1 /* SCTP kernel implementation 2 * Copyright (c) 1999-2000 Cisco, Inc. 3 * Copyright (c) 1999-2001 Motorola, Inc. 4 * Copyright (c) 2001-2003 International Business Machines, Corp. 5 * Copyright (c) 2001 Intel Corp. 6 * Copyright (c) 2001 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions handle all input from the IP layer into SCTP. 12 * 13 * This SCTP implementation is free software; 14 * you can redistribute it and/or modify it under the terms of 15 * the GNU General Public License as published by 16 * the Free Software Foundation; either version 2, or (at your option) 17 * any later version. 18 * 19 * This SCTP implementation is distributed in the hope that it 20 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 21 * ************************ 22 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 23 * See the GNU General Public License for more details. 24 * 25 * You should have received a copy of the GNU General Public License 26 * along with GNU CC; see the file COPYING. If not, write to 27 * the Free Software Foundation, 59 Temple Place - Suite 330, 28 * Boston, MA 02111-1307, USA. 29 * 30 * Please send any bug reports or fixes you make to the 31 * email address(es): 32 * lksctp developers <linux-sctp@vger.kernel.org> 33 * 34 * Written or modified by: 35 * La Monte H.P. Yarroll <piggy@acm.org> 36 * Karl Knutson <karl@athena.chicago.il.us> 37 * Xingang Guo <xingang.guo@intel.com> 38 * Jon Grimm <jgrimm@us.ibm.com> 39 * Hui Huang <hui.huang@nokia.com> 40 * Daisy Chang <daisyc@us.ibm.com> 41 * Sridhar Samudrala <sri@us.ibm.com> 42 * Ardelle Fan <ardelle.fan@intel.com> 43 */ 44 45 #include <linux/types.h> 46 #include <linux/list.h> /* For struct list_head */ 47 #include <linux/socket.h> 48 #include <linux/ip.h> 49 #include <linux/time.h> /* For struct timeval */ 50 #include <linux/slab.h> 51 #include <net/ip.h> 52 #include <net/icmp.h> 53 #include <net/snmp.h> 54 #include <net/sock.h> 55 #include <net/xfrm.h> 56 #include <net/sctp/sctp.h> 57 #include <net/sctp/sm.h> 58 #include <net/sctp/checksum.h> 59 #include <net/net_namespace.h> 60 61 /* Forward declarations for internal helpers. */ 62 static int sctp_rcv_ootb(struct sk_buff *); 63 static struct sctp_association *__sctp_rcv_lookup(struct net *net, 64 struct sk_buff *skb, 65 const union sctp_addr *paddr, 66 const union sctp_addr *laddr, 67 struct sctp_transport **transportp); 68 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net, 69 const union sctp_addr *laddr); 70 static struct sctp_association *__sctp_lookup_association( 71 struct net *net, 72 const union sctp_addr *local, 73 const union sctp_addr *peer, 74 struct sctp_transport **pt); 75 76 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb); 77 78 79 /* Calculate the SCTP checksum of an SCTP packet. */ 80 static inline int sctp_rcv_checksum(struct net *net, struct sk_buff *skb) 81 { 82 struct sctphdr *sh = sctp_hdr(skb); 83 __le32 cmp = sh->checksum; 84 __le32 val = sctp_compute_cksum(skb, 0); 85 86 if (val != cmp) { 87 /* CRC failure, dump it. */ 88 SCTP_INC_STATS_BH(net, SCTP_MIB_CHECKSUMERRORS); 89 return -1; 90 } 91 return 0; 92 } 93 94 struct sctp_input_cb { 95 union { 96 struct inet_skb_parm h4; 97 #if IS_ENABLED(CONFIG_IPV6) 98 struct inet6_skb_parm h6; 99 #endif 100 } header; 101 struct sctp_chunk *chunk; 102 }; 103 #define SCTP_INPUT_CB(__skb) ((struct sctp_input_cb *)&((__skb)->cb[0])) 104 105 /* 106 * This is the routine which IP calls when receiving an SCTP packet. 107 */ 108 int sctp_rcv(struct sk_buff *skb) 109 { 110 struct sock *sk; 111 struct sctp_association *asoc; 112 struct sctp_endpoint *ep = NULL; 113 struct sctp_ep_common *rcvr; 114 struct sctp_transport *transport = NULL; 115 struct sctp_chunk *chunk; 116 struct sctphdr *sh; 117 union sctp_addr src; 118 union sctp_addr dest; 119 int family; 120 struct sctp_af *af; 121 struct net *net = dev_net(skb->dev); 122 123 if (skb->pkt_type!=PACKET_HOST) 124 goto discard_it; 125 126 SCTP_INC_STATS_BH(net, SCTP_MIB_INSCTPPACKS); 127 128 if (skb_linearize(skb)) 129 goto discard_it; 130 131 sh = sctp_hdr(skb); 132 133 /* Pull up the IP and SCTP headers. */ 134 __skb_pull(skb, skb_transport_offset(skb)); 135 if (skb->len < sizeof(struct sctphdr)) 136 goto discard_it; 137 if (!sctp_checksum_disable && !skb_csum_unnecessary(skb) && 138 sctp_rcv_checksum(net, skb) < 0) 139 goto discard_it; 140 141 skb_pull(skb, sizeof(struct sctphdr)); 142 143 /* Make sure we at least have chunk headers worth of data left. */ 144 if (skb->len < sizeof(struct sctp_chunkhdr)) 145 goto discard_it; 146 147 family = ipver2af(ip_hdr(skb)->version); 148 af = sctp_get_af_specific(family); 149 if (unlikely(!af)) 150 goto discard_it; 151 152 /* Initialize local addresses for lookups. */ 153 af->from_skb(&src, skb, 1); 154 af->from_skb(&dest, skb, 0); 155 156 /* If the packet is to or from a non-unicast address, 157 * silently discard the packet. 158 * 159 * This is not clearly defined in the RFC except in section 160 * 8.4 - OOTB handling. However, based on the book "Stream Control 161 * Transmission Protocol" 2.1, "It is important to note that the 162 * IP address of an SCTP transport address must be a routable 163 * unicast address. In other words, IP multicast addresses and 164 * IP broadcast addresses cannot be used in an SCTP transport 165 * address." 166 */ 167 if (!af->addr_valid(&src, NULL, skb) || 168 !af->addr_valid(&dest, NULL, skb)) 169 goto discard_it; 170 171 asoc = __sctp_rcv_lookup(net, skb, &src, &dest, &transport); 172 173 if (!asoc) 174 ep = __sctp_rcv_lookup_endpoint(net, &dest); 175 176 /* Retrieve the common input handling substructure. */ 177 rcvr = asoc ? &asoc->base : &ep->base; 178 sk = rcvr->sk; 179 180 /* 181 * If a frame arrives on an interface and the receiving socket is 182 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB 183 */ 184 if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb))) 185 { 186 if (asoc) { 187 sctp_association_put(asoc); 188 asoc = NULL; 189 } else { 190 sctp_endpoint_put(ep); 191 ep = NULL; 192 } 193 sk = net->sctp.ctl_sock; 194 ep = sctp_sk(sk)->ep; 195 sctp_endpoint_hold(ep); 196 rcvr = &ep->base; 197 } 198 199 /* 200 * RFC 2960, 8.4 - Handle "Out of the blue" Packets. 201 * An SCTP packet is called an "out of the blue" (OOTB) 202 * packet if it is correctly formed, i.e., passed the 203 * receiver's checksum check, but the receiver is not 204 * able to identify the association to which this 205 * packet belongs. 206 */ 207 if (!asoc) { 208 if (sctp_rcv_ootb(skb)) { 209 SCTP_INC_STATS_BH(net, SCTP_MIB_OUTOFBLUES); 210 goto discard_release; 211 } 212 } 213 214 if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family)) 215 goto discard_release; 216 nf_reset(skb); 217 218 if (sk_filter(sk, skb)) 219 goto discard_release; 220 221 /* Create an SCTP packet structure. */ 222 chunk = sctp_chunkify(skb, asoc, sk); 223 if (!chunk) 224 goto discard_release; 225 SCTP_INPUT_CB(skb)->chunk = chunk; 226 227 /* Remember what endpoint is to handle this packet. */ 228 chunk->rcvr = rcvr; 229 230 /* Remember the SCTP header. */ 231 chunk->sctp_hdr = sh; 232 233 /* Set the source and destination addresses of the incoming chunk. */ 234 sctp_init_addrs(chunk, &src, &dest); 235 236 /* Remember where we came from. */ 237 chunk->transport = transport; 238 239 /* Acquire access to the sock lock. Note: We are safe from other 240 * bottom halves on this lock, but a user may be in the lock too, 241 * so check if it is busy. 242 */ 243 sctp_bh_lock_sock(sk); 244 245 if (sk != rcvr->sk) { 246 /* Our cached sk is different from the rcvr->sk. This is 247 * because migrate()/accept() may have moved the association 248 * to a new socket and released all the sockets. So now we 249 * are holding a lock on the old socket while the user may 250 * be doing something with the new socket. Switch our veiw 251 * of the current sk. 252 */ 253 sctp_bh_unlock_sock(sk); 254 sk = rcvr->sk; 255 sctp_bh_lock_sock(sk); 256 } 257 258 if (sock_owned_by_user(sk)) { 259 if (sctp_add_backlog(sk, skb)) { 260 sctp_bh_unlock_sock(sk); 261 sctp_chunk_free(chunk); 262 skb = NULL; /* sctp_chunk_free already freed the skb */ 263 goto discard_release; 264 } 265 SCTP_INC_STATS_BH(net, SCTP_MIB_IN_PKT_BACKLOG); 266 } else { 267 SCTP_INC_STATS_BH(net, SCTP_MIB_IN_PKT_SOFTIRQ); 268 sctp_inq_push(&chunk->rcvr->inqueue, chunk); 269 } 270 271 sctp_bh_unlock_sock(sk); 272 273 /* Release the asoc/ep ref we took in the lookup calls. */ 274 if (asoc) 275 sctp_association_put(asoc); 276 else 277 sctp_endpoint_put(ep); 278 279 return 0; 280 281 discard_it: 282 SCTP_INC_STATS_BH(net, SCTP_MIB_IN_PKT_DISCARDS); 283 kfree_skb(skb); 284 return 0; 285 286 discard_release: 287 /* Release the asoc/ep ref we took in the lookup calls. */ 288 if (asoc) 289 sctp_association_put(asoc); 290 else 291 sctp_endpoint_put(ep); 292 293 goto discard_it; 294 } 295 296 /* Process the backlog queue of the socket. Every skb on 297 * the backlog holds a ref on an association or endpoint. 298 * We hold this ref throughout the state machine to make 299 * sure that the structure we need is still around. 300 */ 301 int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb) 302 { 303 struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk; 304 struct sctp_inq *inqueue = &chunk->rcvr->inqueue; 305 struct sctp_ep_common *rcvr = NULL; 306 int backloged = 0; 307 308 rcvr = chunk->rcvr; 309 310 /* If the rcvr is dead then the association or endpoint 311 * has been deleted and we can safely drop the chunk 312 * and refs that we are holding. 313 */ 314 if (rcvr->dead) { 315 sctp_chunk_free(chunk); 316 goto done; 317 } 318 319 if (unlikely(rcvr->sk != sk)) { 320 /* In this case, the association moved from one socket to 321 * another. We are currently sitting on the backlog of the 322 * old socket, so we need to move. 323 * However, since we are here in the process context we 324 * need to take make sure that the user doesn't own 325 * the new socket when we process the packet. 326 * If the new socket is user-owned, queue the chunk to the 327 * backlog of the new socket without dropping any refs. 328 * Otherwise, we can safely push the chunk on the inqueue. 329 */ 330 331 sk = rcvr->sk; 332 sctp_bh_lock_sock(sk); 333 334 if (sock_owned_by_user(sk)) { 335 if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) 336 sctp_chunk_free(chunk); 337 else 338 backloged = 1; 339 } else 340 sctp_inq_push(inqueue, chunk); 341 342 sctp_bh_unlock_sock(sk); 343 344 /* If the chunk was backloged again, don't drop refs */ 345 if (backloged) 346 return 0; 347 } else { 348 sctp_inq_push(inqueue, chunk); 349 } 350 351 done: 352 /* Release the refs we took in sctp_add_backlog */ 353 if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type) 354 sctp_association_put(sctp_assoc(rcvr)); 355 else if (SCTP_EP_TYPE_SOCKET == rcvr->type) 356 sctp_endpoint_put(sctp_ep(rcvr)); 357 else 358 BUG(); 359 360 return 0; 361 } 362 363 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb) 364 { 365 struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk; 366 struct sctp_ep_common *rcvr = chunk->rcvr; 367 int ret; 368 369 ret = sk_add_backlog(sk, skb, sk->sk_rcvbuf); 370 if (!ret) { 371 /* Hold the assoc/ep while hanging on the backlog queue. 372 * This way, we know structures we need will not disappear 373 * from us 374 */ 375 if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type) 376 sctp_association_hold(sctp_assoc(rcvr)); 377 else if (SCTP_EP_TYPE_SOCKET == rcvr->type) 378 sctp_endpoint_hold(sctp_ep(rcvr)); 379 else 380 BUG(); 381 } 382 return ret; 383 384 } 385 386 /* Handle icmp frag needed error. */ 387 void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc, 388 struct sctp_transport *t, __u32 pmtu) 389 { 390 if (!t || (t->pathmtu <= pmtu)) 391 return; 392 393 if (sock_owned_by_user(sk)) { 394 asoc->pmtu_pending = 1; 395 t->pmtu_pending = 1; 396 return; 397 } 398 399 if (t->param_flags & SPP_PMTUD_ENABLE) { 400 /* Update transports view of the MTU */ 401 sctp_transport_update_pmtu(sk, t, pmtu); 402 403 /* Update association pmtu. */ 404 sctp_assoc_sync_pmtu(sk, asoc); 405 } 406 407 /* Retransmit with the new pmtu setting. 408 * Normally, if PMTU discovery is disabled, an ICMP Fragmentation 409 * Needed will never be sent, but if a message was sent before 410 * PMTU discovery was disabled that was larger than the PMTU, it 411 * would not be fragmented, so it must be re-transmitted fragmented. 412 */ 413 sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD); 414 } 415 416 void sctp_icmp_redirect(struct sock *sk, struct sctp_transport *t, 417 struct sk_buff *skb) 418 { 419 struct dst_entry *dst; 420 421 if (!t) 422 return; 423 dst = sctp_transport_dst_check(t); 424 if (dst) 425 dst->ops->redirect(dst, sk, skb); 426 } 427 428 /* 429 * SCTP Implementer's Guide, 2.37 ICMP handling procedures 430 * 431 * ICMP8) If the ICMP code is a "Unrecognized next header type encountered" 432 * or a "Protocol Unreachable" treat this message as an abort 433 * with the T bit set. 434 * 435 * This function sends an event to the state machine, which will abort the 436 * association. 437 * 438 */ 439 void sctp_icmp_proto_unreachable(struct sock *sk, 440 struct sctp_association *asoc, 441 struct sctp_transport *t) 442 { 443 if (sock_owned_by_user(sk)) { 444 if (timer_pending(&t->proto_unreach_timer)) 445 return; 446 else { 447 if (!mod_timer(&t->proto_unreach_timer, 448 jiffies + (HZ/20))) 449 sctp_association_hold(asoc); 450 } 451 } else { 452 struct net *net = sock_net(sk); 453 454 pr_debug("%s: unrecognized next header type " 455 "encountered!\n", __func__); 456 457 if (del_timer(&t->proto_unreach_timer)) 458 sctp_association_put(asoc); 459 460 sctp_do_sm(net, SCTP_EVENT_T_OTHER, 461 SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH), 462 asoc->state, asoc->ep, asoc, t, 463 GFP_ATOMIC); 464 } 465 } 466 467 /* Common lookup code for icmp/icmpv6 error handler. */ 468 struct sock *sctp_err_lookup(struct net *net, int family, struct sk_buff *skb, 469 struct sctphdr *sctphdr, 470 struct sctp_association **app, 471 struct sctp_transport **tpp) 472 { 473 union sctp_addr saddr; 474 union sctp_addr daddr; 475 struct sctp_af *af; 476 struct sock *sk = NULL; 477 struct sctp_association *asoc; 478 struct sctp_transport *transport = NULL; 479 struct sctp_init_chunk *chunkhdr; 480 __u32 vtag = ntohl(sctphdr->vtag); 481 int len = skb->len - ((void *)sctphdr - (void *)skb->data); 482 483 *app = NULL; *tpp = NULL; 484 485 af = sctp_get_af_specific(family); 486 if (unlikely(!af)) { 487 return NULL; 488 } 489 490 /* Initialize local addresses for lookups. */ 491 af->from_skb(&saddr, skb, 1); 492 af->from_skb(&daddr, skb, 0); 493 494 /* Look for an association that matches the incoming ICMP error 495 * packet. 496 */ 497 asoc = __sctp_lookup_association(net, &saddr, &daddr, &transport); 498 if (!asoc) 499 return NULL; 500 501 sk = asoc->base.sk; 502 503 /* RFC 4960, Appendix C. ICMP Handling 504 * 505 * ICMP6) An implementation MUST validate that the Verification Tag 506 * contained in the ICMP message matches the Verification Tag of 507 * the peer. If the Verification Tag is not 0 and does NOT 508 * match, discard the ICMP message. If it is 0 and the ICMP 509 * message contains enough bytes to verify that the chunk type is 510 * an INIT chunk and that the Initiate Tag matches the tag of the 511 * peer, continue with ICMP7. If the ICMP message is too short 512 * or the chunk type or the Initiate Tag does not match, silently 513 * discard the packet. 514 */ 515 if (vtag == 0) { 516 chunkhdr = (void *)sctphdr + sizeof(struct sctphdr); 517 if (len < sizeof(struct sctphdr) + sizeof(sctp_chunkhdr_t) 518 + sizeof(__be32) || 519 chunkhdr->chunk_hdr.type != SCTP_CID_INIT || 520 ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag) { 521 goto out; 522 } 523 } else if (vtag != asoc->c.peer_vtag) { 524 goto out; 525 } 526 527 sctp_bh_lock_sock(sk); 528 529 /* If too many ICMPs get dropped on busy 530 * servers this needs to be solved differently. 531 */ 532 if (sock_owned_by_user(sk)) 533 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS); 534 535 *app = asoc; 536 *tpp = transport; 537 return sk; 538 539 out: 540 if (asoc) 541 sctp_association_put(asoc); 542 return NULL; 543 } 544 545 /* Common cleanup code for icmp/icmpv6 error handler. */ 546 void sctp_err_finish(struct sock *sk, struct sctp_association *asoc) 547 { 548 sctp_bh_unlock_sock(sk); 549 if (asoc) 550 sctp_association_put(asoc); 551 } 552 553 /* 554 * This routine is called by the ICMP module when it gets some 555 * sort of error condition. If err < 0 then the socket should 556 * be closed and the error returned to the user. If err > 0 557 * it's just the icmp type << 8 | icmp code. After adjustment 558 * header points to the first 8 bytes of the sctp header. We need 559 * to find the appropriate port. 560 * 561 * The locking strategy used here is very "optimistic". When 562 * someone else accesses the socket the ICMP is just dropped 563 * and for some paths there is no check at all. 564 * A more general error queue to queue errors for later handling 565 * is probably better. 566 * 567 */ 568 void sctp_v4_err(struct sk_buff *skb, __u32 info) 569 { 570 const struct iphdr *iph = (const struct iphdr *)skb->data; 571 const int ihlen = iph->ihl * 4; 572 const int type = icmp_hdr(skb)->type; 573 const int code = icmp_hdr(skb)->code; 574 struct sock *sk; 575 struct sctp_association *asoc = NULL; 576 struct sctp_transport *transport; 577 struct inet_sock *inet; 578 __u16 saveip, savesctp; 579 int err; 580 struct net *net = dev_net(skb->dev); 581 582 if (skb->len < ihlen + 8) { 583 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS); 584 return; 585 } 586 587 /* Fix up skb to look at the embedded net header. */ 588 saveip = skb->network_header; 589 savesctp = skb->transport_header; 590 skb_reset_network_header(skb); 591 skb_set_transport_header(skb, ihlen); 592 sk = sctp_err_lookup(net, AF_INET, skb, sctp_hdr(skb), &asoc, &transport); 593 /* Put back, the original values. */ 594 skb->network_header = saveip; 595 skb->transport_header = savesctp; 596 if (!sk) { 597 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS); 598 return; 599 } 600 /* Warning: The sock lock is held. Remember to call 601 * sctp_err_finish! 602 */ 603 604 switch (type) { 605 case ICMP_PARAMETERPROB: 606 err = EPROTO; 607 break; 608 case ICMP_DEST_UNREACH: 609 if (code > NR_ICMP_UNREACH) 610 goto out_unlock; 611 612 /* PMTU discovery (RFC1191) */ 613 if (ICMP_FRAG_NEEDED == code) { 614 sctp_icmp_frag_needed(sk, asoc, transport, info); 615 goto out_unlock; 616 } 617 else { 618 if (ICMP_PROT_UNREACH == code) { 619 sctp_icmp_proto_unreachable(sk, asoc, 620 transport); 621 goto out_unlock; 622 } 623 } 624 err = icmp_err_convert[code].errno; 625 break; 626 case ICMP_TIME_EXCEEDED: 627 /* Ignore any time exceeded errors due to fragment reassembly 628 * timeouts. 629 */ 630 if (ICMP_EXC_FRAGTIME == code) 631 goto out_unlock; 632 633 err = EHOSTUNREACH; 634 break; 635 case ICMP_REDIRECT: 636 sctp_icmp_redirect(sk, transport, skb); 637 err = 0; 638 break; 639 default: 640 goto out_unlock; 641 } 642 643 inet = inet_sk(sk); 644 if (!sock_owned_by_user(sk) && inet->recverr) { 645 sk->sk_err = err; 646 sk->sk_error_report(sk); 647 } else { /* Only an error on timeout */ 648 sk->sk_err_soft = err; 649 } 650 651 out_unlock: 652 sctp_err_finish(sk, asoc); 653 } 654 655 /* 656 * RFC 2960, 8.4 - Handle "Out of the blue" Packets. 657 * 658 * This function scans all the chunks in the OOTB packet to determine if 659 * the packet should be discarded right away. If a response might be needed 660 * for this packet, or, if further processing is possible, the packet will 661 * be queued to a proper inqueue for the next phase of handling. 662 * 663 * Output: 664 * Return 0 - If further processing is needed. 665 * Return 1 - If the packet can be discarded right away. 666 */ 667 static int sctp_rcv_ootb(struct sk_buff *skb) 668 { 669 sctp_chunkhdr_t *ch; 670 __u8 *ch_end; 671 672 ch = (sctp_chunkhdr_t *) skb->data; 673 674 /* Scan through all the chunks in the packet. */ 675 do { 676 /* Break out if chunk length is less then minimal. */ 677 if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t)) 678 break; 679 680 ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length)); 681 if (ch_end > skb_tail_pointer(skb)) 682 break; 683 684 /* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the 685 * receiver MUST silently discard the OOTB packet and take no 686 * further action. 687 */ 688 if (SCTP_CID_ABORT == ch->type) 689 goto discard; 690 691 /* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE 692 * chunk, the receiver should silently discard the packet 693 * and take no further action. 694 */ 695 if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type) 696 goto discard; 697 698 /* RFC 4460, 2.11.2 699 * This will discard packets with INIT chunk bundled as 700 * subsequent chunks in the packet. When INIT is first, 701 * the normal INIT processing will discard the chunk. 702 */ 703 if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data) 704 goto discard; 705 706 ch = (sctp_chunkhdr_t *) ch_end; 707 } while (ch_end < skb_tail_pointer(skb)); 708 709 return 0; 710 711 discard: 712 return 1; 713 } 714 715 /* Insert endpoint into the hash table. */ 716 static void __sctp_hash_endpoint(struct sctp_endpoint *ep) 717 { 718 struct net *net = sock_net(ep->base.sk); 719 struct sctp_ep_common *epb; 720 struct sctp_hashbucket *head; 721 722 epb = &ep->base; 723 724 epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port); 725 head = &sctp_ep_hashtable[epb->hashent]; 726 727 sctp_write_lock(&head->lock); 728 hlist_add_head(&epb->node, &head->chain); 729 sctp_write_unlock(&head->lock); 730 } 731 732 /* Add an endpoint to the hash. Local BH-safe. */ 733 void sctp_hash_endpoint(struct sctp_endpoint *ep) 734 { 735 sctp_local_bh_disable(); 736 __sctp_hash_endpoint(ep); 737 sctp_local_bh_enable(); 738 } 739 740 /* Remove endpoint from the hash table. */ 741 static void __sctp_unhash_endpoint(struct sctp_endpoint *ep) 742 { 743 struct net *net = sock_net(ep->base.sk); 744 struct sctp_hashbucket *head; 745 struct sctp_ep_common *epb; 746 747 epb = &ep->base; 748 749 epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port); 750 751 head = &sctp_ep_hashtable[epb->hashent]; 752 753 sctp_write_lock(&head->lock); 754 hlist_del_init(&epb->node); 755 sctp_write_unlock(&head->lock); 756 } 757 758 /* Remove endpoint from the hash. Local BH-safe. */ 759 void sctp_unhash_endpoint(struct sctp_endpoint *ep) 760 { 761 sctp_local_bh_disable(); 762 __sctp_unhash_endpoint(ep); 763 sctp_local_bh_enable(); 764 } 765 766 /* Look up an endpoint. */ 767 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net, 768 const union sctp_addr *laddr) 769 { 770 struct sctp_hashbucket *head; 771 struct sctp_ep_common *epb; 772 struct sctp_endpoint *ep; 773 int hash; 774 775 hash = sctp_ep_hashfn(net, ntohs(laddr->v4.sin_port)); 776 head = &sctp_ep_hashtable[hash]; 777 read_lock(&head->lock); 778 sctp_for_each_hentry(epb, &head->chain) { 779 ep = sctp_ep(epb); 780 if (sctp_endpoint_is_match(ep, net, laddr)) 781 goto hit; 782 } 783 784 ep = sctp_sk(net->sctp.ctl_sock)->ep; 785 786 hit: 787 sctp_endpoint_hold(ep); 788 read_unlock(&head->lock); 789 return ep; 790 } 791 792 /* Insert association into the hash table. */ 793 static void __sctp_hash_established(struct sctp_association *asoc) 794 { 795 struct net *net = sock_net(asoc->base.sk); 796 struct sctp_ep_common *epb; 797 struct sctp_hashbucket *head; 798 799 epb = &asoc->base; 800 801 /* Calculate which chain this entry will belong to. */ 802 epb->hashent = sctp_assoc_hashfn(net, epb->bind_addr.port, 803 asoc->peer.port); 804 805 head = &sctp_assoc_hashtable[epb->hashent]; 806 807 sctp_write_lock(&head->lock); 808 hlist_add_head(&epb->node, &head->chain); 809 sctp_write_unlock(&head->lock); 810 } 811 812 /* Add an association to the hash. Local BH-safe. */ 813 void sctp_hash_established(struct sctp_association *asoc) 814 { 815 if (asoc->temp) 816 return; 817 818 sctp_local_bh_disable(); 819 __sctp_hash_established(asoc); 820 sctp_local_bh_enable(); 821 } 822 823 /* Remove association from the hash table. */ 824 static void __sctp_unhash_established(struct sctp_association *asoc) 825 { 826 struct net *net = sock_net(asoc->base.sk); 827 struct sctp_hashbucket *head; 828 struct sctp_ep_common *epb; 829 830 epb = &asoc->base; 831 832 epb->hashent = sctp_assoc_hashfn(net, epb->bind_addr.port, 833 asoc->peer.port); 834 835 head = &sctp_assoc_hashtable[epb->hashent]; 836 837 sctp_write_lock(&head->lock); 838 hlist_del_init(&epb->node); 839 sctp_write_unlock(&head->lock); 840 } 841 842 /* Remove association from the hash table. Local BH-safe. */ 843 void sctp_unhash_established(struct sctp_association *asoc) 844 { 845 if (asoc->temp) 846 return; 847 848 sctp_local_bh_disable(); 849 __sctp_unhash_established(asoc); 850 sctp_local_bh_enable(); 851 } 852 853 /* Look up an association. */ 854 static struct sctp_association *__sctp_lookup_association( 855 struct net *net, 856 const union sctp_addr *local, 857 const union sctp_addr *peer, 858 struct sctp_transport **pt) 859 { 860 struct sctp_hashbucket *head; 861 struct sctp_ep_common *epb; 862 struct sctp_association *asoc; 863 struct sctp_transport *transport; 864 int hash; 865 866 /* Optimize here for direct hit, only listening connections can 867 * have wildcards anyways. 868 */ 869 hash = sctp_assoc_hashfn(net, ntohs(local->v4.sin_port), 870 ntohs(peer->v4.sin_port)); 871 head = &sctp_assoc_hashtable[hash]; 872 read_lock(&head->lock); 873 sctp_for_each_hentry(epb, &head->chain) { 874 asoc = sctp_assoc(epb); 875 transport = sctp_assoc_is_match(asoc, net, local, peer); 876 if (transport) 877 goto hit; 878 } 879 880 read_unlock(&head->lock); 881 882 return NULL; 883 884 hit: 885 *pt = transport; 886 sctp_association_hold(asoc); 887 read_unlock(&head->lock); 888 return asoc; 889 } 890 891 /* Look up an association. BH-safe. */ 892 static 893 struct sctp_association *sctp_lookup_association(struct net *net, 894 const union sctp_addr *laddr, 895 const union sctp_addr *paddr, 896 struct sctp_transport **transportp) 897 { 898 struct sctp_association *asoc; 899 900 sctp_local_bh_disable(); 901 asoc = __sctp_lookup_association(net, laddr, paddr, transportp); 902 sctp_local_bh_enable(); 903 904 return asoc; 905 } 906 907 /* Is there an association matching the given local and peer addresses? */ 908 int sctp_has_association(struct net *net, 909 const union sctp_addr *laddr, 910 const union sctp_addr *paddr) 911 { 912 struct sctp_association *asoc; 913 struct sctp_transport *transport; 914 915 if ((asoc = sctp_lookup_association(net, laddr, paddr, &transport))) { 916 sctp_association_put(asoc); 917 return 1; 918 } 919 920 return 0; 921 } 922 923 /* 924 * SCTP Implementors Guide, 2.18 Handling of address 925 * parameters within the INIT or INIT-ACK. 926 * 927 * D) When searching for a matching TCB upon reception of an INIT 928 * or INIT-ACK chunk the receiver SHOULD use not only the 929 * source address of the packet (containing the INIT or 930 * INIT-ACK) but the receiver SHOULD also use all valid 931 * address parameters contained within the chunk. 932 * 933 * 2.18.3 Solution description 934 * 935 * This new text clearly specifies to an implementor the need 936 * to look within the INIT or INIT-ACK. Any implementation that 937 * does not do this, may not be able to establish associations 938 * in certain circumstances. 939 * 940 */ 941 static struct sctp_association *__sctp_rcv_init_lookup(struct net *net, 942 struct sk_buff *skb, 943 const union sctp_addr *laddr, struct sctp_transport **transportp) 944 { 945 struct sctp_association *asoc; 946 union sctp_addr addr; 947 union sctp_addr *paddr = &addr; 948 struct sctphdr *sh = sctp_hdr(skb); 949 union sctp_params params; 950 sctp_init_chunk_t *init; 951 struct sctp_transport *transport; 952 struct sctp_af *af; 953 954 /* 955 * This code will NOT touch anything inside the chunk--it is 956 * strictly READ-ONLY. 957 * 958 * RFC 2960 3 SCTP packet Format 959 * 960 * Multiple chunks can be bundled into one SCTP packet up to 961 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN 962 * COMPLETE chunks. These chunks MUST NOT be bundled with any 963 * other chunk in a packet. See Section 6.10 for more details 964 * on chunk bundling. 965 */ 966 967 /* Find the start of the TLVs and the end of the chunk. This is 968 * the region we search for address parameters. 969 */ 970 init = (sctp_init_chunk_t *)skb->data; 971 972 /* Walk the parameters looking for embedded addresses. */ 973 sctp_walk_params(params, init, init_hdr.params) { 974 975 /* Note: Ignoring hostname addresses. */ 976 af = sctp_get_af_specific(param_type2af(params.p->type)); 977 if (!af) 978 continue; 979 980 af->from_addr_param(paddr, params.addr, sh->source, 0); 981 982 asoc = __sctp_lookup_association(net, laddr, paddr, &transport); 983 if (asoc) 984 return asoc; 985 } 986 987 return NULL; 988 } 989 990 /* ADD-IP, Section 5.2 991 * When an endpoint receives an ASCONF Chunk from the remote peer 992 * special procedures may be needed to identify the association the 993 * ASCONF Chunk is associated with. To properly find the association 994 * the following procedures SHOULD be followed: 995 * 996 * D2) If the association is not found, use the address found in the 997 * Address Parameter TLV combined with the port number found in the 998 * SCTP common header. If found proceed to rule D4. 999 * 1000 * D2-ext) If more than one ASCONF Chunks are packed together, use the 1001 * address found in the ASCONF Address Parameter TLV of each of the 1002 * subsequent ASCONF Chunks. If found, proceed to rule D4. 1003 */ 1004 static struct sctp_association *__sctp_rcv_asconf_lookup( 1005 struct net *net, 1006 sctp_chunkhdr_t *ch, 1007 const union sctp_addr *laddr, 1008 __be16 peer_port, 1009 struct sctp_transport **transportp) 1010 { 1011 sctp_addip_chunk_t *asconf = (struct sctp_addip_chunk *)ch; 1012 struct sctp_af *af; 1013 union sctp_addr_param *param; 1014 union sctp_addr paddr; 1015 1016 /* Skip over the ADDIP header and find the Address parameter */ 1017 param = (union sctp_addr_param *)(asconf + 1); 1018 1019 af = sctp_get_af_specific(param_type2af(param->p.type)); 1020 if (unlikely(!af)) 1021 return NULL; 1022 1023 af->from_addr_param(&paddr, param, peer_port, 0); 1024 1025 return __sctp_lookup_association(net, laddr, &paddr, transportp); 1026 } 1027 1028 1029 /* SCTP-AUTH, Section 6.3: 1030 * If the receiver does not find a STCB for a packet containing an AUTH 1031 * chunk as the first chunk and not a COOKIE-ECHO chunk as the second 1032 * chunk, it MUST use the chunks after the AUTH chunk to look up an existing 1033 * association. 1034 * 1035 * This means that any chunks that can help us identify the association need 1036 * to be looked at to find this association. 1037 */ 1038 static struct sctp_association *__sctp_rcv_walk_lookup(struct net *net, 1039 struct sk_buff *skb, 1040 const union sctp_addr *laddr, 1041 struct sctp_transport **transportp) 1042 { 1043 struct sctp_association *asoc = NULL; 1044 sctp_chunkhdr_t *ch; 1045 int have_auth = 0; 1046 unsigned int chunk_num = 1; 1047 __u8 *ch_end; 1048 1049 /* Walk through the chunks looking for AUTH or ASCONF chunks 1050 * to help us find the association. 1051 */ 1052 ch = (sctp_chunkhdr_t *) skb->data; 1053 do { 1054 /* Break out if chunk length is less then minimal. */ 1055 if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t)) 1056 break; 1057 1058 ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length)); 1059 if (ch_end > skb_tail_pointer(skb)) 1060 break; 1061 1062 switch(ch->type) { 1063 case SCTP_CID_AUTH: 1064 have_auth = chunk_num; 1065 break; 1066 1067 case SCTP_CID_COOKIE_ECHO: 1068 /* If a packet arrives containing an AUTH chunk as 1069 * a first chunk, a COOKIE-ECHO chunk as the second 1070 * chunk, and possibly more chunks after them, and 1071 * the receiver does not have an STCB for that 1072 * packet, then authentication is based on 1073 * the contents of the COOKIE- ECHO chunk. 1074 */ 1075 if (have_auth == 1 && chunk_num == 2) 1076 return NULL; 1077 break; 1078 1079 case SCTP_CID_ASCONF: 1080 if (have_auth || net->sctp.addip_noauth) 1081 asoc = __sctp_rcv_asconf_lookup( 1082 net, ch, laddr, 1083 sctp_hdr(skb)->source, 1084 transportp); 1085 default: 1086 break; 1087 } 1088 1089 if (asoc) 1090 break; 1091 1092 ch = (sctp_chunkhdr_t *) ch_end; 1093 chunk_num++; 1094 } while (ch_end < skb_tail_pointer(skb)); 1095 1096 return asoc; 1097 } 1098 1099 /* 1100 * There are circumstances when we need to look inside the SCTP packet 1101 * for information to help us find the association. Examples 1102 * include looking inside of INIT/INIT-ACK chunks or after the AUTH 1103 * chunks. 1104 */ 1105 static struct sctp_association *__sctp_rcv_lookup_harder(struct net *net, 1106 struct sk_buff *skb, 1107 const union sctp_addr *laddr, 1108 struct sctp_transport **transportp) 1109 { 1110 sctp_chunkhdr_t *ch; 1111 1112 ch = (sctp_chunkhdr_t *) skb->data; 1113 1114 /* The code below will attempt to walk the chunk and extract 1115 * parameter information. Before we do that, we need to verify 1116 * that the chunk length doesn't cause overflow. Otherwise, we'll 1117 * walk off the end. 1118 */ 1119 if (WORD_ROUND(ntohs(ch->length)) > skb->len) 1120 return NULL; 1121 1122 /* If this is INIT/INIT-ACK look inside the chunk too. */ 1123 switch (ch->type) { 1124 case SCTP_CID_INIT: 1125 case SCTP_CID_INIT_ACK: 1126 return __sctp_rcv_init_lookup(net, skb, laddr, transportp); 1127 break; 1128 1129 default: 1130 return __sctp_rcv_walk_lookup(net, skb, laddr, transportp); 1131 break; 1132 } 1133 1134 1135 return NULL; 1136 } 1137 1138 /* Lookup an association for an inbound skb. */ 1139 static struct sctp_association *__sctp_rcv_lookup(struct net *net, 1140 struct sk_buff *skb, 1141 const union sctp_addr *paddr, 1142 const union sctp_addr *laddr, 1143 struct sctp_transport **transportp) 1144 { 1145 struct sctp_association *asoc; 1146 1147 asoc = __sctp_lookup_association(net, laddr, paddr, transportp); 1148 1149 /* Further lookup for INIT/INIT-ACK packets. 1150 * SCTP Implementors Guide, 2.18 Handling of address 1151 * parameters within the INIT or INIT-ACK. 1152 */ 1153 if (!asoc) 1154 asoc = __sctp_rcv_lookup_harder(net, skb, laddr, transportp); 1155 1156 return asoc; 1157 } 1158