xref: /openbmc/linux/net/sctp/input.c (revision b6dcefde)
1 /* SCTP kernel implementation
2  * Copyright (c) 1999-2000 Cisco, Inc.
3  * Copyright (c) 1999-2001 Motorola, Inc.
4  * Copyright (c) 2001-2003 International Business Machines, Corp.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions handle all input from the IP layer into SCTP.
12  *
13  * This SCTP implementation is free software;
14  * you can redistribute it and/or modify it under the terms of
15  * the GNU General Public License as published by
16  * the Free Software Foundation; either version 2, or (at your option)
17  * any later version.
18  *
19  * This SCTP implementation is distributed in the hope that it
20  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
21  *                 ************************
22  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
23  * See the GNU General Public License for more details.
24  *
25  * You should have received a copy of the GNU General Public License
26  * along with GNU CC; see the file COPYING.  If not, write to
27  * the Free Software Foundation, 59 Temple Place - Suite 330,
28  * Boston, MA 02111-1307, USA.
29  *
30  * Please send any bug reports or fixes you make to the
31  * email address(es):
32  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
33  *
34  * Or submit a bug report through the following website:
35  *    http://www.sf.net/projects/lksctp
36  *
37  * Written or modified by:
38  *    La Monte H.P. Yarroll <piggy@acm.org>
39  *    Karl Knutson <karl@athena.chicago.il.us>
40  *    Xingang Guo <xingang.guo@intel.com>
41  *    Jon Grimm <jgrimm@us.ibm.com>
42  *    Hui Huang <hui.huang@nokia.com>
43  *    Daisy Chang <daisyc@us.ibm.com>
44  *    Sridhar Samudrala <sri@us.ibm.com>
45  *    Ardelle Fan <ardelle.fan@intel.com>
46  *
47  * Any bugs reported given to us we will try to fix... any fixes shared will
48  * be incorporated into the next SCTP release.
49  */
50 
51 #include <linux/types.h>
52 #include <linux/list.h> /* For struct list_head */
53 #include <linux/socket.h>
54 #include <linux/ip.h>
55 #include <linux/time.h> /* For struct timeval */
56 #include <net/ip.h>
57 #include <net/icmp.h>
58 #include <net/snmp.h>
59 #include <net/sock.h>
60 #include <net/xfrm.h>
61 #include <net/sctp/sctp.h>
62 #include <net/sctp/sm.h>
63 #include <net/sctp/checksum.h>
64 #include <net/net_namespace.h>
65 
66 /* Forward declarations for internal helpers. */
67 static int sctp_rcv_ootb(struct sk_buff *);
68 static struct sctp_association *__sctp_rcv_lookup(struct sk_buff *skb,
69 				      const union sctp_addr *laddr,
70 				      const union sctp_addr *paddr,
71 				      struct sctp_transport **transportp);
72 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(const union sctp_addr *laddr);
73 static struct sctp_association *__sctp_lookup_association(
74 					const union sctp_addr *local,
75 					const union sctp_addr *peer,
76 					struct sctp_transport **pt);
77 
78 static void sctp_add_backlog(struct sock *sk, struct sk_buff *skb);
79 
80 
81 /* Calculate the SCTP checksum of an SCTP packet.  */
82 static inline int sctp_rcv_checksum(struct sk_buff *skb)
83 {
84 	struct sctphdr *sh = sctp_hdr(skb);
85 	__le32 cmp = sh->checksum;
86 	struct sk_buff *list;
87 	__le32 val;
88 	__u32 tmp = sctp_start_cksum((__u8 *)sh, skb_headlen(skb));
89 
90 	skb_walk_frags(skb, list)
91 		tmp = sctp_update_cksum((__u8 *)list->data, skb_headlen(list),
92 					tmp);
93 
94 	val = sctp_end_cksum(tmp);
95 
96 	if (val != cmp) {
97 		/* CRC failure, dump it. */
98 		SCTP_INC_STATS_BH(SCTP_MIB_CHECKSUMERRORS);
99 		return -1;
100 	}
101 	return 0;
102 }
103 
104 struct sctp_input_cb {
105 	union {
106 		struct inet_skb_parm	h4;
107 #if defined(CONFIG_IPV6) || defined (CONFIG_IPV6_MODULE)
108 		struct inet6_skb_parm	h6;
109 #endif
110 	} header;
111 	struct sctp_chunk *chunk;
112 };
113 #define SCTP_INPUT_CB(__skb)	((struct sctp_input_cb *)&((__skb)->cb[0]))
114 
115 /*
116  * This is the routine which IP calls when receiving an SCTP packet.
117  */
118 int sctp_rcv(struct sk_buff *skb)
119 {
120 	struct sock *sk;
121 	struct sctp_association *asoc;
122 	struct sctp_endpoint *ep = NULL;
123 	struct sctp_ep_common *rcvr;
124 	struct sctp_transport *transport = NULL;
125 	struct sctp_chunk *chunk;
126 	struct sctphdr *sh;
127 	union sctp_addr src;
128 	union sctp_addr dest;
129 	int family;
130 	struct sctp_af *af;
131 
132 	if (skb->pkt_type!=PACKET_HOST)
133 		goto discard_it;
134 
135 	SCTP_INC_STATS_BH(SCTP_MIB_INSCTPPACKS);
136 
137 	if (skb_linearize(skb))
138 		goto discard_it;
139 
140 	sh = sctp_hdr(skb);
141 
142 	/* Pull up the IP and SCTP headers. */
143 	__skb_pull(skb, skb_transport_offset(skb));
144 	if (skb->len < sizeof(struct sctphdr))
145 		goto discard_it;
146 	if (!sctp_checksum_disable && !skb_csum_unnecessary(skb) &&
147 		  sctp_rcv_checksum(skb) < 0)
148 		goto discard_it;
149 
150 	skb_pull(skb, sizeof(struct sctphdr));
151 
152 	/* Make sure we at least have chunk headers worth of data left. */
153 	if (skb->len < sizeof(struct sctp_chunkhdr))
154 		goto discard_it;
155 
156 	family = ipver2af(ip_hdr(skb)->version);
157 	af = sctp_get_af_specific(family);
158 	if (unlikely(!af))
159 		goto discard_it;
160 
161 	/* Initialize local addresses for lookups. */
162 	af->from_skb(&src, skb, 1);
163 	af->from_skb(&dest, skb, 0);
164 
165 	/* If the packet is to or from a non-unicast address,
166 	 * silently discard the packet.
167 	 *
168 	 * This is not clearly defined in the RFC except in section
169 	 * 8.4 - OOTB handling.  However, based on the book "Stream Control
170 	 * Transmission Protocol" 2.1, "It is important to note that the
171 	 * IP address of an SCTP transport address must be a routable
172 	 * unicast address.  In other words, IP multicast addresses and
173 	 * IP broadcast addresses cannot be used in an SCTP transport
174 	 * address."
175 	 */
176 	if (!af->addr_valid(&src, NULL, skb) ||
177 	    !af->addr_valid(&dest, NULL, skb))
178 		goto discard_it;
179 
180 	asoc = __sctp_rcv_lookup(skb, &src, &dest, &transport);
181 
182 	if (!asoc)
183 		ep = __sctp_rcv_lookup_endpoint(&dest);
184 
185 	/* Retrieve the common input handling substructure. */
186 	rcvr = asoc ? &asoc->base : &ep->base;
187 	sk = rcvr->sk;
188 
189 	/*
190 	 * If a frame arrives on an interface and the receiving socket is
191 	 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB
192 	 */
193 	if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb)))
194 	{
195 		if (asoc) {
196 			sctp_association_put(asoc);
197 			asoc = NULL;
198 		} else {
199 			sctp_endpoint_put(ep);
200 			ep = NULL;
201 		}
202 		sk = sctp_get_ctl_sock();
203 		ep = sctp_sk(sk)->ep;
204 		sctp_endpoint_hold(ep);
205 		rcvr = &ep->base;
206 	}
207 
208 	/*
209 	 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
210 	 * An SCTP packet is called an "out of the blue" (OOTB)
211 	 * packet if it is correctly formed, i.e., passed the
212 	 * receiver's checksum check, but the receiver is not
213 	 * able to identify the association to which this
214 	 * packet belongs.
215 	 */
216 	if (!asoc) {
217 		if (sctp_rcv_ootb(skb)) {
218 			SCTP_INC_STATS_BH(SCTP_MIB_OUTOFBLUES);
219 			goto discard_release;
220 		}
221 	}
222 
223 	if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family))
224 		goto discard_release;
225 	nf_reset(skb);
226 
227 	if (sk_filter(sk, skb))
228 		goto discard_release;
229 
230 	/* Create an SCTP packet structure. */
231 	chunk = sctp_chunkify(skb, asoc, sk);
232 	if (!chunk)
233 		goto discard_release;
234 	SCTP_INPUT_CB(skb)->chunk = chunk;
235 
236 	/* Remember what endpoint is to handle this packet. */
237 	chunk->rcvr = rcvr;
238 
239 	/* Remember the SCTP header. */
240 	chunk->sctp_hdr = sh;
241 
242 	/* Set the source and destination addresses of the incoming chunk.  */
243 	sctp_init_addrs(chunk, &src, &dest);
244 
245 	/* Remember where we came from.  */
246 	chunk->transport = transport;
247 
248 	/* Acquire access to the sock lock. Note: We are safe from other
249 	 * bottom halves on this lock, but a user may be in the lock too,
250 	 * so check if it is busy.
251 	 */
252 	sctp_bh_lock_sock(sk);
253 
254 	if (sk != rcvr->sk) {
255 		/* Our cached sk is different from the rcvr->sk.  This is
256 		 * because migrate()/accept() may have moved the association
257 		 * to a new socket and released all the sockets.  So now we
258 		 * are holding a lock on the old socket while the user may
259 		 * be doing something with the new socket.  Switch our veiw
260 		 * of the current sk.
261 		 */
262 		sctp_bh_unlock_sock(sk);
263 		sk = rcvr->sk;
264 		sctp_bh_lock_sock(sk);
265 	}
266 
267 	if (sock_owned_by_user(sk)) {
268 		SCTP_INC_STATS_BH(SCTP_MIB_IN_PKT_BACKLOG);
269 		sctp_add_backlog(sk, skb);
270 	} else {
271 		SCTP_INC_STATS_BH(SCTP_MIB_IN_PKT_SOFTIRQ);
272 		sctp_inq_push(&chunk->rcvr->inqueue, chunk);
273 	}
274 
275 	sctp_bh_unlock_sock(sk);
276 
277 	/* Release the asoc/ep ref we took in the lookup calls. */
278 	if (asoc)
279 		sctp_association_put(asoc);
280 	else
281 		sctp_endpoint_put(ep);
282 
283 	return 0;
284 
285 discard_it:
286 	SCTP_INC_STATS_BH(SCTP_MIB_IN_PKT_DISCARDS);
287 	kfree_skb(skb);
288 	return 0;
289 
290 discard_release:
291 	/* Release the asoc/ep ref we took in the lookup calls. */
292 	if (asoc)
293 		sctp_association_put(asoc);
294 	else
295 		sctp_endpoint_put(ep);
296 
297 	goto discard_it;
298 }
299 
300 /* Process the backlog queue of the socket.  Every skb on
301  * the backlog holds a ref on an association or endpoint.
302  * We hold this ref throughout the state machine to make
303  * sure that the structure we need is still around.
304  */
305 int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
306 {
307 	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
308 	struct sctp_inq *inqueue = &chunk->rcvr->inqueue;
309 	struct sctp_ep_common *rcvr = NULL;
310 	int backloged = 0;
311 
312 	rcvr = chunk->rcvr;
313 
314 	/* If the rcvr is dead then the association or endpoint
315 	 * has been deleted and we can safely drop the chunk
316 	 * and refs that we are holding.
317 	 */
318 	if (rcvr->dead) {
319 		sctp_chunk_free(chunk);
320 		goto done;
321 	}
322 
323 	if (unlikely(rcvr->sk != sk)) {
324 		/* In this case, the association moved from one socket to
325 		 * another.  We are currently sitting on the backlog of the
326 		 * old socket, so we need to move.
327 		 * However, since we are here in the process context we
328 		 * need to take make sure that the user doesn't own
329 		 * the new socket when we process the packet.
330 		 * If the new socket is user-owned, queue the chunk to the
331 		 * backlog of the new socket without dropping any refs.
332 		 * Otherwise, we can safely push the chunk on the inqueue.
333 		 */
334 
335 		sk = rcvr->sk;
336 		sctp_bh_lock_sock(sk);
337 
338 		if (sock_owned_by_user(sk)) {
339 			sk_add_backlog(sk, skb);
340 			backloged = 1;
341 		} else
342 			sctp_inq_push(inqueue, chunk);
343 
344 		sctp_bh_unlock_sock(sk);
345 
346 		/* If the chunk was backloged again, don't drop refs */
347 		if (backloged)
348 			return 0;
349 	} else {
350 		sctp_inq_push(inqueue, chunk);
351 	}
352 
353 done:
354 	/* Release the refs we took in sctp_add_backlog */
355 	if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
356 		sctp_association_put(sctp_assoc(rcvr));
357 	else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
358 		sctp_endpoint_put(sctp_ep(rcvr));
359 	else
360 		BUG();
361 
362 	return 0;
363 }
364 
365 static void sctp_add_backlog(struct sock *sk, struct sk_buff *skb)
366 {
367 	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
368 	struct sctp_ep_common *rcvr = chunk->rcvr;
369 
370 	/* Hold the assoc/ep while hanging on the backlog queue.
371 	 * This way, we know structures we need will not disappear from us
372 	 */
373 	if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
374 		sctp_association_hold(sctp_assoc(rcvr));
375 	else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
376 		sctp_endpoint_hold(sctp_ep(rcvr));
377 	else
378 		BUG();
379 
380 	sk_add_backlog(sk, skb);
381 }
382 
383 /* Handle icmp frag needed error. */
384 void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
385 			   struct sctp_transport *t, __u32 pmtu)
386 {
387 	if (!t || (t->pathmtu <= pmtu))
388 		return;
389 
390 	if (sock_owned_by_user(sk)) {
391 		asoc->pmtu_pending = 1;
392 		t->pmtu_pending = 1;
393 		return;
394 	}
395 
396 	if (t->param_flags & SPP_PMTUD_ENABLE) {
397 		/* Update transports view of the MTU */
398 		sctp_transport_update_pmtu(t, pmtu);
399 
400 		/* Update association pmtu. */
401 		sctp_assoc_sync_pmtu(asoc);
402 	}
403 
404 	/* Retransmit with the new pmtu setting.
405 	 * Normally, if PMTU discovery is disabled, an ICMP Fragmentation
406 	 * Needed will never be sent, but if a message was sent before
407 	 * PMTU discovery was disabled that was larger than the PMTU, it
408 	 * would not be fragmented, so it must be re-transmitted fragmented.
409 	 */
410 	sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD);
411 }
412 
413 /*
414  * SCTP Implementer's Guide, 2.37 ICMP handling procedures
415  *
416  * ICMP8) If the ICMP code is a "Unrecognized next header type encountered"
417  *        or a "Protocol Unreachable" treat this message as an abort
418  *        with the T bit set.
419  *
420  * This function sends an event to the state machine, which will abort the
421  * association.
422  *
423  */
424 void sctp_icmp_proto_unreachable(struct sock *sk,
425 			   struct sctp_association *asoc,
426 			   struct sctp_transport *t)
427 {
428 	SCTP_DEBUG_PRINTK("%s\n",  __func__);
429 
430 	sctp_do_sm(SCTP_EVENT_T_OTHER,
431 		   SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
432 		   asoc->state, asoc->ep, asoc, t,
433 		   GFP_ATOMIC);
434 
435 }
436 
437 /* Common lookup code for icmp/icmpv6 error handler. */
438 struct sock *sctp_err_lookup(int family, struct sk_buff *skb,
439 			     struct sctphdr *sctphdr,
440 			     struct sctp_association **app,
441 			     struct sctp_transport **tpp)
442 {
443 	union sctp_addr saddr;
444 	union sctp_addr daddr;
445 	struct sctp_af *af;
446 	struct sock *sk = NULL;
447 	struct sctp_association *asoc;
448 	struct sctp_transport *transport = NULL;
449 	struct sctp_init_chunk *chunkhdr;
450 	__u32 vtag = ntohl(sctphdr->vtag);
451 	int len = skb->len - ((void *)sctphdr - (void *)skb->data);
452 
453 	*app = NULL; *tpp = NULL;
454 
455 	af = sctp_get_af_specific(family);
456 	if (unlikely(!af)) {
457 		return NULL;
458 	}
459 
460 	/* Initialize local addresses for lookups. */
461 	af->from_skb(&saddr, skb, 1);
462 	af->from_skb(&daddr, skb, 0);
463 
464 	/* Look for an association that matches the incoming ICMP error
465 	 * packet.
466 	 */
467 	asoc = __sctp_lookup_association(&saddr, &daddr, &transport);
468 	if (!asoc)
469 		return NULL;
470 
471 	sk = asoc->base.sk;
472 
473 	/* RFC 4960, Appendix C. ICMP Handling
474 	 *
475 	 * ICMP6) An implementation MUST validate that the Verification Tag
476 	 * contained in the ICMP message matches the Verification Tag of
477 	 * the peer.  If the Verification Tag is not 0 and does NOT
478 	 * match, discard the ICMP message.  If it is 0 and the ICMP
479 	 * message contains enough bytes to verify that the chunk type is
480 	 * an INIT chunk and that the Initiate Tag matches the tag of the
481 	 * peer, continue with ICMP7.  If the ICMP message is too short
482 	 * or the chunk type or the Initiate Tag does not match, silently
483 	 * discard the packet.
484 	 */
485 	if (vtag == 0) {
486 		chunkhdr = (struct sctp_init_chunk *)((void *)sctphdr
487 				+ sizeof(struct sctphdr));
488 		if (len < sizeof(struct sctphdr) + sizeof(sctp_chunkhdr_t)
489 			  + sizeof(__be32) ||
490 		    chunkhdr->chunk_hdr.type != SCTP_CID_INIT ||
491 		    ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag) {
492 			goto out;
493 		}
494 	} else if (vtag != asoc->c.peer_vtag) {
495 		goto out;
496 	}
497 
498 	sctp_bh_lock_sock(sk);
499 
500 	/* If too many ICMPs get dropped on busy
501 	 * servers this needs to be solved differently.
502 	 */
503 	if (sock_owned_by_user(sk))
504 		NET_INC_STATS_BH(&init_net, LINUX_MIB_LOCKDROPPEDICMPS);
505 
506 	*app = asoc;
507 	*tpp = transport;
508 	return sk;
509 
510 out:
511 	if (asoc)
512 		sctp_association_put(asoc);
513 	return NULL;
514 }
515 
516 /* Common cleanup code for icmp/icmpv6 error handler. */
517 void sctp_err_finish(struct sock *sk, struct sctp_association *asoc)
518 {
519 	sctp_bh_unlock_sock(sk);
520 	if (asoc)
521 		sctp_association_put(asoc);
522 }
523 
524 /*
525  * This routine is called by the ICMP module when it gets some
526  * sort of error condition.  If err < 0 then the socket should
527  * be closed and the error returned to the user.  If err > 0
528  * it's just the icmp type << 8 | icmp code.  After adjustment
529  * header points to the first 8 bytes of the sctp header.  We need
530  * to find the appropriate port.
531  *
532  * The locking strategy used here is very "optimistic". When
533  * someone else accesses the socket the ICMP is just dropped
534  * and for some paths there is no check at all.
535  * A more general error queue to queue errors for later handling
536  * is probably better.
537  *
538  */
539 void sctp_v4_err(struct sk_buff *skb, __u32 info)
540 {
541 	struct iphdr *iph = (struct iphdr *)skb->data;
542 	const int ihlen = iph->ihl * 4;
543 	const int type = icmp_hdr(skb)->type;
544 	const int code = icmp_hdr(skb)->code;
545 	struct sock *sk;
546 	struct sctp_association *asoc = NULL;
547 	struct sctp_transport *transport;
548 	struct inet_sock *inet;
549 	sk_buff_data_t saveip, savesctp;
550 	int err;
551 
552 	if (skb->len < ihlen + 8) {
553 		ICMP_INC_STATS_BH(&init_net, ICMP_MIB_INERRORS);
554 		return;
555 	}
556 
557 	/* Fix up skb to look at the embedded net header. */
558 	saveip = skb->network_header;
559 	savesctp = skb->transport_header;
560 	skb_reset_network_header(skb);
561 	skb_set_transport_header(skb, ihlen);
562 	sk = sctp_err_lookup(AF_INET, skb, sctp_hdr(skb), &asoc, &transport);
563 	/* Put back, the original values. */
564 	skb->network_header = saveip;
565 	skb->transport_header = savesctp;
566 	if (!sk) {
567 		ICMP_INC_STATS_BH(&init_net, ICMP_MIB_INERRORS);
568 		return;
569 	}
570 	/* Warning:  The sock lock is held.  Remember to call
571 	 * sctp_err_finish!
572 	 */
573 
574 	switch (type) {
575 	case ICMP_PARAMETERPROB:
576 		err = EPROTO;
577 		break;
578 	case ICMP_DEST_UNREACH:
579 		if (code > NR_ICMP_UNREACH)
580 			goto out_unlock;
581 
582 		/* PMTU discovery (RFC1191) */
583 		if (ICMP_FRAG_NEEDED == code) {
584 			sctp_icmp_frag_needed(sk, asoc, transport, info);
585 			goto out_unlock;
586 		}
587 		else {
588 			if (ICMP_PROT_UNREACH == code) {
589 				sctp_icmp_proto_unreachable(sk, asoc,
590 							    transport);
591 				goto out_unlock;
592 			}
593 		}
594 		err = icmp_err_convert[code].errno;
595 		break;
596 	case ICMP_TIME_EXCEEDED:
597 		/* Ignore any time exceeded errors due to fragment reassembly
598 		 * timeouts.
599 		 */
600 		if (ICMP_EXC_FRAGTIME == code)
601 			goto out_unlock;
602 
603 		err = EHOSTUNREACH;
604 		break;
605 	default:
606 		goto out_unlock;
607 	}
608 
609 	inet = inet_sk(sk);
610 	if (!sock_owned_by_user(sk) && inet->recverr) {
611 		sk->sk_err = err;
612 		sk->sk_error_report(sk);
613 	} else {  /* Only an error on timeout */
614 		sk->sk_err_soft = err;
615 	}
616 
617 out_unlock:
618 	sctp_err_finish(sk, asoc);
619 }
620 
621 /*
622  * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
623  *
624  * This function scans all the chunks in the OOTB packet to determine if
625  * the packet should be discarded right away.  If a response might be needed
626  * for this packet, or, if further processing is possible, the packet will
627  * be queued to a proper inqueue for the next phase of handling.
628  *
629  * Output:
630  * Return 0 - If further processing is needed.
631  * Return 1 - If the packet can be discarded right away.
632  */
633 static int sctp_rcv_ootb(struct sk_buff *skb)
634 {
635 	sctp_chunkhdr_t *ch;
636 	__u8 *ch_end;
637 	sctp_errhdr_t *err;
638 
639 	ch = (sctp_chunkhdr_t *) skb->data;
640 
641 	/* Scan through all the chunks in the packet.  */
642 	do {
643 		/* Break out if chunk length is less then minimal. */
644 		if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t))
645 			break;
646 
647 		ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length));
648 		if (ch_end > skb_tail_pointer(skb))
649 			break;
650 
651 		/* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the
652 		 * receiver MUST silently discard the OOTB packet and take no
653 		 * further action.
654 		 */
655 		if (SCTP_CID_ABORT == ch->type)
656 			goto discard;
657 
658 		/* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE
659 		 * chunk, the receiver should silently discard the packet
660 		 * and take no further action.
661 		 */
662 		if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type)
663 			goto discard;
664 
665 		/* RFC 4460, 2.11.2
666 		 * This will discard packets with INIT chunk bundled as
667 		 * subsequent chunks in the packet.  When INIT is first,
668 		 * the normal INIT processing will discard the chunk.
669 		 */
670 		if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data)
671 			goto discard;
672 
673 		/* RFC 8.4, 7) If the packet contains a "Stale cookie" ERROR
674 		 * or a COOKIE ACK the SCTP Packet should be silently
675 		 * discarded.
676 		 */
677 		if (SCTP_CID_COOKIE_ACK == ch->type)
678 			goto discard;
679 
680 		if (SCTP_CID_ERROR == ch->type) {
681 			sctp_walk_errors(err, ch) {
682 				if (SCTP_ERROR_STALE_COOKIE == err->cause)
683 					goto discard;
684 			}
685 		}
686 
687 		ch = (sctp_chunkhdr_t *) ch_end;
688 	} while (ch_end < skb_tail_pointer(skb));
689 
690 	return 0;
691 
692 discard:
693 	return 1;
694 }
695 
696 /* Insert endpoint into the hash table.  */
697 static void __sctp_hash_endpoint(struct sctp_endpoint *ep)
698 {
699 	struct sctp_ep_common *epb;
700 	struct sctp_hashbucket *head;
701 
702 	epb = &ep->base;
703 
704 	epb->hashent = sctp_ep_hashfn(epb->bind_addr.port);
705 	head = &sctp_ep_hashtable[epb->hashent];
706 
707 	sctp_write_lock(&head->lock);
708 	hlist_add_head(&epb->node, &head->chain);
709 	sctp_write_unlock(&head->lock);
710 }
711 
712 /* Add an endpoint to the hash. Local BH-safe. */
713 void sctp_hash_endpoint(struct sctp_endpoint *ep)
714 {
715 	sctp_local_bh_disable();
716 	__sctp_hash_endpoint(ep);
717 	sctp_local_bh_enable();
718 }
719 
720 /* Remove endpoint from the hash table.  */
721 static void __sctp_unhash_endpoint(struct sctp_endpoint *ep)
722 {
723 	struct sctp_hashbucket *head;
724 	struct sctp_ep_common *epb;
725 
726 	epb = &ep->base;
727 
728 	if (hlist_unhashed(&epb->node))
729 		return;
730 
731 	epb->hashent = sctp_ep_hashfn(epb->bind_addr.port);
732 
733 	head = &sctp_ep_hashtable[epb->hashent];
734 
735 	sctp_write_lock(&head->lock);
736 	__hlist_del(&epb->node);
737 	sctp_write_unlock(&head->lock);
738 }
739 
740 /* Remove endpoint from the hash.  Local BH-safe. */
741 void sctp_unhash_endpoint(struct sctp_endpoint *ep)
742 {
743 	sctp_local_bh_disable();
744 	__sctp_unhash_endpoint(ep);
745 	sctp_local_bh_enable();
746 }
747 
748 /* Look up an endpoint. */
749 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(const union sctp_addr *laddr)
750 {
751 	struct sctp_hashbucket *head;
752 	struct sctp_ep_common *epb;
753 	struct sctp_endpoint *ep;
754 	struct hlist_node *node;
755 	int hash;
756 
757 	hash = sctp_ep_hashfn(ntohs(laddr->v4.sin_port));
758 	head = &sctp_ep_hashtable[hash];
759 	read_lock(&head->lock);
760 	sctp_for_each_hentry(epb, node, &head->chain) {
761 		ep = sctp_ep(epb);
762 		if (sctp_endpoint_is_match(ep, laddr))
763 			goto hit;
764 	}
765 
766 	ep = sctp_sk((sctp_get_ctl_sock()))->ep;
767 
768 hit:
769 	sctp_endpoint_hold(ep);
770 	read_unlock(&head->lock);
771 	return ep;
772 }
773 
774 /* Insert association into the hash table.  */
775 static void __sctp_hash_established(struct sctp_association *asoc)
776 {
777 	struct sctp_ep_common *epb;
778 	struct sctp_hashbucket *head;
779 
780 	epb = &asoc->base;
781 
782 	/* Calculate which chain this entry will belong to. */
783 	epb->hashent = sctp_assoc_hashfn(epb->bind_addr.port, asoc->peer.port);
784 
785 	head = &sctp_assoc_hashtable[epb->hashent];
786 
787 	sctp_write_lock(&head->lock);
788 	hlist_add_head(&epb->node, &head->chain);
789 	sctp_write_unlock(&head->lock);
790 }
791 
792 /* Add an association to the hash. Local BH-safe. */
793 void sctp_hash_established(struct sctp_association *asoc)
794 {
795 	if (asoc->temp)
796 		return;
797 
798 	sctp_local_bh_disable();
799 	__sctp_hash_established(asoc);
800 	sctp_local_bh_enable();
801 }
802 
803 /* Remove association from the hash table.  */
804 static void __sctp_unhash_established(struct sctp_association *asoc)
805 {
806 	struct sctp_hashbucket *head;
807 	struct sctp_ep_common *epb;
808 
809 	epb = &asoc->base;
810 
811 	epb->hashent = sctp_assoc_hashfn(epb->bind_addr.port,
812 					 asoc->peer.port);
813 
814 	head = &sctp_assoc_hashtable[epb->hashent];
815 
816 	sctp_write_lock(&head->lock);
817 	__hlist_del(&epb->node);
818 	sctp_write_unlock(&head->lock);
819 }
820 
821 /* Remove association from the hash table.  Local BH-safe. */
822 void sctp_unhash_established(struct sctp_association *asoc)
823 {
824 	if (asoc->temp)
825 		return;
826 
827 	sctp_local_bh_disable();
828 	__sctp_unhash_established(asoc);
829 	sctp_local_bh_enable();
830 }
831 
832 /* Look up an association. */
833 static struct sctp_association *__sctp_lookup_association(
834 					const union sctp_addr *local,
835 					const union sctp_addr *peer,
836 					struct sctp_transport **pt)
837 {
838 	struct sctp_hashbucket *head;
839 	struct sctp_ep_common *epb;
840 	struct sctp_association *asoc;
841 	struct sctp_transport *transport;
842 	struct hlist_node *node;
843 	int hash;
844 
845 	/* Optimize here for direct hit, only listening connections can
846 	 * have wildcards anyways.
847 	 */
848 	hash = sctp_assoc_hashfn(ntohs(local->v4.sin_port), ntohs(peer->v4.sin_port));
849 	head = &sctp_assoc_hashtable[hash];
850 	read_lock(&head->lock);
851 	sctp_for_each_hentry(epb, node, &head->chain) {
852 		asoc = sctp_assoc(epb);
853 		transport = sctp_assoc_is_match(asoc, local, peer);
854 		if (transport)
855 			goto hit;
856 	}
857 
858 	read_unlock(&head->lock);
859 
860 	return NULL;
861 
862 hit:
863 	*pt = transport;
864 	sctp_association_hold(asoc);
865 	read_unlock(&head->lock);
866 	return asoc;
867 }
868 
869 /* Look up an association. BH-safe. */
870 SCTP_STATIC
871 struct sctp_association *sctp_lookup_association(const union sctp_addr *laddr,
872 						 const union sctp_addr *paddr,
873 					    struct sctp_transport **transportp)
874 {
875 	struct sctp_association *asoc;
876 
877 	sctp_local_bh_disable();
878 	asoc = __sctp_lookup_association(laddr, paddr, transportp);
879 	sctp_local_bh_enable();
880 
881 	return asoc;
882 }
883 
884 /* Is there an association matching the given local and peer addresses? */
885 int sctp_has_association(const union sctp_addr *laddr,
886 			 const union sctp_addr *paddr)
887 {
888 	struct sctp_association *asoc;
889 	struct sctp_transport *transport;
890 
891 	if ((asoc = sctp_lookup_association(laddr, paddr, &transport))) {
892 		sctp_association_put(asoc);
893 		return 1;
894 	}
895 
896 	return 0;
897 }
898 
899 /*
900  * SCTP Implementors Guide, 2.18 Handling of address
901  * parameters within the INIT or INIT-ACK.
902  *
903  * D) When searching for a matching TCB upon reception of an INIT
904  *    or INIT-ACK chunk the receiver SHOULD use not only the
905  *    source address of the packet (containing the INIT or
906  *    INIT-ACK) but the receiver SHOULD also use all valid
907  *    address parameters contained within the chunk.
908  *
909  * 2.18.3 Solution description
910  *
911  * This new text clearly specifies to an implementor the need
912  * to look within the INIT or INIT-ACK. Any implementation that
913  * does not do this, may not be able to establish associations
914  * in certain circumstances.
915  *
916  */
917 static struct sctp_association *__sctp_rcv_init_lookup(struct sk_buff *skb,
918 	const union sctp_addr *laddr, struct sctp_transport **transportp)
919 {
920 	struct sctp_association *asoc;
921 	union sctp_addr addr;
922 	union sctp_addr *paddr = &addr;
923 	struct sctphdr *sh = sctp_hdr(skb);
924 	sctp_chunkhdr_t *ch;
925 	union sctp_params params;
926 	sctp_init_chunk_t *init;
927 	struct sctp_transport *transport;
928 	struct sctp_af *af;
929 
930 	ch = (sctp_chunkhdr_t *) skb->data;
931 
932 	/*
933 	 * This code will NOT touch anything inside the chunk--it is
934 	 * strictly READ-ONLY.
935 	 *
936 	 * RFC 2960 3  SCTP packet Format
937 	 *
938 	 * Multiple chunks can be bundled into one SCTP packet up to
939 	 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN
940 	 * COMPLETE chunks.  These chunks MUST NOT be bundled with any
941 	 * other chunk in a packet.  See Section 6.10 for more details
942 	 * on chunk bundling.
943 	 */
944 
945 	/* Find the start of the TLVs and the end of the chunk.  This is
946 	 * the region we search for address parameters.
947 	 */
948 	init = (sctp_init_chunk_t *)skb->data;
949 
950 	/* Walk the parameters looking for embedded addresses. */
951 	sctp_walk_params(params, init, init_hdr.params) {
952 
953 		/* Note: Ignoring hostname addresses. */
954 		af = sctp_get_af_specific(param_type2af(params.p->type));
955 		if (!af)
956 			continue;
957 
958 		af->from_addr_param(paddr, params.addr, sh->source, 0);
959 
960 		asoc = __sctp_lookup_association(laddr, paddr, &transport);
961 		if (asoc)
962 			return asoc;
963 	}
964 
965 	return NULL;
966 }
967 
968 /* ADD-IP, Section 5.2
969  * When an endpoint receives an ASCONF Chunk from the remote peer
970  * special procedures may be needed to identify the association the
971  * ASCONF Chunk is associated with. To properly find the association
972  * the following procedures SHOULD be followed:
973  *
974  * D2) If the association is not found, use the address found in the
975  * Address Parameter TLV combined with the port number found in the
976  * SCTP common header. If found proceed to rule D4.
977  *
978  * D2-ext) If more than one ASCONF Chunks are packed together, use the
979  * address found in the ASCONF Address Parameter TLV of each of the
980  * subsequent ASCONF Chunks. If found, proceed to rule D4.
981  */
982 static struct sctp_association *__sctp_rcv_asconf_lookup(
983 					sctp_chunkhdr_t *ch,
984 					const union sctp_addr *laddr,
985 					__be16 peer_port,
986 					struct sctp_transport **transportp)
987 {
988 	sctp_addip_chunk_t *asconf = (struct sctp_addip_chunk *)ch;
989 	struct sctp_af *af;
990 	union sctp_addr_param *param;
991 	union sctp_addr paddr;
992 
993 	/* Skip over the ADDIP header and find the Address parameter */
994 	param = (union sctp_addr_param *)(asconf + 1);
995 
996 	af = sctp_get_af_specific(param_type2af(param->v4.param_hdr.type));
997 	if (unlikely(!af))
998 		return NULL;
999 
1000 	af->from_addr_param(&paddr, param, peer_port, 0);
1001 
1002 	return __sctp_lookup_association(laddr, &paddr, transportp);
1003 }
1004 
1005 
1006 /* SCTP-AUTH, Section 6.3:
1007 *    If the receiver does not find a STCB for a packet containing an AUTH
1008 *    chunk as the first chunk and not a COOKIE-ECHO chunk as the second
1009 *    chunk, it MUST use the chunks after the AUTH chunk to look up an existing
1010 *    association.
1011 *
1012 * This means that any chunks that can help us identify the association need
1013 * to be looked at to find this assocation.
1014 */
1015 static struct sctp_association *__sctp_rcv_walk_lookup(struct sk_buff *skb,
1016 				      const union sctp_addr *laddr,
1017 				      struct sctp_transport **transportp)
1018 {
1019 	struct sctp_association *asoc = NULL;
1020 	sctp_chunkhdr_t *ch;
1021 	int have_auth = 0;
1022 	unsigned int chunk_num = 1;
1023 	__u8 *ch_end;
1024 
1025 	/* Walk through the chunks looking for AUTH or ASCONF chunks
1026 	 * to help us find the association.
1027 	 */
1028 	ch = (sctp_chunkhdr_t *) skb->data;
1029 	do {
1030 		/* Break out if chunk length is less then minimal. */
1031 		if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t))
1032 			break;
1033 
1034 		ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length));
1035 		if (ch_end > skb_tail_pointer(skb))
1036 			break;
1037 
1038 		switch(ch->type) {
1039 		    case SCTP_CID_AUTH:
1040 			    have_auth = chunk_num;
1041 			    break;
1042 
1043 		    case SCTP_CID_COOKIE_ECHO:
1044 			    /* If a packet arrives containing an AUTH chunk as
1045 			     * a first chunk, a COOKIE-ECHO chunk as the second
1046 			     * chunk, and possibly more chunks after them, and
1047 			     * the receiver does not have an STCB for that
1048 			     * packet, then authentication is based on
1049 			     * the contents of the COOKIE- ECHO chunk.
1050 			     */
1051 			    if (have_auth == 1 && chunk_num == 2)
1052 				    return NULL;
1053 			    break;
1054 
1055 		    case SCTP_CID_ASCONF:
1056 			    if (have_auth || sctp_addip_noauth)
1057 				    asoc = __sctp_rcv_asconf_lookup(ch, laddr,
1058 							sctp_hdr(skb)->source,
1059 							transportp);
1060 		    default:
1061 			    break;
1062 		}
1063 
1064 		if (asoc)
1065 			break;
1066 
1067 		ch = (sctp_chunkhdr_t *) ch_end;
1068 		chunk_num++;
1069 	} while (ch_end < skb_tail_pointer(skb));
1070 
1071 	return asoc;
1072 }
1073 
1074 /*
1075  * There are circumstances when we need to look inside the SCTP packet
1076  * for information to help us find the association.   Examples
1077  * include looking inside of INIT/INIT-ACK chunks or after the AUTH
1078  * chunks.
1079  */
1080 static struct sctp_association *__sctp_rcv_lookup_harder(struct sk_buff *skb,
1081 				      const union sctp_addr *laddr,
1082 				      struct sctp_transport **transportp)
1083 {
1084 	sctp_chunkhdr_t *ch;
1085 
1086 	ch = (sctp_chunkhdr_t *) skb->data;
1087 
1088 	/* The code below will attempt to walk the chunk and extract
1089 	 * parameter information.  Before we do that, we need to verify
1090 	 * that the chunk length doesn't cause overflow.  Otherwise, we'll
1091 	 * walk off the end.
1092 	 */
1093 	if (WORD_ROUND(ntohs(ch->length)) > skb->len)
1094 		return NULL;
1095 
1096 	/* If this is INIT/INIT-ACK look inside the chunk too. */
1097 	switch (ch->type) {
1098 	case SCTP_CID_INIT:
1099 	case SCTP_CID_INIT_ACK:
1100 		return __sctp_rcv_init_lookup(skb, laddr, transportp);
1101 		break;
1102 
1103 	default:
1104 		return __sctp_rcv_walk_lookup(skb, laddr, transportp);
1105 		break;
1106 	}
1107 
1108 
1109 	return NULL;
1110 }
1111 
1112 /* Lookup an association for an inbound skb. */
1113 static struct sctp_association *__sctp_rcv_lookup(struct sk_buff *skb,
1114 				      const union sctp_addr *paddr,
1115 				      const union sctp_addr *laddr,
1116 				      struct sctp_transport **transportp)
1117 {
1118 	struct sctp_association *asoc;
1119 
1120 	asoc = __sctp_lookup_association(laddr, paddr, transportp);
1121 
1122 	/* Further lookup for INIT/INIT-ACK packets.
1123 	 * SCTP Implementors Guide, 2.18 Handling of address
1124 	 * parameters within the INIT or INIT-ACK.
1125 	 */
1126 	if (!asoc)
1127 		asoc = __sctp_rcv_lookup_harder(skb, laddr, transportp);
1128 
1129 	return asoc;
1130 }
1131