_t *) ch_end;
651 	} while (ch_end < skb->tail);
652 
653 	return 0;
654 
655 discard:
656 	return 1;
657 }
658 
659 /* Insert endpoint into the hash table.  */
660 static void __sctp_hash_endpoint(struct sctp_endpoint *ep)
661 {
662 	struct sctp_ep_common **epp;
663 	struct sctp_ep_common *epb;
664 	struct sctp_hashbucket *head;
665 
666 	epb = &ep->base;
667 
668 	epb->hashent = sctp_ep_hashfn(epb->bind_addr.port);
669 	head = &sctp_ep_hashtable[epb->hashent];
670 
671 	sctp_write_lock(&head->lock);
672 	epp = &head->chain;
673 	epb->next = *epp;
674 	if (epb->next)
675 		(*epp)->pprev = &epb->next;
676 	*epp = epb;
677 	epb->pprev = epp;
678 	sctp_write_unlock(&head->lock);
679 }
680 
681 /* Add an endpoint to the hash. Local BH-safe. */
682 void sctp_hash_endpoint(struct sctp_endpoint *ep)
683 {
684 	sctp_local_bh_disable();
685 	__sctp_hash_endpoint(ep);
686 	sctp_local_bh_enable();
687 }
688 
689 /* Remove endpoint from the hash table.  */
690 static void __sctp_unhash_endpoint(struct sctp_endpoint *ep)
691 {
692 	struct sctp_hashbucket *head;
693 	struct sctp_ep_common *epb;
694 
695 	epb = &ep->base;
696 
697 	epb->hashent = sctp_ep_hashfn(epb->bind_addr.port);
698 
699 	head = &sctp_ep_hashtable[epb->hashent];
700 
701 	sctp_write_lock(&head->lock);
702 
703 	if (epb->pprev) {
704 		if (epb->next)
705 			epb->next->pprev = epb->pprev;
706 		*epb->pprev = epb->next;
707 		epb->pprev = NULL;
708 	}
709 
710 	sctp_write_unlock(&head->lock);
711 }
712 
713 /* Remove endpoint from the hash.  Local BH-safe. */
714 void sctp_unhash_endpoint(struct sctp_endpoint *ep)
715 {
716 	sctp_local_bh_disable();
717 	__sctp_unhash_endpoint(ep);
718 	sctp_local_bh_enable();
719 }
720 
721 /* Look up an endpoint. */
722 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(const union sctp_addr *laddr)
723 {
724 	struct sctp_hashbucket *head;
725 	struct sctp_ep_common *epb;
726 	struct sctp_endpoint *ep;
727 	int hash;
728 
729 	hash = sctp_ep_hashfn(ntohs(laddr->v4.sin_port));
730 	head = &sctp_ep_hashtable[hash];
731 	read_lock(&head->lock);
732 	for (epb = head->chain; epb; epb = epb->next) {
733 		ep = sctp_ep(epb);
734 		if (sctp_endpoint_is_match(ep, laddr))
735 			goto hit;
736 	}
737 
738 	ep = sctp_sk((sctp_get_ctl_sock()))->ep;
739 	epb = &ep->base;
740 
741 hit:
742 	sctp_endpoint_hold(ep);
743 	read_unlock(&head->lock);
744 	return ep;
745 }
746 
747 /* Insert association into the hash table.  */
748 static void __sctp_hash_established(struct sctp_association *asoc)
749 {
750 	struct sctp_ep_common **epp;
751 	struct sctp_ep_common *epb;
752 	struct sctp_hashbucket *head;
753 
754 	epb = &asoc->base;
755 
756 	/* Calculate which chain this entry will belong to. */
757 	epb->hashent = sctp_assoc_hashfn(epb->bind_addr.port, asoc->peer.port);
758 
759 	head = &sctp_assoc_hashtable[epb->hashent];
760 
761 	sctp_write_lock(&head->lock);
762 	epp = &head->chain;
763 	epb->next = *epp;
764 	if (epb->next)
765 		(*epp)->pprev = &epb->next;
766 	*epp = epb;
767 	epb->pprev = epp;
768 	sctp_write_unlock(&head->lock);
769 }
770 
771 /* Add an association to the hash. Local BH-safe. */
772 void sctp_hash_established(struct sctp_association *asoc)
773 {
774 	if (asoc->temp)
775 		return;
776 
777 	sctp_local_bh_disable();
778 	__sctp_hash_established(asoc);
779 	sctp_local_bh_enable();
780 }
781 
782 /* Remove association from the hash table.  */
783 static void __sctp_unhash_established(struct sctp_association *asoc)
784 {
785 	struct sctp_hashbucket *head;
786 	struct sctp_ep_common *epb;
787 
788 	epb = &asoc->base;
789 
790 	epb->hashent = sctp_assoc_hashfn(epb->bind_addr.port,
791 					 asoc->peer.port);
792 
793 	head = &sctp_assoc_hashtable[epb->hashent];
794 
795 	sctp_write_lock(&head->lock);
796 
797 	if (epb->pprev) {
798 		if (epb->next)
799 			epb->next->pprev = epb->pprev;
800 		*epb->pprev = epb->next;
801 		epb->pprev = NULL;
802 	}
803 
804 	sctp_write_unlock(&head->lock);
805 }
806 
807 /* Remove association from the hash table.  Local BH-safe. */
808 void sctp_unhash_established(struct sctp_association *asoc)
809 {
810 	if (asoc->temp)
811 		return;
812 
813 	sctp_local_bh_disable();
814 	__sctp_unhash_established(asoc);
815 	sctp_local_bh_enable();
816 }
817 
818 /* Look up an association. */
819 static struct sctp_association *__sctp_lookup_association(
820 					const union sctp_addr *local,
821 					const union sctp_addr *peer,
822 					struct sctp_transport **pt)
823 {
824 	struct sctp_hashbucket *head;
825 	struct sctp_ep_common *epb;
826 	struct sctp_association *asoc;
827 	struct sctp_transport *transport;
828 	int hash;
829 
830 	/* Optimize here for direct hit, only listening connections can
831 	 * have wildcards anyways.
832 	 */
833 	hash = sctp_assoc_hashfn(ntohs(local->v4.sin_port), ntohs(peer->v4.sin_port));
834 	head = &sctp_assoc_hashtable[hash];
835 	read_lock(&head->lock);
836 	for (epb = head->chain; epb; epb = epb->next) {
837 		asoc = sctp_assoc(epb);
838 		transport = sctp_assoc_is_match(asoc, local, peer);
839 		if (transport)
840 			goto hit;
841 	}
842 
843 	read_unlock(&head->lock);
844 
845 	return NULL;
846 
847 hit:
848 	*pt = transport;
849 	sctp_association_hold(asoc);
850 	read_unlock(&head->lock);
851 	return asoc;
852 }
853 
854 /* Look up an association. BH-safe. */
855 SCTP_STATIC
856 struct sctp_association *sctp_lookup_association(const union sctp_addr *laddr,
857 						 const union sctp_addr *paddr,
858 					    struct sctp_transport **transportp)
859 {
860 	struct sctp_association *asoc;
861 
862 	sctp_local_bh_disable();
863 	asoc = __sctp_lookup_association(laddr, paddr, transportp);
864 	sctp_local_bh_enable();
865 
866 	return asoc;
867 }
868 
869 /* Is there an association matching the given local and peer addresses? */
870 int sctp_has_association(const union sctp_addr *laddr,
871 			 const union sctp_addr *paddr)
872 {
873 	struct sctp_association *asoc;
874 	struct sctp_transport *transport;
875 
876 	if ((asoc = sctp_lookup_association(laddr, paddr, &transport))) {
877 		sctp_association_put(asoc);
878 		return 1;
879 	}
880 
881 	return 0;
882 }
883 
884 /*
885  * SCTP Implementors Guide, 2.18 Handling of address
886  * parameters within the INIT or INIT-ACK.
887  *
888  * D) When searching for a matching TCB upon reception of an INIT
889  *    or INIT-ACK chunk the receiver SHOULD use not only the
890  *    source address of the packet (containing the INIT or
891  *    INIT-ACK) but the receiver SHOULD also use all valid
892  *    address parameters contained within the chunk.
893  *
894  * 2.18.3 Solution description
895  *
896  * This new text clearly specifies to an implementor the need
897  * to look within the INIT or INIT-ACK. Any implementation that
898  * does not do this, may not be able to establish associations
899  * in certain circumstances.
900  *
901  */
902 static struct sctp_association *__sctp_rcv_init_lookup(struct sk_buff *skb,
903 	const union sctp_addr *laddr, struct sctp_transport **transportp)
904 {
905 	struct sctp_association *asoc;
906 	union sctp_addr addr;
907 	union sctp_addr *paddr = &addr;
908 	struct sctphdr *sh = (struct sctphdr *) skb->h.raw;
909 	sctp_chunkhdr_t *ch;
910 	union sctp_params params;
911 	sctp_init_chunk_t *init;
912 	struct sctp_transport *transport;
913 	struct sctp_af *af;
914 
915 	ch = (sctp_chunkhdr_t *) skb->data;
916 
917 	/* If this is INIT/INIT-ACK look inside the chunk too. */
918 	switch (ch->type) {
919 	case SCTP_CID_INIT:
920 	case SCTP_CID_INIT_ACK:
921 		break;
922 	default:
923 		return NULL;
924 	}
925 
926 	/* The code below will attempt to walk the chunk and extract
927 	 * parameter information.  Before we do that, we need to verify
928 	 * that the chunk length doesn't cause overflow.  Otherwise, we'll
929 	 * walk off the end.
930 	 */
931 	if (WORD_ROUND(ntohs(ch->length)) > skb->len)
932 		return NULL;
933 
934 	/*
935 	 * This code will NOT touch anything inside the chunk--it is
936 	 * strictly READ-ONLY.
937 	 *
938 	 * RFC 2960 3  SCTP packet Format
939 	 *
940 	 * Multiple chunks can be bundled into one SCTP packet up to
941 	 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN
942 	 * COMPLETE chunks.  These chunks MUST NOT be bundled with any
943 	 * other chunk in a packet.  See Section 6.10 for more details
944 	 * on chunk bundling.
945 	 */
946 
947 	/* Find the start of the TLVs and the end of the chunk.  This is
948 	 * the region we search for address parameters.
949 	 */
950 	init = (sctp_init_chunk_t *)skb->data;
951 
952 	/* Walk the parameters looking for embedded addresses. */
953 	sctp_walk_params(params, init, init_hdr.params) {
954 
955 		/* Note: Ignoring hostname addresses. */
956 		af = sctp_get_af_specific(param_type2af(params.p->type));
957 		if (!af)
958 			continue;
959 
960 		af->from_addr_param(paddr, params.addr, sh->source, 0);
961 
962 		asoc = __sctp_lookup_association(laddr, paddr, &transport);
963 		if (asoc)
964 			return asoc;
965 	}
966 
967 	return NULL;
968 }
969 
970 /* Lookup an association for an inbound skb. */
971 static struct sctp_association *__sctp_rcv_lookup(struct sk_buff *skb,
972 				      const union sctp_addr *paddr,
973 				      const union sctp_addr *laddr,
974 				      struct sctp_transport **transportp)
975 {
976 	struct sctp_association *asoc;
977 
978 	asoc = __sctp_lookup_association(laddr, paddr, transportp);
979 
980 	/* Further lookup for INIT/INIT-ACK packets.
981 	 * SCTP Implementors Guide, 2.18 Handling of address
982 	 * parameters within the INIT or INIT-ACK.
983 	 */
984 	if (!asoc)
985 		asoc = __sctp_rcv_init_lookup(skb, laddr, transportp);
986 
987 	return asoc;
988 }
989