xref: /openbmc/linux/net/sctp/input.c (revision a36954f5)
1 /* SCTP kernel implementation
2  * Copyright (c) 1999-2000 Cisco, Inc.
3  * Copyright (c) 1999-2001 Motorola, Inc.
4  * Copyright (c) 2001-2003 International Business Machines, Corp.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions handle all input from the IP layer into SCTP.
12  *
13  * This SCTP implementation is free software;
14  * you can redistribute it and/or modify it under the terms of
15  * the GNU General Public License as published by
16  * the Free Software Foundation; either version 2, or (at your option)
17  * any later version.
18  *
19  * This SCTP implementation is distributed in the hope that it
20  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
21  *                 ************************
22  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
23  * See the GNU General Public License for more details.
24  *
25  * You should have received a copy of the GNU General Public License
26  * along with GNU CC; see the file COPYING.  If not, see
27  * <http://www.gnu.org/licenses/>.
28  *
29  * Please send any bug reports or fixes you make to the
30  * email address(es):
31  *    lksctp developers <linux-sctp@vger.kernel.org>
32  *
33  * Written or modified by:
34  *    La Monte H.P. Yarroll <piggy@acm.org>
35  *    Karl Knutson <karl@athena.chicago.il.us>
36  *    Xingang Guo <xingang.guo@intel.com>
37  *    Jon Grimm <jgrimm@us.ibm.com>
38  *    Hui Huang <hui.huang@nokia.com>
39  *    Daisy Chang <daisyc@us.ibm.com>
40  *    Sridhar Samudrala <sri@us.ibm.com>
41  *    Ardelle Fan <ardelle.fan@intel.com>
42  */
43 
44 #include <linux/types.h>
45 #include <linux/list.h> /* For struct list_head */
46 #include <linux/socket.h>
47 #include <linux/ip.h>
48 #include <linux/time.h> /* For struct timeval */
49 #include <linux/slab.h>
50 #include <net/ip.h>
51 #include <net/icmp.h>
52 #include <net/snmp.h>
53 #include <net/sock.h>
54 #include <net/xfrm.h>
55 #include <net/sctp/sctp.h>
56 #include <net/sctp/sm.h>
57 #include <net/sctp/checksum.h>
58 #include <net/net_namespace.h>
59 
60 /* Forward declarations for internal helpers. */
61 static int sctp_rcv_ootb(struct sk_buff *);
62 static struct sctp_association *__sctp_rcv_lookup(struct net *net,
63 				      struct sk_buff *skb,
64 				      const union sctp_addr *paddr,
65 				      const union sctp_addr *laddr,
66 				      struct sctp_transport **transportp);
67 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net,
68 						const union sctp_addr *laddr);
69 static struct sctp_association *__sctp_lookup_association(
70 					struct net *net,
71 					const union sctp_addr *local,
72 					const union sctp_addr *peer,
73 					struct sctp_transport **pt);
74 
75 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb);
76 
77 
78 /* Calculate the SCTP checksum of an SCTP packet.  */
79 static inline int sctp_rcv_checksum(struct net *net, struct sk_buff *skb)
80 {
81 	struct sctphdr *sh = sctp_hdr(skb);
82 	__le32 cmp = sh->checksum;
83 	__le32 val = sctp_compute_cksum(skb, 0);
84 
85 	if (val != cmp) {
86 		/* CRC failure, dump it. */
87 		__SCTP_INC_STATS(net, SCTP_MIB_CHECKSUMERRORS);
88 		return -1;
89 	}
90 	return 0;
91 }
92 
93 /*
94  * This is the routine which IP calls when receiving an SCTP packet.
95  */
96 int sctp_rcv(struct sk_buff *skb)
97 {
98 	struct sock *sk;
99 	struct sctp_association *asoc;
100 	struct sctp_endpoint *ep = NULL;
101 	struct sctp_ep_common *rcvr;
102 	struct sctp_transport *transport = NULL;
103 	struct sctp_chunk *chunk;
104 	union sctp_addr src;
105 	union sctp_addr dest;
106 	int family;
107 	struct sctp_af *af;
108 	struct net *net = dev_net(skb->dev);
109 
110 	if (skb->pkt_type != PACKET_HOST)
111 		goto discard_it;
112 
113 	__SCTP_INC_STATS(net, SCTP_MIB_INSCTPPACKS);
114 
115 	/* If packet is too small to contain a single chunk, let's not
116 	 * waste time on it anymore.
117 	 */
118 	if (skb->len < sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr) +
119 		       skb_transport_offset(skb))
120 		goto discard_it;
121 
122 	/* If the packet is fragmented and we need to do crc checking,
123 	 * it's better to just linearize it otherwise crc computing
124 	 * takes longer.
125 	 */
126 	if ((!(skb_shinfo(skb)->gso_type & SKB_GSO_SCTP) &&
127 	     skb_linearize(skb)) ||
128 	    !pskb_may_pull(skb, sizeof(struct sctphdr)))
129 		goto discard_it;
130 
131 	/* Pull up the IP header. */
132 	__skb_pull(skb, skb_transport_offset(skb));
133 
134 	skb->csum_valid = 0; /* Previous value not applicable */
135 	if (skb_csum_unnecessary(skb))
136 		__skb_decr_checksum_unnecessary(skb);
137 	else if (!sctp_checksum_disable &&
138 		 !(skb_shinfo(skb)->gso_type & SKB_GSO_SCTP) &&
139 		 sctp_rcv_checksum(net, skb) < 0)
140 		goto discard_it;
141 	skb->csum_valid = 1;
142 
143 	__skb_pull(skb, sizeof(struct sctphdr));
144 
145 	family = ipver2af(ip_hdr(skb)->version);
146 	af = sctp_get_af_specific(family);
147 	if (unlikely(!af))
148 		goto discard_it;
149 	SCTP_INPUT_CB(skb)->af = af;
150 
151 	/* Initialize local addresses for lookups. */
152 	af->from_skb(&src, skb, 1);
153 	af->from_skb(&dest, skb, 0);
154 
155 	/* If the packet is to or from a non-unicast address,
156 	 * silently discard the packet.
157 	 *
158 	 * This is not clearly defined in the RFC except in section
159 	 * 8.4 - OOTB handling.  However, based on the book "Stream Control
160 	 * Transmission Protocol" 2.1, "It is important to note that the
161 	 * IP address of an SCTP transport address must be a routable
162 	 * unicast address.  In other words, IP multicast addresses and
163 	 * IP broadcast addresses cannot be used in an SCTP transport
164 	 * address."
165 	 */
166 	if (!af->addr_valid(&src, NULL, skb) ||
167 	    !af->addr_valid(&dest, NULL, skb))
168 		goto discard_it;
169 
170 	asoc = __sctp_rcv_lookup(net, skb, &src, &dest, &transport);
171 
172 	if (!asoc)
173 		ep = __sctp_rcv_lookup_endpoint(net, &dest);
174 
175 	/* Retrieve the common input handling substructure. */
176 	rcvr = asoc ? &asoc->base : &ep->base;
177 	sk = rcvr->sk;
178 
179 	/*
180 	 * If a frame arrives on an interface and the receiving socket is
181 	 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB
182 	 */
183 	if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb))) {
184 		if (transport) {
185 			sctp_transport_put(transport);
186 			asoc = NULL;
187 			transport = NULL;
188 		} else {
189 			sctp_endpoint_put(ep);
190 			ep = NULL;
191 		}
192 		sk = net->sctp.ctl_sock;
193 		ep = sctp_sk(sk)->ep;
194 		sctp_endpoint_hold(ep);
195 		rcvr = &ep->base;
196 	}
197 
198 	/*
199 	 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
200 	 * An SCTP packet is called an "out of the blue" (OOTB)
201 	 * packet if it is correctly formed, i.e., passed the
202 	 * receiver's checksum check, but the receiver is not
203 	 * able to identify the association to which this
204 	 * packet belongs.
205 	 */
206 	if (!asoc) {
207 		if (sctp_rcv_ootb(skb)) {
208 			__SCTP_INC_STATS(net, SCTP_MIB_OUTOFBLUES);
209 			goto discard_release;
210 		}
211 	}
212 
213 	if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family))
214 		goto discard_release;
215 	nf_reset(skb);
216 
217 	if (sk_filter(sk, skb))
218 		goto discard_release;
219 
220 	/* Create an SCTP packet structure. */
221 	chunk = sctp_chunkify(skb, asoc, sk, GFP_ATOMIC);
222 	if (!chunk)
223 		goto discard_release;
224 	SCTP_INPUT_CB(skb)->chunk = chunk;
225 
226 	/* Remember what endpoint is to handle this packet. */
227 	chunk->rcvr = rcvr;
228 
229 	/* Remember the SCTP header. */
230 	chunk->sctp_hdr = sctp_hdr(skb);
231 
232 	/* Set the source and destination addresses of the incoming chunk.  */
233 	sctp_init_addrs(chunk, &src, &dest);
234 
235 	/* Remember where we came from.  */
236 	chunk->transport = transport;
237 
238 	/* Acquire access to the sock lock. Note: We are safe from other
239 	 * bottom halves on this lock, but a user may be in the lock too,
240 	 * so check if it is busy.
241 	 */
242 	bh_lock_sock(sk);
243 
244 	if (sk != rcvr->sk) {
245 		/* Our cached sk is different from the rcvr->sk.  This is
246 		 * because migrate()/accept() may have moved the association
247 		 * to a new socket and released all the sockets.  So now we
248 		 * are holding a lock on the old socket while the user may
249 		 * be doing something with the new socket.  Switch our veiw
250 		 * of the current sk.
251 		 */
252 		bh_unlock_sock(sk);
253 		sk = rcvr->sk;
254 		bh_lock_sock(sk);
255 	}
256 
257 	if (sock_owned_by_user(sk)) {
258 		if (sctp_add_backlog(sk, skb)) {
259 			bh_unlock_sock(sk);
260 			sctp_chunk_free(chunk);
261 			skb = NULL; /* sctp_chunk_free already freed the skb */
262 			goto discard_release;
263 		}
264 		__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_BACKLOG);
265 	} else {
266 		__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_SOFTIRQ);
267 		sctp_inq_push(&chunk->rcvr->inqueue, chunk);
268 	}
269 
270 	bh_unlock_sock(sk);
271 
272 	/* Release the asoc/ep ref we took in the lookup calls. */
273 	if (transport)
274 		sctp_transport_put(transport);
275 	else
276 		sctp_endpoint_put(ep);
277 
278 	return 0;
279 
280 discard_it:
281 	__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_DISCARDS);
282 	kfree_skb(skb);
283 	return 0;
284 
285 discard_release:
286 	/* Release the asoc/ep ref we took in the lookup calls. */
287 	if (transport)
288 		sctp_transport_put(transport);
289 	else
290 		sctp_endpoint_put(ep);
291 
292 	goto discard_it;
293 }
294 
295 /* Process the backlog queue of the socket.  Every skb on
296  * the backlog holds a ref on an association or endpoint.
297  * We hold this ref throughout the state machine to make
298  * sure that the structure we need is still around.
299  */
300 int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
301 {
302 	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
303 	struct sctp_inq *inqueue = &chunk->rcvr->inqueue;
304 	struct sctp_transport *t = chunk->transport;
305 	struct sctp_ep_common *rcvr = NULL;
306 	int backloged = 0;
307 
308 	rcvr = chunk->rcvr;
309 
310 	/* If the rcvr is dead then the association or endpoint
311 	 * has been deleted and we can safely drop the chunk
312 	 * and refs that we are holding.
313 	 */
314 	if (rcvr->dead) {
315 		sctp_chunk_free(chunk);
316 		goto done;
317 	}
318 
319 	if (unlikely(rcvr->sk != sk)) {
320 		/* In this case, the association moved from one socket to
321 		 * another.  We are currently sitting on the backlog of the
322 		 * old socket, so we need to move.
323 		 * However, since we are here in the process context we
324 		 * need to take make sure that the user doesn't own
325 		 * the new socket when we process the packet.
326 		 * If the new socket is user-owned, queue the chunk to the
327 		 * backlog of the new socket without dropping any refs.
328 		 * Otherwise, we can safely push the chunk on the inqueue.
329 		 */
330 
331 		sk = rcvr->sk;
332 		local_bh_disable();
333 		bh_lock_sock(sk);
334 
335 		if (sock_owned_by_user(sk)) {
336 			if (sk_add_backlog(sk, skb, sk->sk_rcvbuf))
337 				sctp_chunk_free(chunk);
338 			else
339 				backloged = 1;
340 		} else
341 			sctp_inq_push(inqueue, chunk);
342 
343 		bh_unlock_sock(sk);
344 		local_bh_enable();
345 
346 		/* If the chunk was backloged again, don't drop refs */
347 		if (backloged)
348 			return 0;
349 	} else {
350 		sctp_inq_push(inqueue, chunk);
351 	}
352 
353 done:
354 	/* Release the refs we took in sctp_add_backlog */
355 	if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
356 		sctp_transport_put(t);
357 	else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
358 		sctp_endpoint_put(sctp_ep(rcvr));
359 	else
360 		BUG();
361 
362 	return 0;
363 }
364 
365 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb)
366 {
367 	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
368 	struct sctp_transport *t = chunk->transport;
369 	struct sctp_ep_common *rcvr = chunk->rcvr;
370 	int ret;
371 
372 	ret = sk_add_backlog(sk, skb, sk->sk_rcvbuf);
373 	if (!ret) {
374 		/* Hold the assoc/ep while hanging on the backlog queue.
375 		 * This way, we know structures we need will not disappear
376 		 * from us
377 		 */
378 		if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
379 			sctp_transport_hold(t);
380 		else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
381 			sctp_endpoint_hold(sctp_ep(rcvr));
382 		else
383 			BUG();
384 	}
385 	return ret;
386 
387 }
388 
389 /* Handle icmp frag needed error. */
390 void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
391 			   struct sctp_transport *t, __u32 pmtu)
392 {
393 	if (!t || (t->pathmtu <= pmtu))
394 		return;
395 
396 	if (sock_owned_by_user(sk)) {
397 		asoc->pmtu_pending = 1;
398 		t->pmtu_pending = 1;
399 		return;
400 	}
401 
402 	if (t->param_flags & SPP_PMTUD_ENABLE) {
403 		/* Update transports view of the MTU */
404 		sctp_transport_update_pmtu(t, pmtu);
405 
406 		/* Update association pmtu. */
407 		sctp_assoc_sync_pmtu(asoc);
408 	}
409 
410 	/* Retransmit with the new pmtu setting.
411 	 * Normally, if PMTU discovery is disabled, an ICMP Fragmentation
412 	 * Needed will never be sent, but if a message was sent before
413 	 * PMTU discovery was disabled that was larger than the PMTU, it
414 	 * would not be fragmented, so it must be re-transmitted fragmented.
415 	 */
416 	sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD);
417 }
418 
419 void sctp_icmp_redirect(struct sock *sk, struct sctp_transport *t,
420 			struct sk_buff *skb)
421 {
422 	struct dst_entry *dst;
423 
424 	if (!t)
425 		return;
426 	dst = sctp_transport_dst_check(t);
427 	if (dst)
428 		dst->ops->redirect(dst, sk, skb);
429 }
430 
431 /*
432  * SCTP Implementer's Guide, 2.37 ICMP handling procedures
433  *
434  * ICMP8) If the ICMP code is a "Unrecognized next header type encountered"
435  *        or a "Protocol Unreachable" treat this message as an abort
436  *        with the T bit set.
437  *
438  * This function sends an event to the state machine, which will abort the
439  * association.
440  *
441  */
442 void sctp_icmp_proto_unreachable(struct sock *sk,
443 			   struct sctp_association *asoc,
444 			   struct sctp_transport *t)
445 {
446 	if (sock_owned_by_user(sk)) {
447 		if (timer_pending(&t->proto_unreach_timer))
448 			return;
449 		else {
450 			if (!mod_timer(&t->proto_unreach_timer,
451 						jiffies + (HZ/20)))
452 				sctp_association_hold(asoc);
453 		}
454 	} else {
455 		struct net *net = sock_net(sk);
456 
457 		pr_debug("%s: unrecognized next header type "
458 			 "encountered!\n", __func__);
459 
460 		if (del_timer(&t->proto_unreach_timer))
461 			sctp_association_put(asoc);
462 
463 		sctp_do_sm(net, SCTP_EVENT_T_OTHER,
464 			   SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
465 			   asoc->state, asoc->ep, asoc, t,
466 			   GFP_ATOMIC);
467 	}
468 }
469 
470 /* Common lookup code for icmp/icmpv6 error handler. */
471 struct sock *sctp_err_lookup(struct net *net, int family, struct sk_buff *skb,
472 			     struct sctphdr *sctphdr,
473 			     struct sctp_association **app,
474 			     struct sctp_transport **tpp)
475 {
476 	union sctp_addr saddr;
477 	union sctp_addr daddr;
478 	struct sctp_af *af;
479 	struct sock *sk = NULL;
480 	struct sctp_association *asoc;
481 	struct sctp_transport *transport = NULL;
482 	struct sctp_init_chunk *chunkhdr;
483 	__u32 vtag = ntohl(sctphdr->vtag);
484 	int len = skb->len - ((void *)sctphdr - (void *)skb->data);
485 
486 	*app = NULL; *tpp = NULL;
487 
488 	af = sctp_get_af_specific(family);
489 	if (unlikely(!af)) {
490 		return NULL;
491 	}
492 
493 	/* Initialize local addresses for lookups. */
494 	af->from_skb(&saddr, skb, 1);
495 	af->from_skb(&daddr, skb, 0);
496 
497 	/* Look for an association that matches the incoming ICMP error
498 	 * packet.
499 	 */
500 	asoc = __sctp_lookup_association(net, &saddr, &daddr, &transport);
501 	if (!asoc)
502 		return NULL;
503 
504 	sk = asoc->base.sk;
505 
506 	/* RFC 4960, Appendix C. ICMP Handling
507 	 *
508 	 * ICMP6) An implementation MUST validate that the Verification Tag
509 	 * contained in the ICMP message matches the Verification Tag of
510 	 * the peer.  If the Verification Tag is not 0 and does NOT
511 	 * match, discard the ICMP message.  If it is 0 and the ICMP
512 	 * message contains enough bytes to verify that the chunk type is
513 	 * an INIT chunk and that the Initiate Tag matches the tag of the
514 	 * peer, continue with ICMP7.  If the ICMP message is too short
515 	 * or the chunk type or the Initiate Tag does not match, silently
516 	 * discard the packet.
517 	 */
518 	if (vtag == 0) {
519 		chunkhdr = (void *)sctphdr + sizeof(struct sctphdr);
520 		if (len < sizeof(struct sctphdr) + sizeof(sctp_chunkhdr_t)
521 			  + sizeof(__be32) ||
522 		    chunkhdr->chunk_hdr.type != SCTP_CID_INIT ||
523 		    ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag) {
524 			goto out;
525 		}
526 	} else if (vtag != asoc->c.peer_vtag) {
527 		goto out;
528 	}
529 
530 	bh_lock_sock(sk);
531 
532 	/* If too many ICMPs get dropped on busy
533 	 * servers this needs to be solved differently.
534 	 */
535 	if (sock_owned_by_user(sk))
536 		__NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
537 
538 	*app = asoc;
539 	*tpp = transport;
540 	return sk;
541 
542 out:
543 	sctp_transport_put(transport);
544 	return NULL;
545 }
546 
547 /* Common cleanup code for icmp/icmpv6 error handler. */
548 void sctp_err_finish(struct sock *sk, struct sctp_transport *t)
549 {
550 	bh_unlock_sock(sk);
551 	sctp_transport_put(t);
552 }
553 
554 /*
555  * This routine is called by the ICMP module when it gets some
556  * sort of error condition.  If err < 0 then the socket should
557  * be closed and the error returned to the user.  If err > 0
558  * it's just the icmp type << 8 | icmp code.  After adjustment
559  * header points to the first 8 bytes of the sctp header.  We need
560  * to find the appropriate port.
561  *
562  * The locking strategy used here is very "optimistic". When
563  * someone else accesses the socket the ICMP is just dropped
564  * and for some paths there is no check at all.
565  * A more general error queue to queue errors for later handling
566  * is probably better.
567  *
568  */
569 void sctp_v4_err(struct sk_buff *skb, __u32 info)
570 {
571 	const struct iphdr *iph = (const struct iphdr *)skb->data;
572 	const int ihlen = iph->ihl * 4;
573 	const int type = icmp_hdr(skb)->type;
574 	const int code = icmp_hdr(skb)->code;
575 	struct sock *sk;
576 	struct sctp_association *asoc = NULL;
577 	struct sctp_transport *transport;
578 	struct inet_sock *inet;
579 	__u16 saveip, savesctp;
580 	int err;
581 	struct net *net = dev_net(skb->dev);
582 
583 	/* Fix up skb to look at the embedded net header. */
584 	saveip = skb->network_header;
585 	savesctp = skb->transport_header;
586 	skb_reset_network_header(skb);
587 	skb_set_transport_header(skb, ihlen);
588 	sk = sctp_err_lookup(net, AF_INET, skb, sctp_hdr(skb), &asoc, &transport);
589 	/* Put back, the original values. */
590 	skb->network_header = saveip;
591 	skb->transport_header = savesctp;
592 	if (!sk) {
593 		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
594 		return;
595 	}
596 	/* Warning:  The sock lock is held.  Remember to call
597 	 * sctp_err_finish!
598 	 */
599 
600 	switch (type) {
601 	case ICMP_PARAMETERPROB:
602 		err = EPROTO;
603 		break;
604 	case ICMP_DEST_UNREACH:
605 		if (code > NR_ICMP_UNREACH)
606 			goto out_unlock;
607 
608 		/* PMTU discovery (RFC1191) */
609 		if (ICMP_FRAG_NEEDED == code) {
610 			sctp_icmp_frag_needed(sk, asoc, transport,
611 					      SCTP_TRUNC4(info));
612 			goto out_unlock;
613 		} else {
614 			if (ICMP_PROT_UNREACH == code) {
615 				sctp_icmp_proto_unreachable(sk, asoc,
616 							    transport);
617 				goto out_unlock;
618 			}
619 		}
620 		err = icmp_err_convert[code].errno;
621 		break;
622 	case ICMP_TIME_EXCEEDED:
623 		/* Ignore any time exceeded errors due to fragment reassembly
624 		 * timeouts.
625 		 */
626 		if (ICMP_EXC_FRAGTIME == code)
627 			goto out_unlock;
628 
629 		err = EHOSTUNREACH;
630 		break;
631 	case ICMP_REDIRECT:
632 		sctp_icmp_redirect(sk, transport, skb);
633 		/* Fall through to out_unlock. */
634 	default:
635 		goto out_unlock;
636 	}
637 
638 	inet = inet_sk(sk);
639 	if (!sock_owned_by_user(sk) && inet->recverr) {
640 		sk->sk_err = err;
641 		sk->sk_error_report(sk);
642 	} else {  /* Only an error on timeout */
643 		sk->sk_err_soft = err;
644 	}
645 
646 out_unlock:
647 	sctp_err_finish(sk, transport);
648 }
649 
650 /*
651  * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
652  *
653  * This function scans all the chunks in the OOTB packet to determine if
654  * the packet should be discarded right away.  If a response might be needed
655  * for this packet, or, if further processing is possible, the packet will
656  * be queued to a proper inqueue for the next phase of handling.
657  *
658  * Output:
659  * Return 0 - If further processing is needed.
660  * Return 1 - If the packet can be discarded right away.
661  */
662 static int sctp_rcv_ootb(struct sk_buff *skb)
663 {
664 	sctp_chunkhdr_t *ch, _ch;
665 	int ch_end, offset = 0;
666 
667 	/* Scan through all the chunks in the packet.  */
668 	do {
669 		/* Make sure we have at least the header there */
670 		if (offset + sizeof(sctp_chunkhdr_t) > skb->len)
671 			break;
672 
673 		ch = skb_header_pointer(skb, offset, sizeof(*ch), &_ch);
674 
675 		/* Break out if chunk length is less then minimal. */
676 		if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t))
677 			break;
678 
679 		ch_end = offset + SCTP_PAD4(ntohs(ch->length));
680 		if (ch_end > skb->len)
681 			break;
682 
683 		/* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the
684 		 * receiver MUST silently discard the OOTB packet and take no
685 		 * further action.
686 		 */
687 		if (SCTP_CID_ABORT == ch->type)
688 			goto discard;
689 
690 		/* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE
691 		 * chunk, the receiver should silently discard the packet
692 		 * and take no further action.
693 		 */
694 		if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type)
695 			goto discard;
696 
697 		/* RFC 4460, 2.11.2
698 		 * This will discard packets with INIT chunk bundled as
699 		 * subsequent chunks in the packet.  When INIT is first,
700 		 * the normal INIT processing will discard the chunk.
701 		 */
702 		if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data)
703 			goto discard;
704 
705 		offset = ch_end;
706 	} while (ch_end < skb->len);
707 
708 	return 0;
709 
710 discard:
711 	return 1;
712 }
713 
714 /* Insert endpoint into the hash table.  */
715 static void __sctp_hash_endpoint(struct sctp_endpoint *ep)
716 {
717 	struct net *net = sock_net(ep->base.sk);
718 	struct sctp_ep_common *epb;
719 	struct sctp_hashbucket *head;
720 
721 	epb = &ep->base;
722 
723 	epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port);
724 	head = &sctp_ep_hashtable[epb->hashent];
725 
726 	write_lock(&head->lock);
727 	hlist_add_head(&epb->node, &head->chain);
728 	write_unlock(&head->lock);
729 }
730 
731 /* Add an endpoint to the hash. Local BH-safe. */
732 void sctp_hash_endpoint(struct sctp_endpoint *ep)
733 {
734 	local_bh_disable();
735 	__sctp_hash_endpoint(ep);
736 	local_bh_enable();
737 }
738 
739 /* Remove endpoint from the hash table.  */
740 static void __sctp_unhash_endpoint(struct sctp_endpoint *ep)
741 {
742 	struct net *net = sock_net(ep->base.sk);
743 	struct sctp_hashbucket *head;
744 	struct sctp_ep_common *epb;
745 
746 	epb = &ep->base;
747 
748 	epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port);
749 
750 	head = &sctp_ep_hashtable[epb->hashent];
751 
752 	write_lock(&head->lock);
753 	hlist_del_init(&epb->node);
754 	write_unlock(&head->lock);
755 }
756 
757 /* Remove endpoint from the hash.  Local BH-safe. */
758 void sctp_unhash_endpoint(struct sctp_endpoint *ep)
759 {
760 	local_bh_disable();
761 	__sctp_unhash_endpoint(ep);
762 	local_bh_enable();
763 }
764 
765 /* Look up an endpoint. */
766 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net,
767 						const union sctp_addr *laddr)
768 {
769 	struct sctp_hashbucket *head;
770 	struct sctp_ep_common *epb;
771 	struct sctp_endpoint *ep;
772 	int hash;
773 
774 	hash = sctp_ep_hashfn(net, ntohs(laddr->v4.sin_port));
775 	head = &sctp_ep_hashtable[hash];
776 	read_lock(&head->lock);
777 	sctp_for_each_hentry(epb, &head->chain) {
778 		ep = sctp_ep(epb);
779 		if (sctp_endpoint_is_match(ep, net, laddr))
780 			goto hit;
781 	}
782 
783 	ep = sctp_sk(net->sctp.ctl_sock)->ep;
784 
785 hit:
786 	sctp_endpoint_hold(ep);
787 	read_unlock(&head->lock);
788 	return ep;
789 }
790 
791 /* rhashtable for transport */
792 struct sctp_hash_cmp_arg {
793 	const union sctp_addr	*paddr;
794 	const struct net	*net;
795 	u16			lport;
796 };
797 
798 static inline int sctp_hash_cmp(struct rhashtable_compare_arg *arg,
799 				const void *ptr)
800 {
801 	struct sctp_transport *t = (struct sctp_transport *)ptr;
802 	const struct sctp_hash_cmp_arg *x = arg->key;
803 	int err = 1;
804 
805 	if (!sctp_cmp_addr_exact(&t->ipaddr, x->paddr))
806 		return err;
807 	if (!sctp_transport_hold(t))
808 		return err;
809 
810 	if (!net_eq(sock_net(t->asoc->base.sk), x->net))
811 		goto out;
812 	if (x->lport != htons(t->asoc->base.bind_addr.port))
813 		goto out;
814 
815 	err = 0;
816 out:
817 	sctp_transport_put(t);
818 	return err;
819 }
820 
821 static inline u32 sctp_hash_obj(const void *data, u32 len, u32 seed)
822 {
823 	const struct sctp_transport *t = data;
824 	const union sctp_addr *paddr = &t->ipaddr;
825 	const struct net *net = sock_net(t->asoc->base.sk);
826 	u16 lport = htons(t->asoc->base.bind_addr.port);
827 	u32 addr;
828 
829 	if (paddr->sa.sa_family == AF_INET6)
830 		addr = jhash(&paddr->v6.sin6_addr, 16, seed);
831 	else
832 		addr = paddr->v4.sin_addr.s_addr;
833 
834 	return  jhash_3words(addr, ((__u32)paddr->v4.sin_port) << 16 |
835 			     (__force __u32)lport, net_hash_mix(net), seed);
836 }
837 
838 static inline u32 sctp_hash_key(const void *data, u32 len, u32 seed)
839 {
840 	const struct sctp_hash_cmp_arg *x = data;
841 	const union sctp_addr *paddr = x->paddr;
842 	const struct net *net = x->net;
843 	u16 lport = x->lport;
844 	u32 addr;
845 
846 	if (paddr->sa.sa_family == AF_INET6)
847 		addr = jhash(&paddr->v6.sin6_addr, 16, seed);
848 	else
849 		addr = paddr->v4.sin_addr.s_addr;
850 
851 	return  jhash_3words(addr, ((__u32)paddr->v4.sin_port) << 16 |
852 			     (__force __u32)lport, net_hash_mix(net), seed);
853 }
854 
855 static const struct rhashtable_params sctp_hash_params = {
856 	.head_offset		= offsetof(struct sctp_transport, node),
857 	.hashfn			= sctp_hash_key,
858 	.obj_hashfn		= sctp_hash_obj,
859 	.obj_cmpfn		= sctp_hash_cmp,
860 	.automatic_shrinking	= true,
861 };
862 
863 int sctp_transport_hashtable_init(void)
864 {
865 	return rhltable_init(&sctp_transport_hashtable, &sctp_hash_params);
866 }
867 
868 void sctp_transport_hashtable_destroy(void)
869 {
870 	rhltable_destroy(&sctp_transport_hashtable);
871 }
872 
873 int sctp_hash_transport(struct sctp_transport *t)
874 {
875 	struct sctp_transport *transport;
876 	struct rhlist_head *tmp, *list;
877 	struct sctp_hash_cmp_arg arg;
878 	int err;
879 
880 	if (t->asoc->temp)
881 		return 0;
882 
883 	arg.net   = sock_net(t->asoc->base.sk);
884 	arg.paddr = &t->ipaddr;
885 	arg.lport = htons(t->asoc->base.bind_addr.port);
886 
887 	rcu_read_lock();
888 	list = rhltable_lookup(&sctp_transport_hashtable, &arg,
889 			       sctp_hash_params);
890 
891 	rhl_for_each_entry_rcu(transport, tmp, list, node)
892 		if (transport->asoc->ep == t->asoc->ep) {
893 			rcu_read_unlock();
894 			err = -EEXIST;
895 			goto out;
896 		}
897 	rcu_read_unlock();
898 
899 	err = rhltable_insert_key(&sctp_transport_hashtable, &arg,
900 				  &t->node, sctp_hash_params);
901 
902 out:
903 	if (err)
904 		pr_err_once("insert transport fail, errno %d\n", err);
905 
906 	return err;
907 }
908 
909 void sctp_unhash_transport(struct sctp_transport *t)
910 {
911 	if (t->asoc->temp)
912 		return;
913 
914 	rhltable_remove(&sctp_transport_hashtable, &t->node,
915 			sctp_hash_params);
916 }
917 
918 /* return a transport with holding it */
919 struct sctp_transport *sctp_addrs_lookup_transport(
920 				struct net *net,
921 				const union sctp_addr *laddr,
922 				const union sctp_addr *paddr)
923 {
924 	struct rhlist_head *tmp, *list;
925 	struct sctp_transport *t;
926 	struct sctp_hash_cmp_arg arg = {
927 		.paddr = paddr,
928 		.net   = net,
929 		.lport = laddr->v4.sin_port,
930 	};
931 
932 	list = rhltable_lookup(&sctp_transport_hashtable, &arg,
933 			       sctp_hash_params);
934 
935 	rhl_for_each_entry_rcu(t, tmp, list, node) {
936 		if (!sctp_transport_hold(t))
937 			continue;
938 
939 		if (sctp_bind_addr_match(&t->asoc->base.bind_addr,
940 					 laddr, sctp_sk(t->asoc->base.sk)))
941 			return t;
942 		sctp_transport_put(t);
943 	}
944 
945 	return NULL;
946 }
947 
948 /* return a transport without holding it, as it's only used under sock lock */
949 struct sctp_transport *sctp_epaddr_lookup_transport(
950 				const struct sctp_endpoint *ep,
951 				const union sctp_addr *paddr)
952 {
953 	struct net *net = sock_net(ep->base.sk);
954 	struct rhlist_head *tmp, *list;
955 	struct sctp_transport *t;
956 	struct sctp_hash_cmp_arg arg = {
957 		.paddr = paddr,
958 		.net   = net,
959 		.lport = htons(ep->base.bind_addr.port),
960 	};
961 
962 	list = rhltable_lookup(&sctp_transport_hashtable, &arg,
963 			       sctp_hash_params);
964 
965 	rhl_for_each_entry_rcu(t, tmp, list, node)
966 		if (ep == t->asoc->ep)
967 			return t;
968 
969 	return NULL;
970 }
971 
972 /* Look up an association. */
973 static struct sctp_association *__sctp_lookup_association(
974 					struct net *net,
975 					const union sctp_addr *local,
976 					const union sctp_addr *peer,
977 					struct sctp_transport **pt)
978 {
979 	struct sctp_transport *t;
980 	struct sctp_association *asoc = NULL;
981 
982 	t = sctp_addrs_lookup_transport(net, local, peer);
983 	if (!t)
984 		goto out;
985 
986 	asoc = t->asoc;
987 	*pt = t;
988 
989 out:
990 	return asoc;
991 }
992 
993 /* Look up an association. protected by RCU read lock */
994 static
995 struct sctp_association *sctp_lookup_association(struct net *net,
996 						 const union sctp_addr *laddr,
997 						 const union sctp_addr *paddr,
998 						 struct sctp_transport **transportp)
999 {
1000 	struct sctp_association *asoc;
1001 
1002 	rcu_read_lock();
1003 	asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1004 	rcu_read_unlock();
1005 
1006 	return asoc;
1007 }
1008 
1009 /* Is there an association matching the given local and peer addresses? */
1010 int sctp_has_association(struct net *net,
1011 			 const union sctp_addr *laddr,
1012 			 const union sctp_addr *paddr)
1013 {
1014 	struct sctp_association *asoc;
1015 	struct sctp_transport *transport;
1016 
1017 	if ((asoc = sctp_lookup_association(net, laddr, paddr, &transport))) {
1018 		sctp_transport_put(transport);
1019 		return 1;
1020 	}
1021 
1022 	return 0;
1023 }
1024 
1025 /*
1026  * SCTP Implementors Guide, 2.18 Handling of address
1027  * parameters within the INIT or INIT-ACK.
1028  *
1029  * D) When searching for a matching TCB upon reception of an INIT
1030  *    or INIT-ACK chunk the receiver SHOULD use not only the
1031  *    source address of the packet (containing the INIT or
1032  *    INIT-ACK) but the receiver SHOULD also use all valid
1033  *    address parameters contained within the chunk.
1034  *
1035  * 2.18.3 Solution description
1036  *
1037  * This new text clearly specifies to an implementor the need
1038  * to look within the INIT or INIT-ACK. Any implementation that
1039  * does not do this, may not be able to establish associations
1040  * in certain circumstances.
1041  *
1042  */
1043 static struct sctp_association *__sctp_rcv_init_lookup(struct net *net,
1044 	struct sk_buff *skb,
1045 	const union sctp_addr *laddr, struct sctp_transport **transportp)
1046 {
1047 	struct sctp_association *asoc;
1048 	union sctp_addr addr;
1049 	union sctp_addr *paddr = &addr;
1050 	struct sctphdr *sh = sctp_hdr(skb);
1051 	union sctp_params params;
1052 	sctp_init_chunk_t *init;
1053 	struct sctp_af *af;
1054 
1055 	/*
1056 	 * This code will NOT touch anything inside the chunk--it is
1057 	 * strictly READ-ONLY.
1058 	 *
1059 	 * RFC 2960 3  SCTP packet Format
1060 	 *
1061 	 * Multiple chunks can be bundled into one SCTP packet up to
1062 	 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN
1063 	 * COMPLETE chunks.  These chunks MUST NOT be bundled with any
1064 	 * other chunk in a packet.  See Section 6.10 for more details
1065 	 * on chunk bundling.
1066 	 */
1067 
1068 	/* Find the start of the TLVs and the end of the chunk.  This is
1069 	 * the region we search for address parameters.
1070 	 */
1071 	init = (sctp_init_chunk_t *)skb->data;
1072 
1073 	/* Walk the parameters looking for embedded addresses. */
1074 	sctp_walk_params(params, init, init_hdr.params) {
1075 
1076 		/* Note: Ignoring hostname addresses. */
1077 		af = sctp_get_af_specific(param_type2af(params.p->type));
1078 		if (!af)
1079 			continue;
1080 
1081 		af->from_addr_param(paddr, params.addr, sh->source, 0);
1082 
1083 		asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1084 		if (asoc)
1085 			return asoc;
1086 	}
1087 
1088 	return NULL;
1089 }
1090 
1091 /* ADD-IP, Section 5.2
1092  * When an endpoint receives an ASCONF Chunk from the remote peer
1093  * special procedures may be needed to identify the association the
1094  * ASCONF Chunk is associated with. To properly find the association
1095  * the following procedures SHOULD be followed:
1096  *
1097  * D2) If the association is not found, use the address found in the
1098  * Address Parameter TLV combined with the port number found in the
1099  * SCTP common header. If found proceed to rule D4.
1100  *
1101  * D2-ext) If more than one ASCONF Chunks are packed together, use the
1102  * address found in the ASCONF Address Parameter TLV of each of the
1103  * subsequent ASCONF Chunks. If found, proceed to rule D4.
1104  */
1105 static struct sctp_association *__sctp_rcv_asconf_lookup(
1106 					struct net *net,
1107 					sctp_chunkhdr_t *ch,
1108 					const union sctp_addr *laddr,
1109 					__be16 peer_port,
1110 					struct sctp_transport **transportp)
1111 {
1112 	sctp_addip_chunk_t *asconf = (struct sctp_addip_chunk *)ch;
1113 	struct sctp_af *af;
1114 	union sctp_addr_param *param;
1115 	union sctp_addr paddr;
1116 
1117 	/* Skip over the ADDIP header and find the Address parameter */
1118 	param = (union sctp_addr_param *)(asconf + 1);
1119 
1120 	af = sctp_get_af_specific(param_type2af(param->p.type));
1121 	if (unlikely(!af))
1122 		return NULL;
1123 
1124 	af->from_addr_param(&paddr, param, peer_port, 0);
1125 
1126 	return __sctp_lookup_association(net, laddr, &paddr, transportp);
1127 }
1128 
1129 
1130 /* SCTP-AUTH, Section 6.3:
1131 *    If the receiver does not find a STCB for a packet containing an AUTH
1132 *    chunk as the first chunk and not a COOKIE-ECHO chunk as the second
1133 *    chunk, it MUST use the chunks after the AUTH chunk to look up an existing
1134 *    association.
1135 *
1136 * This means that any chunks that can help us identify the association need
1137 * to be looked at to find this association.
1138 */
1139 static struct sctp_association *__sctp_rcv_walk_lookup(struct net *net,
1140 				      struct sk_buff *skb,
1141 				      const union sctp_addr *laddr,
1142 				      struct sctp_transport **transportp)
1143 {
1144 	struct sctp_association *asoc = NULL;
1145 	sctp_chunkhdr_t *ch;
1146 	int have_auth = 0;
1147 	unsigned int chunk_num = 1;
1148 	__u8 *ch_end;
1149 
1150 	/* Walk through the chunks looking for AUTH or ASCONF chunks
1151 	 * to help us find the association.
1152 	 */
1153 	ch = (sctp_chunkhdr_t *) skb->data;
1154 	do {
1155 		/* Break out if chunk length is less then minimal. */
1156 		if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t))
1157 			break;
1158 
1159 		ch_end = ((__u8 *)ch) + SCTP_PAD4(ntohs(ch->length));
1160 		if (ch_end > skb_tail_pointer(skb))
1161 			break;
1162 
1163 		switch (ch->type) {
1164 		case SCTP_CID_AUTH:
1165 			have_auth = chunk_num;
1166 			break;
1167 
1168 		case SCTP_CID_COOKIE_ECHO:
1169 			/* If a packet arrives containing an AUTH chunk as
1170 			 * a first chunk, a COOKIE-ECHO chunk as the second
1171 			 * chunk, and possibly more chunks after them, and
1172 			 * the receiver does not have an STCB for that
1173 			 * packet, then authentication is based on
1174 			 * the contents of the COOKIE- ECHO chunk.
1175 			 */
1176 			if (have_auth == 1 && chunk_num == 2)
1177 				return NULL;
1178 			break;
1179 
1180 		case SCTP_CID_ASCONF:
1181 			if (have_auth || net->sctp.addip_noauth)
1182 				asoc = __sctp_rcv_asconf_lookup(
1183 						net, ch, laddr,
1184 						sctp_hdr(skb)->source,
1185 						transportp);
1186 		default:
1187 			break;
1188 		}
1189 
1190 		if (asoc)
1191 			break;
1192 
1193 		ch = (sctp_chunkhdr_t *) ch_end;
1194 		chunk_num++;
1195 	} while (ch_end < skb_tail_pointer(skb));
1196 
1197 	return asoc;
1198 }
1199 
1200 /*
1201  * There are circumstances when we need to look inside the SCTP packet
1202  * for information to help us find the association.   Examples
1203  * include looking inside of INIT/INIT-ACK chunks or after the AUTH
1204  * chunks.
1205  */
1206 static struct sctp_association *__sctp_rcv_lookup_harder(struct net *net,
1207 				      struct sk_buff *skb,
1208 				      const union sctp_addr *laddr,
1209 				      struct sctp_transport **transportp)
1210 {
1211 	sctp_chunkhdr_t *ch;
1212 
1213 	/* We do not allow GSO frames here as we need to linearize and
1214 	 * then cannot guarantee frame boundaries. This shouldn't be an
1215 	 * issue as packets hitting this are mostly INIT or INIT-ACK and
1216 	 * those cannot be on GSO-style anyway.
1217 	 */
1218 	if ((skb_shinfo(skb)->gso_type & SKB_GSO_SCTP) == SKB_GSO_SCTP)
1219 		return NULL;
1220 
1221 	ch = (sctp_chunkhdr_t *) skb->data;
1222 
1223 	/* The code below will attempt to walk the chunk and extract
1224 	 * parameter information.  Before we do that, we need to verify
1225 	 * that the chunk length doesn't cause overflow.  Otherwise, we'll
1226 	 * walk off the end.
1227 	 */
1228 	if (SCTP_PAD4(ntohs(ch->length)) > skb->len)
1229 		return NULL;
1230 
1231 	/* If this is INIT/INIT-ACK look inside the chunk too. */
1232 	if (ch->type == SCTP_CID_INIT || ch->type == SCTP_CID_INIT_ACK)
1233 		return __sctp_rcv_init_lookup(net, skb, laddr, transportp);
1234 
1235 	return __sctp_rcv_walk_lookup(net, skb, laddr, transportp);
1236 }
1237 
1238 /* Lookup an association for an inbound skb. */
1239 static struct sctp_association *__sctp_rcv_lookup(struct net *net,
1240 				      struct sk_buff *skb,
1241 				      const union sctp_addr *paddr,
1242 				      const union sctp_addr *laddr,
1243 				      struct sctp_transport **transportp)
1244 {
1245 	struct sctp_association *asoc;
1246 
1247 	asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1248 	if (asoc)
1249 		goto out;
1250 
1251 	/* Further lookup for INIT/INIT-ACK packets.
1252 	 * SCTP Implementors Guide, 2.18 Handling of address
1253 	 * parameters within the INIT or INIT-ACK.
1254 	 */
1255 	asoc = __sctp_rcv_lookup_harder(net, skb, laddr, transportp);
1256 	if (asoc)
1257 		goto out;
1258 
1259 	if (paddr->sa.sa_family == AF_INET)
1260 		pr_debug("sctp: asoc not found for src:%pI4:%d dst:%pI4:%d\n",
1261 			 &laddr->v4.sin_addr, ntohs(laddr->v4.sin_port),
1262 			 &paddr->v4.sin_addr, ntohs(paddr->v4.sin_port));
1263 	else
1264 		pr_debug("sctp: asoc not found for src:%pI6:%d dst:%pI6:%d\n",
1265 			 &laddr->v6.sin6_addr, ntohs(laddr->v6.sin6_port),
1266 			 &paddr->v6.sin6_addr, ntohs(paddr->v6.sin6_port));
1267 
1268 out:
1269 	return asoc;
1270 }
1271