xref: /openbmc/linux/net/sctp/input.c (revision b34e08d5)
1 /* SCTP kernel implementation
2  * Copyright (c) 1999-2000 Cisco, Inc.
3  * Copyright (c) 1999-2001 Motorola, Inc.
4  * Copyright (c) 2001-2003 International Business Machines, Corp.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions handle all input from the IP layer into SCTP.
12  *
13  * This SCTP implementation is free software;
14  * you can redistribute it and/or modify it under the terms of
15  * the GNU General Public License as published by
16  * the Free Software Foundation; either version 2, or (at your option)
17  * any later version.
18  *
19  * This SCTP implementation is distributed in the hope that it
20  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
21  *                 ************************
22  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
23  * See the GNU General Public License for more details.
24  *
25  * You should have received a copy of the GNU General Public License
26  * along with GNU CC; see the file COPYING.  If not, see
27  * <http://www.gnu.org/licenses/>.
28  *
29  * Please send any bug reports or fixes you make to the
30  * email address(es):
31  *    lksctp developers <linux-sctp@vger.kernel.org>
32  *
33  * Written or modified by:
34  *    La Monte H.P. Yarroll <piggy@acm.org>
35  *    Karl Knutson <karl@athena.chicago.il.us>
36  *    Xingang Guo <xingang.guo@intel.com>
37  *    Jon Grimm <jgrimm@us.ibm.com>
38  *    Hui Huang <hui.huang@nokia.com>
39  *    Daisy Chang <daisyc@us.ibm.com>
40  *    Sridhar Samudrala <sri@us.ibm.com>
41  *    Ardelle Fan <ardelle.fan@intel.com>
42  */
43 
44 #include <linux/types.h>
45 #include <linux/list.h> /* For struct list_head */
46 #include <linux/socket.h>
47 #include <linux/ip.h>
48 #include <linux/time.h> /* For struct timeval */
49 #include <linux/slab.h>
50 #include <net/ip.h>
51 #include <net/icmp.h>
52 #include <net/snmp.h>
53 #include <net/sock.h>
54 #include <net/xfrm.h>
55 #include <net/sctp/sctp.h>
56 #include <net/sctp/sm.h>
57 #include <net/sctp/checksum.h>
58 #include <net/net_namespace.h>
59 
60 /* Forward declarations for internal helpers. */
61 static int sctp_rcv_ootb(struct sk_buff *);
62 static struct sctp_association *__sctp_rcv_lookup(struct net *net,
63 				      struct sk_buff *skb,
64 				      const union sctp_addr *paddr,
65 				      const union sctp_addr *laddr,
66 				      struct sctp_transport **transportp);
67 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net,
68 						const union sctp_addr *laddr);
69 static struct sctp_association *__sctp_lookup_association(
70 					struct net *net,
71 					const union sctp_addr *local,
72 					const union sctp_addr *peer,
73 					struct sctp_transport **pt);
74 
75 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb);
76 
77 
78 /* Calculate the SCTP checksum of an SCTP packet.  */
79 static inline int sctp_rcv_checksum(struct net *net, struct sk_buff *skb)
80 {
81 	struct sctphdr *sh = sctp_hdr(skb);
82 	__le32 cmp = sh->checksum;
83 	__le32 val = sctp_compute_cksum(skb, 0);
84 
85 	if (val != cmp) {
86 		/* CRC failure, dump it. */
87 		SCTP_INC_STATS_BH(net, SCTP_MIB_CHECKSUMERRORS);
88 		return -1;
89 	}
90 	return 0;
91 }
92 
93 struct sctp_input_cb {
94 	union {
95 		struct inet_skb_parm	h4;
96 #if IS_ENABLED(CONFIG_IPV6)
97 		struct inet6_skb_parm	h6;
98 #endif
99 	} header;
100 	struct sctp_chunk *chunk;
101 };
102 #define SCTP_INPUT_CB(__skb)	((struct sctp_input_cb *)&((__skb)->cb[0]))
103 
104 /*
105  * This is the routine which IP calls when receiving an SCTP packet.
106  */
107 int sctp_rcv(struct sk_buff *skb)
108 {
109 	struct sock *sk;
110 	struct sctp_association *asoc;
111 	struct sctp_endpoint *ep = NULL;
112 	struct sctp_ep_common *rcvr;
113 	struct sctp_transport *transport = NULL;
114 	struct sctp_chunk *chunk;
115 	struct sctphdr *sh;
116 	union sctp_addr src;
117 	union sctp_addr dest;
118 	int family;
119 	struct sctp_af *af;
120 	struct net *net = dev_net(skb->dev);
121 
122 	if (skb->pkt_type != PACKET_HOST)
123 		goto discard_it;
124 
125 	SCTP_INC_STATS_BH(net, SCTP_MIB_INSCTPPACKS);
126 
127 	if (skb_linearize(skb))
128 		goto discard_it;
129 
130 	sh = sctp_hdr(skb);
131 
132 	/* Pull up the IP and SCTP headers. */
133 	__skb_pull(skb, skb_transport_offset(skb));
134 	if (skb->len < sizeof(struct sctphdr))
135 		goto discard_it;
136 	if (!sctp_checksum_disable && !skb_csum_unnecessary(skb) &&
137 		  sctp_rcv_checksum(net, skb) < 0)
138 		goto discard_it;
139 
140 	skb_pull(skb, sizeof(struct sctphdr));
141 
142 	/* Make sure we at least have chunk headers worth of data left. */
143 	if (skb->len < sizeof(struct sctp_chunkhdr))
144 		goto discard_it;
145 
146 	family = ipver2af(ip_hdr(skb)->version);
147 	af = sctp_get_af_specific(family);
148 	if (unlikely(!af))
149 		goto discard_it;
150 
151 	/* Initialize local addresses for lookups. */
152 	af->from_skb(&src, skb, 1);
153 	af->from_skb(&dest, skb, 0);
154 
155 	/* If the packet is to or from a non-unicast address,
156 	 * silently discard the packet.
157 	 *
158 	 * This is not clearly defined in the RFC except in section
159 	 * 8.4 - OOTB handling.  However, based on the book "Stream Control
160 	 * Transmission Protocol" 2.1, "It is important to note that the
161 	 * IP address of an SCTP transport address must be a routable
162 	 * unicast address.  In other words, IP multicast addresses and
163 	 * IP broadcast addresses cannot be used in an SCTP transport
164 	 * address."
165 	 */
166 	if (!af->addr_valid(&src, NULL, skb) ||
167 	    !af->addr_valid(&dest, NULL, skb))
168 		goto discard_it;
169 
170 	asoc = __sctp_rcv_lookup(net, skb, &src, &dest, &transport);
171 
172 	if (!asoc)
173 		ep = __sctp_rcv_lookup_endpoint(net, &dest);
174 
175 	/* Retrieve the common input handling substructure. */
176 	rcvr = asoc ? &asoc->base : &ep->base;
177 	sk = rcvr->sk;
178 
179 	/*
180 	 * If a frame arrives on an interface and the receiving socket is
181 	 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB
182 	 */
183 	if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb))) {
184 		if (asoc) {
185 			sctp_association_put(asoc);
186 			asoc = NULL;
187 		} else {
188 			sctp_endpoint_put(ep);
189 			ep = NULL;
190 		}
191 		sk = net->sctp.ctl_sock;
192 		ep = sctp_sk(sk)->ep;
193 		sctp_endpoint_hold(ep);
194 		rcvr = &ep->base;
195 	}
196 
197 	/*
198 	 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
199 	 * An SCTP packet is called an "out of the blue" (OOTB)
200 	 * packet if it is correctly formed, i.e., passed the
201 	 * receiver's checksum check, but the receiver is not
202 	 * able to identify the association to which this
203 	 * packet belongs.
204 	 */
205 	if (!asoc) {
206 		if (sctp_rcv_ootb(skb)) {
207 			SCTP_INC_STATS_BH(net, SCTP_MIB_OUTOFBLUES);
208 			goto discard_release;
209 		}
210 	}
211 
212 	if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family))
213 		goto discard_release;
214 	nf_reset(skb);
215 
216 	if (sk_filter(sk, skb))
217 		goto discard_release;
218 
219 	/* Create an SCTP packet structure. */
220 	chunk = sctp_chunkify(skb, asoc, sk);
221 	if (!chunk)
222 		goto discard_release;
223 	SCTP_INPUT_CB(skb)->chunk = chunk;
224 
225 	/* Remember what endpoint is to handle this packet. */
226 	chunk->rcvr = rcvr;
227 
228 	/* Remember the SCTP header. */
229 	chunk->sctp_hdr = sh;
230 
231 	/* Set the source and destination addresses of the incoming chunk.  */
232 	sctp_init_addrs(chunk, &src, &dest);
233 
234 	/* Remember where we came from.  */
235 	chunk->transport = transport;
236 
237 	/* Acquire access to the sock lock. Note: We are safe from other
238 	 * bottom halves on this lock, but a user may be in the lock too,
239 	 * so check if it is busy.
240 	 */
241 	bh_lock_sock(sk);
242 
243 	if (sk != rcvr->sk) {
244 		/* Our cached sk is different from the rcvr->sk.  This is
245 		 * because migrate()/accept() may have moved the association
246 		 * to a new socket and released all the sockets.  So now we
247 		 * are holding a lock on the old socket while the user may
248 		 * be doing something with the new socket.  Switch our veiw
249 		 * of the current sk.
250 		 */
251 		bh_unlock_sock(sk);
252 		sk = rcvr->sk;
253 		bh_lock_sock(sk);
254 	}
255 
256 	if (sock_owned_by_user(sk)) {
257 		if (sctp_add_backlog(sk, skb)) {
258 			bh_unlock_sock(sk);
259 			sctp_chunk_free(chunk);
260 			skb = NULL; /* sctp_chunk_free already freed the skb */
261 			goto discard_release;
262 		}
263 		SCTP_INC_STATS_BH(net, SCTP_MIB_IN_PKT_BACKLOG);
264 	} else {
265 		SCTP_INC_STATS_BH(net, SCTP_MIB_IN_PKT_SOFTIRQ);
266 		sctp_inq_push(&chunk->rcvr->inqueue, chunk);
267 	}
268 
269 	bh_unlock_sock(sk);
270 
271 	/* Release the asoc/ep ref we took in the lookup calls. */
272 	if (asoc)
273 		sctp_association_put(asoc);
274 	else
275 		sctp_endpoint_put(ep);
276 
277 	return 0;
278 
279 discard_it:
280 	SCTP_INC_STATS_BH(net, SCTP_MIB_IN_PKT_DISCARDS);
281 	kfree_skb(skb);
282 	return 0;
283 
284 discard_release:
285 	/* Release the asoc/ep ref we took in the lookup calls. */
286 	if (asoc)
287 		sctp_association_put(asoc);
288 	else
289 		sctp_endpoint_put(ep);
290 
291 	goto discard_it;
292 }
293 
294 /* Process the backlog queue of the socket.  Every skb on
295  * the backlog holds a ref on an association or endpoint.
296  * We hold this ref throughout the state machine to make
297  * sure that the structure we need is still around.
298  */
299 int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
300 {
301 	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
302 	struct sctp_inq *inqueue = &chunk->rcvr->inqueue;
303 	struct sctp_ep_common *rcvr = NULL;
304 	int backloged = 0;
305 
306 	rcvr = chunk->rcvr;
307 
308 	/* If the rcvr is dead then the association or endpoint
309 	 * has been deleted and we can safely drop the chunk
310 	 * and refs that we are holding.
311 	 */
312 	if (rcvr->dead) {
313 		sctp_chunk_free(chunk);
314 		goto done;
315 	}
316 
317 	if (unlikely(rcvr->sk != sk)) {
318 		/* In this case, the association moved from one socket to
319 		 * another.  We are currently sitting on the backlog of the
320 		 * old socket, so we need to move.
321 		 * However, since we are here in the process context we
322 		 * need to take make sure that the user doesn't own
323 		 * the new socket when we process the packet.
324 		 * If the new socket is user-owned, queue the chunk to the
325 		 * backlog of the new socket without dropping any refs.
326 		 * Otherwise, we can safely push the chunk on the inqueue.
327 		 */
328 
329 		sk = rcvr->sk;
330 		bh_lock_sock(sk);
331 
332 		if (sock_owned_by_user(sk)) {
333 			if (sk_add_backlog(sk, skb, sk->sk_rcvbuf))
334 				sctp_chunk_free(chunk);
335 			else
336 				backloged = 1;
337 		} else
338 			sctp_inq_push(inqueue, chunk);
339 
340 		bh_unlock_sock(sk);
341 
342 		/* If the chunk was backloged again, don't drop refs */
343 		if (backloged)
344 			return 0;
345 	} else {
346 		sctp_inq_push(inqueue, chunk);
347 	}
348 
349 done:
350 	/* Release the refs we took in sctp_add_backlog */
351 	if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
352 		sctp_association_put(sctp_assoc(rcvr));
353 	else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
354 		sctp_endpoint_put(sctp_ep(rcvr));
355 	else
356 		BUG();
357 
358 	return 0;
359 }
360 
361 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb)
362 {
363 	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
364 	struct sctp_ep_common *rcvr = chunk->rcvr;
365 	int ret;
366 
367 	ret = sk_add_backlog(sk, skb, sk->sk_rcvbuf);
368 	if (!ret) {
369 		/* Hold the assoc/ep while hanging on the backlog queue.
370 		 * This way, we know structures we need will not disappear
371 		 * from us
372 		 */
373 		if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
374 			sctp_association_hold(sctp_assoc(rcvr));
375 		else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
376 			sctp_endpoint_hold(sctp_ep(rcvr));
377 		else
378 			BUG();
379 	}
380 	return ret;
381 
382 }
383 
384 /* Handle icmp frag needed error. */
385 void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
386 			   struct sctp_transport *t, __u32 pmtu)
387 {
388 	if (!t || (t->pathmtu <= pmtu))
389 		return;
390 
391 	if (sock_owned_by_user(sk)) {
392 		asoc->pmtu_pending = 1;
393 		t->pmtu_pending = 1;
394 		return;
395 	}
396 
397 	if (t->param_flags & SPP_PMTUD_ENABLE) {
398 		/* Update transports view of the MTU */
399 		sctp_transport_update_pmtu(sk, t, pmtu);
400 
401 		/* Update association pmtu. */
402 		sctp_assoc_sync_pmtu(sk, asoc);
403 	}
404 
405 	/* Retransmit with the new pmtu setting.
406 	 * Normally, if PMTU discovery is disabled, an ICMP Fragmentation
407 	 * Needed will never be sent, but if a message was sent before
408 	 * PMTU discovery was disabled that was larger than the PMTU, it
409 	 * would not be fragmented, so it must be re-transmitted fragmented.
410 	 */
411 	sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD);
412 }
413 
414 void sctp_icmp_redirect(struct sock *sk, struct sctp_transport *t,
415 			struct sk_buff *skb)
416 {
417 	struct dst_entry *dst;
418 
419 	if (!t)
420 		return;
421 	dst = sctp_transport_dst_check(t);
422 	if (dst)
423 		dst->ops->redirect(dst, sk, skb);
424 }
425 
426 /*
427  * SCTP Implementer's Guide, 2.37 ICMP handling procedures
428  *
429  * ICMP8) If the ICMP code is a "Unrecognized next header type encountered"
430  *        or a "Protocol Unreachable" treat this message as an abort
431  *        with the T bit set.
432  *
433  * This function sends an event to the state machine, which will abort the
434  * association.
435  *
436  */
437 void sctp_icmp_proto_unreachable(struct sock *sk,
438 			   struct sctp_association *asoc,
439 			   struct sctp_transport *t)
440 {
441 	if (sock_owned_by_user(sk)) {
442 		if (timer_pending(&t->proto_unreach_timer))
443 			return;
444 		else {
445 			if (!mod_timer(&t->proto_unreach_timer,
446 						jiffies + (HZ/20)))
447 				sctp_association_hold(asoc);
448 		}
449 	} else {
450 		struct net *net = sock_net(sk);
451 
452 		pr_debug("%s: unrecognized next header type "
453 			 "encountered!\n", __func__);
454 
455 		if (del_timer(&t->proto_unreach_timer))
456 			sctp_association_put(asoc);
457 
458 		sctp_do_sm(net, SCTP_EVENT_T_OTHER,
459 			   SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
460 			   asoc->state, asoc->ep, asoc, t,
461 			   GFP_ATOMIC);
462 	}
463 }
464 
465 /* Common lookup code for icmp/icmpv6 error handler. */
466 struct sock *sctp_err_lookup(struct net *net, int family, struct sk_buff *skb,
467 			     struct sctphdr *sctphdr,
468 			     struct sctp_association **app,
469 			     struct sctp_transport **tpp)
470 {
471 	union sctp_addr saddr;
472 	union sctp_addr daddr;
473 	struct sctp_af *af;
474 	struct sock *sk = NULL;
475 	struct sctp_association *asoc;
476 	struct sctp_transport *transport = NULL;
477 	struct sctp_init_chunk *chunkhdr;
478 	__u32 vtag = ntohl(sctphdr->vtag);
479 	int len = skb->len - ((void *)sctphdr - (void *)skb->data);
480 
481 	*app = NULL; *tpp = NULL;
482 
483 	af = sctp_get_af_specific(family);
484 	if (unlikely(!af)) {
485 		return NULL;
486 	}
487 
488 	/* Initialize local addresses for lookups. */
489 	af->from_skb(&saddr, skb, 1);
490 	af->from_skb(&daddr, skb, 0);
491 
492 	/* Look for an association that matches the incoming ICMP error
493 	 * packet.
494 	 */
495 	asoc = __sctp_lookup_association(net, &saddr, &daddr, &transport);
496 	if (!asoc)
497 		return NULL;
498 
499 	sk = asoc->base.sk;
500 
501 	/* RFC 4960, Appendix C. ICMP Handling
502 	 *
503 	 * ICMP6) An implementation MUST validate that the Verification Tag
504 	 * contained in the ICMP message matches the Verification Tag of
505 	 * the peer.  If the Verification Tag is not 0 and does NOT
506 	 * match, discard the ICMP message.  If it is 0 and the ICMP
507 	 * message contains enough bytes to verify that the chunk type is
508 	 * an INIT chunk and that the Initiate Tag matches the tag of the
509 	 * peer, continue with ICMP7.  If the ICMP message is too short
510 	 * or the chunk type or the Initiate Tag does not match, silently
511 	 * discard the packet.
512 	 */
513 	if (vtag == 0) {
514 		chunkhdr = (void *)sctphdr + sizeof(struct sctphdr);
515 		if (len < sizeof(struct sctphdr) + sizeof(sctp_chunkhdr_t)
516 			  + sizeof(__be32) ||
517 		    chunkhdr->chunk_hdr.type != SCTP_CID_INIT ||
518 		    ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag) {
519 			goto out;
520 		}
521 	} else if (vtag != asoc->c.peer_vtag) {
522 		goto out;
523 	}
524 
525 	bh_lock_sock(sk);
526 
527 	/* If too many ICMPs get dropped on busy
528 	 * servers this needs to be solved differently.
529 	 */
530 	if (sock_owned_by_user(sk))
531 		NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
532 
533 	*app = asoc;
534 	*tpp = transport;
535 	return sk;
536 
537 out:
538 	sctp_association_put(asoc);
539 	return NULL;
540 }
541 
542 /* Common cleanup code for icmp/icmpv6 error handler. */
543 void sctp_err_finish(struct sock *sk, struct sctp_association *asoc)
544 {
545 	bh_unlock_sock(sk);
546 	sctp_association_put(asoc);
547 }
548 
549 /*
550  * This routine is called by the ICMP module when it gets some
551  * sort of error condition.  If err < 0 then the socket should
552  * be closed and the error returned to the user.  If err > 0
553  * it's just the icmp type << 8 | icmp code.  After adjustment
554  * header points to the first 8 bytes of the sctp header.  We need
555  * to find the appropriate port.
556  *
557  * The locking strategy used here is very "optimistic". When
558  * someone else accesses the socket the ICMP is just dropped
559  * and for some paths there is no check at all.
560  * A more general error queue to queue errors for later handling
561  * is probably better.
562  *
563  */
564 void sctp_v4_err(struct sk_buff *skb, __u32 info)
565 {
566 	const struct iphdr *iph = (const struct iphdr *)skb->data;
567 	const int ihlen = iph->ihl * 4;
568 	const int type = icmp_hdr(skb)->type;
569 	const int code = icmp_hdr(skb)->code;
570 	struct sock *sk;
571 	struct sctp_association *asoc = NULL;
572 	struct sctp_transport *transport;
573 	struct inet_sock *inet;
574 	__u16 saveip, savesctp;
575 	int err;
576 	struct net *net = dev_net(skb->dev);
577 
578 	if (skb->len < ihlen + 8) {
579 		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
580 		return;
581 	}
582 
583 	/* Fix up skb to look at the embedded net header. */
584 	saveip = skb->network_header;
585 	savesctp = skb->transport_header;
586 	skb_reset_network_header(skb);
587 	skb_set_transport_header(skb, ihlen);
588 	sk = sctp_err_lookup(net, AF_INET, skb, sctp_hdr(skb), &asoc, &transport);
589 	/* Put back, the original values. */
590 	skb->network_header = saveip;
591 	skb->transport_header = savesctp;
592 	if (!sk) {
593 		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
594 		return;
595 	}
596 	/* Warning:  The sock lock is held.  Remember to call
597 	 * sctp_err_finish!
598 	 */
599 
600 	switch (type) {
601 	case ICMP_PARAMETERPROB:
602 		err = EPROTO;
603 		break;
604 	case ICMP_DEST_UNREACH:
605 		if (code > NR_ICMP_UNREACH)
606 			goto out_unlock;
607 
608 		/* PMTU discovery (RFC1191) */
609 		if (ICMP_FRAG_NEEDED == code) {
610 			sctp_icmp_frag_needed(sk, asoc, transport, info);
611 			goto out_unlock;
612 		} else {
613 			if (ICMP_PROT_UNREACH == code) {
614 				sctp_icmp_proto_unreachable(sk, asoc,
615 							    transport);
616 				goto out_unlock;
617 			}
618 		}
619 		err = icmp_err_convert[code].errno;
620 		break;
621 	case ICMP_TIME_EXCEEDED:
622 		/* Ignore any time exceeded errors due to fragment reassembly
623 		 * timeouts.
624 		 */
625 		if (ICMP_EXC_FRAGTIME == code)
626 			goto out_unlock;
627 
628 		err = EHOSTUNREACH;
629 		break;
630 	case ICMP_REDIRECT:
631 		sctp_icmp_redirect(sk, transport, skb);
632 		/* Fall through to out_unlock. */
633 	default:
634 		goto out_unlock;
635 	}
636 
637 	inet = inet_sk(sk);
638 	if (!sock_owned_by_user(sk) && inet->recverr) {
639 		sk->sk_err = err;
640 		sk->sk_error_report(sk);
641 	} else {  /* Only an error on timeout */
642 		sk->sk_err_soft = err;
643 	}
644 
645 out_unlock:
646 	sctp_err_finish(sk, asoc);
647 }
648 
649 /*
650  * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
651  *
652  * This function scans all the chunks in the OOTB packet to determine if
653  * the packet should be discarded right away.  If a response might be needed
654  * for this packet, or, if further processing is possible, the packet will
655  * be queued to a proper inqueue for the next phase of handling.
656  *
657  * Output:
658  * Return 0 - If further processing is needed.
659  * Return 1 - If the packet can be discarded right away.
660  */
661 static int sctp_rcv_ootb(struct sk_buff *skb)
662 {
663 	sctp_chunkhdr_t *ch;
664 	__u8 *ch_end;
665 
666 	ch = (sctp_chunkhdr_t *) skb->data;
667 
668 	/* Scan through all the chunks in the packet.  */
669 	do {
670 		/* Break out if chunk length is less then minimal. */
671 		if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t))
672 			break;
673 
674 		ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length));
675 		if (ch_end > skb_tail_pointer(skb))
676 			break;
677 
678 		/* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the
679 		 * receiver MUST silently discard the OOTB packet and take no
680 		 * further action.
681 		 */
682 		if (SCTP_CID_ABORT == ch->type)
683 			goto discard;
684 
685 		/* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE
686 		 * chunk, the receiver should silently discard the packet
687 		 * and take no further action.
688 		 */
689 		if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type)
690 			goto discard;
691 
692 		/* RFC 4460, 2.11.2
693 		 * This will discard packets with INIT chunk bundled as
694 		 * subsequent chunks in the packet.  When INIT is first,
695 		 * the normal INIT processing will discard the chunk.
696 		 */
697 		if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data)
698 			goto discard;
699 
700 		ch = (sctp_chunkhdr_t *) ch_end;
701 	} while (ch_end < skb_tail_pointer(skb));
702 
703 	return 0;
704 
705 discard:
706 	return 1;
707 }
708 
709 /* Insert endpoint into the hash table.  */
710 static void __sctp_hash_endpoint(struct sctp_endpoint *ep)
711 {
712 	struct net *net = sock_net(ep->base.sk);
713 	struct sctp_ep_common *epb;
714 	struct sctp_hashbucket *head;
715 
716 	epb = &ep->base;
717 
718 	epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port);
719 	head = &sctp_ep_hashtable[epb->hashent];
720 
721 	write_lock(&head->lock);
722 	hlist_add_head(&epb->node, &head->chain);
723 	write_unlock(&head->lock);
724 }
725 
726 /* Add an endpoint to the hash. Local BH-safe. */
727 void sctp_hash_endpoint(struct sctp_endpoint *ep)
728 {
729 	local_bh_disable();
730 	__sctp_hash_endpoint(ep);
731 	local_bh_enable();
732 }
733 
734 /* Remove endpoint from the hash table.  */
735 static void __sctp_unhash_endpoint(struct sctp_endpoint *ep)
736 {
737 	struct net *net = sock_net(ep->base.sk);
738 	struct sctp_hashbucket *head;
739 	struct sctp_ep_common *epb;
740 
741 	epb = &ep->base;
742 
743 	epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port);
744 
745 	head = &sctp_ep_hashtable[epb->hashent];
746 
747 	write_lock(&head->lock);
748 	hlist_del_init(&epb->node);
749 	write_unlock(&head->lock);
750 }
751 
752 /* Remove endpoint from the hash.  Local BH-safe. */
753 void sctp_unhash_endpoint(struct sctp_endpoint *ep)
754 {
755 	local_bh_disable();
756 	__sctp_unhash_endpoint(ep);
757 	local_bh_enable();
758 }
759 
760 /* Look up an endpoint. */
761 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net,
762 						const union sctp_addr *laddr)
763 {
764 	struct sctp_hashbucket *head;
765 	struct sctp_ep_common *epb;
766 	struct sctp_endpoint *ep;
767 	int hash;
768 
769 	hash = sctp_ep_hashfn(net, ntohs(laddr->v4.sin_port));
770 	head = &sctp_ep_hashtable[hash];
771 	read_lock(&head->lock);
772 	sctp_for_each_hentry(epb, &head->chain) {
773 		ep = sctp_ep(epb);
774 		if (sctp_endpoint_is_match(ep, net, laddr))
775 			goto hit;
776 	}
777 
778 	ep = sctp_sk(net->sctp.ctl_sock)->ep;
779 
780 hit:
781 	sctp_endpoint_hold(ep);
782 	read_unlock(&head->lock);
783 	return ep;
784 }
785 
786 /* Insert association into the hash table.  */
787 static void __sctp_hash_established(struct sctp_association *asoc)
788 {
789 	struct net *net = sock_net(asoc->base.sk);
790 	struct sctp_ep_common *epb;
791 	struct sctp_hashbucket *head;
792 
793 	epb = &asoc->base;
794 
795 	/* Calculate which chain this entry will belong to. */
796 	epb->hashent = sctp_assoc_hashfn(net, epb->bind_addr.port,
797 					 asoc->peer.port);
798 
799 	head = &sctp_assoc_hashtable[epb->hashent];
800 
801 	write_lock(&head->lock);
802 	hlist_add_head(&epb->node, &head->chain);
803 	write_unlock(&head->lock);
804 }
805 
806 /* Add an association to the hash. Local BH-safe. */
807 void sctp_hash_established(struct sctp_association *asoc)
808 {
809 	if (asoc->temp)
810 		return;
811 
812 	local_bh_disable();
813 	__sctp_hash_established(asoc);
814 	local_bh_enable();
815 }
816 
817 /* Remove association from the hash table.  */
818 static void __sctp_unhash_established(struct sctp_association *asoc)
819 {
820 	struct net *net = sock_net(asoc->base.sk);
821 	struct sctp_hashbucket *head;
822 	struct sctp_ep_common *epb;
823 
824 	epb = &asoc->base;
825 
826 	epb->hashent = sctp_assoc_hashfn(net, epb->bind_addr.port,
827 					 asoc->peer.port);
828 
829 	head = &sctp_assoc_hashtable[epb->hashent];
830 
831 	write_lock(&head->lock);
832 	hlist_del_init(&epb->node);
833 	write_unlock(&head->lock);
834 }
835 
836 /* Remove association from the hash table.  Local BH-safe. */
837 void sctp_unhash_established(struct sctp_association *asoc)
838 {
839 	if (asoc->temp)
840 		return;
841 
842 	local_bh_disable();
843 	__sctp_unhash_established(asoc);
844 	local_bh_enable();
845 }
846 
847 /* Look up an association. */
848 static struct sctp_association *__sctp_lookup_association(
849 					struct net *net,
850 					const union sctp_addr *local,
851 					const union sctp_addr *peer,
852 					struct sctp_transport **pt)
853 {
854 	struct sctp_hashbucket *head;
855 	struct sctp_ep_common *epb;
856 	struct sctp_association *asoc;
857 	struct sctp_transport *transport;
858 	int hash;
859 
860 	/* Optimize here for direct hit, only listening connections can
861 	 * have wildcards anyways.
862 	 */
863 	hash = sctp_assoc_hashfn(net, ntohs(local->v4.sin_port),
864 				 ntohs(peer->v4.sin_port));
865 	head = &sctp_assoc_hashtable[hash];
866 	read_lock(&head->lock);
867 	sctp_for_each_hentry(epb, &head->chain) {
868 		asoc = sctp_assoc(epb);
869 		transport = sctp_assoc_is_match(asoc, net, local, peer);
870 		if (transport)
871 			goto hit;
872 	}
873 
874 	read_unlock(&head->lock);
875 
876 	return NULL;
877 
878 hit:
879 	*pt = transport;
880 	sctp_association_hold(asoc);
881 	read_unlock(&head->lock);
882 	return asoc;
883 }
884 
885 /* Look up an association. BH-safe. */
886 static
887 struct sctp_association *sctp_lookup_association(struct net *net,
888 						 const union sctp_addr *laddr,
889 						 const union sctp_addr *paddr,
890 						 struct sctp_transport **transportp)
891 {
892 	struct sctp_association *asoc;
893 
894 	local_bh_disable();
895 	asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
896 	local_bh_enable();
897 
898 	return asoc;
899 }
900 
901 /* Is there an association matching the given local and peer addresses? */
902 int sctp_has_association(struct net *net,
903 			 const union sctp_addr *laddr,
904 			 const union sctp_addr *paddr)
905 {
906 	struct sctp_association *asoc;
907 	struct sctp_transport *transport;
908 
909 	if ((asoc = sctp_lookup_association(net, laddr, paddr, &transport))) {
910 		sctp_association_put(asoc);
911 		return 1;
912 	}
913 
914 	return 0;
915 }
916 
917 /*
918  * SCTP Implementors Guide, 2.18 Handling of address
919  * parameters within the INIT or INIT-ACK.
920  *
921  * D) When searching for a matching TCB upon reception of an INIT
922  *    or INIT-ACK chunk the receiver SHOULD use not only the
923  *    source address of the packet (containing the INIT or
924  *    INIT-ACK) but the receiver SHOULD also use all valid
925  *    address parameters contained within the chunk.
926  *
927  * 2.18.3 Solution description
928  *
929  * This new text clearly specifies to an implementor the need
930  * to look within the INIT or INIT-ACK. Any implementation that
931  * does not do this, may not be able to establish associations
932  * in certain circumstances.
933  *
934  */
935 static struct sctp_association *__sctp_rcv_init_lookup(struct net *net,
936 	struct sk_buff *skb,
937 	const union sctp_addr *laddr, struct sctp_transport **transportp)
938 {
939 	struct sctp_association *asoc;
940 	union sctp_addr addr;
941 	union sctp_addr *paddr = &addr;
942 	struct sctphdr *sh = sctp_hdr(skb);
943 	union sctp_params params;
944 	sctp_init_chunk_t *init;
945 	struct sctp_transport *transport;
946 	struct sctp_af *af;
947 
948 	/*
949 	 * This code will NOT touch anything inside the chunk--it is
950 	 * strictly READ-ONLY.
951 	 *
952 	 * RFC 2960 3  SCTP packet Format
953 	 *
954 	 * Multiple chunks can be bundled into one SCTP packet up to
955 	 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN
956 	 * COMPLETE chunks.  These chunks MUST NOT be bundled with any
957 	 * other chunk in a packet.  See Section 6.10 for more details
958 	 * on chunk bundling.
959 	 */
960 
961 	/* Find the start of the TLVs and the end of the chunk.  This is
962 	 * the region we search for address parameters.
963 	 */
964 	init = (sctp_init_chunk_t *)skb->data;
965 
966 	/* Walk the parameters looking for embedded addresses. */
967 	sctp_walk_params(params, init, init_hdr.params) {
968 
969 		/* Note: Ignoring hostname addresses. */
970 		af = sctp_get_af_specific(param_type2af(params.p->type));
971 		if (!af)
972 			continue;
973 
974 		af->from_addr_param(paddr, params.addr, sh->source, 0);
975 
976 		asoc = __sctp_lookup_association(net, laddr, paddr, &transport);
977 		if (asoc)
978 			return asoc;
979 	}
980 
981 	return NULL;
982 }
983 
984 /* ADD-IP, Section 5.2
985  * When an endpoint receives an ASCONF Chunk from the remote peer
986  * special procedures may be needed to identify the association the
987  * ASCONF Chunk is associated with. To properly find the association
988  * the following procedures SHOULD be followed:
989  *
990  * D2) If the association is not found, use the address found in the
991  * Address Parameter TLV combined with the port number found in the
992  * SCTP common header. If found proceed to rule D4.
993  *
994  * D2-ext) If more than one ASCONF Chunks are packed together, use the
995  * address found in the ASCONF Address Parameter TLV of each of the
996  * subsequent ASCONF Chunks. If found, proceed to rule D4.
997  */
998 static struct sctp_association *__sctp_rcv_asconf_lookup(
999 					struct net *net,
1000 					sctp_chunkhdr_t *ch,
1001 					const union sctp_addr *laddr,
1002 					__be16 peer_port,
1003 					struct sctp_transport **transportp)
1004 {
1005 	sctp_addip_chunk_t *asconf = (struct sctp_addip_chunk *)ch;
1006 	struct sctp_af *af;
1007 	union sctp_addr_param *param;
1008 	union sctp_addr paddr;
1009 
1010 	/* Skip over the ADDIP header and find the Address parameter */
1011 	param = (union sctp_addr_param *)(asconf + 1);
1012 
1013 	af = sctp_get_af_specific(param_type2af(param->p.type));
1014 	if (unlikely(!af))
1015 		return NULL;
1016 
1017 	af->from_addr_param(&paddr, param, peer_port, 0);
1018 
1019 	return __sctp_lookup_association(net, laddr, &paddr, transportp);
1020 }
1021 
1022 
1023 /* SCTP-AUTH, Section 6.3:
1024 *    If the receiver does not find a STCB for a packet containing an AUTH
1025 *    chunk as the first chunk and not a COOKIE-ECHO chunk as the second
1026 *    chunk, it MUST use the chunks after the AUTH chunk to look up an existing
1027 *    association.
1028 *
1029 * This means that any chunks that can help us identify the association need
1030 * to be looked at to find this association.
1031 */
1032 static struct sctp_association *__sctp_rcv_walk_lookup(struct net *net,
1033 				      struct sk_buff *skb,
1034 				      const union sctp_addr *laddr,
1035 				      struct sctp_transport **transportp)
1036 {
1037 	struct sctp_association *asoc = NULL;
1038 	sctp_chunkhdr_t *ch;
1039 	int have_auth = 0;
1040 	unsigned int chunk_num = 1;
1041 	__u8 *ch_end;
1042 
1043 	/* Walk through the chunks looking for AUTH or ASCONF chunks
1044 	 * to help us find the association.
1045 	 */
1046 	ch = (sctp_chunkhdr_t *) skb->data;
1047 	do {
1048 		/* Break out if chunk length is less then minimal. */
1049 		if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t))
1050 			break;
1051 
1052 		ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length));
1053 		if (ch_end > skb_tail_pointer(skb))
1054 			break;
1055 
1056 		switch (ch->type) {
1057 		case SCTP_CID_AUTH:
1058 			have_auth = chunk_num;
1059 			break;
1060 
1061 		case SCTP_CID_COOKIE_ECHO:
1062 			/* If a packet arrives containing an AUTH chunk as
1063 			 * a first chunk, a COOKIE-ECHO chunk as the second
1064 			 * chunk, and possibly more chunks after them, and
1065 			 * the receiver does not have an STCB for that
1066 			 * packet, then authentication is based on
1067 			 * the contents of the COOKIE- ECHO chunk.
1068 			 */
1069 			if (have_auth == 1 && chunk_num == 2)
1070 				return NULL;
1071 			break;
1072 
1073 		case SCTP_CID_ASCONF:
1074 			if (have_auth || net->sctp.addip_noauth)
1075 				asoc = __sctp_rcv_asconf_lookup(
1076 						net, ch, laddr,
1077 						sctp_hdr(skb)->source,
1078 						transportp);
1079 		default:
1080 			break;
1081 		}
1082 
1083 		if (asoc)
1084 			break;
1085 
1086 		ch = (sctp_chunkhdr_t *) ch_end;
1087 		chunk_num++;
1088 	} while (ch_end < skb_tail_pointer(skb));
1089 
1090 	return asoc;
1091 }
1092 
1093 /*
1094  * There are circumstances when we need to look inside the SCTP packet
1095  * for information to help us find the association.   Examples
1096  * include looking inside of INIT/INIT-ACK chunks or after the AUTH
1097  * chunks.
1098  */
1099 static struct sctp_association *__sctp_rcv_lookup_harder(struct net *net,
1100 				      struct sk_buff *skb,
1101 				      const union sctp_addr *laddr,
1102 				      struct sctp_transport **transportp)
1103 {
1104 	sctp_chunkhdr_t *ch;
1105 
1106 	ch = (sctp_chunkhdr_t *) skb->data;
1107 
1108 	/* The code below will attempt to walk the chunk and extract
1109 	 * parameter information.  Before we do that, we need to verify
1110 	 * that the chunk length doesn't cause overflow.  Otherwise, we'll
1111 	 * walk off the end.
1112 	 */
1113 	if (WORD_ROUND(ntohs(ch->length)) > skb->len)
1114 		return NULL;
1115 
1116 	/* If this is INIT/INIT-ACK look inside the chunk too. */
1117 	if (ch->type == SCTP_CID_INIT || ch->type == SCTP_CID_INIT_ACK)
1118 		return __sctp_rcv_init_lookup(net, skb, laddr, transportp);
1119 
1120 	return __sctp_rcv_walk_lookup(net, skb, laddr, transportp);
1121 }
1122 
1123 /* Lookup an association for an inbound skb. */
1124 static struct sctp_association *__sctp_rcv_lookup(struct net *net,
1125 				      struct sk_buff *skb,
1126 				      const union sctp_addr *paddr,
1127 				      const union sctp_addr *laddr,
1128 				      struct sctp_transport **transportp)
1129 {
1130 	struct sctp_association *asoc;
1131 
1132 	asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1133 
1134 	/* Further lookup for INIT/INIT-ACK packets.
1135 	 * SCTP Implementors Guide, 2.18 Handling of address
1136 	 * parameters within the INIT or INIT-ACK.
1137 	 */
1138 	if (!asoc)
1139 		asoc = __sctp_rcv_lookup_harder(net, skb, laddr, transportp);
1140 
1141 	return asoc;
1142 }
1143