1 /* SCTP kernel implementation 2 * Copyright (c) 1999-2000 Cisco, Inc. 3 * Copyright (c) 1999-2001 Motorola, Inc. 4 * Copyright (c) 2001-2003 International Business Machines, Corp. 5 * Copyright (c) 2001 Intel Corp. 6 * Copyright (c) 2001 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions handle all input from the IP layer into SCTP. 12 * 13 * This SCTP implementation is free software; 14 * you can redistribute it and/or modify it under the terms of 15 * the GNU General Public License as published by 16 * the Free Software Foundation; either version 2, or (at your option) 17 * any later version. 18 * 19 * This SCTP implementation is distributed in the hope that it 20 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 21 * ************************ 22 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 23 * See the GNU General Public License for more details. 24 * 25 * You should have received a copy of the GNU General Public License 26 * along with GNU CC; see the file COPYING. If not, see 27 * <http://www.gnu.org/licenses/>. 28 * 29 * Please send any bug reports or fixes you make to the 30 * email address(es): 31 * lksctp developers <linux-sctp@vger.kernel.org> 32 * 33 * Written or modified by: 34 * La Monte H.P. Yarroll <piggy@acm.org> 35 * Karl Knutson <karl@athena.chicago.il.us> 36 * Xingang Guo <xingang.guo@intel.com> 37 * Jon Grimm <jgrimm@us.ibm.com> 38 * Hui Huang <hui.huang@nokia.com> 39 * Daisy Chang <daisyc@us.ibm.com> 40 * Sridhar Samudrala <sri@us.ibm.com> 41 * Ardelle Fan <ardelle.fan@intel.com> 42 */ 43 44 #include <linux/types.h> 45 #include <linux/list.h> /* For struct list_head */ 46 #include <linux/socket.h> 47 #include <linux/ip.h> 48 #include <linux/time.h> /* For struct timeval */ 49 #include <linux/slab.h> 50 #include <net/ip.h> 51 #include <net/icmp.h> 52 #include <net/snmp.h> 53 #include <net/sock.h> 54 #include <net/xfrm.h> 55 #include <net/sctp/sctp.h> 56 #include <net/sctp/sm.h> 57 #include <net/sctp/checksum.h> 58 #include <net/net_namespace.h> 59 #include <linux/rhashtable.h> 60 61 /* Forward declarations for internal helpers. */ 62 static int sctp_rcv_ootb(struct sk_buff *); 63 static struct sctp_association *__sctp_rcv_lookup(struct net *net, 64 struct sk_buff *skb, 65 const union sctp_addr *paddr, 66 const union sctp_addr *laddr, 67 struct sctp_transport **transportp); 68 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net, 69 const union sctp_addr *laddr); 70 static struct sctp_association *__sctp_lookup_association( 71 struct net *net, 72 const union sctp_addr *local, 73 const union sctp_addr *peer, 74 struct sctp_transport **pt); 75 76 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb); 77 78 79 /* Calculate the SCTP checksum of an SCTP packet. */ 80 static inline int sctp_rcv_checksum(struct net *net, struct sk_buff *skb) 81 { 82 struct sctphdr *sh = sctp_hdr(skb); 83 __le32 cmp = sh->checksum; 84 __le32 val = sctp_compute_cksum(skb, 0); 85 86 if (val != cmp) { 87 /* CRC failure, dump it. */ 88 __SCTP_INC_STATS(net, SCTP_MIB_CHECKSUMERRORS); 89 return -1; 90 } 91 return 0; 92 } 93 94 /* 95 * This is the routine which IP calls when receiving an SCTP packet. 96 */ 97 int sctp_rcv(struct sk_buff *skb) 98 { 99 struct sock *sk; 100 struct sctp_association *asoc; 101 struct sctp_endpoint *ep = NULL; 102 struct sctp_ep_common *rcvr; 103 struct sctp_transport *transport = NULL; 104 struct sctp_chunk *chunk; 105 union sctp_addr src; 106 union sctp_addr dest; 107 int family; 108 struct sctp_af *af; 109 struct net *net = dev_net(skb->dev); 110 bool is_gso = skb_is_gso(skb) && skb_is_gso_sctp(skb); 111 112 if (skb->pkt_type != PACKET_HOST) 113 goto discard_it; 114 115 __SCTP_INC_STATS(net, SCTP_MIB_INSCTPPACKS); 116 117 /* If packet is too small to contain a single chunk, let's not 118 * waste time on it anymore. 119 */ 120 if (skb->len < sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr) + 121 skb_transport_offset(skb)) 122 goto discard_it; 123 124 /* If the packet is fragmented and we need to do crc checking, 125 * it's better to just linearize it otherwise crc computing 126 * takes longer. 127 */ 128 if ((!is_gso && skb_linearize(skb)) || 129 !pskb_may_pull(skb, sizeof(struct sctphdr))) 130 goto discard_it; 131 132 /* Pull up the IP header. */ 133 __skb_pull(skb, skb_transport_offset(skb)); 134 135 skb->csum_valid = 0; /* Previous value not applicable */ 136 if (skb_csum_unnecessary(skb)) 137 __skb_decr_checksum_unnecessary(skb); 138 else if (!sctp_checksum_disable && 139 !is_gso && 140 sctp_rcv_checksum(net, skb) < 0) 141 goto discard_it; 142 skb->csum_valid = 1; 143 144 __skb_pull(skb, sizeof(struct sctphdr)); 145 146 family = ipver2af(ip_hdr(skb)->version); 147 af = sctp_get_af_specific(family); 148 if (unlikely(!af)) 149 goto discard_it; 150 SCTP_INPUT_CB(skb)->af = af; 151 152 /* Initialize local addresses for lookups. */ 153 af->from_skb(&src, skb, 1); 154 af->from_skb(&dest, skb, 0); 155 156 /* If the packet is to or from a non-unicast address, 157 * silently discard the packet. 158 * 159 * This is not clearly defined in the RFC except in section 160 * 8.4 - OOTB handling. However, based on the book "Stream Control 161 * Transmission Protocol" 2.1, "It is important to note that the 162 * IP address of an SCTP transport address must be a routable 163 * unicast address. In other words, IP multicast addresses and 164 * IP broadcast addresses cannot be used in an SCTP transport 165 * address." 166 */ 167 if (!af->addr_valid(&src, NULL, skb) || 168 !af->addr_valid(&dest, NULL, skb)) 169 goto discard_it; 170 171 asoc = __sctp_rcv_lookup(net, skb, &src, &dest, &transport); 172 173 if (!asoc) 174 ep = __sctp_rcv_lookup_endpoint(net, &dest); 175 176 /* Retrieve the common input handling substructure. */ 177 rcvr = asoc ? &asoc->base : &ep->base; 178 sk = rcvr->sk; 179 180 /* 181 * If a frame arrives on an interface and the receiving socket is 182 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB 183 */ 184 if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb))) { 185 if (transport) { 186 sctp_transport_put(transport); 187 asoc = NULL; 188 transport = NULL; 189 } else { 190 sctp_endpoint_put(ep); 191 ep = NULL; 192 } 193 sk = net->sctp.ctl_sock; 194 ep = sctp_sk(sk)->ep; 195 sctp_endpoint_hold(ep); 196 rcvr = &ep->base; 197 } 198 199 /* 200 * RFC 2960, 8.4 - Handle "Out of the blue" Packets. 201 * An SCTP packet is called an "out of the blue" (OOTB) 202 * packet if it is correctly formed, i.e., passed the 203 * receiver's checksum check, but the receiver is not 204 * able to identify the association to which this 205 * packet belongs. 206 */ 207 if (!asoc) { 208 if (sctp_rcv_ootb(skb)) { 209 __SCTP_INC_STATS(net, SCTP_MIB_OUTOFBLUES); 210 goto discard_release; 211 } 212 } 213 214 if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family)) 215 goto discard_release; 216 nf_reset(skb); 217 218 if (sk_filter(sk, skb)) 219 goto discard_release; 220 221 /* Create an SCTP packet structure. */ 222 chunk = sctp_chunkify(skb, asoc, sk, GFP_ATOMIC); 223 if (!chunk) 224 goto discard_release; 225 SCTP_INPUT_CB(skb)->chunk = chunk; 226 227 /* Remember what endpoint is to handle this packet. */ 228 chunk->rcvr = rcvr; 229 230 /* Remember the SCTP header. */ 231 chunk->sctp_hdr = sctp_hdr(skb); 232 233 /* Set the source and destination addresses of the incoming chunk. */ 234 sctp_init_addrs(chunk, &src, &dest); 235 236 /* Remember where we came from. */ 237 chunk->transport = transport; 238 239 /* Acquire access to the sock lock. Note: We are safe from other 240 * bottom halves on this lock, but a user may be in the lock too, 241 * so check if it is busy. 242 */ 243 bh_lock_sock(sk); 244 245 if (sk != rcvr->sk) { 246 /* Our cached sk is different from the rcvr->sk. This is 247 * because migrate()/accept() may have moved the association 248 * to a new socket and released all the sockets. So now we 249 * are holding a lock on the old socket while the user may 250 * be doing something with the new socket. Switch our veiw 251 * of the current sk. 252 */ 253 bh_unlock_sock(sk); 254 sk = rcvr->sk; 255 bh_lock_sock(sk); 256 } 257 258 if (sock_owned_by_user(sk)) { 259 if (sctp_add_backlog(sk, skb)) { 260 bh_unlock_sock(sk); 261 sctp_chunk_free(chunk); 262 skb = NULL; /* sctp_chunk_free already freed the skb */ 263 goto discard_release; 264 } 265 __SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_BACKLOG); 266 } else { 267 __SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_SOFTIRQ); 268 sctp_inq_push(&chunk->rcvr->inqueue, chunk); 269 } 270 271 bh_unlock_sock(sk); 272 273 /* Release the asoc/ep ref we took in the lookup calls. */ 274 if (transport) 275 sctp_transport_put(transport); 276 else 277 sctp_endpoint_put(ep); 278 279 return 0; 280 281 discard_it: 282 __SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_DISCARDS); 283 kfree_skb(skb); 284 return 0; 285 286 discard_release: 287 /* Release the asoc/ep ref we took in the lookup calls. */ 288 if (transport) 289 sctp_transport_put(transport); 290 else 291 sctp_endpoint_put(ep); 292 293 goto discard_it; 294 } 295 296 /* Process the backlog queue of the socket. Every skb on 297 * the backlog holds a ref on an association or endpoint. 298 * We hold this ref throughout the state machine to make 299 * sure that the structure we need is still around. 300 */ 301 int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb) 302 { 303 struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk; 304 struct sctp_inq *inqueue = &chunk->rcvr->inqueue; 305 struct sctp_transport *t = chunk->transport; 306 struct sctp_ep_common *rcvr = NULL; 307 int backloged = 0; 308 309 rcvr = chunk->rcvr; 310 311 /* If the rcvr is dead then the association or endpoint 312 * has been deleted and we can safely drop the chunk 313 * and refs that we are holding. 314 */ 315 if (rcvr->dead) { 316 sctp_chunk_free(chunk); 317 goto done; 318 } 319 320 if (unlikely(rcvr->sk != sk)) { 321 /* In this case, the association moved from one socket to 322 * another. We are currently sitting on the backlog of the 323 * old socket, so we need to move. 324 * However, since we are here in the process context we 325 * need to take make sure that the user doesn't own 326 * the new socket when we process the packet. 327 * If the new socket is user-owned, queue the chunk to the 328 * backlog of the new socket without dropping any refs. 329 * Otherwise, we can safely push the chunk on the inqueue. 330 */ 331 332 sk = rcvr->sk; 333 local_bh_disable(); 334 bh_lock_sock(sk); 335 336 if (sock_owned_by_user(sk)) { 337 if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) 338 sctp_chunk_free(chunk); 339 else 340 backloged = 1; 341 } else 342 sctp_inq_push(inqueue, chunk); 343 344 bh_unlock_sock(sk); 345 local_bh_enable(); 346 347 /* If the chunk was backloged again, don't drop refs */ 348 if (backloged) 349 return 0; 350 } else { 351 sctp_inq_push(inqueue, chunk); 352 } 353 354 done: 355 /* Release the refs we took in sctp_add_backlog */ 356 if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type) 357 sctp_transport_put(t); 358 else if (SCTP_EP_TYPE_SOCKET == rcvr->type) 359 sctp_endpoint_put(sctp_ep(rcvr)); 360 else 361 BUG(); 362 363 return 0; 364 } 365 366 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb) 367 { 368 struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk; 369 struct sctp_transport *t = chunk->transport; 370 struct sctp_ep_common *rcvr = chunk->rcvr; 371 int ret; 372 373 ret = sk_add_backlog(sk, skb, sk->sk_rcvbuf); 374 if (!ret) { 375 /* Hold the assoc/ep while hanging on the backlog queue. 376 * This way, we know structures we need will not disappear 377 * from us 378 */ 379 if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type) 380 sctp_transport_hold(t); 381 else if (SCTP_EP_TYPE_SOCKET == rcvr->type) 382 sctp_endpoint_hold(sctp_ep(rcvr)); 383 else 384 BUG(); 385 } 386 return ret; 387 388 } 389 390 /* Handle icmp frag needed error. */ 391 void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc, 392 struct sctp_transport *t, __u32 pmtu) 393 { 394 if (!t || (t->pathmtu <= pmtu)) 395 return; 396 397 if (sock_owned_by_user(sk)) { 398 asoc->pmtu_pending = 1; 399 t->pmtu_pending = 1; 400 return; 401 } 402 403 if (!(t->param_flags & SPP_PMTUD_ENABLE)) 404 /* We can't allow retransmitting in such case, as the 405 * retransmission would be sized just as before, and thus we 406 * would get another icmp, and retransmit again. 407 */ 408 return; 409 410 /* Update transports view of the MTU. Return if no update was needed. 411 * If an update wasn't needed/possible, it also doesn't make sense to 412 * try to retransmit now. 413 */ 414 if (!sctp_transport_update_pmtu(t, pmtu)) 415 return; 416 417 /* Update association pmtu. */ 418 sctp_assoc_sync_pmtu(asoc); 419 420 /* Retransmit with the new pmtu setting. */ 421 sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD); 422 } 423 424 void sctp_icmp_redirect(struct sock *sk, struct sctp_transport *t, 425 struct sk_buff *skb) 426 { 427 struct dst_entry *dst; 428 429 if (sock_owned_by_user(sk) || !t) 430 return; 431 dst = sctp_transport_dst_check(t); 432 if (dst) 433 dst->ops->redirect(dst, sk, skb); 434 } 435 436 /* 437 * SCTP Implementer's Guide, 2.37 ICMP handling procedures 438 * 439 * ICMP8) If the ICMP code is a "Unrecognized next header type encountered" 440 * or a "Protocol Unreachable" treat this message as an abort 441 * with the T bit set. 442 * 443 * This function sends an event to the state machine, which will abort the 444 * association. 445 * 446 */ 447 void sctp_icmp_proto_unreachable(struct sock *sk, 448 struct sctp_association *asoc, 449 struct sctp_transport *t) 450 { 451 if (sock_owned_by_user(sk)) { 452 if (timer_pending(&t->proto_unreach_timer)) 453 return; 454 else { 455 if (!mod_timer(&t->proto_unreach_timer, 456 jiffies + (HZ/20))) 457 sctp_association_hold(asoc); 458 } 459 } else { 460 struct net *net = sock_net(sk); 461 462 pr_debug("%s: unrecognized next header type " 463 "encountered!\n", __func__); 464 465 if (del_timer(&t->proto_unreach_timer)) 466 sctp_association_put(asoc); 467 468 sctp_do_sm(net, SCTP_EVENT_T_OTHER, 469 SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH), 470 asoc->state, asoc->ep, asoc, t, 471 GFP_ATOMIC); 472 } 473 } 474 475 /* Common lookup code for icmp/icmpv6 error handler. */ 476 struct sock *sctp_err_lookup(struct net *net, int family, struct sk_buff *skb, 477 struct sctphdr *sctphdr, 478 struct sctp_association **app, 479 struct sctp_transport **tpp) 480 { 481 struct sctp_init_chunk *chunkhdr, _chunkhdr; 482 union sctp_addr saddr; 483 union sctp_addr daddr; 484 struct sctp_af *af; 485 struct sock *sk = NULL; 486 struct sctp_association *asoc; 487 struct sctp_transport *transport = NULL; 488 __u32 vtag = ntohl(sctphdr->vtag); 489 490 *app = NULL; *tpp = NULL; 491 492 af = sctp_get_af_specific(family); 493 if (unlikely(!af)) { 494 return NULL; 495 } 496 497 /* Initialize local addresses for lookups. */ 498 af->from_skb(&saddr, skb, 1); 499 af->from_skb(&daddr, skb, 0); 500 501 /* Look for an association that matches the incoming ICMP error 502 * packet. 503 */ 504 asoc = __sctp_lookup_association(net, &saddr, &daddr, &transport); 505 if (!asoc) 506 return NULL; 507 508 sk = asoc->base.sk; 509 510 /* RFC 4960, Appendix C. ICMP Handling 511 * 512 * ICMP6) An implementation MUST validate that the Verification Tag 513 * contained in the ICMP message matches the Verification Tag of 514 * the peer. If the Verification Tag is not 0 and does NOT 515 * match, discard the ICMP message. If it is 0 and the ICMP 516 * message contains enough bytes to verify that the chunk type is 517 * an INIT chunk and that the Initiate Tag matches the tag of the 518 * peer, continue with ICMP7. If the ICMP message is too short 519 * or the chunk type or the Initiate Tag does not match, silently 520 * discard the packet. 521 */ 522 if (vtag == 0) { 523 /* chunk header + first 4 octects of init header */ 524 chunkhdr = skb_header_pointer(skb, skb_transport_offset(skb) + 525 sizeof(struct sctphdr), 526 sizeof(struct sctp_chunkhdr) + 527 sizeof(__be32), &_chunkhdr); 528 if (!chunkhdr || 529 chunkhdr->chunk_hdr.type != SCTP_CID_INIT || 530 ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag) 531 goto out; 532 533 } else if (vtag != asoc->c.peer_vtag) { 534 goto out; 535 } 536 537 bh_lock_sock(sk); 538 539 /* If too many ICMPs get dropped on busy 540 * servers this needs to be solved differently. 541 */ 542 if (sock_owned_by_user(sk)) 543 __NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS); 544 545 *app = asoc; 546 *tpp = transport; 547 return sk; 548 549 out: 550 sctp_transport_put(transport); 551 return NULL; 552 } 553 554 /* Common cleanup code for icmp/icmpv6 error handler. */ 555 void sctp_err_finish(struct sock *sk, struct sctp_transport *t) 556 { 557 bh_unlock_sock(sk); 558 sctp_transport_put(t); 559 } 560 561 /* 562 * This routine is called by the ICMP module when it gets some 563 * sort of error condition. If err < 0 then the socket should 564 * be closed and the error returned to the user. If err > 0 565 * it's just the icmp type << 8 | icmp code. After adjustment 566 * header points to the first 8 bytes of the sctp header. We need 567 * to find the appropriate port. 568 * 569 * The locking strategy used here is very "optimistic". When 570 * someone else accesses the socket the ICMP is just dropped 571 * and for some paths there is no check at all. 572 * A more general error queue to queue errors for later handling 573 * is probably better. 574 * 575 */ 576 void sctp_v4_err(struct sk_buff *skb, __u32 info) 577 { 578 const struct iphdr *iph = (const struct iphdr *)skb->data; 579 const int ihlen = iph->ihl * 4; 580 const int type = icmp_hdr(skb)->type; 581 const int code = icmp_hdr(skb)->code; 582 struct sock *sk; 583 struct sctp_association *asoc = NULL; 584 struct sctp_transport *transport; 585 struct inet_sock *inet; 586 __u16 saveip, savesctp; 587 int err; 588 struct net *net = dev_net(skb->dev); 589 590 /* Fix up skb to look at the embedded net header. */ 591 saveip = skb->network_header; 592 savesctp = skb->transport_header; 593 skb_reset_network_header(skb); 594 skb_set_transport_header(skb, ihlen); 595 sk = sctp_err_lookup(net, AF_INET, skb, sctp_hdr(skb), &asoc, &transport); 596 /* Put back, the original values. */ 597 skb->network_header = saveip; 598 skb->transport_header = savesctp; 599 if (!sk) { 600 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 601 return; 602 } 603 /* Warning: The sock lock is held. Remember to call 604 * sctp_err_finish! 605 */ 606 607 switch (type) { 608 case ICMP_PARAMETERPROB: 609 err = EPROTO; 610 break; 611 case ICMP_DEST_UNREACH: 612 if (code > NR_ICMP_UNREACH) 613 goto out_unlock; 614 615 /* PMTU discovery (RFC1191) */ 616 if (ICMP_FRAG_NEEDED == code) { 617 sctp_icmp_frag_needed(sk, asoc, transport, 618 SCTP_TRUNC4(info)); 619 goto out_unlock; 620 } else { 621 if (ICMP_PROT_UNREACH == code) { 622 sctp_icmp_proto_unreachable(sk, asoc, 623 transport); 624 goto out_unlock; 625 } 626 } 627 err = icmp_err_convert[code].errno; 628 break; 629 case ICMP_TIME_EXCEEDED: 630 /* Ignore any time exceeded errors due to fragment reassembly 631 * timeouts. 632 */ 633 if (ICMP_EXC_FRAGTIME == code) 634 goto out_unlock; 635 636 err = EHOSTUNREACH; 637 break; 638 case ICMP_REDIRECT: 639 sctp_icmp_redirect(sk, transport, skb); 640 /* Fall through to out_unlock. */ 641 default: 642 goto out_unlock; 643 } 644 645 inet = inet_sk(sk); 646 if (!sock_owned_by_user(sk) && inet->recverr) { 647 sk->sk_err = err; 648 sk->sk_error_report(sk); 649 } else { /* Only an error on timeout */ 650 sk->sk_err_soft = err; 651 } 652 653 out_unlock: 654 sctp_err_finish(sk, transport); 655 } 656 657 /* 658 * RFC 2960, 8.4 - Handle "Out of the blue" Packets. 659 * 660 * This function scans all the chunks in the OOTB packet to determine if 661 * the packet should be discarded right away. If a response might be needed 662 * for this packet, or, if further processing is possible, the packet will 663 * be queued to a proper inqueue for the next phase of handling. 664 * 665 * Output: 666 * Return 0 - If further processing is needed. 667 * Return 1 - If the packet can be discarded right away. 668 */ 669 static int sctp_rcv_ootb(struct sk_buff *skb) 670 { 671 struct sctp_chunkhdr *ch, _ch; 672 int ch_end, offset = 0; 673 674 /* Scan through all the chunks in the packet. */ 675 do { 676 /* Make sure we have at least the header there */ 677 if (offset + sizeof(_ch) > skb->len) 678 break; 679 680 ch = skb_header_pointer(skb, offset, sizeof(*ch), &_ch); 681 682 /* Break out if chunk length is less then minimal. */ 683 if (ntohs(ch->length) < sizeof(_ch)) 684 break; 685 686 ch_end = offset + SCTP_PAD4(ntohs(ch->length)); 687 if (ch_end > skb->len) 688 break; 689 690 /* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the 691 * receiver MUST silently discard the OOTB packet and take no 692 * further action. 693 */ 694 if (SCTP_CID_ABORT == ch->type) 695 goto discard; 696 697 /* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE 698 * chunk, the receiver should silently discard the packet 699 * and take no further action. 700 */ 701 if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type) 702 goto discard; 703 704 /* RFC 4460, 2.11.2 705 * This will discard packets with INIT chunk bundled as 706 * subsequent chunks in the packet. When INIT is first, 707 * the normal INIT processing will discard the chunk. 708 */ 709 if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data) 710 goto discard; 711 712 offset = ch_end; 713 } while (ch_end < skb->len); 714 715 return 0; 716 717 discard: 718 return 1; 719 } 720 721 /* Insert endpoint into the hash table. */ 722 static void __sctp_hash_endpoint(struct sctp_endpoint *ep) 723 { 724 struct net *net = sock_net(ep->base.sk); 725 struct sctp_ep_common *epb; 726 struct sctp_hashbucket *head; 727 728 epb = &ep->base; 729 730 epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port); 731 head = &sctp_ep_hashtable[epb->hashent]; 732 733 write_lock(&head->lock); 734 hlist_add_head(&epb->node, &head->chain); 735 write_unlock(&head->lock); 736 } 737 738 /* Add an endpoint to the hash. Local BH-safe. */ 739 void sctp_hash_endpoint(struct sctp_endpoint *ep) 740 { 741 local_bh_disable(); 742 __sctp_hash_endpoint(ep); 743 local_bh_enable(); 744 } 745 746 /* Remove endpoint from the hash table. */ 747 static void __sctp_unhash_endpoint(struct sctp_endpoint *ep) 748 { 749 struct net *net = sock_net(ep->base.sk); 750 struct sctp_hashbucket *head; 751 struct sctp_ep_common *epb; 752 753 epb = &ep->base; 754 755 epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port); 756 757 head = &sctp_ep_hashtable[epb->hashent]; 758 759 write_lock(&head->lock); 760 hlist_del_init(&epb->node); 761 write_unlock(&head->lock); 762 } 763 764 /* Remove endpoint from the hash. Local BH-safe. */ 765 void sctp_unhash_endpoint(struct sctp_endpoint *ep) 766 { 767 local_bh_disable(); 768 __sctp_unhash_endpoint(ep); 769 local_bh_enable(); 770 } 771 772 /* Look up an endpoint. */ 773 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net, 774 const union sctp_addr *laddr) 775 { 776 struct sctp_hashbucket *head; 777 struct sctp_ep_common *epb; 778 struct sctp_endpoint *ep; 779 int hash; 780 781 hash = sctp_ep_hashfn(net, ntohs(laddr->v4.sin_port)); 782 head = &sctp_ep_hashtable[hash]; 783 read_lock(&head->lock); 784 sctp_for_each_hentry(epb, &head->chain) { 785 ep = sctp_ep(epb); 786 if (sctp_endpoint_is_match(ep, net, laddr)) 787 goto hit; 788 } 789 790 ep = sctp_sk(net->sctp.ctl_sock)->ep; 791 792 hit: 793 sctp_endpoint_hold(ep); 794 read_unlock(&head->lock); 795 return ep; 796 } 797 798 /* rhashtable for transport */ 799 struct sctp_hash_cmp_arg { 800 const union sctp_addr *paddr; 801 const struct net *net; 802 __be16 lport; 803 }; 804 805 static inline int sctp_hash_cmp(struct rhashtable_compare_arg *arg, 806 const void *ptr) 807 { 808 struct sctp_transport *t = (struct sctp_transport *)ptr; 809 const struct sctp_hash_cmp_arg *x = arg->key; 810 int err = 1; 811 812 if (!sctp_cmp_addr_exact(&t->ipaddr, x->paddr)) 813 return err; 814 if (!sctp_transport_hold(t)) 815 return err; 816 817 if (!net_eq(sock_net(t->asoc->base.sk), x->net)) 818 goto out; 819 if (x->lport != htons(t->asoc->base.bind_addr.port)) 820 goto out; 821 822 err = 0; 823 out: 824 sctp_transport_put(t); 825 return err; 826 } 827 828 static inline __u32 sctp_hash_obj(const void *data, u32 len, u32 seed) 829 { 830 const struct sctp_transport *t = data; 831 const union sctp_addr *paddr = &t->ipaddr; 832 const struct net *net = sock_net(t->asoc->base.sk); 833 __be16 lport = htons(t->asoc->base.bind_addr.port); 834 __u32 addr; 835 836 if (paddr->sa.sa_family == AF_INET6) 837 addr = jhash(&paddr->v6.sin6_addr, 16, seed); 838 else 839 addr = (__force __u32)paddr->v4.sin_addr.s_addr; 840 841 return jhash_3words(addr, ((__force __u32)paddr->v4.sin_port) << 16 | 842 (__force __u32)lport, net_hash_mix(net), seed); 843 } 844 845 static inline __u32 sctp_hash_key(const void *data, u32 len, u32 seed) 846 { 847 const struct sctp_hash_cmp_arg *x = data; 848 const union sctp_addr *paddr = x->paddr; 849 const struct net *net = x->net; 850 __be16 lport = x->lport; 851 __u32 addr; 852 853 if (paddr->sa.sa_family == AF_INET6) 854 addr = jhash(&paddr->v6.sin6_addr, 16, seed); 855 else 856 addr = (__force __u32)paddr->v4.sin_addr.s_addr; 857 858 return jhash_3words(addr, ((__force __u32)paddr->v4.sin_port) << 16 | 859 (__force __u32)lport, net_hash_mix(net), seed); 860 } 861 862 static const struct rhashtable_params sctp_hash_params = { 863 .head_offset = offsetof(struct sctp_transport, node), 864 .hashfn = sctp_hash_key, 865 .obj_hashfn = sctp_hash_obj, 866 .obj_cmpfn = sctp_hash_cmp, 867 .automatic_shrinking = true, 868 }; 869 870 int sctp_transport_hashtable_init(void) 871 { 872 return rhltable_init(&sctp_transport_hashtable, &sctp_hash_params); 873 } 874 875 void sctp_transport_hashtable_destroy(void) 876 { 877 rhltable_destroy(&sctp_transport_hashtable); 878 } 879 880 int sctp_hash_transport(struct sctp_transport *t) 881 { 882 struct sctp_transport *transport; 883 struct rhlist_head *tmp, *list; 884 struct sctp_hash_cmp_arg arg; 885 int err; 886 887 if (t->asoc->temp) 888 return 0; 889 890 arg.net = sock_net(t->asoc->base.sk); 891 arg.paddr = &t->ipaddr; 892 arg.lport = htons(t->asoc->base.bind_addr.port); 893 894 rcu_read_lock(); 895 list = rhltable_lookup(&sctp_transport_hashtable, &arg, 896 sctp_hash_params); 897 898 rhl_for_each_entry_rcu(transport, tmp, list, node) 899 if (transport->asoc->ep == t->asoc->ep) { 900 rcu_read_unlock(); 901 return -EEXIST; 902 } 903 rcu_read_unlock(); 904 905 err = rhltable_insert_key(&sctp_transport_hashtable, &arg, 906 &t->node, sctp_hash_params); 907 if (err) 908 pr_err_once("insert transport fail, errno %d\n", err); 909 910 return err; 911 } 912 913 void sctp_unhash_transport(struct sctp_transport *t) 914 { 915 if (t->asoc->temp) 916 return; 917 918 rhltable_remove(&sctp_transport_hashtable, &t->node, 919 sctp_hash_params); 920 } 921 922 /* return a transport with holding it */ 923 struct sctp_transport *sctp_addrs_lookup_transport( 924 struct net *net, 925 const union sctp_addr *laddr, 926 const union sctp_addr *paddr) 927 { 928 struct rhlist_head *tmp, *list; 929 struct sctp_transport *t; 930 struct sctp_hash_cmp_arg arg = { 931 .paddr = paddr, 932 .net = net, 933 .lport = laddr->v4.sin_port, 934 }; 935 936 list = rhltable_lookup(&sctp_transport_hashtable, &arg, 937 sctp_hash_params); 938 939 rhl_for_each_entry_rcu(t, tmp, list, node) { 940 if (!sctp_transport_hold(t)) 941 continue; 942 943 if (sctp_bind_addr_match(&t->asoc->base.bind_addr, 944 laddr, sctp_sk(t->asoc->base.sk))) 945 return t; 946 sctp_transport_put(t); 947 } 948 949 return NULL; 950 } 951 952 /* return a transport without holding it, as it's only used under sock lock */ 953 struct sctp_transport *sctp_epaddr_lookup_transport( 954 const struct sctp_endpoint *ep, 955 const union sctp_addr *paddr) 956 { 957 struct net *net = sock_net(ep->base.sk); 958 struct rhlist_head *tmp, *list; 959 struct sctp_transport *t; 960 struct sctp_hash_cmp_arg arg = { 961 .paddr = paddr, 962 .net = net, 963 .lport = htons(ep->base.bind_addr.port), 964 }; 965 966 list = rhltable_lookup(&sctp_transport_hashtable, &arg, 967 sctp_hash_params); 968 969 rhl_for_each_entry_rcu(t, tmp, list, node) 970 if (ep == t->asoc->ep) 971 return t; 972 973 return NULL; 974 } 975 976 /* Look up an association. */ 977 static struct sctp_association *__sctp_lookup_association( 978 struct net *net, 979 const union sctp_addr *local, 980 const union sctp_addr *peer, 981 struct sctp_transport **pt) 982 { 983 struct sctp_transport *t; 984 struct sctp_association *asoc = NULL; 985 986 t = sctp_addrs_lookup_transport(net, local, peer); 987 if (!t) 988 goto out; 989 990 asoc = t->asoc; 991 *pt = t; 992 993 out: 994 return asoc; 995 } 996 997 /* Look up an association. protected by RCU read lock */ 998 static 999 struct sctp_association *sctp_lookup_association(struct net *net, 1000 const union sctp_addr *laddr, 1001 const union sctp_addr *paddr, 1002 struct sctp_transport **transportp) 1003 { 1004 struct sctp_association *asoc; 1005 1006 rcu_read_lock(); 1007 asoc = __sctp_lookup_association(net, laddr, paddr, transportp); 1008 rcu_read_unlock(); 1009 1010 return asoc; 1011 } 1012 1013 /* Is there an association matching the given local and peer addresses? */ 1014 bool sctp_has_association(struct net *net, 1015 const union sctp_addr *laddr, 1016 const union sctp_addr *paddr) 1017 { 1018 struct sctp_transport *transport; 1019 1020 if (sctp_lookup_association(net, laddr, paddr, &transport)) { 1021 sctp_transport_put(transport); 1022 return true; 1023 } 1024 1025 return false; 1026 } 1027 1028 /* 1029 * SCTP Implementors Guide, 2.18 Handling of address 1030 * parameters within the INIT or INIT-ACK. 1031 * 1032 * D) When searching for a matching TCB upon reception of an INIT 1033 * or INIT-ACK chunk the receiver SHOULD use not only the 1034 * source address of the packet (containing the INIT or 1035 * INIT-ACK) but the receiver SHOULD also use all valid 1036 * address parameters contained within the chunk. 1037 * 1038 * 2.18.3 Solution description 1039 * 1040 * This new text clearly specifies to an implementor the need 1041 * to look within the INIT or INIT-ACK. Any implementation that 1042 * does not do this, may not be able to establish associations 1043 * in certain circumstances. 1044 * 1045 */ 1046 static struct sctp_association *__sctp_rcv_init_lookup(struct net *net, 1047 struct sk_buff *skb, 1048 const union sctp_addr *laddr, struct sctp_transport **transportp) 1049 { 1050 struct sctp_association *asoc; 1051 union sctp_addr addr; 1052 union sctp_addr *paddr = &addr; 1053 struct sctphdr *sh = sctp_hdr(skb); 1054 union sctp_params params; 1055 struct sctp_init_chunk *init; 1056 struct sctp_af *af; 1057 1058 /* 1059 * This code will NOT touch anything inside the chunk--it is 1060 * strictly READ-ONLY. 1061 * 1062 * RFC 2960 3 SCTP packet Format 1063 * 1064 * Multiple chunks can be bundled into one SCTP packet up to 1065 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN 1066 * COMPLETE chunks. These chunks MUST NOT be bundled with any 1067 * other chunk in a packet. See Section 6.10 for more details 1068 * on chunk bundling. 1069 */ 1070 1071 /* Find the start of the TLVs and the end of the chunk. This is 1072 * the region we search for address parameters. 1073 */ 1074 init = (struct sctp_init_chunk *)skb->data; 1075 1076 /* Walk the parameters looking for embedded addresses. */ 1077 sctp_walk_params(params, init, init_hdr.params) { 1078 1079 /* Note: Ignoring hostname addresses. */ 1080 af = sctp_get_af_specific(param_type2af(params.p->type)); 1081 if (!af) 1082 continue; 1083 1084 af->from_addr_param(paddr, params.addr, sh->source, 0); 1085 1086 asoc = __sctp_lookup_association(net, laddr, paddr, transportp); 1087 if (asoc) 1088 return asoc; 1089 } 1090 1091 return NULL; 1092 } 1093 1094 /* ADD-IP, Section 5.2 1095 * When an endpoint receives an ASCONF Chunk from the remote peer 1096 * special procedures may be needed to identify the association the 1097 * ASCONF Chunk is associated with. To properly find the association 1098 * the following procedures SHOULD be followed: 1099 * 1100 * D2) If the association is not found, use the address found in the 1101 * Address Parameter TLV combined with the port number found in the 1102 * SCTP common header. If found proceed to rule D4. 1103 * 1104 * D2-ext) If more than one ASCONF Chunks are packed together, use the 1105 * address found in the ASCONF Address Parameter TLV of each of the 1106 * subsequent ASCONF Chunks. If found, proceed to rule D4. 1107 */ 1108 static struct sctp_association *__sctp_rcv_asconf_lookup( 1109 struct net *net, 1110 struct sctp_chunkhdr *ch, 1111 const union sctp_addr *laddr, 1112 __be16 peer_port, 1113 struct sctp_transport **transportp) 1114 { 1115 struct sctp_addip_chunk *asconf = (struct sctp_addip_chunk *)ch; 1116 struct sctp_af *af; 1117 union sctp_addr_param *param; 1118 union sctp_addr paddr; 1119 1120 /* Skip over the ADDIP header and find the Address parameter */ 1121 param = (union sctp_addr_param *)(asconf + 1); 1122 1123 af = sctp_get_af_specific(param_type2af(param->p.type)); 1124 if (unlikely(!af)) 1125 return NULL; 1126 1127 af->from_addr_param(&paddr, param, peer_port, 0); 1128 1129 return __sctp_lookup_association(net, laddr, &paddr, transportp); 1130 } 1131 1132 1133 /* SCTP-AUTH, Section 6.3: 1134 * If the receiver does not find a STCB for a packet containing an AUTH 1135 * chunk as the first chunk and not a COOKIE-ECHO chunk as the second 1136 * chunk, it MUST use the chunks after the AUTH chunk to look up an existing 1137 * association. 1138 * 1139 * This means that any chunks that can help us identify the association need 1140 * to be looked at to find this association. 1141 */ 1142 static struct sctp_association *__sctp_rcv_walk_lookup(struct net *net, 1143 struct sk_buff *skb, 1144 const union sctp_addr *laddr, 1145 struct sctp_transport **transportp) 1146 { 1147 struct sctp_association *asoc = NULL; 1148 struct sctp_chunkhdr *ch; 1149 int have_auth = 0; 1150 unsigned int chunk_num = 1; 1151 __u8 *ch_end; 1152 1153 /* Walk through the chunks looking for AUTH or ASCONF chunks 1154 * to help us find the association. 1155 */ 1156 ch = (struct sctp_chunkhdr *)skb->data; 1157 do { 1158 /* Break out if chunk length is less then minimal. */ 1159 if (ntohs(ch->length) < sizeof(*ch)) 1160 break; 1161 1162 ch_end = ((__u8 *)ch) + SCTP_PAD4(ntohs(ch->length)); 1163 if (ch_end > skb_tail_pointer(skb)) 1164 break; 1165 1166 switch (ch->type) { 1167 case SCTP_CID_AUTH: 1168 have_auth = chunk_num; 1169 break; 1170 1171 case SCTP_CID_COOKIE_ECHO: 1172 /* If a packet arrives containing an AUTH chunk as 1173 * a first chunk, a COOKIE-ECHO chunk as the second 1174 * chunk, and possibly more chunks after them, and 1175 * the receiver does not have an STCB for that 1176 * packet, then authentication is based on 1177 * the contents of the COOKIE- ECHO chunk. 1178 */ 1179 if (have_auth == 1 && chunk_num == 2) 1180 return NULL; 1181 break; 1182 1183 case SCTP_CID_ASCONF: 1184 if (have_auth || net->sctp.addip_noauth) 1185 asoc = __sctp_rcv_asconf_lookup( 1186 net, ch, laddr, 1187 sctp_hdr(skb)->source, 1188 transportp); 1189 default: 1190 break; 1191 } 1192 1193 if (asoc) 1194 break; 1195 1196 ch = (struct sctp_chunkhdr *)ch_end; 1197 chunk_num++; 1198 } while (ch_end < skb_tail_pointer(skb)); 1199 1200 return asoc; 1201 } 1202 1203 /* 1204 * There are circumstances when we need to look inside the SCTP packet 1205 * for information to help us find the association. Examples 1206 * include looking inside of INIT/INIT-ACK chunks or after the AUTH 1207 * chunks. 1208 */ 1209 static struct sctp_association *__sctp_rcv_lookup_harder(struct net *net, 1210 struct sk_buff *skb, 1211 const union sctp_addr *laddr, 1212 struct sctp_transport **transportp) 1213 { 1214 struct sctp_chunkhdr *ch; 1215 1216 /* We do not allow GSO frames here as we need to linearize and 1217 * then cannot guarantee frame boundaries. This shouldn't be an 1218 * issue as packets hitting this are mostly INIT or INIT-ACK and 1219 * those cannot be on GSO-style anyway. 1220 */ 1221 if (skb_is_gso(skb) && skb_is_gso_sctp(skb)) 1222 return NULL; 1223 1224 ch = (struct sctp_chunkhdr *)skb->data; 1225 1226 /* The code below will attempt to walk the chunk and extract 1227 * parameter information. Before we do that, we need to verify 1228 * that the chunk length doesn't cause overflow. Otherwise, we'll 1229 * walk off the end. 1230 */ 1231 if (SCTP_PAD4(ntohs(ch->length)) > skb->len) 1232 return NULL; 1233 1234 /* If this is INIT/INIT-ACK look inside the chunk too. */ 1235 if (ch->type == SCTP_CID_INIT || ch->type == SCTP_CID_INIT_ACK) 1236 return __sctp_rcv_init_lookup(net, skb, laddr, transportp); 1237 1238 return __sctp_rcv_walk_lookup(net, skb, laddr, transportp); 1239 } 1240 1241 /* Lookup an association for an inbound skb. */ 1242 static struct sctp_association *__sctp_rcv_lookup(struct net *net, 1243 struct sk_buff *skb, 1244 const union sctp_addr *paddr, 1245 const union sctp_addr *laddr, 1246 struct sctp_transport **transportp) 1247 { 1248 struct sctp_association *asoc; 1249 1250 asoc = __sctp_lookup_association(net, laddr, paddr, transportp); 1251 if (asoc) 1252 goto out; 1253 1254 /* Further lookup for INIT/INIT-ACK packets. 1255 * SCTP Implementors Guide, 2.18 Handling of address 1256 * parameters within the INIT or INIT-ACK. 1257 */ 1258 asoc = __sctp_rcv_lookup_harder(net, skb, laddr, transportp); 1259 if (asoc) 1260 goto out; 1261 1262 if (paddr->sa.sa_family == AF_INET) 1263 pr_debug("sctp: asoc not found for src:%pI4:%d dst:%pI4:%d\n", 1264 &laddr->v4.sin_addr, ntohs(laddr->v4.sin_port), 1265 &paddr->v4.sin_addr, ntohs(paddr->v4.sin_port)); 1266 else 1267 pr_debug("sctp: asoc not found for src:%pI6:%d dst:%pI6:%d\n", 1268 &laddr->v6.sin6_addr, ntohs(laddr->v6.sin6_port), 1269 &paddr->v6.sin6_addr, ntohs(paddr->v6.sin6_port)); 1270 1271 out: 1272 return asoc; 1273 } 1274