1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* SCTP kernel implementation 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 International Business Machines, Corp. 6 * Copyright (c) 2001 Intel Corp. 7 * Copyright (c) 2001 Nokia, Inc. 8 * Copyright (c) 2001 La Monte H.P. Yarroll 9 * 10 * This file is part of the SCTP kernel implementation 11 * 12 * These functions handle all input from the IP layer into SCTP. 13 * 14 * Please send any bug reports or fixes you make to the 15 * email address(es): 16 * lksctp developers <linux-sctp@vger.kernel.org> 17 * 18 * Written or modified by: 19 * La Monte H.P. Yarroll <piggy@acm.org> 20 * Karl Knutson <karl@athena.chicago.il.us> 21 * Xingang Guo <xingang.guo@intel.com> 22 * Jon Grimm <jgrimm@us.ibm.com> 23 * Hui Huang <hui.huang@nokia.com> 24 * Daisy Chang <daisyc@us.ibm.com> 25 * Sridhar Samudrala <sri@us.ibm.com> 26 * Ardelle Fan <ardelle.fan@intel.com> 27 */ 28 29 #include <linux/types.h> 30 #include <linux/list.h> /* For struct list_head */ 31 #include <linux/socket.h> 32 #include <linux/ip.h> 33 #include <linux/time.h> /* For struct timeval */ 34 #include <linux/slab.h> 35 #include <net/ip.h> 36 #include <net/icmp.h> 37 #include <net/snmp.h> 38 #include <net/sock.h> 39 #include <net/xfrm.h> 40 #include <net/sctp/sctp.h> 41 #include <net/sctp/sm.h> 42 #include <net/sctp/checksum.h> 43 #include <net/net_namespace.h> 44 #include <linux/rhashtable.h> 45 #include <net/sock_reuseport.h> 46 47 /* Forward declarations for internal helpers. */ 48 static int sctp_rcv_ootb(struct sk_buff *); 49 static struct sctp_association *__sctp_rcv_lookup(struct net *net, 50 struct sk_buff *skb, 51 const union sctp_addr *paddr, 52 const union sctp_addr *laddr, 53 struct sctp_transport **transportp); 54 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint( 55 struct net *net, struct sk_buff *skb, 56 const union sctp_addr *laddr, 57 const union sctp_addr *daddr); 58 static struct sctp_association *__sctp_lookup_association( 59 struct net *net, 60 const union sctp_addr *local, 61 const union sctp_addr *peer, 62 struct sctp_transport **pt); 63 64 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb); 65 66 67 /* Calculate the SCTP checksum of an SCTP packet. */ 68 static inline int sctp_rcv_checksum(struct net *net, struct sk_buff *skb) 69 { 70 struct sctphdr *sh = sctp_hdr(skb); 71 __le32 cmp = sh->checksum; 72 __le32 val = sctp_compute_cksum(skb, 0); 73 74 if (val != cmp) { 75 /* CRC failure, dump it. */ 76 __SCTP_INC_STATS(net, SCTP_MIB_CHECKSUMERRORS); 77 return -1; 78 } 79 return 0; 80 } 81 82 /* 83 * This is the routine which IP calls when receiving an SCTP packet. 84 */ 85 int sctp_rcv(struct sk_buff *skb) 86 { 87 struct sock *sk; 88 struct sctp_association *asoc; 89 struct sctp_endpoint *ep = NULL; 90 struct sctp_ep_common *rcvr; 91 struct sctp_transport *transport = NULL; 92 struct sctp_chunk *chunk; 93 union sctp_addr src; 94 union sctp_addr dest; 95 int bound_dev_if; 96 int family; 97 struct sctp_af *af; 98 struct net *net = dev_net(skb->dev); 99 bool is_gso = skb_is_gso(skb) && skb_is_gso_sctp(skb); 100 101 if (skb->pkt_type != PACKET_HOST) 102 goto discard_it; 103 104 __SCTP_INC_STATS(net, SCTP_MIB_INSCTPPACKS); 105 106 /* If packet is too small to contain a single chunk, let's not 107 * waste time on it anymore. 108 */ 109 if (skb->len < sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr) + 110 skb_transport_offset(skb)) 111 goto discard_it; 112 113 /* If the packet is fragmented and we need to do crc checking, 114 * it's better to just linearize it otherwise crc computing 115 * takes longer. 116 */ 117 if ((!is_gso && skb_linearize(skb)) || 118 !pskb_may_pull(skb, sizeof(struct sctphdr))) 119 goto discard_it; 120 121 /* Pull up the IP header. */ 122 __skb_pull(skb, skb_transport_offset(skb)); 123 124 skb->csum_valid = 0; /* Previous value not applicable */ 125 if (skb_csum_unnecessary(skb)) 126 __skb_decr_checksum_unnecessary(skb); 127 else if (!sctp_checksum_disable && 128 !is_gso && 129 sctp_rcv_checksum(net, skb) < 0) 130 goto discard_it; 131 skb->csum_valid = 1; 132 133 __skb_pull(skb, sizeof(struct sctphdr)); 134 135 family = ipver2af(ip_hdr(skb)->version); 136 af = sctp_get_af_specific(family); 137 if (unlikely(!af)) 138 goto discard_it; 139 SCTP_INPUT_CB(skb)->af = af; 140 141 /* Initialize local addresses for lookups. */ 142 af->from_skb(&src, skb, 1); 143 af->from_skb(&dest, skb, 0); 144 145 /* If the packet is to or from a non-unicast address, 146 * silently discard the packet. 147 * 148 * This is not clearly defined in the RFC except in section 149 * 8.4 - OOTB handling. However, based on the book "Stream Control 150 * Transmission Protocol" 2.1, "It is important to note that the 151 * IP address of an SCTP transport address must be a routable 152 * unicast address. In other words, IP multicast addresses and 153 * IP broadcast addresses cannot be used in an SCTP transport 154 * address." 155 */ 156 if (!af->addr_valid(&src, NULL, skb) || 157 !af->addr_valid(&dest, NULL, skb)) 158 goto discard_it; 159 160 asoc = __sctp_rcv_lookup(net, skb, &src, &dest, &transport); 161 162 if (!asoc) 163 ep = __sctp_rcv_lookup_endpoint(net, skb, &dest, &src); 164 165 /* Retrieve the common input handling substructure. */ 166 rcvr = asoc ? &asoc->base : &ep->base; 167 sk = rcvr->sk; 168 169 /* 170 * If a frame arrives on an interface and the receiving socket is 171 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB 172 */ 173 bound_dev_if = READ_ONCE(sk->sk_bound_dev_if); 174 if (bound_dev_if && (bound_dev_if != af->skb_iif(skb))) { 175 if (transport) { 176 sctp_transport_put(transport); 177 asoc = NULL; 178 transport = NULL; 179 } else { 180 sctp_endpoint_put(ep); 181 ep = NULL; 182 } 183 sk = net->sctp.ctl_sock; 184 ep = sctp_sk(sk)->ep; 185 sctp_endpoint_hold(ep); 186 rcvr = &ep->base; 187 } 188 189 /* 190 * RFC 2960, 8.4 - Handle "Out of the blue" Packets. 191 * An SCTP packet is called an "out of the blue" (OOTB) 192 * packet if it is correctly formed, i.e., passed the 193 * receiver's checksum check, but the receiver is not 194 * able to identify the association to which this 195 * packet belongs. 196 */ 197 if (!asoc) { 198 if (sctp_rcv_ootb(skb)) { 199 __SCTP_INC_STATS(net, SCTP_MIB_OUTOFBLUES); 200 goto discard_release; 201 } 202 } 203 204 if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family)) 205 goto discard_release; 206 nf_reset_ct(skb); 207 208 if (sk_filter(sk, skb)) 209 goto discard_release; 210 211 /* Create an SCTP packet structure. */ 212 chunk = sctp_chunkify(skb, asoc, sk, GFP_ATOMIC); 213 if (!chunk) 214 goto discard_release; 215 SCTP_INPUT_CB(skb)->chunk = chunk; 216 217 /* Remember what endpoint is to handle this packet. */ 218 chunk->rcvr = rcvr; 219 220 /* Remember the SCTP header. */ 221 chunk->sctp_hdr = sctp_hdr(skb); 222 223 /* Set the source and destination addresses of the incoming chunk. */ 224 sctp_init_addrs(chunk, &src, &dest); 225 226 /* Remember where we came from. */ 227 chunk->transport = transport; 228 229 /* Acquire access to the sock lock. Note: We are safe from other 230 * bottom halves on this lock, but a user may be in the lock too, 231 * so check if it is busy. 232 */ 233 bh_lock_sock(sk); 234 235 if (sk != rcvr->sk) { 236 /* Our cached sk is different from the rcvr->sk. This is 237 * because migrate()/accept() may have moved the association 238 * to a new socket and released all the sockets. So now we 239 * are holding a lock on the old socket while the user may 240 * be doing something with the new socket. Switch our veiw 241 * of the current sk. 242 */ 243 bh_unlock_sock(sk); 244 sk = rcvr->sk; 245 bh_lock_sock(sk); 246 } 247 248 if (sock_owned_by_user(sk) || !sctp_newsk_ready(sk)) { 249 if (sctp_add_backlog(sk, skb)) { 250 bh_unlock_sock(sk); 251 sctp_chunk_free(chunk); 252 skb = NULL; /* sctp_chunk_free already freed the skb */ 253 goto discard_release; 254 } 255 __SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_BACKLOG); 256 } else { 257 __SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_SOFTIRQ); 258 sctp_inq_push(&chunk->rcvr->inqueue, chunk); 259 } 260 261 bh_unlock_sock(sk); 262 263 /* Release the asoc/ep ref we took in the lookup calls. */ 264 if (transport) 265 sctp_transport_put(transport); 266 else 267 sctp_endpoint_put(ep); 268 269 return 0; 270 271 discard_it: 272 __SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_DISCARDS); 273 kfree_skb(skb); 274 return 0; 275 276 discard_release: 277 /* Release the asoc/ep ref we took in the lookup calls. */ 278 if (transport) 279 sctp_transport_put(transport); 280 else 281 sctp_endpoint_put(ep); 282 283 goto discard_it; 284 } 285 286 /* Process the backlog queue of the socket. Every skb on 287 * the backlog holds a ref on an association or endpoint. 288 * We hold this ref throughout the state machine to make 289 * sure that the structure we need is still around. 290 */ 291 int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb) 292 { 293 struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk; 294 struct sctp_inq *inqueue = &chunk->rcvr->inqueue; 295 struct sctp_transport *t = chunk->transport; 296 struct sctp_ep_common *rcvr = NULL; 297 int backloged = 0; 298 299 rcvr = chunk->rcvr; 300 301 /* If the rcvr is dead then the association or endpoint 302 * has been deleted and we can safely drop the chunk 303 * and refs that we are holding. 304 */ 305 if (rcvr->dead) { 306 sctp_chunk_free(chunk); 307 goto done; 308 } 309 310 if (unlikely(rcvr->sk != sk)) { 311 /* In this case, the association moved from one socket to 312 * another. We are currently sitting on the backlog of the 313 * old socket, so we need to move. 314 * However, since we are here in the process context we 315 * need to take make sure that the user doesn't own 316 * the new socket when we process the packet. 317 * If the new socket is user-owned, queue the chunk to the 318 * backlog of the new socket without dropping any refs. 319 * Otherwise, we can safely push the chunk on the inqueue. 320 */ 321 322 sk = rcvr->sk; 323 local_bh_disable(); 324 bh_lock_sock(sk); 325 326 if (sock_owned_by_user(sk) || !sctp_newsk_ready(sk)) { 327 if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) 328 sctp_chunk_free(chunk); 329 else 330 backloged = 1; 331 } else 332 sctp_inq_push(inqueue, chunk); 333 334 bh_unlock_sock(sk); 335 local_bh_enable(); 336 337 /* If the chunk was backloged again, don't drop refs */ 338 if (backloged) 339 return 0; 340 } else { 341 if (!sctp_newsk_ready(sk)) { 342 if (!sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) 343 return 0; 344 sctp_chunk_free(chunk); 345 } else { 346 sctp_inq_push(inqueue, chunk); 347 } 348 } 349 350 done: 351 /* Release the refs we took in sctp_add_backlog */ 352 if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type) 353 sctp_transport_put(t); 354 else if (SCTP_EP_TYPE_SOCKET == rcvr->type) 355 sctp_endpoint_put(sctp_ep(rcvr)); 356 else 357 BUG(); 358 359 return 0; 360 } 361 362 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb) 363 { 364 struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk; 365 struct sctp_transport *t = chunk->transport; 366 struct sctp_ep_common *rcvr = chunk->rcvr; 367 int ret; 368 369 ret = sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf)); 370 if (!ret) { 371 /* Hold the assoc/ep while hanging on the backlog queue. 372 * This way, we know structures we need will not disappear 373 * from us 374 */ 375 if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type) 376 sctp_transport_hold(t); 377 else if (SCTP_EP_TYPE_SOCKET == rcvr->type) 378 sctp_endpoint_hold(sctp_ep(rcvr)); 379 else 380 BUG(); 381 } 382 return ret; 383 384 } 385 386 /* Handle icmp frag needed error. */ 387 void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc, 388 struct sctp_transport *t, __u32 pmtu) 389 { 390 if (!t || 391 (t->pathmtu <= pmtu && 392 t->pl.probe_size + sctp_transport_pl_hlen(t) <= pmtu)) 393 return; 394 395 if (sock_owned_by_user(sk)) { 396 atomic_set(&t->mtu_info, pmtu); 397 asoc->pmtu_pending = 1; 398 t->pmtu_pending = 1; 399 return; 400 } 401 402 if (!(t->param_flags & SPP_PMTUD_ENABLE)) 403 /* We can't allow retransmitting in such case, as the 404 * retransmission would be sized just as before, and thus we 405 * would get another icmp, and retransmit again. 406 */ 407 return; 408 409 /* Update transports view of the MTU. Return if no update was needed. 410 * If an update wasn't needed/possible, it also doesn't make sense to 411 * try to retransmit now. 412 */ 413 if (!sctp_transport_update_pmtu(t, pmtu)) 414 return; 415 416 /* Update association pmtu. */ 417 sctp_assoc_sync_pmtu(asoc); 418 419 /* Retransmit with the new pmtu setting. */ 420 sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD); 421 } 422 423 void sctp_icmp_redirect(struct sock *sk, struct sctp_transport *t, 424 struct sk_buff *skb) 425 { 426 struct dst_entry *dst; 427 428 if (sock_owned_by_user(sk) || !t) 429 return; 430 dst = sctp_transport_dst_check(t); 431 if (dst) 432 dst->ops->redirect(dst, sk, skb); 433 } 434 435 /* 436 * SCTP Implementer's Guide, 2.37 ICMP handling procedures 437 * 438 * ICMP8) If the ICMP code is a "Unrecognized next header type encountered" 439 * or a "Protocol Unreachable" treat this message as an abort 440 * with the T bit set. 441 * 442 * This function sends an event to the state machine, which will abort the 443 * association. 444 * 445 */ 446 void sctp_icmp_proto_unreachable(struct sock *sk, 447 struct sctp_association *asoc, 448 struct sctp_transport *t) 449 { 450 if (sock_owned_by_user(sk)) { 451 if (timer_pending(&t->proto_unreach_timer)) 452 return; 453 else { 454 if (!mod_timer(&t->proto_unreach_timer, 455 jiffies + (HZ/20))) 456 sctp_transport_hold(t); 457 } 458 } else { 459 struct net *net = sock_net(sk); 460 461 pr_debug("%s: unrecognized next header type " 462 "encountered!\n", __func__); 463 464 if (del_timer(&t->proto_unreach_timer)) 465 sctp_transport_put(t); 466 467 sctp_do_sm(net, SCTP_EVENT_T_OTHER, 468 SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH), 469 asoc->state, asoc->ep, asoc, t, 470 GFP_ATOMIC); 471 } 472 } 473 474 /* Common lookup code for icmp/icmpv6 error handler. */ 475 struct sock *sctp_err_lookup(struct net *net, int family, struct sk_buff *skb, 476 struct sctphdr *sctphdr, 477 struct sctp_association **app, 478 struct sctp_transport **tpp) 479 { 480 struct sctp_init_chunk *chunkhdr, _chunkhdr; 481 union sctp_addr saddr; 482 union sctp_addr daddr; 483 struct sctp_af *af; 484 struct sock *sk = NULL; 485 struct sctp_association *asoc; 486 struct sctp_transport *transport = NULL; 487 __u32 vtag = ntohl(sctphdr->vtag); 488 489 *app = NULL; *tpp = NULL; 490 491 af = sctp_get_af_specific(family); 492 if (unlikely(!af)) { 493 return NULL; 494 } 495 496 /* Initialize local addresses for lookups. */ 497 af->from_skb(&saddr, skb, 1); 498 af->from_skb(&daddr, skb, 0); 499 500 /* Look for an association that matches the incoming ICMP error 501 * packet. 502 */ 503 asoc = __sctp_lookup_association(net, &saddr, &daddr, &transport); 504 if (!asoc) 505 return NULL; 506 507 sk = asoc->base.sk; 508 509 /* RFC 4960, Appendix C. ICMP Handling 510 * 511 * ICMP6) An implementation MUST validate that the Verification Tag 512 * contained in the ICMP message matches the Verification Tag of 513 * the peer. If the Verification Tag is not 0 and does NOT 514 * match, discard the ICMP message. If it is 0 and the ICMP 515 * message contains enough bytes to verify that the chunk type is 516 * an INIT chunk and that the Initiate Tag matches the tag of the 517 * peer, continue with ICMP7. If the ICMP message is too short 518 * or the chunk type or the Initiate Tag does not match, silently 519 * discard the packet. 520 */ 521 if (vtag == 0) { 522 /* chunk header + first 4 octects of init header */ 523 chunkhdr = skb_header_pointer(skb, skb_transport_offset(skb) + 524 sizeof(struct sctphdr), 525 sizeof(struct sctp_chunkhdr) + 526 sizeof(__be32), &_chunkhdr); 527 if (!chunkhdr || 528 chunkhdr->chunk_hdr.type != SCTP_CID_INIT || 529 ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag) 530 goto out; 531 532 } else if (vtag != asoc->c.peer_vtag) { 533 goto out; 534 } 535 536 bh_lock_sock(sk); 537 538 /* If too many ICMPs get dropped on busy 539 * servers this needs to be solved differently. 540 */ 541 if (sock_owned_by_user(sk)) 542 __NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS); 543 544 *app = asoc; 545 *tpp = transport; 546 return sk; 547 548 out: 549 sctp_transport_put(transport); 550 return NULL; 551 } 552 553 /* Common cleanup code for icmp/icmpv6 error handler. */ 554 void sctp_err_finish(struct sock *sk, struct sctp_transport *t) 555 __releases(&((__sk)->sk_lock.slock)) 556 { 557 bh_unlock_sock(sk); 558 sctp_transport_put(t); 559 } 560 561 static void sctp_v4_err_handle(struct sctp_transport *t, struct sk_buff *skb, 562 __u8 type, __u8 code, __u32 info) 563 { 564 struct sctp_association *asoc = t->asoc; 565 struct sock *sk = asoc->base.sk; 566 int err = 0; 567 568 switch (type) { 569 case ICMP_PARAMETERPROB: 570 err = EPROTO; 571 break; 572 case ICMP_DEST_UNREACH: 573 if (code > NR_ICMP_UNREACH) 574 return; 575 if (code == ICMP_FRAG_NEEDED) { 576 sctp_icmp_frag_needed(sk, asoc, t, SCTP_TRUNC4(info)); 577 return; 578 } 579 if (code == ICMP_PROT_UNREACH) { 580 sctp_icmp_proto_unreachable(sk, asoc, t); 581 return; 582 } 583 err = icmp_err_convert[code].errno; 584 break; 585 case ICMP_TIME_EXCEEDED: 586 if (code == ICMP_EXC_FRAGTIME) 587 return; 588 589 err = EHOSTUNREACH; 590 break; 591 case ICMP_REDIRECT: 592 sctp_icmp_redirect(sk, t, skb); 593 return; 594 default: 595 return; 596 } 597 if (!sock_owned_by_user(sk) && inet_sk(sk)->recverr) { 598 sk->sk_err = err; 599 sk_error_report(sk); 600 } else { /* Only an error on timeout */ 601 sk->sk_err_soft = err; 602 } 603 } 604 605 /* 606 * This routine is called by the ICMP module when it gets some 607 * sort of error condition. If err < 0 then the socket should 608 * be closed and the error returned to the user. If err > 0 609 * it's just the icmp type << 8 | icmp code. After adjustment 610 * header points to the first 8 bytes of the sctp header. We need 611 * to find the appropriate port. 612 * 613 * The locking strategy used here is very "optimistic". When 614 * someone else accesses the socket the ICMP is just dropped 615 * and for some paths there is no check at all. 616 * A more general error queue to queue errors for later handling 617 * is probably better. 618 * 619 */ 620 int sctp_v4_err(struct sk_buff *skb, __u32 info) 621 { 622 const struct iphdr *iph = (const struct iphdr *)skb->data; 623 const int type = icmp_hdr(skb)->type; 624 const int code = icmp_hdr(skb)->code; 625 struct net *net = dev_net(skb->dev); 626 struct sctp_transport *transport; 627 struct sctp_association *asoc; 628 __u16 saveip, savesctp; 629 struct sock *sk; 630 631 /* Fix up skb to look at the embedded net header. */ 632 saveip = skb->network_header; 633 savesctp = skb->transport_header; 634 skb_reset_network_header(skb); 635 skb_set_transport_header(skb, iph->ihl * 4); 636 sk = sctp_err_lookup(net, AF_INET, skb, sctp_hdr(skb), &asoc, &transport); 637 /* Put back, the original values. */ 638 skb->network_header = saveip; 639 skb->transport_header = savesctp; 640 if (!sk) { 641 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 642 return -ENOENT; 643 } 644 645 sctp_v4_err_handle(transport, skb, type, code, info); 646 sctp_err_finish(sk, transport); 647 648 return 0; 649 } 650 651 int sctp_udp_v4_err(struct sock *sk, struct sk_buff *skb) 652 { 653 struct net *net = dev_net(skb->dev); 654 struct sctp_association *asoc; 655 struct sctp_transport *t; 656 struct icmphdr *hdr; 657 __u32 info = 0; 658 659 skb->transport_header += sizeof(struct udphdr); 660 sk = sctp_err_lookup(net, AF_INET, skb, sctp_hdr(skb), &asoc, &t); 661 if (!sk) { 662 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 663 return -ENOENT; 664 } 665 666 skb->transport_header -= sizeof(struct udphdr); 667 hdr = (struct icmphdr *)(skb_network_header(skb) - sizeof(struct icmphdr)); 668 if (hdr->type == ICMP_REDIRECT) { 669 /* can't be handled without outer iphdr known, leave it to udp_err */ 670 sctp_err_finish(sk, t); 671 return 0; 672 } 673 if (hdr->type == ICMP_DEST_UNREACH && hdr->code == ICMP_FRAG_NEEDED) 674 info = ntohs(hdr->un.frag.mtu); 675 sctp_v4_err_handle(t, skb, hdr->type, hdr->code, info); 676 677 sctp_err_finish(sk, t); 678 return 1; 679 } 680 681 /* 682 * RFC 2960, 8.4 - Handle "Out of the blue" Packets. 683 * 684 * This function scans all the chunks in the OOTB packet to determine if 685 * the packet should be discarded right away. If a response might be needed 686 * for this packet, or, if further processing is possible, the packet will 687 * be queued to a proper inqueue for the next phase of handling. 688 * 689 * Output: 690 * Return 0 - If further processing is needed. 691 * Return 1 - If the packet can be discarded right away. 692 */ 693 static int sctp_rcv_ootb(struct sk_buff *skb) 694 { 695 struct sctp_chunkhdr *ch, _ch; 696 int ch_end, offset = 0; 697 698 /* Scan through all the chunks in the packet. */ 699 do { 700 /* Make sure we have at least the header there */ 701 if (offset + sizeof(_ch) > skb->len) 702 break; 703 704 ch = skb_header_pointer(skb, offset, sizeof(*ch), &_ch); 705 706 /* Break out if chunk length is less then minimal. */ 707 if (!ch || ntohs(ch->length) < sizeof(_ch)) 708 break; 709 710 ch_end = offset + SCTP_PAD4(ntohs(ch->length)); 711 if (ch_end > skb->len) 712 break; 713 714 /* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the 715 * receiver MUST silently discard the OOTB packet and take no 716 * further action. 717 */ 718 if (SCTP_CID_ABORT == ch->type) 719 goto discard; 720 721 /* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE 722 * chunk, the receiver should silently discard the packet 723 * and take no further action. 724 */ 725 if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type) 726 goto discard; 727 728 /* RFC 4460, 2.11.2 729 * This will discard packets with INIT chunk bundled as 730 * subsequent chunks in the packet. When INIT is first, 731 * the normal INIT processing will discard the chunk. 732 */ 733 if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data) 734 goto discard; 735 736 offset = ch_end; 737 } while (ch_end < skb->len); 738 739 return 0; 740 741 discard: 742 return 1; 743 } 744 745 /* Insert endpoint into the hash table. */ 746 static int __sctp_hash_endpoint(struct sctp_endpoint *ep) 747 { 748 struct sock *sk = ep->base.sk; 749 struct net *net = sock_net(sk); 750 struct sctp_hashbucket *head; 751 752 ep->hashent = sctp_ep_hashfn(net, ep->base.bind_addr.port); 753 head = &sctp_ep_hashtable[ep->hashent]; 754 755 if (sk->sk_reuseport) { 756 bool any = sctp_is_ep_boundall(sk); 757 struct sctp_endpoint *ep2; 758 struct list_head *list; 759 int cnt = 0, err = 1; 760 761 list_for_each(list, &ep->base.bind_addr.address_list) 762 cnt++; 763 764 sctp_for_each_hentry(ep2, &head->chain) { 765 struct sock *sk2 = ep2->base.sk; 766 767 if (!net_eq(sock_net(sk2), net) || sk2 == sk || 768 !uid_eq(sock_i_uid(sk2), sock_i_uid(sk)) || 769 !sk2->sk_reuseport) 770 continue; 771 772 err = sctp_bind_addrs_check(sctp_sk(sk2), 773 sctp_sk(sk), cnt); 774 if (!err) { 775 err = reuseport_add_sock(sk, sk2, any); 776 if (err) 777 return err; 778 break; 779 } else if (err < 0) { 780 return err; 781 } 782 } 783 784 if (err) { 785 err = reuseport_alloc(sk, any); 786 if (err) 787 return err; 788 } 789 } 790 791 write_lock(&head->lock); 792 hlist_add_head(&ep->node, &head->chain); 793 write_unlock(&head->lock); 794 return 0; 795 } 796 797 /* Add an endpoint to the hash. Local BH-safe. */ 798 int sctp_hash_endpoint(struct sctp_endpoint *ep) 799 { 800 int err; 801 802 local_bh_disable(); 803 err = __sctp_hash_endpoint(ep); 804 local_bh_enable(); 805 806 return err; 807 } 808 809 /* Remove endpoint from the hash table. */ 810 static void __sctp_unhash_endpoint(struct sctp_endpoint *ep) 811 { 812 struct sock *sk = ep->base.sk; 813 struct sctp_hashbucket *head; 814 815 ep->hashent = sctp_ep_hashfn(sock_net(sk), ep->base.bind_addr.port); 816 817 head = &sctp_ep_hashtable[ep->hashent]; 818 819 if (rcu_access_pointer(sk->sk_reuseport_cb)) 820 reuseport_detach_sock(sk); 821 822 write_lock(&head->lock); 823 hlist_del_init(&ep->node); 824 write_unlock(&head->lock); 825 } 826 827 /* Remove endpoint from the hash. Local BH-safe. */ 828 void sctp_unhash_endpoint(struct sctp_endpoint *ep) 829 { 830 local_bh_disable(); 831 __sctp_unhash_endpoint(ep); 832 local_bh_enable(); 833 } 834 835 static inline __u32 sctp_hashfn(const struct net *net, __be16 lport, 836 const union sctp_addr *paddr, __u32 seed) 837 { 838 __u32 addr; 839 840 if (paddr->sa.sa_family == AF_INET6) 841 addr = jhash(&paddr->v6.sin6_addr, 16, seed); 842 else 843 addr = (__force __u32)paddr->v4.sin_addr.s_addr; 844 845 return jhash_3words(addr, ((__force __u32)paddr->v4.sin_port) << 16 | 846 (__force __u32)lport, net_hash_mix(net), seed); 847 } 848 849 /* Look up an endpoint. */ 850 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint( 851 struct net *net, struct sk_buff *skb, 852 const union sctp_addr *laddr, 853 const union sctp_addr *paddr) 854 { 855 struct sctp_hashbucket *head; 856 struct sctp_endpoint *ep; 857 struct sock *sk; 858 __be16 lport; 859 int hash; 860 861 lport = laddr->v4.sin_port; 862 hash = sctp_ep_hashfn(net, ntohs(lport)); 863 head = &sctp_ep_hashtable[hash]; 864 read_lock(&head->lock); 865 sctp_for_each_hentry(ep, &head->chain) { 866 if (sctp_endpoint_is_match(ep, net, laddr)) 867 goto hit; 868 } 869 870 ep = sctp_sk(net->sctp.ctl_sock)->ep; 871 872 hit: 873 sk = ep->base.sk; 874 if (sk->sk_reuseport) { 875 __u32 phash = sctp_hashfn(net, lport, paddr, 0); 876 877 sk = reuseport_select_sock(sk, phash, skb, 878 sizeof(struct sctphdr)); 879 if (sk) 880 ep = sctp_sk(sk)->ep; 881 } 882 sctp_endpoint_hold(ep); 883 read_unlock(&head->lock); 884 return ep; 885 } 886 887 /* rhashtable for transport */ 888 struct sctp_hash_cmp_arg { 889 const union sctp_addr *paddr; 890 const struct net *net; 891 __be16 lport; 892 }; 893 894 static inline int sctp_hash_cmp(struct rhashtable_compare_arg *arg, 895 const void *ptr) 896 { 897 struct sctp_transport *t = (struct sctp_transport *)ptr; 898 const struct sctp_hash_cmp_arg *x = arg->key; 899 int err = 1; 900 901 if (!sctp_cmp_addr_exact(&t->ipaddr, x->paddr)) 902 return err; 903 if (!sctp_transport_hold(t)) 904 return err; 905 906 if (!net_eq(t->asoc->base.net, x->net)) 907 goto out; 908 if (x->lport != htons(t->asoc->base.bind_addr.port)) 909 goto out; 910 911 err = 0; 912 out: 913 sctp_transport_put(t); 914 return err; 915 } 916 917 static inline __u32 sctp_hash_obj(const void *data, u32 len, u32 seed) 918 { 919 const struct sctp_transport *t = data; 920 921 return sctp_hashfn(t->asoc->base.net, 922 htons(t->asoc->base.bind_addr.port), 923 &t->ipaddr, seed); 924 } 925 926 static inline __u32 sctp_hash_key(const void *data, u32 len, u32 seed) 927 { 928 const struct sctp_hash_cmp_arg *x = data; 929 930 return sctp_hashfn(x->net, x->lport, x->paddr, seed); 931 } 932 933 static const struct rhashtable_params sctp_hash_params = { 934 .head_offset = offsetof(struct sctp_transport, node), 935 .hashfn = sctp_hash_key, 936 .obj_hashfn = sctp_hash_obj, 937 .obj_cmpfn = sctp_hash_cmp, 938 .automatic_shrinking = true, 939 }; 940 941 int sctp_transport_hashtable_init(void) 942 { 943 return rhltable_init(&sctp_transport_hashtable, &sctp_hash_params); 944 } 945 946 void sctp_transport_hashtable_destroy(void) 947 { 948 rhltable_destroy(&sctp_transport_hashtable); 949 } 950 951 int sctp_hash_transport(struct sctp_transport *t) 952 { 953 struct sctp_transport *transport; 954 struct rhlist_head *tmp, *list; 955 struct sctp_hash_cmp_arg arg; 956 int err; 957 958 if (t->asoc->temp) 959 return 0; 960 961 arg.net = t->asoc->base.net; 962 arg.paddr = &t->ipaddr; 963 arg.lport = htons(t->asoc->base.bind_addr.port); 964 965 rcu_read_lock(); 966 list = rhltable_lookup(&sctp_transport_hashtable, &arg, 967 sctp_hash_params); 968 969 rhl_for_each_entry_rcu(transport, tmp, list, node) 970 if (transport->asoc->ep == t->asoc->ep) { 971 rcu_read_unlock(); 972 return -EEXIST; 973 } 974 rcu_read_unlock(); 975 976 err = rhltable_insert_key(&sctp_transport_hashtable, &arg, 977 &t->node, sctp_hash_params); 978 if (err) 979 pr_err_once("insert transport fail, errno %d\n", err); 980 981 return err; 982 } 983 984 void sctp_unhash_transport(struct sctp_transport *t) 985 { 986 if (t->asoc->temp) 987 return; 988 989 rhltable_remove(&sctp_transport_hashtable, &t->node, 990 sctp_hash_params); 991 } 992 993 /* return a transport with holding it */ 994 struct sctp_transport *sctp_addrs_lookup_transport( 995 struct net *net, 996 const union sctp_addr *laddr, 997 const union sctp_addr *paddr) 998 { 999 struct rhlist_head *tmp, *list; 1000 struct sctp_transport *t; 1001 struct sctp_hash_cmp_arg arg = { 1002 .paddr = paddr, 1003 .net = net, 1004 .lport = laddr->v4.sin_port, 1005 }; 1006 1007 list = rhltable_lookup(&sctp_transport_hashtable, &arg, 1008 sctp_hash_params); 1009 1010 rhl_for_each_entry_rcu(t, tmp, list, node) { 1011 if (!sctp_transport_hold(t)) 1012 continue; 1013 1014 if (sctp_bind_addr_match(&t->asoc->base.bind_addr, 1015 laddr, sctp_sk(t->asoc->base.sk))) 1016 return t; 1017 sctp_transport_put(t); 1018 } 1019 1020 return NULL; 1021 } 1022 1023 /* return a transport without holding it, as it's only used under sock lock */ 1024 struct sctp_transport *sctp_epaddr_lookup_transport( 1025 const struct sctp_endpoint *ep, 1026 const union sctp_addr *paddr) 1027 { 1028 struct rhlist_head *tmp, *list; 1029 struct sctp_transport *t; 1030 struct sctp_hash_cmp_arg arg = { 1031 .paddr = paddr, 1032 .net = ep->base.net, 1033 .lport = htons(ep->base.bind_addr.port), 1034 }; 1035 1036 list = rhltable_lookup(&sctp_transport_hashtable, &arg, 1037 sctp_hash_params); 1038 1039 rhl_for_each_entry_rcu(t, tmp, list, node) 1040 if (ep == t->asoc->ep) 1041 return t; 1042 1043 return NULL; 1044 } 1045 1046 /* Look up an association. */ 1047 static struct sctp_association *__sctp_lookup_association( 1048 struct net *net, 1049 const union sctp_addr *local, 1050 const union sctp_addr *peer, 1051 struct sctp_transport **pt) 1052 { 1053 struct sctp_transport *t; 1054 struct sctp_association *asoc = NULL; 1055 1056 t = sctp_addrs_lookup_transport(net, local, peer); 1057 if (!t) 1058 goto out; 1059 1060 asoc = t->asoc; 1061 *pt = t; 1062 1063 out: 1064 return asoc; 1065 } 1066 1067 /* Look up an association. protected by RCU read lock */ 1068 static 1069 struct sctp_association *sctp_lookup_association(struct net *net, 1070 const union sctp_addr *laddr, 1071 const union sctp_addr *paddr, 1072 struct sctp_transport **transportp) 1073 { 1074 struct sctp_association *asoc; 1075 1076 rcu_read_lock(); 1077 asoc = __sctp_lookup_association(net, laddr, paddr, transportp); 1078 rcu_read_unlock(); 1079 1080 return asoc; 1081 } 1082 1083 /* Is there an association matching the given local and peer addresses? */ 1084 bool sctp_has_association(struct net *net, 1085 const union sctp_addr *laddr, 1086 const union sctp_addr *paddr) 1087 { 1088 struct sctp_transport *transport; 1089 1090 if (sctp_lookup_association(net, laddr, paddr, &transport)) { 1091 sctp_transport_put(transport); 1092 return true; 1093 } 1094 1095 return false; 1096 } 1097 1098 /* 1099 * SCTP Implementors Guide, 2.18 Handling of address 1100 * parameters within the INIT or INIT-ACK. 1101 * 1102 * D) When searching for a matching TCB upon reception of an INIT 1103 * or INIT-ACK chunk the receiver SHOULD use not only the 1104 * source address of the packet (containing the INIT or 1105 * INIT-ACK) but the receiver SHOULD also use all valid 1106 * address parameters contained within the chunk. 1107 * 1108 * 2.18.3 Solution description 1109 * 1110 * This new text clearly specifies to an implementor the need 1111 * to look within the INIT or INIT-ACK. Any implementation that 1112 * does not do this, may not be able to establish associations 1113 * in certain circumstances. 1114 * 1115 */ 1116 static struct sctp_association *__sctp_rcv_init_lookup(struct net *net, 1117 struct sk_buff *skb, 1118 const union sctp_addr *laddr, struct sctp_transport **transportp) 1119 { 1120 struct sctp_association *asoc; 1121 union sctp_addr addr; 1122 union sctp_addr *paddr = &addr; 1123 struct sctphdr *sh = sctp_hdr(skb); 1124 union sctp_params params; 1125 struct sctp_init_chunk *init; 1126 struct sctp_af *af; 1127 1128 /* 1129 * This code will NOT touch anything inside the chunk--it is 1130 * strictly READ-ONLY. 1131 * 1132 * RFC 2960 3 SCTP packet Format 1133 * 1134 * Multiple chunks can be bundled into one SCTP packet up to 1135 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN 1136 * COMPLETE chunks. These chunks MUST NOT be bundled with any 1137 * other chunk in a packet. See Section 6.10 for more details 1138 * on chunk bundling. 1139 */ 1140 1141 /* Find the start of the TLVs and the end of the chunk. This is 1142 * the region we search for address parameters. 1143 */ 1144 init = (struct sctp_init_chunk *)skb->data; 1145 1146 /* Walk the parameters looking for embedded addresses. */ 1147 sctp_walk_params(params, init, init_hdr.params) { 1148 1149 /* Note: Ignoring hostname addresses. */ 1150 af = sctp_get_af_specific(param_type2af(params.p->type)); 1151 if (!af) 1152 continue; 1153 1154 if (!af->from_addr_param(paddr, params.addr, sh->source, 0)) 1155 continue; 1156 1157 asoc = __sctp_lookup_association(net, laddr, paddr, transportp); 1158 if (asoc) 1159 return asoc; 1160 } 1161 1162 return NULL; 1163 } 1164 1165 /* ADD-IP, Section 5.2 1166 * When an endpoint receives an ASCONF Chunk from the remote peer 1167 * special procedures may be needed to identify the association the 1168 * ASCONF Chunk is associated with. To properly find the association 1169 * the following procedures SHOULD be followed: 1170 * 1171 * D2) If the association is not found, use the address found in the 1172 * Address Parameter TLV combined with the port number found in the 1173 * SCTP common header. If found proceed to rule D4. 1174 * 1175 * D2-ext) If more than one ASCONF Chunks are packed together, use the 1176 * address found in the ASCONF Address Parameter TLV of each of the 1177 * subsequent ASCONF Chunks. If found, proceed to rule D4. 1178 */ 1179 static struct sctp_association *__sctp_rcv_asconf_lookup( 1180 struct net *net, 1181 struct sctp_chunkhdr *ch, 1182 const union sctp_addr *laddr, 1183 __be16 peer_port, 1184 struct sctp_transport **transportp) 1185 { 1186 struct sctp_addip_chunk *asconf = (struct sctp_addip_chunk *)ch; 1187 struct sctp_af *af; 1188 union sctp_addr_param *param; 1189 union sctp_addr paddr; 1190 1191 if (ntohs(ch->length) < sizeof(*asconf) + sizeof(struct sctp_paramhdr)) 1192 return NULL; 1193 1194 /* Skip over the ADDIP header and find the Address parameter */ 1195 param = (union sctp_addr_param *)(asconf + 1); 1196 1197 af = sctp_get_af_specific(param_type2af(param->p.type)); 1198 if (unlikely(!af)) 1199 return NULL; 1200 1201 if (!af->from_addr_param(&paddr, param, peer_port, 0)) 1202 return NULL; 1203 1204 return __sctp_lookup_association(net, laddr, &paddr, transportp); 1205 } 1206 1207 1208 /* SCTP-AUTH, Section 6.3: 1209 * If the receiver does not find a STCB for a packet containing an AUTH 1210 * chunk as the first chunk and not a COOKIE-ECHO chunk as the second 1211 * chunk, it MUST use the chunks after the AUTH chunk to look up an existing 1212 * association. 1213 * 1214 * This means that any chunks that can help us identify the association need 1215 * to be looked at to find this association. 1216 */ 1217 static struct sctp_association *__sctp_rcv_walk_lookup(struct net *net, 1218 struct sk_buff *skb, 1219 const union sctp_addr *laddr, 1220 struct sctp_transport **transportp) 1221 { 1222 struct sctp_association *asoc = NULL; 1223 struct sctp_chunkhdr *ch; 1224 int have_auth = 0; 1225 unsigned int chunk_num = 1; 1226 __u8 *ch_end; 1227 1228 /* Walk through the chunks looking for AUTH or ASCONF chunks 1229 * to help us find the association. 1230 */ 1231 ch = (struct sctp_chunkhdr *)skb->data; 1232 do { 1233 /* Break out if chunk length is less then minimal. */ 1234 if (ntohs(ch->length) < sizeof(*ch)) 1235 break; 1236 1237 ch_end = ((__u8 *)ch) + SCTP_PAD4(ntohs(ch->length)); 1238 if (ch_end > skb_tail_pointer(skb)) 1239 break; 1240 1241 switch (ch->type) { 1242 case SCTP_CID_AUTH: 1243 have_auth = chunk_num; 1244 break; 1245 1246 case SCTP_CID_COOKIE_ECHO: 1247 /* If a packet arrives containing an AUTH chunk as 1248 * a first chunk, a COOKIE-ECHO chunk as the second 1249 * chunk, and possibly more chunks after them, and 1250 * the receiver does not have an STCB for that 1251 * packet, then authentication is based on 1252 * the contents of the COOKIE- ECHO chunk. 1253 */ 1254 if (have_auth == 1 && chunk_num == 2) 1255 return NULL; 1256 break; 1257 1258 case SCTP_CID_ASCONF: 1259 if (have_auth || net->sctp.addip_noauth) 1260 asoc = __sctp_rcv_asconf_lookup( 1261 net, ch, laddr, 1262 sctp_hdr(skb)->source, 1263 transportp); 1264 break; 1265 default: 1266 break; 1267 } 1268 1269 if (asoc) 1270 break; 1271 1272 ch = (struct sctp_chunkhdr *)ch_end; 1273 chunk_num++; 1274 } while (ch_end + sizeof(*ch) < skb_tail_pointer(skb)); 1275 1276 return asoc; 1277 } 1278 1279 /* 1280 * There are circumstances when we need to look inside the SCTP packet 1281 * for information to help us find the association. Examples 1282 * include looking inside of INIT/INIT-ACK chunks or after the AUTH 1283 * chunks. 1284 */ 1285 static struct sctp_association *__sctp_rcv_lookup_harder(struct net *net, 1286 struct sk_buff *skb, 1287 const union sctp_addr *laddr, 1288 struct sctp_transport **transportp) 1289 { 1290 struct sctp_chunkhdr *ch; 1291 1292 /* We do not allow GSO frames here as we need to linearize and 1293 * then cannot guarantee frame boundaries. This shouldn't be an 1294 * issue as packets hitting this are mostly INIT or INIT-ACK and 1295 * those cannot be on GSO-style anyway. 1296 */ 1297 if (skb_is_gso(skb) && skb_is_gso_sctp(skb)) 1298 return NULL; 1299 1300 ch = (struct sctp_chunkhdr *)skb->data; 1301 1302 /* The code below will attempt to walk the chunk and extract 1303 * parameter information. Before we do that, we need to verify 1304 * that the chunk length doesn't cause overflow. Otherwise, we'll 1305 * walk off the end. 1306 */ 1307 if (SCTP_PAD4(ntohs(ch->length)) > skb->len) 1308 return NULL; 1309 1310 /* If this is INIT/INIT-ACK look inside the chunk too. */ 1311 if (ch->type == SCTP_CID_INIT || ch->type == SCTP_CID_INIT_ACK) 1312 return __sctp_rcv_init_lookup(net, skb, laddr, transportp); 1313 1314 return __sctp_rcv_walk_lookup(net, skb, laddr, transportp); 1315 } 1316 1317 /* Lookup an association for an inbound skb. */ 1318 static struct sctp_association *__sctp_rcv_lookup(struct net *net, 1319 struct sk_buff *skb, 1320 const union sctp_addr *paddr, 1321 const union sctp_addr *laddr, 1322 struct sctp_transport **transportp) 1323 { 1324 struct sctp_association *asoc; 1325 1326 asoc = __sctp_lookup_association(net, laddr, paddr, transportp); 1327 if (asoc) 1328 goto out; 1329 1330 /* Further lookup for INIT/INIT-ACK packets. 1331 * SCTP Implementors Guide, 2.18 Handling of address 1332 * parameters within the INIT or INIT-ACK. 1333 */ 1334 asoc = __sctp_rcv_lookup_harder(net, skb, laddr, transportp); 1335 if (asoc) 1336 goto out; 1337 1338 if (paddr->sa.sa_family == AF_INET) 1339 pr_debug("sctp: asoc not found for src:%pI4:%d dst:%pI4:%d\n", 1340 &laddr->v4.sin_addr, ntohs(laddr->v4.sin_port), 1341 &paddr->v4.sin_addr, ntohs(paddr->v4.sin_port)); 1342 else 1343 pr_debug("sctp: asoc not found for src:%pI6:%d dst:%pI6:%d\n", 1344 &laddr->v6.sin6_addr, ntohs(laddr->v6.sin6_port), 1345 &paddr->v6.sin6_addr, ntohs(paddr->v6.sin6_port)); 1346 1347 out: 1348 return asoc; 1349 } 1350