1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* SCTP kernel implementation 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 International Business Machines, Corp. 6 * Copyright (c) 2001 Intel Corp. 7 * Copyright (c) 2001 Nokia, Inc. 8 * Copyright (c) 2001 La Monte H.P. Yarroll 9 * 10 * This file is part of the SCTP kernel implementation 11 * 12 * These functions handle all input from the IP layer into SCTP. 13 * 14 * Please send any bug reports or fixes you make to the 15 * email address(es): 16 * lksctp developers <linux-sctp@vger.kernel.org> 17 * 18 * Written or modified by: 19 * La Monte H.P. Yarroll <piggy@acm.org> 20 * Karl Knutson <karl@athena.chicago.il.us> 21 * Xingang Guo <xingang.guo@intel.com> 22 * Jon Grimm <jgrimm@us.ibm.com> 23 * Hui Huang <hui.huang@nokia.com> 24 * Daisy Chang <daisyc@us.ibm.com> 25 * Sridhar Samudrala <sri@us.ibm.com> 26 * Ardelle Fan <ardelle.fan@intel.com> 27 */ 28 29 #include <linux/types.h> 30 #include <linux/list.h> /* For struct list_head */ 31 #include <linux/socket.h> 32 #include <linux/ip.h> 33 #include <linux/time.h> /* For struct timeval */ 34 #include <linux/slab.h> 35 #include <net/ip.h> 36 #include <net/icmp.h> 37 #include <net/snmp.h> 38 #include <net/sock.h> 39 #include <net/xfrm.h> 40 #include <net/sctp/sctp.h> 41 #include <net/sctp/sm.h> 42 #include <net/sctp/checksum.h> 43 #include <net/net_namespace.h> 44 #include <linux/rhashtable.h> 45 #include <net/sock_reuseport.h> 46 47 /* Forward declarations for internal helpers. */ 48 static int sctp_rcv_ootb(struct sk_buff *); 49 static struct sctp_association *__sctp_rcv_lookup(struct net *net, 50 struct sk_buff *skb, 51 const union sctp_addr *paddr, 52 const union sctp_addr *laddr, 53 struct sctp_transport **transportp); 54 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint( 55 struct net *net, struct sk_buff *skb, 56 const union sctp_addr *laddr, 57 const union sctp_addr *daddr); 58 static struct sctp_association *__sctp_lookup_association( 59 struct net *net, 60 const union sctp_addr *local, 61 const union sctp_addr *peer, 62 struct sctp_transport **pt); 63 64 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb); 65 66 67 /* Calculate the SCTP checksum of an SCTP packet. */ 68 static inline int sctp_rcv_checksum(struct net *net, struct sk_buff *skb) 69 { 70 struct sctphdr *sh = sctp_hdr(skb); 71 __le32 cmp = sh->checksum; 72 __le32 val = sctp_compute_cksum(skb, 0); 73 74 if (val != cmp) { 75 /* CRC failure, dump it. */ 76 __SCTP_INC_STATS(net, SCTP_MIB_CHECKSUMERRORS); 77 return -1; 78 } 79 return 0; 80 } 81 82 /* 83 * This is the routine which IP calls when receiving an SCTP packet. 84 */ 85 int sctp_rcv(struct sk_buff *skb) 86 { 87 struct sock *sk; 88 struct sctp_association *asoc; 89 struct sctp_endpoint *ep = NULL; 90 struct sctp_ep_common *rcvr; 91 struct sctp_transport *transport = NULL; 92 struct sctp_chunk *chunk; 93 union sctp_addr src; 94 union sctp_addr dest; 95 int family; 96 struct sctp_af *af; 97 struct net *net = dev_net(skb->dev); 98 bool is_gso = skb_is_gso(skb) && skb_is_gso_sctp(skb); 99 100 if (skb->pkt_type != PACKET_HOST) 101 goto discard_it; 102 103 __SCTP_INC_STATS(net, SCTP_MIB_INSCTPPACKS); 104 105 /* If packet is too small to contain a single chunk, let's not 106 * waste time on it anymore. 107 */ 108 if (skb->len < sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr) + 109 skb_transport_offset(skb)) 110 goto discard_it; 111 112 /* If the packet is fragmented and we need to do crc checking, 113 * it's better to just linearize it otherwise crc computing 114 * takes longer. 115 */ 116 if ((!is_gso && skb_linearize(skb)) || 117 !pskb_may_pull(skb, sizeof(struct sctphdr))) 118 goto discard_it; 119 120 /* Pull up the IP header. */ 121 __skb_pull(skb, skb_transport_offset(skb)); 122 123 skb->csum_valid = 0; /* Previous value not applicable */ 124 if (skb_csum_unnecessary(skb)) 125 __skb_decr_checksum_unnecessary(skb); 126 else if (!sctp_checksum_disable && 127 !is_gso && 128 sctp_rcv_checksum(net, skb) < 0) 129 goto discard_it; 130 skb->csum_valid = 1; 131 132 __skb_pull(skb, sizeof(struct sctphdr)); 133 134 family = ipver2af(ip_hdr(skb)->version); 135 af = sctp_get_af_specific(family); 136 if (unlikely(!af)) 137 goto discard_it; 138 SCTP_INPUT_CB(skb)->af = af; 139 140 /* Initialize local addresses for lookups. */ 141 af->from_skb(&src, skb, 1); 142 af->from_skb(&dest, skb, 0); 143 144 /* If the packet is to or from a non-unicast address, 145 * silently discard the packet. 146 * 147 * This is not clearly defined in the RFC except in section 148 * 8.4 - OOTB handling. However, based on the book "Stream Control 149 * Transmission Protocol" 2.1, "It is important to note that the 150 * IP address of an SCTP transport address must be a routable 151 * unicast address. In other words, IP multicast addresses and 152 * IP broadcast addresses cannot be used in an SCTP transport 153 * address." 154 */ 155 if (!af->addr_valid(&src, NULL, skb) || 156 !af->addr_valid(&dest, NULL, skb)) 157 goto discard_it; 158 159 asoc = __sctp_rcv_lookup(net, skb, &src, &dest, &transport); 160 161 if (!asoc) 162 ep = __sctp_rcv_lookup_endpoint(net, skb, &dest, &src); 163 164 /* Retrieve the common input handling substructure. */ 165 rcvr = asoc ? &asoc->base : &ep->base; 166 sk = rcvr->sk; 167 168 /* 169 * If a frame arrives on an interface and the receiving socket is 170 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB 171 */ 172 if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb))) { 173 if (transport) { 174 sctp_transport_put(transport); 175 asoc = NULL; 176 transport = NULL; 177 } else { 178 sctp_endpoint_put(ep); 179 ep = NULL; 180 } 181 sk = net->sctp.ctl_sock; 182 ep = sctp_sk(sk)->ep; 183 sctp_endpoint_hold(ep); 184 rcvr = &ep->base; 185 } 186 187 /* 188 * RFC 2960, 8.4 - Handle "Out of the blue" Packets. 189 * An SCTP packet is called an "out of the blue" (OOTB) 190 * packet if it is correctly formed, i.e., passed the 191 * receiver's checksum check, but the receiver is not 192 * able to identify the association to which this 193 * packet belongs. 194 */ 195 if (!asoc) { 196 if (sctp_rcv_ootb(skb)) { 197 __SCTP_INC_STATS(net, SCTP_MIB_OUTOFBLUES); 198 goto discard_release; 199 } 200 } 201 202 if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family)) 203 goto discard_release; 204 nf_reset_ct(skb); 205 206 if (sk_filter(sk, skb)) 207 goto discard_release; 208 209 /* Create an SCTP packet structure. */ 210 chunk = sctp_chunkify(skb, asoc, sk, GFP_ATOMIC); 211 if (!chunk) 212 goto discard_release; 213 SCTP_INPUT_CB(skb)->chunk = chunk; 214 215 /* Remember what endpoint is to handle this packet. */ 216 chunk->rcvr = rcvr; 217 218 /* Remember the SCTP header. */ 219 chunk->sctp_hdr = sctp_hdr(skb); 220 221 /* Set the source and destination addresses of the incoming chunk. */ 222 sctp_init_addrs(chunk, &src, &dest); 223 224 /* Remember where we came from. */ 225 chunk->transport = transport; 226 227 /* Acquire access to the sock lock. Note: We are safe from other 228 * bottom halves on this lock, but a user may be in the lock too, 229 * so check if it is busy. 230 */ 231 bh_lock_sock(sk); 232 233 if (sk != rcvr->sk) { 234 /* Our cached sk is different from the rcvr->sk. This is 235 * because migrate()/accept() may have moved the association 236 * to a new socket and released all the sockets. So now we 237 * are holding a lock on the old socket while the user may 238 * be doing something with the new socket. Switch our veiw 239 * of the current sk. 240 */ 241 bh_unlock_sock(sk); 242 sk = rcvr->sk; 243 bh_lock_sock(sk); 244 } 245 246 if (sock_owned_by_user(sk) || !sctp_newsk_ready(sk)) { 247 if (sctp_add_backlog(sk, skb)) { 248 bh_unlock_sock(sk); 249 sctp_chunk_free(chunk); 250 skb = NULL; /* sctp_chunk_free already freed the skb */ 251 goto discard_release; 252 } 253 __SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_BACKLOG); 254 } else { 255 __SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_SOFTIRQ); 256 sctp_inq_push(&chunk->rcvr->inqueue, chunk); 257 } 258 259 bh_unlock_sock(sk); 260 261 /* Release the asoc/ep ref we took in the lookup calls. */ 262 if (transport) 263 sctp_transport_put(transport); 264 else 265 sctp_endpoint_put(ep); 266 267 return 0; 268 269 discard_it: 270 __SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_DISCARDS); 271 kfree_skb(skb); 272 return 0; 273 274 discard_release: 275 /* Release the asoc/ep ref we took in the lookup calls. */ 276 if (transport) 277 sctp_transport_put(transport); 278 else 279 sctp_endpoint_put(ep); 280 281 goto discard_it; 282 } 283 284 /* Process the backlog queue of the socket. Every skb on 285 * the backlog holds a ref on an association or endpoint. 286 * We hold this ref throughout the state machine to make 287 * sure that the structure we need is still around. 288 */ 289 int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb) 290 { 291 struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk; 292 struct sctp_inq *inqueue = &chunk->rcvr->inqueue; 293 struct sctp_transport *t = chunk->transport; 294 struct sctp_ep_common *rcvr = NULL; 295 int backloged = 0; 296 297 rcvr = chunk->rcvr; 298 299 /* If the rcvr is dead then the association or endpoint 300 * has been deleted and we can safely drop the chunk 301 * and refs that we are holding. 302 */ 303 if (rcvr->dead) { 304 sctp_chunk_free(chunk); 305 goto done; 306 } 307 308 if (unlikely(rcvr->sk != sk)) { 309 /* In this case, the association moved from one socket to 310 * another. We are currently sitting on the backlog of the 311 * old socket, so we need to move. 312 * However, since we are here in the process context we 313 * need to take make sure that the user doesn't own 314 * the new socket when we process the packet. 315 * If the new socket is user-owned, queue the chunk to the 316 * backlog of the new socket without dropping any refs. 317 * Otherwise, we can safely push the chunk on the inqueue. 318 */ 319 320 sk = rcvr->sk; 321 local_bh_disable(); 322 bh_lock_sock(sk); 323 324 if (sock_owned_by_user(sk) || !sctp_newsk_ready(sk)) { 325 if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) 326 sctp_chunk_free(chunk); 327 else 328 backloged = 1; 329 } else 330 sctp_inq_push(inqueue, chunk); 331 332 bh_unlock_sock(sk); 333 local_bh_enable(); 334 335 /* If the chunk was backloged again, don't drop refs */ 336 if (backloged) 337 return 0; 338 } else { 339 if (!sctp_newsk_ready(sk)) { 340 if (!sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) 341 return 0; 342 sctp_chunk_free(chunk); 343 } else { 344 sctp_inq_push(inqueue, chunk); 345 } 346 } 347 348 done: 349 /* Release the refs we took in sctp_add_backlog */ 350 if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type) 351 sctp_transport_put(t); 352 else if (SCTP_EP_TYPE_SOCKET == rcvr->type) 353 sctp_endpoint_put(sctp_ep(rcvr)); 354 else 355 BUG(); 356 357 return 0; 358 } 359 360 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb) 361 { 362 struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk; 363 struct sctp_transport *t = chunk->transport; 364 struct sctp_ep_common *rcvr = chunk->rcvr; 365 int ret; 366 367 ret = sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf)); 368 if (!ret) { 369 /* Hold the assoc/ep while hanging on the backlog queue. 370 * This way, we know structures we need will not disappear 371 * from us 372 */ 373 if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type) 374 sctp_transport_hold(t); 375 else if (SCTP_EP_TYPE_SOCKET == rcvr->type) 376 sctp_endpoint_hold(sctp_ep(rcvr)); 377 else 378 BUG(); 379 } 380 return ret; 381 382 } 383 384 /* Handle icmp frag needed error. */ 385 void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc, 386 struct sctp_transport *t, __u32 pmtu) 387 { 388 if (!t || (t->pathmtu <= pmtu)) 389 return; 390 391 if (sock_owned_by_user(sk)) { 392 atomic_set(&t->mtu_info, pmtu); 393 asoc->pmtu_pending = 1; 394 t->pmtu_pending = 1; 395 return; 396 } 397 398 if (!(t->param_flags & SPP_PMTUD_ENABLE)) 399 /* We can't allow retransmitting in such case, as the 400 * retransmission would be sized just as before, and thus we 401 * would get another icmp, and retransmit again. 402 */ 403 return; 404 405 /* Update transports view of the MTU. Return if no update was needed. 406 * If an update wasn't needed/possible, it also doesn't make sense to 407 * try to retransmit now. 408 */ 409 if (!sctp_transport_update_pmtu(t, pmtu)) 410 return; 411 412 /* Update association pmtu. */ 413 sctp_assoc_sync_pmtu(asoc); 414 415 /* Retransmit with the new pmtu setting. */ 416 sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD); 417 } 418 419 void sctp_icmp_redirect(struct sock *sk, struct sctp_transport *t, 420 struct sk_buff *skb) 421 { 422 struct dst_entry *dst; 423 424 if (sock_owned_by_user(sk) || !t) 425 return; 426 dst = sctp_transport_dst_check(t); 427 if (dst) 428 dst->ops->redirect(dst, sk, skb); 429 } 430 431 /* 432 * SCTP Implementer's Guide, 2.37 ICMP handling procedures 433 * 434 * ICMP8) If the ICMP code is a "Unrecognized next header type encountered" 435 * or a "Protocol Unreachable" treat this message as an abort 436 * with the T bit set. 437 * 438 * This function sends an event to the state machine, which will abort the 439 * association. 440 * 441 */ 442 void sctp_icmp_proto_unreachable(struct sock *sk, 443 struct sctp_association *asoc, 444 struct sctp_transport *t) 445 { 446 if (sock_owned_by_user(sk)) { 447 if (timer_pending(&t->proto_unreach_timer)) 448 return; 449 else { 450 if (!mod_timer(&t->proto_unreach_timer, 451 jiffies + (HZ/20))) 452 sctp_association_hold(asoc); 453 } 454 } else { 455 struct net *net = sock_net(sk); 456 457 pr_debug("%s: unrecognized next header type " 458 "encountered!\n", __func__); 459 460 if (del_timer(&t->proto_unreach_timer)) 461 sctp_association_put(asoc); 462 463 sctp_do_sm(net, SCTP_EVENT_T_OTHER, 464 SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH), 465 asoc->state, asoc->ep, asoc, t, 466 GFP_ATOMIC); 467 } 468 } 469 470 /* Common lookup code for icmp/icmpv6 error handler. */ 471 struct sock *sctp_err_lookup(struct net *net, int family, struct sk_buff *skb, 472 struct sctphdr *sctphdr, 473 struct sctp_association **app, 474 struct sctp_transport **tpp) 475 { 476 struct sctp_init_chunk *chunkhdr, _chunkhdr; 477 union sctp_addr saddr; 478 union sctp_addr daddr; 479 struct sctp_af *af; 480 struct sock *sk = NULL; 481 struct sctp_association *asoc; 482 struct sctp_transport *transport = NULL; 483 __u32 vtag = ntohl(sctphdr->vtag); 484 485 *app = NULL; *tpp = NULL; 486 487 af = sctp_get_af_specific(family); 488 if (unlikely(!af)) { 489 return NULL; 490 } 491 492 /* Initialize local addresses for lookups. */ 493 af->from_skb(&saddr, skb, 1); 494 af->from_skb(&daddr, skb, 0); 495 496 /* Look for an association that matches the incoming ICMP error 497 * packet. 498 */ 499 asoc = __sctp_lookup_association(net, &saddr, &daddr, &transport); 500 if (!asoc) 501 return NULL; 502 503 sk = asoc->base.sk; 504 505 /* RFC 4960, Appendix C. ICMP Handling 506 * 507 * ICMP6) An implementation MUST validate that the Verification Tag 508 * contained in the ICMP message matches the Verification Tag of 509 * the peer. If the Verification Tag is not 0 and does NOT 510 * match, discard the ICMP message. If it is 0 and the ICMP 511 * message contains enough bytes to verify that the chunk type is 512 * an INIT chunk and that the Initiate Tag matches the tag of the 513 * peer, continue with ICMP7. If the ICMP message is too short 514 * or the chunk type or the Initiate Tag does not match, silently 515 * discard the packet. 516 */ 517 if (vtag == 0) { 518 /* chunk header + first 4 octects of init header */ 519 chunkhdr = skb_header_pointer(skb, skb_transport_offset(skb) + 520 sizeof(struct sctphdr), 521 sizeof(struct sctp_chunkhdr) + 522 sizeof(__be32), &_chunkhdr); 523 if (!chunkhdr || 524 chunkhdr->chunk_hdr.type != SCTP_CID_INIT || 525 ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag) 526 goto out; 527 528 } else if (vtag != asoc->c.peer_vtag) { 529 goto out; 530 } 531 532 bh_lock_sock(sk); 533 534 /* If too many ICMPs get dropped on busy 535 * servers this needs to be solved differently. 536 */ 537 if (sock_owned_by_user(sk)) 538 __NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS); 539 540 *app = asoc; 541 *tpp = transport; 542 return sk; 543 544 out: 545 sctp_transport_put(transport); 546 return NULL; 547 } 548 549 /* Common cleanup code for icmp/icmpv6 error handler. */ 550 void sctp_err_finish(struct sock *sk, struct sctp_transport *t) 551 { 552 bh_unlock_sock(sk); 553 sctp_transport_put(t); 554 } 555 556 /* 557 * This routine is called by the ICMP module when it gets some 558 * sort of error condition. If err < 0 then the socket should 559 * be closed and the error returned to the user. If err > 0 560 * it's just the icmp type << 8 | icmp code. After adjustment 561 * header points to the first 8 bytes of the sctp header. We need 562 * to find the appropriate port. 563 * 564 * The locking strategy used here is very "optimistic". When 565 * someone else accesses the socket the ICMP is just dropped 566 * and for some paths there is no check at all. 567 * A more general error queue to queue errors for later handling 568 * is probably better. 569 * 570 */ 571 int sctp_v4_err(struct sk_buff *skb, __u32 info) 572 { 573 const struct iphdr *iph = (const struct iphdr *)skb->data; 574 const int ihlen = iph->ihl * 4; 575 const int type = icmp_hdr(skb)->type; 576 const int code = icmp_hdr(skb)->code; 577 struct sock *sk; 578 struct sctp_association *asoc = NULL; 579 struct sctp_transport *transport; 580 struct inet_sock *inet; 581 __u16 saveip, savesctp; 582 int err; 583 struct net *net = dev_net(skb->dev); 584 585 /* Fix up skb to look at the embedded net header. */ 586 saveip = skb->network_header; 587 savesctp = skb->transport_header; 588 skb_reset_network_header(skb); 589 skb_set_transport_header(skb, ihlen); 590 sk = sctp_err_lookup(net, AF_INET, skb, sctp_hdr(skb), &asoc, &transport); 591 /* Put back, the original values. */ 592 skb->network_header = saveip; 593 skb->transport_header = savesctp; 594 if (!sk) { 595 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 596 return -ENOENT; 597 } 598 /* Warning: The sock lock is held. Remember to call 599 * sctp_err_finish! 600 */ 601 602 switch (type) { 603 case ICMP_PARAMETERPROB: 604 err = EPROTO; 605 break; 606 case ICMP_DEST_UNREACH: 607 if (code > NR_ICMP_UNREACH) 608 goto out_unlock; 609 610 /* PMTU discovery (RFC1191) */ 611 if (ICMP_FRAG_NEEDED == code) { 612 sctp_icmp_frag_needed(sk, asoc, transport, 613 SCTP_TRUNC4(info)); 614 goto out_unlock; 615 } else { 616 if (ICMP_PROT_UNREACH == code) { 617 sctp_icmp_proto_unreachable(sk, asoc, 618 transport); 619 goto out_unlock; 620 } 621 } 622 err = icmp_err_convert[code].errno; 623 break; 624 case ICMP_TIME_EXCEEDED: 625 /* Ignore any time exceeded errors due to fragment reassembly 626 * timeouts. 627 */ 628 if (ICMP_EXC_FRAGTIME == code) 629 goto out_unlock; 630 631 err = EHOSTUNREACH; 632 break; 633 case ICMP_REDIRECT: 634 sctp_icmp_redirect(sk, transport, skb); 635 /* Fall through to out_unlock. */ 636 default: 637 goto out_unlock; 638 } 639 640 inet = inet_sk(sk); 641 if (!sock_owned_by_user(sk) && inet->recverr) { 642 sk->sk_err = err; 643 sk->sk_error_report(sk); 644 } else { /* Only an error on timeout */ 645 sk->sk_err_soft = err; 646 } 647 648 out_unlock: 649 sctp_err_finish(sk, transport); 650 return 0; 651 } 652 653 /* 654 * RFC 2960, 8.4 - Handle "Out of the blue" Packets. 655 * 656 * This function scans all the chunks in the OOTB packet to determine if 657 * the packet should be discarded right away. If a response might be needed 658 * for this packet, or, if further processing is possible, the packet will 659 * be queued to a proper inqueue for the next phase of handling. 660 * 661 * Output: 662 * Return 0 - If further processing is needed. 663 * Return 1 - If the packet can be discarded right away. 664 */ 665 static int sctp_rcv_ootb(struct sk_buff *skb) 666 { 667 struct sctp_chunkhdr *ch, _ch; 668 int ch_end, offset = 0; 669 670 /* Scan through all the chunks in the packet. */ 671 do { 672 /* Make sure we have at least the header there */ 673 if (offset + sizeof(_ch) > skb->len) 674 break; 675 676 ch = skb_header_pointer(skb, offset, sizeof(*ch), &_ch); 677 678 /* Break out if chunk length is less then minimal. */ 679 if (ntohs(ch->length) < sizeof(_ch)) 680 break; 681 682 ch_end = offset + SCTP_PAD4(ntohs(ch->length)); 683 if (ch_end > skb->len) 684 break; 685 686 /* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the 687 * receiver MUST silently discard the OOTB packet and take no 688 * further action. 689 */ 690 if (SCTP_CID_ABORT == ch->type) 691 goto discard; 692 693 /* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE 694 * chunk, the receiver should silently discard the packet 695 * and take no further action. 696 */ 697 if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type) 698 goto discard; 699 700 /* RFC 4460, 2.11.2 701 * This will discard packets with INIT chunk bundled as 702 * subsequent chunks in the packet. When INIT is first, 703 * the normal INIT processing will discard the chunk. 704 */ 705 if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data) 706 goto discard; 707 708 offset = ch_end; 709 } while (ch_end < skb->len); 710 711 return 0; 712 713 discard: 714 return 1; 715 } 716 717 /* Insert endpoint into the hash table. */ 718 static int __sctp_hash_endpoint(struct sctp_endpoint *ep) 719 { 720 struct sock *sk = ep->base.sk; 721 struct net *net = sock_net(sk); 722 struct sctp_hashbucket *head; 723 struct sctp_ep_common *epb; 724 725 epb = &ep->base; 726 epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port); 727 head = &sctp_ep_hashtable[epb->hashent]; 728 729 if (sk->sk_reuseport) { 730 bool any = sctp_is_ep_boundall(sk); 731 struct sctp_ep_common *epb2; 732 struct list_head *list; 733 int cnt = 0, err = 1; 734 735 list_for_each(list, &ep->base.bind_addr.address_list) 736 cnt++; 737 738 sctp_for_each_hentry(epb2, &head->chain) { 739 struct sock *sk2 = epb2->sk; 740 741 if (!net_eq(sock_net(sk2), net) || sk2 == sk || 742 !uid_eq(sock_i_uid(sk2), sock_i_uid(sk)) || 743 !sk2->sk_reuseport) 744 continue; 745 746 err = sctp_bind_addrs_check(sctp_sk(sk2), 747 sctp_sk(sk), cnt); 748 if (!err) { 749 err = reuseport_add_sock(sk, sk2, any); 750 if (err) 751 return err; 752 break; 753 } else if (err < 0) { 754 return err; 755 } 756 } 757 758 if (err) { 759 err = reuseport_alloc(sk, any); 760 if (err) 761 return err; 762 } 763 } 764 765 write_lock(&head->lock); 766 hlist_add_head(&epb->node, &head->chain); 767 write_unlock(&head->lock); 768 return 0; 769 } 770 771 /* Add an endpoint to the hash. Local BH-safe. */ 772 int sctp_hash_endpoint(struct sctp_endpoint *ep) 773 { 774 int err; 775 776 local_bh_disable(); 777 err = __sctp_hash_endpoint(ep); 778 local_bh_enable(); 779 780 return err; 781 } 782 783 /* Remove endpoint from the hash table. */ 784 static void __sctp_unhash_endpoint(struct sctp_endpoint *ep) 785 { 786 struct sock *sk = ep->base.sk; 787 struct sctp_hashbucket *head; 788 struct sctp_ep_common *epb; 789 790 epb = &ep->base; 791 792 epb->hashent = sctp_ep_hashfn(sock_net(sk), epb->bind_addr.port); 793 794 head = &sctp_ep_hashtable[epb->hashent]; 795 796 if (rcu_access_pointer(sk->sk_reuseport_cb)) 797 reuseport_detach_sock(sk); 798 799 write_lock(&head->lock); 800 hlist_del_init(&epb->node); 801 write_unlock(&head->lock); 802 } 803 804 /* Remove endpoint from the hash. Local BH-safe. */ 805 void sctp_unhash_endpoint(struct sctp_endpoint *ep) 806 { 807 local_bh_disable(); 808 __sctp_unhash_endpoint(ep); 809 local_bh_enable(); 810 } 811 812 static inline __u32 sctp_hashfn(const struct net *net, __be16 lport, 813 const union sctp_addr *paddr, __u32 seed) 814 { 815 __u32 addr; 816 817 if (paddr->sa.sa_family == AF_INET6) 818 addr = jhash(&paddr->v6.sin6_addr, 16, seed); 819 else 820 addr = (__force __u32)paddr->v4.sin_addr.s_addr; 821 822 return jhash_3words(addr, ((__force __u32)paddr->v4.sin_port) << 16 | 823 (__force __u32)lport, net_hash_mix(net), seed); 824 } 825 826 /* Look up an endpoint. */ 827 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint( 828 struct net *net, struct sk_buff *skb, 829 const union sctp_addr *laddr, 830 const union sctp_addr *paddr) 831 { 832 struct sctp_hashbucket *head; 833 struct sctp_ep_common *epb; 834 struct sctp_endpoint *ep; 835 struct sock *sk; 836 __be16 lport; 837 int hash; 838 839 lport = laddr->v4.sin_port; 840 hash = sctp_ep_hashfn(net, ntohs(lport)); 841 head = &sctp_ep_hashtable[hash]; 842 read_lock(&head->lock); 843 sctp_for_each_hentry(epb, &head->chain) { 844 ep = sctp_ep(epb); 845 if (sctp_endpoint_is_match(ep, net, laddr)) 846 goto hit; 847 } 848 849 ep = sctp_sk(net->sctp.ctl_sock)->ep; 850 851 hit: 852 sk = ep->base.sk; 853 if (sk->sk_reuseport) { 854 __u32 phash = sctp_hashfn(net, lport, paddr, 0); 855 856 sk = reuseport_select_sock(sk, phash, skb, 857 sizeof(struct sctphdr)); 858 if (sk) 859 ep = sctp_sk(sk)->ep; 860 } 861 sctp_endpoint_hold(ep); 862 read_unlock(&head->lock); 863 return ep; 864 } 865 866 /* rhashtable for transport */ 867 struct sctp_hash_cmp_arg { 868 const union sctp_addr *paddr; 869 const struct net *net; 870 __be16 lport; 871 }; 872 873 static inline int sctp_hash_cmp(struct rhashtable_compare_arg *arg, 874 const void *ptr) 875 { 876 struct sctp_transport *t = (struct sctp_transport *)ptr; 877 const struct sctp_hash_cmp_arg *x = arg->key; 878 int err = 1; 879 880 if (!sctp_cmp_addr_exact(&t->ipaddr, x->paddr)) 881 return err; 882 if (!sctp_transport_hold(t)) 883 return err; 884 885 if (!net_eq(t->asoc->base.net, x->net)) 886 goto out; 887 if (x->lport != htons(t->asoc->base.bind_addr.port)) 888 goto out; 889 890 err = 0; 891 out: 892 sctp_transport_put(t); 893 return err; 894 } 895 896 static inline __u32 sctp_hash_obj(const void *data, u32 len, u32 seed) 897 { 898 const struct sctp_transport *t = data; 899 900 return sctp_hashfn(t->asoc->base.net, 901 htons(t->asoc->base.bind_addr.port), 902 &t->ipaddr, seed); 903 } 904 905 static inline __u32 sctp_hash_key(const void *data, u32 len, u32 seed) 906 { 907 const struct sctp_hash_cmp_arg *x = data; 908 909 return sctp_hashfn(x->net, x->lport, x->paddr, seed); 910 } 911 912 static const struct rhashtable_params sctp_hash_params = { 913 .head_offset = offsetof(struct sctp_transport, node), 914 .hashfn = sctp_hash_key, 915 .obj_hashfn = sctp_hash_obj, 916 .obj_cmpfn = sctp_hash_cmp, 917 .automatic_shrinking = true, 918 }; 919 920 int sctp_transport_hashtable_init(void) 921 { 922 return rhltable_init(&sctp_transport_hashtable, &sctp_hash_params); 923 } 924 925 void sctp_transport_hashtable_destroy(void) 926 { 927 rhltable_destroy(&sctp_transport_hashtable); 928 } 929 930 int sctp_hash_transport(struct sctp_transport *t) 931 { 932 struct sctp_transport *transport; 933 struct rhlist_head *tmp, *list; 934 struct sctp_hash_cmp_arg arg; 935 int err; 936 937 if (t->asoc->temp) 938 return 0; 939 940 arg.net = sock_net(t->asoc->base.sk); 941 arg.paddr = &t->ipaddr; 942 arg.lport = htons(t->asoc->base.bind_addr.port); 943 944 rcu_read_lock(); 945 list = rhltable_lookup(&sctp_transport_hashtable, &arg, 946 sctp_hash_params); 947 948 rhl_for_each_entry_rcu(transport, tmp, list, node) 949 if (transport->asoc->ep == t->asoc->ep) { 950 rcu_read_unlock(); 951 return -EEXIST; 952 } 953 rcu_read_unlock(); 954 955 err = rhltable_insert_key(&sctp_transport_hashtable, &arg, 956 &t->node, sctp_hash_params); 957 if (err) 958 pr_err_once("insert transport fail, errno %d\n", err); 959 960 return err; 961 } 962 963 void sctp_unhash_transport(struct sctp_transport *t) 964 { 965 if (t->asoc->temp) 966 return; 967 968 rhltable_remove(&sctp_transport_hashtable, &t->node, 969 sctp_hash_params); 970 } 971 972 /* return a transport with holding it */ 973 struct sctp_transport *sctp_addrs_lookup_transport( 974 struct net *net, 975 const union sctp_addr *laddr, 976 const union sctp_addr *paddr) 977 { 978 struct rhlist_head *tmp, *list; 979 struct sctp_transport *t; 980 struct sctp_hash_cmp_arg arg = { 981 .paddr = paddr, 982 .net = net, 983 .lport = laddr->v4.sin_port, 984 }; 985 986 list = rhltable_lookup(&sctp_transport_hashtable, &arg, 987 sctp_hash_params); 988 989 rhl_for_each_entry_rcu(t, tmp, list, node) { 990 if (!sctp_transport_hold(t)) 991 continue; 992 993 if (sctp_bind_addr_match(&t->asoc->base.bind_addr, 994 laddr, sctp_sk(t->asoc->base.sk))) 995 return t; 996 sctp_transport_put(t); 997 } 998 999 return NULL; 1000 } 1001 1002 /* return a transport without holding it, as it's only used under sock lock */ 1003 struct sctp_transport *sctp_epaddr_lookup_transport( 1004 const struct sctp_endpoint *ep, 1005 const union sctp_addr *paddr) 1006 { 1007 struct net *net = sock_net(ep->base.sk); 1008 struct rhlist_head *tmp, *list; 1009 struct sctp_transport *t; 1010 struct sctp_hash_cmp_arg arg = { 1011 .paddr = paddr, 1012 .net = net, 1013 .lport = htons(ep->base.bind_addr.port), 1014 }; 1015 1016 list = rhltable_lookup(&sctp_transport_hashtable, &arg, 1017 sctp_hash_params); 1018 1019 rhl_for_each_entry_rcu(t, tmp, list, node) 1020 if (ep == t->asoc->ep) 1021 return t; 1022 1023 return NULL; 1024 } 1025 1026 /* Look up an association. */ 1027 static struct sctp_association *__sctp_lookup_association( 1028 struct net *net, 1029 const union sctp_addr *local, 1030 const union sctp_addr *peer, 1031 struct sctp_transport **pt) 1032 { 1033 struct sctp_transport *t; 1034 struct sctp_association *asoc = NULL; 1035 1036 t = sctp_addrs_lookup_transport(net, local, peer); 1037 if (!t) 1038 goto out; 1039 1040 asoc = t->asoc; 1041 *pt = t; 1042 1043 out: 1044 return asoc; 1045 } 1046 1047 /* Look up an association. protected by RCU read lock */ 1048 static 1049 struct sctp_association *sctp_lookup_association(struct net *net, 1050 const union sctp_addr *laddr, 1051 const union sctp_addr *paddr, 1052 struct sctp_transport **transportp) 1053 { 1054 struct sctp_association *asoc; 1055 1056 rcu_read_lock(); 1057 asoc = __sctp_lookup_association(net, laddr, paddr, transportp); 1058 rcu_read_unlock(); 1059 1060 return asoc; 1061 } 1062 1063 /* Is there an association matching the given local and peer addresses? */ 1064 bool sctp_has_association(struct net *net, 1065 const union sctp_addr *laddr, 1066 const union sctp_addr *paddr) 1067 { 1068 struct sctp_transport *transport; 1069 1070 if (sctp_lookup_association(net, laddr, paddr, &transport)) { 1071 sctp_transport_put(transport); 1072 return true; 1073 } 1074 1075 return false; 1076 } 1077 1078 /* 1079 * SCTP Implementors Guide, 2.18 Handling of address 1080 * parameters within the INIT or INIT-ACK. 1081 * 1082 * D) When searching for a matching TCB upon reception of an INIT 1083 * or INIT-ACK chunk the receiver SHOULD use not only the 1084 * source address of the packet (containing the INIT or 1085 * INIT-ACK) but the receiver SHOULD also use all valid 1086 * address parameters contained within the chunk. 1087 * 1088 * 2.18.3 Solution description 1089 * 1090 * This new text clearly specifies to an implementor the need 1091 * to look within the INIT or INIT-ACK. Any implementation that 1092 * does not do this, may not be able to establish associations 1093 * in certain circumstances. 1094 * 1095 */ 1096 static struct sctp_association *__sctp_rcv_init_lookup(struct net *net, 1097 struct sk_buff *skb, 1098 const union sctp_addr *laddr, struct sctp_transport **transportp) 1099 { 1100 struct sctp_association *asoc; 1101 union sctp_addr addr; 1102 union sctp_addr *paddr = &addr; 1103 struct sctphdr *sh = sctp_hdr(skb); 1104 union sctp_params params; 1105 struct sctp_init_chunk *init; 1106 struct sctp_af *af; 1107 1108 /* 1109 * This code will NOT touch anything inside the chunk--it is 1110 * strictly READ-ONLY. 1111 * 1112 * RFC 2960 3 SCTP packet Format 1113 * 1114 * Multiple chunks can be bundled into one SCTP packet up to 1115 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN 1116 * COMPLETE chunks. These chunks MUST NOT be bundled with any 1117 * other chunk in a packet. See Section 6.10 for more details 1118 * on chunk bundling. 1119 */ 1120 1121 /* Find the start of the TLVs and the end of the chunk. This is 1122 * the region we search for address parameters. 1123 */ 1124 init = (struct sctp_init_chunk *)skb->data; 1125 1126 /* Walk the parameters looking for embedded addresses. */ 1127 sctp_walk_params(params, init, init_hdr.params) { 1128 1129 /* Note: Ignoring hostname addresses. */ 1130 af = sctp_get_af_specific(param_type2af(params.p->type)); 1131 if (!af) 1132 continue; 1133 1134 af->from_addr_param(paddr, params.addr, sh->source, 0); 1135 1136 asoc = __sctp_lookup_association(net, laddr, paddr, transportp); 1137 if (asoc) 1138 return asoc; 1139 } 1140 1141 return NULL; 1142 } 1143 1144 /* ADD-IP, Section 5.2 1145 * When an endpoint receives an ASCONF Chunk from the remote peer 1146 * special procedures may be needed to identify the association the 1147 * ASCONF Chunk is associated with. To properly find the association 1148 * the following procedures SHOULD be followed: 1149 * 1150 * D2) If the association is not found, use the address found in the 1151 * Address Parameter TLV combined with the port number found in the 1152 * SCTP common header. If found proceed to rule D4. 1153 * 1154 * D2-ext) If more than one ASCONF Chunks are packed together, use the 1155 * address found in the ASCONF Address Parameter TLV of each of the 1156 * subsequent ASCONF Chunks. If found, proceed to rule D4. 1157 */ 1158 static struct sctp_association *__sctp_rcv_asconf_lookup( 1159 struct net *net, 1160 struct sctp_chunkhdr *ch, 1161 const union sctp_addr *laddr, 1162 __be16 peer_port, 1163 struct sctp_transport **transportp) 1164 { 1165 struct sctp_addip_chunk *asconf = (struct sctp_addip_chunk *)ch; 1166 struct sctp_af *af; 1167 union sctp_addr_param *param; 1168 union sctp_addr paddr; 1169 1170 /* Skip over the ADDIP header and find the Address parameter */ 1171 param = (union sctp_addr_param *)(asconf + 1); 1172 1173 af = sctp_get_af_specific(param_type2af(param->p.type)); 1174 if (unlikely(!af)) 1175 return NULL; 1176 1177 af->from_addr_param(&paddr, param, peer_port, 0); 1178 1179 return __sctp_lookup_association(net, laddr, &paddr, transportp); 1180 } 1181 1182 1183 /* SCTP-AUTH, Section 6.3: 1184 * If the receiver does not find a STCB for a packet containing an AUTH 1185 * chunk as the first chunk and not a COOKIE-ECHO chunk as the second 1186 * chunk, it MUST use the chunks after the AUTH chunk to look up an existing 1187 * association. 1188 * 1189 * This means that any chunks that can help us identify the association need 1190 * to be looked at to find this association. 1191 */ 1192 static struct sctp_association *__sctp_rcv_walk_lookup(struct net *net, 1193 struct sk_buff *skb, 1194 const union sctp_addr *laddr, 1195 struct sctp_transport **transportp) 1196 { 1197 struct sctp_association *asoc = NULL; 1198 struct sctp_chunkhdr *ch; 1199 int have_auth = 0; 1200 unsigned int chunk_num = 1; 1201 __u8 *ch_end; 1202 1203 /* Walk through the chunks looking for AUTH or ASCONF chunks 1204 * to help us find the association. 1205 */ 1206 ch = (struct sctp_chunkhdr *)skb->data; 1207 do { 1208 /* Break out if chunk length is less then minimal. */ 1209 if (ntohs(ch->length) < sizeof(*ch)) 1210 break; 1211 1212 ch_end = ((__u8 *)ch) + SCTP_PAD4(ntohs(ch->length)); 1213 if (ch_end > skb_tail_pointer(skb)) 1214 break; 1215 1216 switch (ch->type) { 1217 case SCTP_CID_AUTH: 1218 have_auth = chunk_num; 1219 break; 1220 1221 case SCTP_CID_COOKIE_ECHO: 1222 /* If a packet arrives containing an AUTH chunk as 1223 * a first chunk, a COOKIE-ECHO chunk as the second 1224 * chunk, and possibly more chunks after them, and 1225 * the receiver does not have an STCB for that 1226 * packet, then authentication is based on 1227 * the contents of the COOKIE- ECHO chunk. 1228 */ 1229 if (have_auth == 1 && chunk_num == 2) 1230 return NULL; 1231 break; 1232 1233 case SCTP_CID_ASCONF: 1234 if (have_auth || net->sctp.addip_noauth) 1235 asoc = __sctp_rcv_asconf_lookup( 1236 net, ch, laddr, 1237 sctp_hdr(skb)->source, 1238 transportp); 1239 default: 1240 break; 1241 } 1242 1243 if (asoc) 1244 break; 1245 1246 ch = (struct sctp_chunkhdr *)ch_end; 1247 chunk_num++; 1248 } while (ch_end < skb_tail_pointer(skb)); 1249 1250 return asoc; 1251 } 1252 1253 /* 1254 * There are circumstances when we need to look inside the SCTP packet 1255 * for information to help us find the association. Examples 1256 * include looking inside of INIT/INIT-ACK chunks or after the AUTH 1257 * chunks. 1258 */ 1259 static struct sctp_association *__sctp_rcv_lookup_harder(struct net *net, 1260 struct sk_buff *skb, 1261 const union sctp_addr *laddr, 1262 struct sctp_transport **transportp) 1263 { 1264 struct sctp_chunkhdr *ch; 1265 1266 /* We do not allow GSO frames here as we need to linearize and 1267 * then cannot guarantee frame boundaries. This shouldn't be an 1268 * issue as packets hitting this are mostly INIT or INIT-ACK and 1269 * those cannot be on GSO-style anyway. 1270 */ 1271 if (skb_is_gso(skb) && skb_is_gso_sctp(skb)) 1272 return NULL; 1273 1274 ch = (struct sctp_chunkhdr *)skb->data; 1275 1276 /* The code below will attempt to walk the chunk and extract 1277 * parameter information. Before we do that, we need to verify 1278 * that the chunk length doesn't cause overflow. Otherwise, we'll 1279 * walk off the end. 1280 */ 1281 if (SCTP_PAD4(ntohs(ch->length)) > skb->len) 1282 return NULL; 1283 1284 /* If this is INIT/INIT-ACK look inside the chunk too. */ 1285 if (ch->type == SCTP_CID_INIT || ch->type == SCTP_CID_INIT_ACK) 1286 return __sctp_rcv_init_lookup(net, skb, laddr, transportp); 1287 1288 return __sctp_rcv_walk_lookup(net, skb, laddr, transportp); 1289 } 1290 1291 /* Lookup an association for an inbound skb. */ 1292 static struct sctp_association *__sctp_rcv_lookup(struct net *net, 1293 struct sk_buff *skb, 1294 const union sctp_addr *paddr, 1295 const union sctp_addr *laddr, 1296 struct sctp_transport **transportp) 1297 { 1298 struct sctp_association *asoc; 1299 1300 asoc = __sctp_lookup_association(net, laddr, paddr, transportp); 1301 if (asoc) 1302 goto out; 1303 1304 /* Further lookup for INIT/INIT-ACK packets. 1305 * SCTP Implementors Guide, 2.18 Handling of address 1306 * parameters within the INIT or INIT-ACK. 1307 */ 1308 asoc = __sctp_rcv_lookup_harder(net, skb, laddr, transportp); 1309 if (asoc) 1310 goto out; 1311 1312 if (paddr->sa.sa_family == AF_INET) 1313 pr_debug("sctp: asoc not found for src:%pI4:%d dst:%pI4:%d\n", 1314 &laddr->v4.sin_addr, ntohs(laddr->v4.sin_port), 1315 &paddr->v4.sin_addr, ntohs(paddr->v4.sin_port)); 1316 else 1317 pr_debug("sctp: asoc not found for src:%pI6:%d dst:%pI6:%d\n", 1318 &laddr->v6.sin6_addr, ntohs(laddr->v6.sin6_port), 1319 &paddr->v6.sin6_addr, ntohs(paddr->v6.sin6_port)); 1320 1321 out: 1322 return asoc; 1323 } 1324