xref: /openbmc/linux/net/sctp/input.c (revision 861e10be)
1 /* SCTP kernel implementation
2  * Copyright (c) 1999-2000 Cisco, Inc.
3  * Copyright (c) 1999-2001 Motorola, Inc.
4  * Copyright (c) 2001-2003 International Business Machines, Corp.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions handle all input from the IP layer into SCTP.
12  *
13  * This SCTP implementation is free software;
14  * you can redistribute it and/or modify it under the terms of
15  * the GNU General Public License as published by
16  * the Free Software Foundation; either version 2, or (at your option)
17  * any later version.
18  *
19  * This SCTP implementation is distributed in the hope that it
20  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
21  *                 ************************
22  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
23  * See the GNU General Public License for more details.
24  *
25  * You should have received a copy of the GNU General Public License
26  * along with GNU CC; see the file COPYING.  If not, write to
27  * the Free Software Foundation, 59 Temple Place - Suite 330,
28  * Boston, MA 02111-1307, USA.
29  *
30  * Please send any bug reports or fixes you make to the
31  * email address(es):
32  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
33  *
34  * Or submit a bug report through the following website:
35  *    http://www.sf.net/projects/lksctp
36  *
37  * Written or modified by:
38  *    La Monte H.P. Yarroll <piggy@acm.org>
39  *    Karl Knutson <karl@athena.chicago.il.us>
40  *    Xingang Guo <xingang.guo@intel.com>
41  *    Jon Grimm <jgrimm@us.ibm.com>
42  *    Hui Huang <hui.huang@nokia.com>
43  *    Daisy Chang <daisyc@us.ibm.com>
44  *    Sridhar Samudrala <sri@us.ibm.com>
45  *    Ardelle Fan <ardelle.fan@intel.com>
46  *
47  * Any bugs reported given to us we will try to fix... any fixes shared will
48  * be incorporated into the next SCTP release.
49  */
50 
51 #include <linux/types.h>
52 #include <linux/list.h> /* For struct list_head */
53 #include <linux/socket.h>
54 #include <linux/ip.h>
55 #include <linux/time.h> /* For struct timeval */
56 #include <linux/slab.h>
57 #include <net/ip.h>
58 #include <net/icmp.h>
59 #include <net/snmp.h>
60 #include <net/sock.h>
61 #include <net/xfrm.h>
62 #include <net/sctp/sctp.h>
63 #include <net/sctp/sm.h>
64 #include <net/sctp/checksum.h>
65 #include <net/net_namespace.h>
66 
67 /* Forward declarations for internal helpers. */
68 static int sctp_rcv_ootb(struct sk_buff *);
69 static struct sctp_association *__sctp_rcv_lookup(struct net *net,
70 				      struct sk_buff *skb,
71 				      const union sctp_addr *paddr,
72 				      const union sctp_addr *laddr,
73 				      struct sctp_transport **transportp);
74 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net,
75 						const union sctp_addr *laddr);
76 static struct sctp_association *__sctp_lookup_association(
77 					struct net *net,
78 					const union sctp_addr *local,
79 					const union sctp_addr *peer,
80 					struct sctp_transport **pt);
81 
82 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb);
83 
84 
85 /* Calculate the SCTP checksum of an SCTP packet.  */
86 static inline int sctp_rcv_checksum(struct net *net, struct sk_buff *skb)
87 {
88 	struct sctphdr *sh = sctp_hdr(skb);
89 	__le32 cmp = sh->checksum;
90 	struct sk_buff *list;
91 	__le32 val;
92 	__u32 tmp = sctp_start_cksum((__u8 *)sh, skb_headlen(skb));
93 
94 	skb_walk_frags(skb, list)
95 		tmp = sctp_update_cksum((__u8 *)list->data, skb_headlen(list),
96 					tmp);
97 
98 	val = sctp_end_cksum(tmp);
99 
100 	if (val != cmp) {
101 		/* CRC failure, dump it. */
102 		SCTP_INC_STATS_BH(net, SCTP_MIB_CHECKSUMERRORS);
103 		return -1;
104 	}
105 	return 0;
106 }
107 
108 struct sctp_input_cb {
109 	union {
110 		struct inet_skb_parm	h4;
111 #if IS_ENABLED(CONFIG_IPV6)
112 		struct inet6_skb_parm	h6;
113 #endif
114 	} header;
115 	struct sctp_chunk *chunk;
116 };
117 #define SCTP_INPUT_CB(__skb)	((struct sctp_input_cb *)&((__skb)->cb[0]))
118 
119 /*
120  * This is the routine which IP calls when receiving an SCTP packet.
121  */
122 int sctp_rcv(struct sk_buff *skb)
123 {
124 	struct sock *sk;
125 	struct sctp_association *asoc;
126 	struct sctp_endpoint *ep = NULL;
127 	struct sctp_ep_common *rcvr;
128 	struct sctp_transport *transport = NULL;
129 	struct sctp_chunk *chunk;
130 	struct sctphdr *sh;
131 	union sctp_addr src;
132 	union sctp_addr dest;
133 	int family;
134 	struct sctp_af *af;
135 	struct net *net = dev_net(skb->dev);
136 
137 	if (skb->pkt_type!=PACKET_HOST)
138 		goto discard_it;
139 
140 	SCTP_INC_STATS_BH(net, SCTP_MIB_INSCTPPACKS);
141 
142 	if (skb_linearize(skb))
143 		goto discard_it;
144 
145 	sh = sctp_hdr(skb);
146 
147 	/* Pull up the IP and SCTP headers. */
148 	__skb_pull(skb, skb_transport_offset(skb));
149 	if (skb->len < sizeof(struct sctphdr))
150 		goto discard_it;
151 	if (!sctp_checksum_disable && !skb_csum_unnecessary(skb) &&
152 		  sctp_rcv_checksum(net, skb) < 0)
153 		goto discard_it;
154 
155 	skb_pull(skb, sizeof(struct sctphdr));
156 
157 	/* Make sure we at least have chunk headers worth of data left. */
158 	if (skb->len < sizeof(struct sctp_chunkhdr))
159 		goto discard_it;
160 
161 	family = ipver2af(ip_hdr(skb)->version);
162 	af = sctp_get_af_specific(family);
163 	if (unlikely(!af))
164 		goto discard_it;
165 
166 	/* Initialize local addresses for lookups. */
167 	af->from_skb(&src, skb, 1);
168 	af->from_skb(&dest, skb, 0);
169 
170 	/* If the packet is to or from a non-unicast address,
171 	 * silently discard the packet.
172 	 *
173 	 * This is not clearly defined in the RFC except in section
174 	 * 8.4 - OOTB handling.  However, based on the book "Stream Control
175 	 * Transmission Protocol" 2.1, "It is important to note that the
176 	 * IP address of an SCTP transport address must be a routable
177 	 * unicast address.  In other words, IP multicast addresses and
178 	 * IP broadcast addresses cannot be used in an SCTP transport
179 	 * address."
180 	 */
181 	if (!af->addr_valid(&src, NULL, skb) ||
182 	    !af->addr_valid(&dest, NULL, skb))
183 		goto discard_it;
184 
185 	asoc = __sctp_rcv_lookup(net, skb, &src, &dest, &transport);
186 
187 	if (!asoc)
188 		ep = __sctp_rcv_lookup_endpoint(net, &dest);
189 
190 	/* Retrieve the common input handling substructure. */
191 	rcvr = asoc ? &asoc->base : &ep->base;
192 	sk = rcvr->sk;
193 
194 	/*
195 	 * If a frame arrives on an interface and the receiving socket is
196 	 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB
197 	 */
198 	if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb)))
199 	{
200 		if (asoc) {
201 			sctp_association_put(asoc);
202 			asoc = NULL;
203 		} else {
204 			sctp_endpoint_put(ep);
205 			ep = NULL;
206 		}
207 		sk = net->sctp.ctl_sock;
208 		ep = sctp_sk(sk)->ep;
209 		sctp_endpoint_hold(ep);
210 		rcvr = &ep->base;
211 	}
212 
213 	/*
214 	 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
215 	 * An SCTP packet is called an "out of the blue" (OOTB)
216 	 * packet if it is correctly formed, i.e., passed the
217 	 * receiver's checksum check, but the receiver is not
218 	 * able to identify the association to which this
219 	 * packet belongs.
220 	 */
221 	if (!asoc) {
222 		if (sctp_rcv_ootb(skb)) {
223 			SCTP_INC_STATS_BH(net, SCTP_MIB_OUTOFBLUES);
224 			goto discard_release;
225 		}
226 	}
227 
228 	if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family))
229 		goto discard_release;
230 	nf_reset(skb);
231 
232 	if (sk_filter(sk, skb))
233 		goto discard_release;
234 
235 	/* Create an SCTP packet structure. */
236 	chunk = sctp_chunkify(skb, asoc, sk);
237 	if (!chunk)
238 		goto discard_release;
239 	SCTP_INPUT_CB(skb)->chunk = chunk;
240 
241 	/* Remember what endpoint is to handle this packet. */
242 	chunk->rcvr = rcvr;
243 
244 	/* Remember the SCTP header. */
245 	chunk->sctp_hdr = sh;
246 
247 	/* Set the source and destination addresses of the incoming chunk.  */
248 	sctp_init_addrs(chunk, &src, &dest);
249 
250 	/* Remember where we came from.  */
251 	chunk->transport = transport;
252 
253 	/* Acquire access to the sock lock. Note: We are safe from other
254 	 * bottom halves on this lock, but a user may be in the lock too,
255 	 * so check if it is busy.
256 	 */
257 	sctp_bh_lock_sock(sk);
258 
259 	if (sk != rcvr->sk) {
260 		/* Our cached sk is different from the rcvr->sk.  This is
261 		 * because migrate()/accept() may have moved the association
262 		 * to a new socket and released all the sockets.  So now we
263 		 * are holding a lock on the old socket while the user may
264 		 * be doing something with the new socket.  Switch our veiw
265 		 * of the current sk.
266 		 */
267 		sctp_bh_unlock_sock(sk);
268 		sk = rcvr->sk;
269 		sctp_bh_lock_sock(sk);
270 	}
271 
272 	if (sock_owned_by_user(sk)) {
273 		if (sctp_add_backlog(sk, skb)) {
274 			sctp_bh_unlock_sock(sk);
275 			sctp_chunk_free(chunk);
276 			skb = NULL; /* sctp_chunk_free already freed the skb */
277 			goto discard_release;
278 		}
279 		SCTP_INC_STATS_BH(net, SCTP_MIB_IN_PKT_BACKLOG);
280 	} else {
281 		SCTP_INC_STATS_BH(net, SCTP_MIB_IN_PKT_SOFTIRQ);
282 		sctp_inq_push(&chunk->rcvr->inqueue, chunk);
283 	}
284 
285 	sctp_bh_unlock_sock(sk);
286 
287 	/* Release the asoc/ep ref we took in the lookup calls. */
288 	if (asoc)
289 		sctp_association_put(asoc);
290 	else
291 		sctp_endpoint_put(ep);
292 
293 	return 0;
294 
295 discard_it:
296 	SCTP_INC_STATS_BH(net, SCTP_MIB_IN_PKT_DISCARDS);
297 	kfree_skb(skb);
298 	return 0;
299 
300 discard_release:
301 	/* Release the asoc/ep ref we took in the lookup calls. */
302 	if (asoc)
303 		sctp_association_put(asoc);
304 	else
305 		sctp_endpoint_put(ep);
306 
307 	goto discard_it;
308 }
309 
310 /* Process the backlog queue of the socket.  Every skb on
311  * the backlog holds a ref on an association or endpoint.
312  * We hold this ref throughout the state machine to make
313  * sure that the structure we need is still around.
314  */
315 int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
316 {
317 	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
318 	struct sctp_inq *inqueue = &chunk->rcvr->inqueue;
319 	struct sctp_ep_common *rcvr = NULL;
320 	int backloged = 0;
321 
322 	rcvr = chunk->rcvr;
323 
324 	/* If the rcvr is dead then the association or endpoint
325 	 * has been deleted and we can safely drop the chunk
326 	 * and refs that we are holding.
327 	 */
328 	if (rcvr->dead) {
329 		sctp_chunk_free(chunk);
330 		goto done;
331 	}
332 
333 	if (unlikely(rcvr->sk != sk)) {
334 		/* In this case, the association moved from one socket to
335 		 * another.  We are currently sitting on the backlog of the
336 		 * old socket, so we need to move.
337 		 * However, since we are here in the process context we
338 		 * need to take make sure that the user doesn't own
339 		 * the new socket when we process the packet.
340 		 * If the new socket is user-owned, queue the chunk to the
341 		 * backlog of the new socket without dropping any refs.
342 		 * Otherwise, we can safely push the chunk on the inqueue.
343 		 */
344 
345 		sk = rcvr->sk;
346 		sctp_bh_lock_sock(sk);
347 
348 		if (sock_owned_by_user(sk)) {
349 			if (sk_add_backlog(sk, skb, sk->sk_rcvbuf))
350 				sctp_chunk_free(chunk);
351 			else
352 				backloged = 1;
353 		} else
354 			sctp_inq_push(inqueue, chunk);
355 
356 		sctp_bh_unlock_sock(sk);
357 
358 		/* If the chunk was backloged again, don't drop refs */
359 		if (backloged)
360 			return 0;
361 	} else {
362 		sctp_inq_push(inqueue, chunk);
363 	}
364 
365 done:
366 	/* Release the refs we took in sctp_add_backlog */
367 	if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
368 		sctp_association_put(sctp_assoc(rcvr));
369 	else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
370 		sctp_endpoint_put(sctp_ep(rcvr));
371 	else
372 		BUG();
373 
374 	return 0;
375 }
376 
377 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb)
378 {
379 	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
380 	struct sctp_ep_common *rcvr = chunk->rcvr;
381 	int ret;
382 
383 	ret = sk_add_backlog(sk, skb, sk->sk_rcvbuf);
384 	if (!ret) {
385 		/* Hold the assoc/ep while hanging on the backlog queue.
386 		 * This way, we know structures we need will not disappear
387 		 * from us
388 		 */
389 		if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
390 			sctp_association_hold(sctp_assoc(rcvr));
391 		else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
392 			sctp_endpoint_hold(sctp_ep(rcvr));
393 		else
394 			BUG();
395 	}
396 	return ret;
397 
398 }
399 
400 /* Handle icmp frag needed error. */
401 void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
402 			   struct sctp_transport *t, __u32 pmtu)
403 {
404 	if (!t || (t->pathmtu <= pmtu))
405 		return;
406 
407 	if (sock_owned_by_user(sk)) {
408 		asoc->pmtu_pending = 1;
409 		t->pmtu_pending = 1;
410 		return;
411 	}
412 
413 	if (t->param_flags & SPP_PMTUD_ENABLE) {
414 		/* Update transports view of the MTU */
415 		sctp_transport_update_pmtu(sk, t, pmtu);
416 
417 		/* Update association pmtu. */
418 		sctp_assoc_sync_pmtu(sk, asoc);
419 	}
420 
421 	/* Retransmit with the new pmtu setting.
422 	 * Normally, if PMTU discovery is disabled, an ICMP Fragmentation
423 	 * Needed will never be sent, but if a message was sent before
424 	 * PMTU discovery was disabled that was larger than the PMTU, it
425 	 * would not be fragmented, so it must be re-transmitted fragmented.
426 	 */
427 	sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD);
428 }
429 
430 void sctp_icmp_redirect(struct sock *sk, struct sctp_transport *t,
431 			struct sk_buff *skb)
432 {
433 	struct dst_entry *dst;
434 
435 	if (!t)
436 		return;
437 	dst = sctp_transport_dst_check(t);
438 	if (dst)
439 		dst->ops->redirect(dst, sk, skb);
440 }
441 
442 /*
443  * SCTP Implementer's Guide, 2.37 ICMP handling procedures
444  *
445  * ICMP8) If the ICMP code is a "Unrecognized next header type encountered"
446  *        or a "Protocol Unreachable" treat this message as an abort
447  *        with the T bit set.
448  *
449  * This function sends an event to the state machine, which will abort the
450  * association.
451  *
452  */
453 void sctp_icmp_proto_unreachable(struct sock *sk,
454 			   struct sctp_association *asoc,
455 			   struct sctp_transport *t)
456 {
457 	SCTP_DEBUG_PRINTK("%s\n",  __func__);
458 
459 	if (sock_owned_by_user(sk)) {
460 		if (timer_pending(&t->proto_unreach_timer))
461 			return;
462 		else {
463 			if (!mod_timer(&t->proto_unreach_timer,
464 						jiffies + (HZ/20)))
465 				sctp_association_hold(asoc);
466 		}
467 
468 	} else {
469 		struct net *net = sock_net(sk);
470 
471 		if (timer_pending(&t->proto_unreach_timer) &&
472 		    del_timer(&t->proto_unreach_timer))
473 			sctp_association_put(asoc);
474 
475 		sctp_do_sm(net, SCTP_EVENT_T_OTHER,
476 			   SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
477 			   asoc->state, asoc->ep, asoc, t,
478 			   GFP_ATOMIC);
479 	}
480 }
481 
482 /* Common lookup code for icmp/icmpv6 error handler. */
483 struct sock *sctp_err_lookup(struct net *net, int family, struct sk_buff *skb,
484 			     struct sctphdr *sctphdr,
485 			     struct sctp_association **app,
486 			     struct sctp_transport **tpp)
487 {
488 	union sctp_addr saddr;
489 	union sctp_addr daddr;
490 	struct sctp_af *af;
491 	struct sock *sk = NULL;
492 	struct sctp_association *asoc;
493 	struct sctp_transport *transport = NULL;
494 	struct sctp_init_chunk *chunkhdr;
495 	__u32 vtag = ntohl(sctphdr->vtag);
496 	int len = skb->len - ((void *)sctphdr - (void *)skb->data);
497 
498 	*app = NULL; *tpp = NULL;
499 
500 	af = sctp_get_af_specific(family);
501 	if (unlikely(!af)) {
502 		return NULL;
503 	}
504 
505 	/* Initialize local addresses for lookups. */
506 	af->from_skb(&saddr, skb, 1);
507 	af->from_skb(&daddr, skb, 0);
508 
509 	/* Look for an association that matches the incoming ICMP error
510 	 * packet.
511 	 */
512 	asoc = __sctp_lookup_association(net, &saddr, &daddr, &transport);
513 	if (!asoc)
514 		return NULL;
515 
516 	sk = asoc->base.sk;
517 
518 	/* RFC 4960, Appendix C. ICMP Handling
519 	 *
520 	 * ICMP6) An implementation MUST validate that the Verification Tag
521 	 * contained in the ICMP message matches the Verification Tag of
522 	 * the peer.  If the Verification Tag is not 0 and does NOT
523 	 * match, discard the ICMP message.  If it is 0 and the ICMP
524 	 * message contains enough bytes to verify that the chunk type is
525 	 * an INIT chunk and that the Initiate Tag matches the tag of the
526 	 * peer, continue with ICMP7.  If the ICMP message is too short
527 	 * or the chunk type or the Initiate Tag does not match, silently
528 	 * discard the packet.
529 	 */
530 	if (vtag == 0) {
531 		chunkhdr = (void *)sctphdr + sizeof(struct sctphdr);
532 		if (len < sizeof(struct sctphdr) + sizeof(sctp_chunkhdr_t)
533 			  + sizeof(__be32) ||
534 		    chunkhdr->chunk_hdr.type != SCTP_CID_INIT ||
535 		    ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag) {
536 			goto out;
537 		}
538 	} else if (vtag != asoc->c.peer_vtag) {
539 		goto out;
540 	}
541 
542 	sctp_bh_lock_sock(sk);
543 
544 	/* If too many ICMPs get dropped on busy
545 	 * servers this needs to be solved differently.
546 	 */
547 	if (sock_owned_by_user(sk))
548 		NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
549 
550 	*app = asoc;
551 	*tpp = transport;
552 	return sk;
553 
554 out:
555 	if (asoc)
556 		sctp_association_put(asoc);
557 	return NULL;
558 }
559 
560 /* Common cleanup code for icmp/icmpv6 error handler. */
561 void sctp_err_finish(struct sock *sk, struct sctp_association *asoc)
562 {
563 	sctp_bh_unlock_sock(sk);
564 	if (asoc)
565 		sctp_association_put(asoc);
566 }
567 
568 /*
569  * This routine is called by the ICMP module when it gets some
570  * sort of error condition.  If err < 0 then the socket should
571  * be closed and the error returned to the user.  If err > 0
572  * it's just the icmp type << 8 | icmp code.  After adjustment
573  * header points to the first 8 bytes of the sctp header.  We need
574  * to find the appropriate port.
575  *
576  * The locking strategy used here is very "optimistic". When
577  * someone else accesses the socket the ICMP is just dropped
578  * and for some paths there is no check at all.
579  * A more general error queue to queue errors for later handling
580  * is probably better.
581  *
582  */
583 void sctp_v4_err(struct sk_buff *skb, __u32 info)
584 {
585 	const struct iphdr *iph = (const struct iphdr *)skb->data;
586 	const int ihlen = iph->ihl * 4;
587 	const int type = icmp_hdr(skb)->type;
588 	const int code = icmp_hdr(skb)->code;
589 	struct sock *sk;
590 	struct sctp_association *asoc = NULL;
591 	struct sctp_transport *transport;
592 	struct inet_sock *inet;
593 	sk_buff_data_t saveip, savesctp;
594 	int err;
595 	struct net *net = dev_net(skb->dev);
596 
597 	if (skb->len < ihlen + 8) {
598 		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
599 		return;
600 	}
601 
602 	/* Fix up skb to look at the embedded net header. */
603 	saveip = skb->network_header;
604 	savesctp = skb->transport_header;
605 	skb_reset_network_header(skb);
606 	skb_set_transport_header(skb, ihlen);
607 	sk = sctp_err_lookup(net, AF_INET, skb, sctp_hdr(skb), &asoc, &transport);
608 	/* Put back, the original values. */
609 	skb->network_header = saveip;
610 	skb->transport_header = savesctp;
611 	if (!sk) {
612 		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
613 		return;
614 	}
615 	/* Warning:  The sock lock is held.  Remember to call
616 	 * sctp_err_finish!
617 	 */
618 
619 	switch (type) {
620 	case ICMP_PARAMETERPROB:
621 		err = EPROTO;
622 		break;
623 	case ICMP_DEST_UNREACH:
624 		if (code > NR_ICMP_UNREACH)
625 			goto out_unlock;
626 
627 		/* PMTU discovery (RFC1191) */
628 		if (ICMP_FRAG_NEEDED == code) {
629 			sctp_icmp_frag_needed(sk, asoc, transport, info);
630 			goto out_unlock;
631 		}
632 		else {
633 			if (ICMP_PROT_UNREACH == code) {
634 				sctp_icmp_proto_unreachable(sk, asoc,
635 							    transport);
636 				goto out_unlock;
637 			}
638 		}
639 		err = icmp_err_convert[code].errno;
640 		break;
641 	case ICMP_TIME_EXCEEDED:
642 		/* Ignore any time exceeded errors due to fragment reassembly
643 		 * timeouts.
644 		 */
645 		if (ICMP_EXC_FRAGTIME == code)
646 			goto out_unlock;
647 
648 		err = EHOSTUNREACH;
649 		break;
650 	case ICMP_REDIRECT:
651 		sctp_icmp_redirect(sk, transport, skb);
652 		err = 0;
653 		break;
654 	default:
655 		goto out_unlock;
656 	}
657 
658 	inet = inet_sk(sk);
659 	if (!sock_owned_by_user(sk) && inet->recverr) {
660 		sk->sk_err = err;
661 		sk->sk_error_report(sk);
662 	} else {  /* Only an error on timeout */
663 		sk->sk_err_soft = err;
664 	}
665 
666 out_unlock:
667 	sctp_err_finish(sk, asoc);
668 }
669 
670 /*
671  * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
672  *
673  * This function scans all the chunks in the OOTB packet to determine if
674  * the packet should be discarded right away.  If a response might be needed
675  * for this packet, or, if further processing is possible, the packet will
676  * be queued to a proper inqueue for the next phase of handling.
677  *
678  * Output:
679  * Return 0 - If further processing is needed.
680  * Return 1 - If the packet can be discarded right away.
681  */
682 static int sctp_rcv_ootb(struct sk_buff *skb)
683 {
684 	sctp_chunkhdr_t *ch;
685 	__u8 *ch_end;
686 
687 	ch = (sctp_chunkhdr_t *) skb->data;
688 
689 	/* Scan through all the chunks in the packet.  */
690 	do {
691 		/* Break out if chunk length is less then minimal. */
692 		if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t))
693 			break;
694 
695 		ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length));
696 		if (ch_end > skb_tail_pointer(skb))
697 			break;
698 
699 		/* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the
700 		 * receiver MUST silently discard the OOTB packet and take no
701 		 * further action.
702 		 */
703 		if (SCTP_CID_ABORT == ch->type)
704 			goto discard;
705 
706 		/* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE
707 		 * chunk, the receiver should silently discard the packet
708 		 * and take no further action.
709 		 */
710 		if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type)
711 			goto discard;
712 
713 		/* RFC 4460, 2.11.2
714 		 * This will discard packets with INIT chunk bundled as
715 		 * subsequent chunks in the packet.  When INIT is first,
716 		 * the normal INIT processing will discard the chunk.
717 		 */
718 		if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data)
719 			goto discard;
720 
721 		ch = (sctp_chunkhdr_t *) ch_end;
722 	} while (ch_end < skb_tail_pointer(skb));
723 
724 	return 0;
725 
726 discard:
727 	return 1;
728 }
729 
730 /* Insert endpoint into the hash table.  */
731 static void __sctp_hash_endpoint(struct sctp_endpoint *ep)
732 {
733 	struct net *net = sock_net(ep->base.sk);
734 	struct sctp_ep_common *epb;
735 	struct sctp_hashbucket *head;
736 
737 	epb = &ep->base;
738 
739 	epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port);
740 	head = &sctp_ep_hashtable[epb->hashent];
741 
742 	sctp_write_lock(&head->lock);
743 	hlist_add_head(&epb->node, &head->chain);
744 	sctp_write_unlock(&head->lock);
745 }
746 
747 /* Add an endpoint to the hash. Local BH-safe. */
748 void sctp_hash_endpoint(struct sctp_endpoint *ep)
749 {
750 	sctp_local_bh_disable();
751 	__sctp_hash_endpoint(ep);
752 	sctp_local_bh_enable();
753 }
754 
755 /* Remove endpoint from the hash table.  */
756 static void __sctp_unhash_endpoint(struct sctp_endpoint *ep)
757 {
758 	struct net *net = sock_net(ep->base.sk);
759 	struct sctp_hashbucket *head;
760 	struct sctp_ep_common *epb;
761 
762 	epb = &ep->base;
763 
764 	epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port);
765 
766 	head = &sctp_ep_hashtable[epb->hashent];
767 
768 	sctp_write_lock(&head->lock);
769 	hlist_del_init(&epb->node);
770 	sctp_write_unlock(&head->lock);
771 }
772 
773 /* Remove endpoint from the hash.  Local BH-safe. */
774 void sctp_unhash_endpoint(struct sctp_endpoint *ep)
775 {
776 	sctp_local_bh_disable();
777 	__sctp_unhash_endpoint(ep);
778 	sctp_local_bh_enable();
779 }
780 
781 /* Look up an endpoint. */
782 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net,
783 						const union sctp_addr *laddr)
784 {
785 	struct sctp_hashbucket *head;
786 	struct sctp_ep_common *epb;
787 	struct sctp_endpoint *ep;
788 	struct hlist_node *node;
789 	int hash;
790 
791 	hash = sctp_ep_hashfn(net, ntohs(laddr->v4.sin_port));
792 	head = &sctp_ep_hashtable[hash];
793 	read_lock(&head->lock);
794 	sctp_for_each_hentry(epb, node, &head->chain) {
795 		ep = sctp_ep(epb);
796 		if (sctp_endpoint_is_match(ep, net, laddr))
797 			goto hit;
798 	}
799 
800 	ep = sctp_sk(net->sctp.ctl_sock)->ep;
801 
802 hit:
803 	sctp_endpoint_hold(ep);
804 	read_unlock(&head->lock);
805 	return ep;
806 }
807 
808 /* Insert association into the hash table.  */
809 static void __sctp_hash_established(struct sctp_association *asoc)
810 {
811 	struct net *net = sock_net(asoc->base.sk);
812 	struct sctp_ep_common *epb;
813 	struct sctp_hashbucket *head;
814 
815 	epb = &asoc->base;
816 
817 	/* Calculate which chain this entry will belong to. */
818 	epb->hashent = sctp_assoc_hashfn(net, epb->bind_addr.port,
819 					 asoc->peer.port);
820 
821 	head = &sctp_assoc_hashtable[epb->hashent];
822 
823 	sctp_write_lock(&head->lock);
824 	hlist_add_head(&epb->node, &head->chain);
825 	sctp_write_unlock(&head->lock);
826 }
827 
828 /* Add an association to the hash. Local BH-safe. */
829 void sctp_hash_established(struct sctp_association *asoc)
830 {
831 	if (asoc->temp)
832 		return;
833 
834 	sctp_local_bh_disable();
835 	__sctp_hash_established(asoc);
836 	sctp_local_bh_enable();
837 }
838 
839 /* Remove association from the hash table.  */
840 static void __sctp_unhash_established(struct sctp_association *asoc)
841 {
842 	struct net *net = sock_net(asoc->base.sk);
843 	struct sctp_hashbucket *head;
844 	struct sctp_ep_common *epb;
845 
846 	epb = &asoc->base;
847 
848 	epb->hashent = sctp_assoc_hashfn(net, epb->bind_addr.port,
849 					 asoc->peer.port);
850 
851 	head = &sctp_assoc_hashtable[epb->hashent];
852 
853 	sctp_write_lock(&head->lock);
854 	hlist_del_init(&epb->node);
855 	sctp_write_unlock(&head->lock);
856 }
857 
858 /* Remove association from the hash table.  Local BH-safe. */
859 void sctp_unhash_established(struct sctp_association *asoc)
860 {
861 	if (asoc->temp)
862 		return;
863 
864 	sctp_local_bh_disable();
865 	__sctp_unhash_established(asoc);
866 	sctp_local_bh_enable();
867 }
868 
869 /* Look up an association. */
870 static struct sctp_association *__sctp_lookup_association(
871 					struct net *net,
872 					const union sctp_addr *local,
873 					const union sctp_addr *peer,
874 					struct sctp_transport **pt)
875 {
876 	struct sctp_hashbucket *head;
877 	struct sctp_ep_common *epb;
878 	struct sctp_association *asoc;
879 	struct sctp_transport *transport;
880 	struct hlist_node *node;
881 	int hash;
882 
883 	/* Optimize here for direct hit, only listening connections can
884 	 * have wildcards anyways.
885 	 */
886 	hash = sctp_assoc_hashfn(net, ntohs(local->v4.sin_port),
887 				 ntohs(peer->v4.sin_port));
888 	head = &sctp_assoc_hashtable[hash];
889 	read_lock(&head->lock);
890 	sctp_for_each_hentry(epb, node, &head->chain) {
891 		asoc = sctp_assoc(epb);
892 		transport = sctp_assoc_is_match(asoc, net, local, peer);
893 		if (transport)
894 			goto hit;
895 	}
896 
897 	read_unlock(&head->lock);
898 
899 	return NULL;
900 
901 hit:
902 	*pt = transport;
903 	sctp_association_hold(asoc);
904 	read_unlock(&head->lock);
905 	return asoc;
906 }
907 
908 /* Look up an association. BH-safe. */
909 SCTP_STATIC
910 struct sctp_association *sctp_lookup_association(struct net *net,
911 						 const union sctp_addr *laddr,
912 						 const union sctp_addr *paddr,
913 					    struct sctp_transport **transportp)
914 {
915 	struct sctp_association *asoc;
916 
917 	sctp_local_bh_disable();
918 	asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
919 	sctp_local_bh_enable();
920 
921 	return asoc;
922 }
923 
924 /* Is there an association matching the given local and peer addresses? */
925 int sctp_has_association(struct net *net,
926 			 const union sctp_addr *laddr,
927 			 const union sctp_addr *paddr)
928 {
929 	struct sctp_association *asoc;
930 	struct sctp_transport *transport;
931 
932 	if ((asoc = sctp_lookup_association(net, laddr, paddr, &transport))) {
933 		sctp_association_put(asoc);
934 		return 1;
935 	}
936 
937 	return 0;
938 }
939 
940 /*
941  * SCTP Implementors Guide, 2.18 Handling of address
942  * parameters within the INIT or INIT-ACK.
943  *
944  * D) When searching for a matching TCB upon reception of an INIT
945  *    or INIT-ACK chunk the receiver SHOULD use not only the
946  *    source address of the packet (containing the INIT or
947  *    INIT-ACK) but the receiver SHOULD also use all valid
948  *    address parameters contained within the chunk.
949  *
950  * 2.18.3 Solution description
951  *
952  * This new text clearly specifies to an implementor the need
953  * to look within the INIT or INIT-ACK. Any implementation that
954  * does not do this, may not be able to establish associations
955  * in certain circumstances.
956  *
957  */
958 static struct sctp_association *__sctp_rcv_init_lookup(struct net *net,
959 	struct sk_buff *skb,
960 	const union sctp_addr *laddr, struct sctp_transport **transportp)
961 {
962 	struct sctp_association *asoc;
963 	union sctp_addr addr;
964 	union sctp_addr *paddr = &addr;
965 	struct sctphdr *sh = sctp_hdr(skb);
966 	union sctp_params params;
967 	sctp_init_chunk_t *init;
968 	struct sctp_transport *transport;
969 	struct sctp_af *af;
970 
971 	/*
972 	 * This code will NOT touch anything inside the chunk--it is
973 	 * strictly READ-ONLY.
974 	 *
975 	 * RFC 2960 3  SCTP packet Format
976 	 *
977 	 * Multiple chunks can be bundled into one SCTP packet up to
978 	 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN
979 	 * COMPLETE chunks.  These chunks MUST NOT be bundled with any
980 	 * other chunk in a packet.  See Section 6.10 for more details
981 	 * on chunk bundling.
982 	 */
983 
984 	/* Find the start of the TLVs and the end of the chunk.  This is
985 	 * the region we search for address parameters.
986 	 */
987 	init = (sctp_init_chunk_t *)skb->data;
988 
989 	/* Walk the parameters looking for embedded addresses. */
990 	sctp_walk_params(params, init, init_hdr.params) {
991 
992 		/* Note: Ignoring hostname addresses. */
993 		af = sctp_get_af_specific(param_type2af(params.p->type));
994 		if (!af)
995 			continue;
996 
997 		af->from_addr_param(paddr, params.addr, sh->source, 0);
998 
999 		asoc = __sctp_lookup_association(net, laddr, paddr, &transport);
1000 		if (asoc)
1001 			return asoc;
1002 	}
1003 
1004 	return NULL;
1005 }
1006 
1007 /* ADD-IP, Section 5.2
1008  * When an endpoint receives an ASCONF Chunk from the remote peer
1009  * special procedures may be needed to identify the association the
1010  * ASCONF Chunk is associated with. To properly find the association
1011  * the following procedures SHOULD be followed:
1012  *
1013  * D2) If the association is not found, use the address found in the
1014  * Address Parameter TLV combined with the port number found in the
1015  * SCTP common header. If found proceed to rule D4.
1016  *
1017  * D2-ext) If more than one ASCONF Chunks are packed together, use the
1018  * address found in the ASCONF Address Parameter TLV of each of the
1019  * subsequent ASCONF Chunks. If found, proceed to rule D4.
1020  */
1021 static struct sctp_association *__sctp_rcv_asconf_lookup(
1022 					struct net *net,
1023 					sctp_chunkhdr_t *ch,
1024 					const union sctp_addr *laddr,
1025 					__be16 peer_port,
1026 					struct sctp_transport **transportp)
1027 {
1028 	sctp_addip_chunk_t *asconf = (struct sctp_addip_chunk *)ch;
1029 	struct sctp_af *af;
1030 	union sctp_addr_param *param;
1031 	union sctp_addr paddr;
1032 
1033 	/* Skip over the ADDIP header and find the Address parameter */
1034 	param = (union sctp_addr_param *)(asconf + 1);
1035 
1036 	af = sctp_get_af_specific(param_type2af(param->p.type));
1037 	if (unlikely(!af))
1038 		return NULL;
1039 
1040 	af->from_addr_param(&paddr, param, peer_port, 0);
1041 
1042 	return __sctp_lookup_association(net, laddr, &paddr, transportp);
1043 }
1044 
1045 
1046 /* SCTP-AUTH, Section 6.3:
1047 *    If the receiver does not find a STCB for a packet containing an AUTH
1048 *    chunk as the first chunk and not a COOKIE-ECHO chunk as the second
1049 *    chunk, it MUST use the chunks after the AUTH chunk to look up an existing
1050 *    association.
1051 *
1052 * This means that any chunks that can help us identify the association need
1053 * to be looked at to find this association.
1054 */
1055 static struct sctp_association *__sctp_rcv_walk_lookup(struct net *net,
1056 				      struct sk_buff *skb,
1057 				      const union sctp_addr *laddr,
1058 				      struct sctp_transport **transportp)
1059 {
1060 	struct sctp_association *asoc = NULL;
1061 	sctp_chunkhdr_t *ch;
1062 	int have_auth = 0;
1063 	unsigned int chunk_num = 1;
1064 	__u8 *ch_end;
1065 
1066 	/* Walk through the chunks looking for AUTH or ASCONF chunks
1067 	 * to help us find the association.
1068 	 */
1069 	ch = (sctp_chunkhdr_t *) skb->data;
1070 	do {
1071 		/* Break out if chunk length is less then minimal. */
1072 		if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t))
1073 			break;
1074 
1075 		ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length));
1076 		if (ch_end > skb_tail_pointer(skb))
1077 			break;
1078 
1079 		switch(ch->type) {
1080 		    case SCTP_CID_AUTH:
1081 			    have_auth = chunk_num;
1082 			    break;
1083 
1084 		    case SCTP_CID_COOKIE_ECHO:
1085 			    /* If a packet arrives containing an AUTH chunk as
1086 			     * a first chunk, a COOKIE-ECHO chunk as the second
1087 			     * chunk, and possibly more chunks after them, and
1088 			     * the receiver does not have an STCB for that
1089 			     * packet, then authentication is based on
1090 			     * the contents of the COOKIE- ECHO chunk.
1091 			     */
1092 			    if (have_auth == 1 && chunk_num == 2)
1093 				    return NULL;
1094 			    break;
1095 
1096 		    case SCTP_CID_ASCONF:
1097 			    if (have_auth || net->sctp.addip_noauth)
1098 				    asoc = __sctp_rcv_asconf_lookup(
1099 							net, ch, laddr,
1100 							sctp_hdr(skb)->source,
1101 							transportp);
1102 		    default:
1103 			    break;
1104 		}
1105 
1106 		if (asoc)
1107 			break;
1108 
1109 		ch = (sctp_chunkhdr_t *) ch_end;
1110 		chunk_num++;
1111 	} while (ch_end < skb_tail_pointer(skb));
1112 
1113 	return asoc;
1114 }
1115 
1116 /*
1117  * There are circumstances when we need to look inside the SCTP packet
1118  * for information to help us find the association.   Examples
1119  * include looking inside of INIT/INIT-ACK chunks or after the AUTH
1120  * chunks.
1121  */
1122 static struct sctp_association *__sctp_rcv_lookup_harder(struct net *net,
1123 				      struct sk_buff *skb,
1124 				      const union sctp_addr *laddr,
1125 				      struct sctp_transport **transportp)
1126 {
1127 	sctp_chunkhdr_t *ch;
1128 
1129 	ch = (sctp_chunkhdr_t *) skb->data;
1130 
1131 	/* The code below will attempt to walk the chunk and extract
1132 	 * parameter information.  Before we do that, we need to verify
1133 	 * that the chunk length doesn't cause overflow.  Otherwise, we'll
1134 	 * walk off the end.
1135 	 */
1136 	if (WORD_ROUND(ntohs(ch->length)) > skb->len)
1137 		return NULL;
1138 
1139 	/* If this is INIT/INIT-ACK look inside the chunk too. */
1140 	switch (ch->type) {
1141 	case SCTP_CID_INIT:
1142 	case SCTP_CID_INIT_ACK:
1143 		return __sctp_rcv_init_lookup(net, skb, laddr, transportp);
1144 		break;
1145 
1146 	default:
1147 		return __sctp_rcv_walk_lookup(net, skb, laddr, transportp);
1148 		break;
1149 	}
1150 
1151 
1152 	return NULL;
1153 }
1154 
1155 /* Lookup an association for an inbound skb. */
1156 static struct sctp_association *__sctp_rcv_lookup(struct net *net,
1157 				      struct sk_buff *skb,
1158 				      const union sctp_addr *paddr,
1159 				      const union sctp_addr *laddr,
1160 				      struct sctp_transport **transportp)
1161 {
1162 	struct sctp_association *asoc;
1163 
1164 	asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1165 
1166 	/* Further lookup for INIT/INIT-ACK packets.
1167 	 * SCTP Implementors Guide, 2.18 Handling of address
1168 	 * parameters within the INIT or INIT-ACK.
1169 	 */
1170 	if (!asoc)
1171 		asoc = __sctp_rcv_lookup_harder(net, skb, laddr, transportp);
1172 
1173 	return asoc;
1174 }
1175