1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* SCTP kernel implementation 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 International Business Machines, Corp. 6 * Copyright (c) 2001 Intel Corp. 7 * Copyright (c) 2001 Nokia, Inc. 8 * Copyright (c) 2001 La Monte H.P. Yarroll 9 * 10 * This file is part of the SCTP kernel implementation 11 * 12 * These functions handle all input from the IP layer into SCTP. 13 * 14 * Please send any bug reports or fixes you make to the 15 * email address(es): 16 * lksctp developers <linux-sctp@vger.kernel.org> 17 * 18 * Written or modified by: 19 * La Monte H.P. Yarroll <piggy@acm.org> 20 * Karl Knutson <karl@athena.chicago.il.us> 21 * Xingang Guo <xingang.guo@intel.com> 22 * Jon Grimm <jgrimm@us.ibm.com> 23 * Hui Huang <hui.huang@nokia.com> 24 * Daisy Chang <daisyc@us.ibm.com> 25 * Sridhar Samudrala <sri@us.ibm.com> 26 * Ardelle Fan <ardelle.fan@intel.com> 27 */ 28 29 #include <linux/types.h> 30 #include <linux/list.h> /* For struct list_head */ 31 #include <linux/socket.h> 32 #include <linux/ip.h> 33 #include <linux/time.h> /* For struct timeval */ 34 #include <linux/slab.h> 35 #include <net/ip.h> 36 #include <net/icmp.h> 37 #include <net/snmp.h> 38 #include <net/sock.h> 39 #include <net/xfrm.h> 40 #include <net/sctp/sctp.h> 41 #include <net/sctp/sm.h> 42 #include <net/sctp/checksum.h> 43 #include <net/net_namespace.h> 44 #include <linux/rhashtable.h> 45 #include <net/sock_reuseport.h> 46 47 /* Forward declarations for internal helpers. */ 48 static int sctp_rcv_ootb(struct sk_buff *); 49 static struct sctp_association *__sctp_rcv_lookup(struct net *net, 50 struct sk_buff *skb, 51 const union sctp_addr *paddr, 52 const union sctp_addr *laddr, 53 struct sctp_transport **transportp); 54 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint( 55 struct net *net, struct sk_buff *skb, 56 const union sctp_addr *laddr, 57 const union sctp_addr *daddr); 58 static struct sctp_association *__sctp_lookup_association( 59 struct net *net, 60 const union sctp_addr *local, 61 const union sctp_addr *peer, 62 struct sctp_transport **pt); 63 64 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb); 65 66 67 /* Calculate the SCTP checksum of an SCTP packet. */ 68 static inline int sctp_rcv_checksum(struct net *net, struct sk_buff *skb) 69 { 70 struct sctphdr *sh = sctp_hdr(skb); 71 __le32 cmp = sh->checksum; 72 __le32 val = sctp_compute_cksum(skb, 0); 73 74 if (val != cmp) { 75 /* CRC failure, dump it. */ 76 __SCTP_INC_STATS(net, SCTP_MIB_CHECKSUMERRORS); 77 return -1; 78 } 79 return 0; 80 } 81 82 /* 83 * This is the routine which IP calls when receiving an SCTP packet. 84 */ 85 int sctp_rcv(struct sk_buff *skb) 86 { 87 struct sock *sk; 88 struct sctp_association *asoc; 89 struct sctp_endpoint *ep = NULL; 90 struct sctp_ep_common *rcvr; 91 struct sctp_transport *transport = NULL; 92 struct sctp_chunk *chunk; 93 union sctp_addr src; 94 union sctp_addr dest; 95 int family; 96 struct sctp_af *af; 97 struct net *net = dev_net(skb->dev); 98 bool is_gso = skb_is_gso(skb) && skb_is_gso_sctp(skb); 99 100 if (skb->pkt_type != PACKET_HOST) 101 goto discard_it; 102 103 __SCTP_INC_STATS(net, SCTP_MIB_INSCTPPACKS); 104 105 /* If packet is too small to contain a single chunk, let's not 106 * waste time on it anymore. 107 */ 108 if (skb->len < sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr) + 109 skb_transport_offset(skb)) 110 goto discard_it; 111 112 /* If the packet is fragmented and we need to do crc checking, 113 * it's better to just linearize it otherwise crc computing 114 * takes longer. 115 */ 116 if ((!is_gso && skb_linearize(skb)) || 117 !pskb_may_pull(skb, sizeof(struct sctphdr))) 118 goto discard_it; 119 120 /* Pull up the IP header. */ 121 __skb_pull(skb, skb_transport_offset(skb)); 122 123 skb->csum_valid = 0; /* Previous value not applicable */ 124 if (skb_csum_unnecessary(skb)) 125 __skb_decr_checksum_unnecessary(skb); 126 else if (!sctp_checksum_disable && 127 !is_gso && 128 sctp_rcv_checksum(net, skb) < 0) 129 goto discard_it; 130 skb->csum_valid = 1; 131 132 __skb_pull(skb, sizeof(struct sctphdr)); 133 134 family = ipver2af(ip_hdr(skb)->version); 135 af = sctp_get_af_specific(family); 136 if (unlikely(!af)) 137 goto discard_it; 138 SCTP_INPUT_CB(skb)->af = af; 139 140 /* Initialize local addresses for lookups. */ 141 af->from_skb(&src, skb, 1); 142 af->from_skb(&dest, skb, 0); 143 144 /* If the packet is to or from a non-unicast address, 145 * silently discard the packet. 146 * 147 * This is not clearly defined in the RFC except in section 148 * 8.4 - OOTB handling. However, based on the book "Stream Control 149 * Transmission Protocol" 2.1, "It is important to note that the 150 * IP address of an SCTP transport address must be a routable 151 * unicast address. In other words, IP multicast addresses and 152 * IP broadcast addresses cannot be used in an SCTP transport 153 * address." 154 */ 155 if (!af->addr_valid(&src, NULL, skb) || 156 !af->addr_valid(&dest, NULL, skb)) 157 goto discard_it; 158 159 asoc = __sctp_rcv_lookup(net, skb, &src, &dest, &transport); 160 161 if (!asoc) 162 ep = __sctp_rcv_lookup_endpoint(net, skb, &dest, &src); 163 164 /* Retrieve the common input handling substructure. */ 165 rcvr = asoc ? &asoc->base : &ep->base; 166 sk = rcvr->sk; 167 168 /* 169 * If a frame arrives on an interface and the receiving socket is 170 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB 171 */ 172 if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb))) { 173 if (transport) { 174 sctp_transport_put(transport); 175 asoc = NULL; 176 transport = NULL; 177 } else { 178 sctp_endpoint_put(ep); 179 ep = NULL; 180 } 181 sk = net->sctp.ctl_sock; 182 ep = sctp_sk(sk)->ep; 183 sctp_endpoint_hold(ep); 184 rcvr = &ep->base; 185 } 186 187 /* 188 * RFC 2960, 8.4 - Handle "Out of the blue" Packets. 189 * An SCTP packet is called an "out of the blue" (OOTB) 190 * packet if it is correctly formed, i.e., passed the 191 * receiver's checksum check, but the receiver is not 192 * able to identify the association to which this 193 * packet belongs. 194 */ 195 if (!asoc) { 196 if (sctp_rcv_ootb(skb)) { 197 __SCTP_INC_STATS(net, SCTP_MIB_OUTOFBLUES); 198 goto discard_release; 199 } 200 } 201 202 if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family)) 203 goto discard_release; 204 nf_reset_ct(skb); 205 206 if (sk_filter(sk, skb)) 207 goto discard_release; 208 209 /* Create an SCTP packet structure. */ 210 chunk = sctp_chunkify(skb, asoc, sk, GFP_ATOMIC); 211 if (!chunk) 212 goto discard_release; 213 SCTP_INPUT_CB(skb)->chunk = chunk; 214 215 /* Remember what endpoint is to handle this packet. */ 216 chunk->rcvr = rcvr; 217 218 /* Remember the SCTP header. */ 219 chunk->sctp_hdr = sctp_hdr(skb); 220 221 /* Set the source and destination addresses of the incoming chunk. */ 222 sctp_init_addrs(chunk, &src, &dest); 223 224 /* Remember where we came from. */ 225 chunk->transport = transport; 226 227 /* Acquire access to the sock lock. Note: We are safe from other 228 * bottom halves on this lock, but a user may be in the lock too, 229 * so check if it is busy. 230 */ 231 bh_lock_sock(sk); 232 233 if (sk != rcvr->sk) { 234 /* Our cached sk is different from the rcvr->sk. This is 235 * because migrate()/accept() may have moved the association 236 * to a new socket and released all the sockets. So now we 237 * are holding a lock on the old socket while the user may 238 * be doing something with the new socket. Switch our veiw 239 * of the current sk. 240 */ 241 bh_unlock_sock(sk); 242 sk = rcvr->sk; 243 bh_lock_sock(sk); 244 } 245 246 if (sock_owned_by_user(sk) || !sctp_newsk_ready(sk)) { 247 if (sctp_add_backlog(sk, skb)) { 248 bh_unlock_sock(sk); 249 sctp_chunk_free(chunk); 250 skb = NULL; /* sctp_chunk_free already freed the skb */ 251 goto discard_release; 252 } 253 __SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_BACKLOG); 254 } else { 255 __SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_SOFTIRQ); 256 sctp_inq_push(&chunk->rcvr->inqueue, chunk); 257 } 258 259 bh_unlock_sock(sk); 260 261 /* Release the asoc/ep ref we took in the lookup calls. */ 262 if (transport) 263 sctp_transport_put(transport); 264 else 265 sctp_endpoint_put(ep); 266 267 return 0; 268 269 discard_it: 270 __SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_DISCARDS); 271 kfree_skb(skb); 272 return 0; 273 274 discard_release: 275 /* Release the asoc/ep ref we took in the lookup calls. */ 276 if (transport) 277 sctp_transport_put(transport); 278 else 279 sctp_endpoint_put(ep); 280 281 goto discard_it; 282 } 283 284 /* Process the backlog queue of the socket. Every skb on 285 * the backlog holds a ref on an association or endpoint. 286 * We hold this ref throughout the state machine to make 287 * sure that the structure we need is still around. 288 */ 289 int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb) 290 { 291 struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk; 292 struct sctp_inq *inqueue = &chunk->rcvr->inqueue; 293 struct sctp_transport *t = chunk->transport; 294 struct sctp_ep_common *rcvr = NULL; 295 int backloged = 0; 296 297 rcvr = chunk->rcvr; 298 299 /* If the rcvr is dead then the association or endpoint 300 * has been deleted and we can safely drop the chunk 301 * and refs that we are holding. 302 */ 303 if (rcvr->dead) { 304 sctp_chunk_free(chunk); 305 goto done; 306 } 307 308 if (unlikely(rcvr->sk != sk)) { 309 /* In this case, the association moved from one socket to 310 * another. We are currently sitting on the backlog of the 311 * old socket, so we need to move. 312 * However, since we are here in the process context we 313 * need to take make sure that the user doesn't own 314 * the new socket when we process the packet. 315 * If the new socket is user-owned, queue the chunk to the 316 * backlog of the new socket without dropping any refs. 317 * Otherwise, we can safely push the chunk on the inqueue. 318 */ 319 320 sk = rcvr->sk; 321 local_bh_disable(); 322 bh_lock_sock(sk); 323 324 if (sock_owned_by_user(sk) || !sctp_newsk_ready(sk)) { 325 if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) 326 sctp_chunk_free(chunk); 327 else 328 backloged = 1; 329 } else 330 sctp_inq_push(inqueue, chunk); 331 332 bh_unlock_sock(sk); 333 local_bh_enable(); 334 335 /* If the chunk was backloged again, don't drop refs */ 336 if (backloged) 337 return 0; 338 } else { 339 if (!sctp_newsk_ready(sk)) { 340 if (!sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) 341 return 0; 342 sctp_chunk_free(chunk); 343 } else { 344 sctp_inq_push(inqueue, chunk); 345 } 346 } 347 348 done: 349 /* Release the refs we took in sctp_add_backlog */ 350 if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type) 351 sctp_transport_put(t); 352 else if (SCTP_EP_TYPE_SOCKET == rcvr->type) 353 sctp_endpoint_put(sctp_ep(rcvr)); 354 else 355 BUG(); 356 357 return 0; 358 } 359 360 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb) 361 { 362 struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk; 363 struct sctp_transport *t = chunk->transport; 364 struct sctp_ep_common *rcvr = chunk->rcvr; 365 int ret; 366 367 ret = sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf)); 368 if (!ret) { 369 /* Hold the assoc/ep while hanging on the backlog queue. 370 * This way, we know structures we need will not disappear 371 * from us 372 */ 373 if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type) 374 sctp_transport_hold(t); 375 else if (SCTP_EP_TYPE_SOCKET == rcvr->type) 376 sctp_endpoint_hold(sctp_ep(rcvr)); 377 else 378 BUG(); 379 } 380 return ret; 381 382 } 383 384 /* Handle icmp frag needed error. */ 385 void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc, 386 struct sctp_transport *t, __u32 pmtu) 387 { 388 if (!t || 389 (t->pathmtu <= pmtu && 390 t->pl.probe_size + sctp_transport_pl_hlen(t) <= pmtu)) 391 return; 392 393 if (sock_owned_by_user(sk)) { 394 atomic_set(&t->mtu_info, pmtu); 395 asoc->pmtu_pending = 1; 396 t->pmtu_pending = 1; 397 return; 398 } 399 400 if (!(t->param_flags & SPP_PMTUD_ENABLE)) 401 /* We can't allow retransmitting in such case, as the 402 * retransmission would be sized just as before, and thus we 403 * would get another icmp, and retransmit again. 404 */ 405 return; 406 407 /* Update transports view of the MTU. Return if no update was needed. 408 * If an update wasn't needed/possible, it also doesn't make sense to 409 * try to retransmit now. 410 */ 411 if (!sctp_transport_update_pmtu(t, pmtu)) 412 return; 413 414 /* Update association pmtu. */ 415 sctp_assoc_sync_pmtu(asoc); 416 417 /* Retransmit with the new pmtu setting. */ 418 sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD); 419 } 420 421 void sctp_icmp_redirect(struct sock *sk, struct sctp_transport *t, 422 struct sk_buff *skb) 423 { 424 struct dst_entry *dst; 425 426 if (sock_owned_by_user(sk) || !t) 427 return; 428 dst = sctp_transport_dst_check(t); 429 if (dst) 430 dst->ops->redirect(dst, sk, skb); 431 } 432 433 /* 434 * SCTP Implementer's Guide, 2.37 ICMP handling procedures 435 * 436 * ICMP8) If the ICMP code is a "Unrecognized next header type encountered" 437 * or a "Protocol Unreachable" treat this message as an abort 438 * with the T bit set. 439 * 440 * This function sends an event to the state machine, which will abort the 441 * association. 442 * 443 */ 444 void sctp_icmp_proto_unreachable(struct sock *sk, 445 struct sctp_association *asoc, 446 struct sctp_transport *t) 447 { 448 if (sock_owned_by_user(sk)) { 449 if (timer_pending(&t->proto_unreach_timer)) 450 return; 451 else { 452 if (!mod_timer(&t->proto_unreach_timer, 453 jiffies + (HZ/20))) 454 sctp_transport_hold(t); 455 } 456 } else { 457 struct net *net = sock_net(sk); 458 459 pr_debug("%s: unrecognized next header type " 460 "encountered!\n", __func__); 461 462 if (del_timer(&t->proto_unreach_timer)) 463 sctp_transport_put(t); 464 465 sctp_do_sm(net, SCTP_EVENT_T_OTHER, 466 SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH), 467 asoc->state, asoc->ep, asoc, t, 468 GFP_ATOMIC); 469 } 470 } 471 472 /* Common lookup code for icmp/icmpv6 error handler. */ 473 struct sock *sctp_err_lookup(struct net *net, int family, struct sk_buff *skb, 474 struct sctphdr *sctphdr, 475 struct sctp_association **app, 476 struct sctp_transport **tpp) 477 { 478 struct sctp_init_chunk *chunkhdr, _chunkhdr; 479 union sctp_addr saddr; 480 union sctp_addr daddr; 481 struct sctp_af *af; 482 struct sock *sk = NULL; 483 struct sctp_association *asoc; 484 struct sctp_transport *transport = NULL; 485 __u32 vtag = ntohl(sctphdr->vtag); 486 487 *app = NULL; *tpp = NULL; 488 489 af = sctp_get_af_specific(family); 490 if (unlikely(!af)) { 491 return NULL; 492 } 493 494 /* Initialize local addresses for lookups. */ 495 af->from_skb(&saddr, skb, 1); 496 af->from_skb(&daddr, skb, 0); 497 498 /* Look for an association that matches the incoming ICMP error 499 * packet. 500 */ 501 asoc = __sctp_lookup_association(net, &saddr, &daddr, &transport); 502 if (!asoc) 503 return NULL; 504 505 sk = asoc->base.sk; 506 507 /* RFC 4960, Appendix C. ICMP Handling 508 * 509 * ICMP6) An implementation MUST validate that the Verification Tag 510 * contained in the ICMP message matches the Verification Tag of 511 * the peer. If the Verification Tag is not 0 and does NOT 512 * match, discard the ICMP message. If it is 0 and the ICMP 513 * message contains enough bytes to verify that the chunk type is 514 * an INIT chunk and that the Initiate Tag matches the tag of the 515 * peer, continue with ICMP7. If the ICMP message is too short 516 * or the chunk type or the Initiate Tag does not match, silently 517 * discard the packet. 518 */ 519 if (vtag == 0) { 520 /* chunk header + first 4 octects of init header */ 521 chunkhdr = skb_header_pointer(skb, skb_transport_offset(skb) + 522 sizeof(struct sctphdr), 523 sizeof(struct sctp_chunkhdr) + 524 sizeof(__be32), &_chunkhdr); 525 if (!chunkhdr || 526 chunkhdr->chunk_hdr.type != SCTP_CID_INIT || 527 ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag) 528 goto out; 529 530 } else if (vtag != asoc->c.peer_vtag) { 531 goto out; 532 } 533 534 bh_lock_sock(sk); 535 536 /* If too many ICMPs get dropped on busy 537 * servers this needs to be solved differently. 538 */ 539 if (sock_owned_by_user(sk)) 540 __NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS); 541 542 *app = asoc; 543 *tpp = transport; 544 return sk; 545 546 out: 547 sctp_transport_put(transport); 548 return NULL; 549 } 550 551 /* Common cleanup code for icmp/icmpv6 error handler. */ 552 void sctp_err_finish(struct sock *sk, struct sctp_transport *t) 553 __releases(&((__sk)->sk_lock.slock)) 554 { 555 bh_unlock_sock(sk); 556 sctp_transport_put(t); 557 } 558 559 static void sctp_v4_err_handle(struct sctp_transport *t, struct sk_buff *skb, 560 __u8 type, __u8 code, __u32 info) 561 { 562 struct sctp_association *asoc = t->asoc; 563 struct sock *sk = asoc->base.sk; 564 int err = 0; 565 566 switch (type) { 567 case ICMP_PARAMETERPROB: 568 err = EPROTO; 569 break; 570 case ICMP_DEST_UNREACH: 571 if (code > NR_ICMP_UNREACH) 572 return; 573 if (code == ICMP_FRAG_NEEDED) { 574 sctp_icmp_frag_needed(sk, asoc, t, SCTP_TRUNC4(info)); 575 return; 576 } 577 if (code == ICMP_PROT_UNREACH) { 578 sctp_icmp_proto_unreachable(sk, asoc, t); 579 return; 580 } 581 err = icmp_err_convert[code].errno; 582 break; 583 case ICMP_TIME_EXCEEDED: 584 if (code == ICMP_EXC_FRAGTIME) 585 return; 586 587 err = EHOSTUNREACH; 588 break; 589 case ICMP_REDIRECT: 590 sctp_icmp_redirect(sk, t, skb); 591 return; 592 default: 593 return; 594 } 595 if (!sock_owned_by_user(sk) && inet_sk(sk)->recverr) { 596 sk->sk_err = err; 597 sk_error_report(sk); 598 } else { /* Only an error on timeout */ 599 sk->sk_err_soft = err; 600 } 601 } 602 603 /* 604 * This routine is called by the ICMP module when it gets some 605 * sort of error condition. If err < 0 then the socket should 606 * be closed and the error returned to the user. If err > 0 607 * it's just the icmp type << 8 | icmp code. After adjustment 608 * header points to the first 8 bytes of the sctp header. We need 609 * to find the appropriate port. 610 * 611 * The locking strategy used here is very "optimistic". When 612 * someone else accesses the socket the ICMP is just dropped 613 * and for some paths there is no check at all. 614 * A more general error queue to queue errors for later handling 615 * is probably better. 616 * 617 */ 618 int sctp_v4_err(struct sk_buff *skb, __u32 info) 619 { 620 const struct iphdr *iph = (const struct iphdr *)skb->data; 621 const int type = icmp_hdr(skb)->type; 622 const int code = icmp_hdr(skb)->code; 623 struct net *net = dev_net(skb->dev); 624 struct sctp_transport *transport; 625 struct sctp_association *asoc; 626 __u16 saveip, savesctp; 627 struct sock *sk; 628 629 /* Fix up skb to look at the embedded net header. */ 630 saveip = skb->network_header; 631 savesctp = skb->transport_header; 632 skb_reset_network_header(skb); 633 skb_set_transport_header(skb, iph->ihl * 4); 634 sk = sctp_err_lookup(net, AF_INET, skb, sctp_hdr(skb), &asoc, &transport); 635 /* Put back, the original values. */ 636 skb->network_header = saveip; 637 skb->transport_header = savesctp; 638 if (!sk) { 639 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 640 return -ENOENT; 641 } 642 643 sctp_v4_err_handle(transport, skb, type, code, info); 644 sctp_err_finish(sk, transport); 645 646 return 0; 647 } 648 649 int sctp_udp_v4_err(struct sock *sk, struct sk_buff *skb) 650 { 651 struct net *net = dev_net(skb->dev); 652 struct sctp_association *asoc; 653 struct sctp_transport *t; 654 struct icmphdr *hdr; 655 __u32 info = 0; 656 657 skb->transport_header += sizeof(struct udphdr); 658 sk = sctp_err_lookup(net, AF_INET, skb, sctp_hdr(skb), &asoc, &t); 659 if (!sk) { 660 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 661 return -ENOENT; 662 } 663 664 skb->transport_header -= sizeof(struct udphdr); 665 hdr = (struct icmphdr *)(skb_network_header(skb) - sizeof(struct icmphdr)); 666 if (hdr->type == ICMP_REDIRECT) { 667 /* can't be handled without outer iphdr known, leave it to udp_err */ 668 sctp_err_finish(sk, t); 669 return 0; 670 } 671 if (hdr->type == ICMP_DEST_UNREACH && hdr->code == ICMP_FRAG_NEEDED) 672 info = ntohs(hdr->un.frag.mtu); 673 sctp_v4_err_handle(t, skb, hdr->type, hdr->code, info); 674 675 sctp_err_finish(sk, t); 676 return 1; 677 } 678 679 /* 680 * RFC 2960, 8.4 - Handle "Out of the blue" Packets. 681 * 682 * This function scans all the chunks in the OOTB packet to determine if 683 * the packet should be discarded right away. If a response might be needed 684 * for this packet, or, if further processing is possible, the packet will 685 * be queued to a proper inqueue for the next phase of handling. 686 * 687 * Output: 688 * Return 0 - If further processing is needed. 689 * Return 1 - If the packet can be discarded right away. 690 */ 691 static int sctp_rcv_ootb(struct sk_buff *skb) 692 { 693 struct sctp_chunkhdr *ch, _ch; 694 int ch_end, offset = 0; 695 696 /* Scan through all the chunks in the packet. */ 697 do { 698 /* Make sure we have at least the header there */ 699 if (offset + sizeof(_ch) > skb->len) 700 break; 701 702 ch = skb_header_pointer(skb, offset, sizeof(*ch), &_ch); 703 704 /* Break out if chunk length is less then minimal. */ 705 if (!ch || ntohs(ch->length) < sizeof(_ch)) 706 break; 707 708 ch_end = offset + SCTP_PAD4(ntohs(ch->length)); 709 if (ch_end > skb->len) 710 break; 711 712 /* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the 713 * receiver MUST silently discard the OOTB packet and take no 714 * further action. 715 */ 716 if (SCTP_CID_ABORT == ch->type) 717 goto discard; 718 719 /* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE 720 * chunk, the receiver should silently discard the packet 721 * and take no further action. 722 */ 723 if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type) 724 goto discard; 725 726 /* RFC 4460, 2.11.2 727 * This will discard packets with INIT chunk bundled as 728 * subsequent chunks in the packet. When INIT is first, 729 * the normal INIT processing will discard the chunk. 730 */ 731 if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data) 732 goto discard; 733 734 offset = ch_end; 735 } while (ch_end < skb->len); 736 737 return 0; 738 739 discard: 740 return 1; 741 } 742 743 /* Insert endpoint into the hash table. */ 744 static int __sctp_hash_endpoint(struct sctp_endpoint *ep) 745 { 746 struct sock *sk = ep->base.sk; 747 struct net *net = sock_net(sk); 748 struct sctp_hashbucket *head; 749 struct sctp_ep_common *epb; 750 751 epb = &ep->base; 752 epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port); 753 head = &sctp_ep_hashtable[epb->hashent]; 754 755 if (sk->sk_reuseport) { 756 bool any = sctp_is_ep_boundall(sk); 757 struct sctp_ep_common *epb2; 758 struct list_head *list; 759 int cnt = 0, err = 1; 760 761 list_for_each(list, &ep->base.bind_addr.address_list) 762 cnt++; 763 764 sctp_for_each_hentry(epb2, &head->chain) { 765 struct sock *sk2 = epb2->sk; 766 767 if (!net_eq(sock_net(sk2), net) || sk2 == sk || 768 !uid_eq(sock_i_uid(sk2), sock_i_uid(sk)) || 769 !sk2->sk_reuseport) 770 continue; 771 772 err = sctp_bind_addrs_check(sctp_sk(sk2), 773 sctp_sk(sk), cnt); 774 if (!err) { 775 err = reuseport_add_sock(sk, sk2, any); 776 if (err) 777 return err; 778 break; 779 } else if (err < 0) { 780 return err; 781 } 782 } 783 784 if (err) { 785 err = reuseport_alloc(sk, any); 786 if (err) 787 return err; 788 } 789 } 790 791 write_lock(&head->lock); 792 hlist_add_head(&epb->node, &head->chain); 793 write_unlock(&head->lock); 794 return 0; 795 } 796 797 /* Add an endpoint to the hash. Local BH-safe. */ 798 int sctp_hash_endpoint(struct sctp_endpoint *ep) 799 { 800 int err; 801 802 local_bh_disable(); 803 err = __sctp_hash_endpoint(ep); 804 local_bh_enable(); 805 806 return err; 807 } 808 809 /* Remove endpoint from the hash table. */ 810 static void __sctp_unhash_endpoint(struct sctp_endpoint *ep) 811 { 812 struct sock *sk = ep->base.sk; 813 struct sctp_hashbucket *head; 814 struct sctp_ep_common *epb; 815 816 epb = &ep->base; 817 818 epb->hashent = sctp_ep_hashfn(sock_net(sk), epb->bind_addr.port); 819 820 head = &sctp_ep_hashtable[epb->hashent]; 821 822 if (rcu_access_pointer(sk->sk_reuseport_cb)) 823 reuseport_detach_sock(sk); 824 825 write_lock(&head->lock); 826 hlist_del_init(&epb->node); 827 write_unlock(&head->lock); 828 } 829 830 /* Remove endpoint from the hash. Local BH-safe. */ 831 void sctp_unhash_endpoint(struct sctp_endpoint *ep) 832 { 833 local_bh_disable(); 834 __sctp_unhash_endpoint(ep); 835 local_bh_enable(); 836 } 837 838 static inline __u32 sctp_hashfn(const struct net *net, __be16 lport, 839 const union sctp_addr *paddr, __u32 seed) 840 { 841 __u32 addr; 842 843 if (paddr->sa.sa_family == AF_INET6) 844 addr = jhash(&paddr->v6.sin6_addr, 16, seed); 845 else 846 addr = (__force __u32)paddr->v4.sin_addr.s_addr; 847 848 return jhash_3words(addr, ((__force __u32)paddr->v4.sin_port) << 16 | 849 (__force __u32)lport, net_hash_mix(net), seed); 850 } 851 852 /* Look up an endpoint. */ 853 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint( 854 struct net *net, struct sk_buff *skb, 855 const union sctp_addr *laddr, 856 const union sctp_addr *paddr) 857 { 858 struct sctp_hashbucket *head; 859 struct sctp_ep_common *epb; 860 struct sctp_endpoint *ep; 861 struct sock *sk; 862 __be16 lport; 863 int hash; 864 865 lport = laddr->v4.sin_port; 866 hash = sctp_ep_hashfn(net, ntohs(lport)); 867 head = &sctp_ep_hashtable[hash]; 868 read_lock(&head->lock); 869 sctp_for_each_hentry(epb, &head->chain) { 870 ep = sctp_ep(epb); 871 if (sctp_endpoint_is_match(ep, net, laddr)) 872 goto hit; 873 } 874 875 ep = sctp_sk(net->sctp.ctl_sock)->ep; 876 877 hit: 878 sk = ep->base.sk; 879 if (sk->sk_reuseport) { 880 __u32 phash = sctp_hashfn(net, lport, paddr, 0); 881 882 sk = reuseport_select_sock(sk, phash, skb, 883 sizeof(struct sctphdr)); 884 if (sk) 885 ep = sctp_sk(sk)->ep; 886 } 887 sctp_endpoint_hold(ep); 888 read_unlock(&head->lock); 889 return ep; 890 } 891 892 /* rhashtable for transport */ 893 struct sctp_hash_cmp_arg { 894 const union sctp_addr *paddr; 895 const struct net *net; 896 __be16 lport; 897 }; 898 899 static inline int sctp_hash_cmp(struct rhashtable_compare_arg *arg, 900 const void *ptr) 901 { 902 struct sctp_transport *t = (struct sctp_transport *)ptr; 903 const struct sctp_hash_cmp_arg *x = arg->key; 904 int err = 1; 905 906 if (!sctp_cmp_addr_exact(&t->ipaddr, x->paddr)) 907 return err; 908 if (!sctp_transport_hold(t)) 909 return err; 910 911 if (!net_eq(t->asoc->base.net, x->net)) 912 goto out; 913 if (x->lport != htons(t->asoc->base.bind_addr.port)) 914 goto out; 915 916 err = 0; 917 out: 918 sctp_transport_put(t); 919 return err; 920 } 921 922 static inline __u32 sctp_hash_obj(const void *data, u32 len, u32 seed) 923 { 924 const struct sctp_transport *t = data; 925 926 return sctp_hashfn(t->asoc->base.net, 927 htons(t->asoc->base.bind_addr.port), 928 &t->ipaddr, seed); 929 } 930 931 static inline __u32 sctp_hash_key(const void *data, u32 len, u32 seed) 932 { 933 const struct sctp_hash_cmp_arg *x = data; 934 935 return sctp_hashfn(x->net, x->lport, x->paddr, seed); 936 } 937 938 static const struct rhashtable_params sctp_hash_params = { 939 .head_offset = offsetof(struct sctp_transport, node), 940 .hashfn = sctp_hash_key, 941 .obj_hashfn = sctp_hash_obj, 942 .obj_cmpfn = sctp_hash_cmp, 943 .automatic_shrinking = true, 944 }; 945 946 int sctp_transport_hashtable_init(void) 947 { 948 return rhltable_init(&sctp_transport_hashtable, &sctp_hash_params); 949 } 950 951 void sctp_transport_hashtable_destroy(void) 952 { 953 rhltable_destroy(&sctp_transport_hashtable); 954 } 955 956 int sctp_hash_transport(struct sctp_transport *t) 957 { 958 struct sctp_transport *transport; 959 struct rhlist_head *tmp, *list; 960 struct sctp_hash_cmp_arg arg; 961 int err; 962 963 if (t->asoc->temp) 964 return 0; 965 966 arg.net = t->asoc->base.net; 967 arg.paddr = &t->ipaddr; 968 arg.lport = htons(t->asoc->base.bind_addr.port); 969 970 rcu_read_lock(); 971 list = rhltable_lookup(&sctp_transport_hashtable, &arg, 972 sctp_hash_params); 973 974 rhl_for_each_entry_rcu(transport, tmp, list, node) 975 if (transport->asoc->ep == t->asoc->ep) { 976 rcu_read_unlock(); 977 return -EEXIST; 978 } 979 rcu_read_unlock(); 980 981 err = rhltable_insert_key(&sctp_transport_hashtable, &arg, 982 &t->node, sctp_hash_params); 983 if (err) 984 pr_err_once("insert transport fail, errno %d\n", err); 985 986 return err; 987 } 988 989 void sctp_unhash_transport(struct sctp_transport *t) 990 { 991 if (t->asoc->temp) 992 return; 993 994 rhltable_remove(&sctp_transport_hashtable, &t->node, 995 sctp_hash_params); 996 } 997 998 /* return a transport with holding it */ 999 struct sctp_transport *sctp_addrs_lookup_transport( 1000 struct net *net, 1001 const union sctp_addr *laddr, 1002 const union sctp_addr *paddr) 1003 { 1004 struct rhlist_head *tmp, *list; 1005 struct sctp_transport *t; 1006 struct sctp_hash_cmp_arg arg = { 1007 .paddr = paddr, 1008 .net = net, 1009 .lport = laddr->v4.sin_port, 1010 }; 1011 1012 list = rhltable_lookup(&sctp_transport_hashtable, &arg, 1013 sctp_hash_params); 1014 1015 rhl_for_each_entry_rcu(t, tmp, list, node) { 1016 if (!sctp_transport_hold(t)) 1017 continue; 1018 1019 if (sctp_bind_addr_match(&t->asoc->base.bind_addr, 1020 laddr, sctp_sk(t->asoc->base.sk))) 1021 return t; 1022 sctp_transport_put(t); 1023 } 1024 1025 return NULL; 1026 } 1027 1028 /* return a transport without holding it, as it's only used under sock lock */ 1029 struct sctp_transport *sctp_epaddr_lookup_transport( 1030 const struct sctp_endpoint *ep, 1031 const union sctp_addr *paddr) 1032 { 1033 struct rhlist_head *tmp, *list; 1034 struct sctp_transport *t; 1035 struct sctp_hash_cmp_arg arg = { 1036 .paddr = paddr, 1037 .net = ep->base.net, 1038 .lport = htons(ep->base.bind_addr.port), 1039 }; 1040 1041 list = rhltable_lookup(&sctp_transport_hashtable, &arg, 1042 sctp_hash_params); 1043 1044 rhl_for_each_entry_rcu(t, tmp, list, node) 1045 if (ep == t->asoc->ep) 1046 return t; 1047 1048 return NULL; 1049 } 1050 1051 /* Look up an association. */ 1052 static struct sctp_association *__sctp_lookup_association( 1053 struct net *net, 1054 const union sctp_addr *local, 1055 const union sctp_addr *peer, 1056 struct sctp_transport **pt) 1057 { 1058 struct sctp_transport *t; 1059 struct sctp_association *asoc = NULL; 1060 1061 t = sctp_addrs_lookup_transport(net, local, peer); 1062 if (!t) 1063 goto out; 1064 1065 asoc = t->asoc; 1066 *pt = t; 1067 1068 out: 1069 return asoc; 1070 } 1071 1072 /* Look up an association. protected by RCU read lock */ 1073 static 1074 struct sctp_association *sctp_lookup_association(struct net *net, 1075 const union sctp_addr *laddr, 1076 const union sctp_addr *paddr, 1077 struct sctp_transport **transportp) 1078 { 1079 struct sctp_association *asoc; 1080 1081 rcu_read_lock(); 1082 asoc = __sctp_lookup_association(net, laddr, paddr, transportp); 1083 rcu_read_unlock(); 1084 1085 return asoc; 1086 } 1087 1088 /* Is there an association matching the given local and peer addresses? */ 1089 bool sctp_has_association(struct net *net, 1090 const union sctp_addr *laddr, 1091 const union sctp_addr *paddr) 1092 { 1093 struct sctp_transport *transport; 1094 1095 if (sctp_lookup_association(net, laddr, paddr, &transport)) { 1096 sctp_transport_put(transport); 1097 return true; 1098 } 1099 1100 return false; 1101 } 1102 1103 /* 1104 * SCTP Implementors Guide, 2.18 Handling of address 1105 * parameters within the INIT or INIT-ACK. 1106 * 1107 * D) When searching for a matching TCB upon reception of an INIT 1108 * or INIT-ACK chunk the receiver SHOULD use not only the 1109 * source address of the packet (containing the INIT or 1110 * INIT-ACK) but the receiver SHOULD also use all valid 1111 * address parameters contained within the chunk. 1112 * 1113 * 2.18.3 Solution description 1114 * 1115 * This new text clearly specifies to an implementor the need 1116 * to look within the INIT or INIT-ACK. Any implementation that 1117 * does not do this, may not be able to establish associations 1118 * in certain circumstances. 1119 * 1120 */ 1121 static struct sctp_association *__sctp_rcv_init_lookup(struct net *net, 1122 struct sk_buff *skb, 1123 const union sctp_addr *laddr, struct sctp_transport **transportp) 1124 { 1125 struct sctp_association *asoc; 1126 union sctp_addr addr; 1127 union sctp_addr *paddr = &addr; 1128 struct sctphdr *sh = sctp_hdr(skb); 1129 union sctp_params params; 1130 struct sctp_init_chunk *init; 1131 struct sctp_af *af; 1132 1133 /* 1134 * This code will NOT touch anything inside the chunk--it is 1135 * strictly READ-ONLY. 1136 * 1137 * RFC 2960 3 SCTP packet Format 1138 * 1139 * Multiple chunks can be bundled into one SCTP packet up to 1140 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN 1141 * COMPLETE chunks. These chunks MUST NOT be bundled with any 1142 * other chunk in a packet. See Section 6.10 for more details 1143 * on chunk bundling. 1144 */ 1145 1146 /* Find the start of the TLVs and the end of the chunk. This is 1147 * the region we search for address parameters. 1148 */ 1149 init = (struct sctp_init_chunk *)skb->data; 1150 1151 /* Walk the parameters looking for embedded addresses. */ 1152 sctp_walk_params(params, init, init_hdr.params) { 1153 1154 /* Note: Ignoring hostname addresses. */ 1155 af = sctp_get_af_specific(param_type2af(params.p->type)); 1156 if (!af) 1157 continue; 1158 1159 if (!af->from_addr_param(paddr, params.addr, sh->source, 0)) 1160 continue; 1161 1162 asoc = __sctp_lookup_association(net, laddr, paddr, transportp); 1163 if (asoc) 1164 return asoc; 1165 } 1166 1167 return NULL; 1168 } 1169 1170 /* ADD-IP, Section 5.2 1171 * When an endpoint receives an ASCONF Chunk from the remote peer 1172 * special procedures may be needed to identify the association the 1173 * ASCONF Chunk is associated with. To properly find the association 1174 * the following procedures SHOULD be followed: 1175 * 1176 * D2) If the association is not found, use the address found in the 1177 * Address Parameter TLV combined with the port number found in the 1178 * SCTP common header. If found proceed to rule D4. 1179 * 1180 * D2-ext) If more than one ASCONF Chunks are packed together, use the 1181 * address found in the ASCONF Address Parameter TLV of each of the 1182 * subsequent ASCONF Chunks. If found, proceed to rule D4. 1183 */ 1184 static struct sctp_association *__sctp_rcv_asconf_lookup( 1185 struct net *net, 1186 struct sctp_chunkhdr *ch, 1187 const union sctp_addr *laddr, 1188 __be16 peer_port, 1189 struct sctp_transport **transportp) 1190 { 1191 struct sctp_addip_chunk *asconf = (struct sctp_addip_chunk *)ch; 1192 struct sctp_af *af; 1193 union sctp_addr_param *param; 1194 union sctp_addr paddr; 1195 1196 if (ntohs(ch->length) < sizeof(*asconf) + sizeof(struct sctp_paramhdr)) 1197 return NULL; 1198 1199 /* Skip over the ADDIP header and find the Address parameter */ 1200 param = (union sctp_addr_param *)(asconf + 1); 1201 1202 af = sctp_get_af_specific(param_type2af(param->p.type)); 1203 if (unlikely(!af)) 1204 return NULL; 1205 1206 if (!af->from_addr_param(&paddr, param, peer_port, 0)) 1207 return NULL; 1208 1209 return __sctp_lookup_association(net, laddr, &paddr, transportp); 1210 } 1211 1212 1213 /* SCTP-AUTH, Section 6.3: 1214 * If the receiver does not find a STCB for a packet containing an AUTH 1215 * chunk as the first chunk and not a COOKIE-ECHO chunk as the second 1216 * chunk, it MUST use the chunks after the AUTH chunk to look up an existing 1217 * association. 1218 * 1219 * This means that any chunks that can help us identify the association need 1220 * to be looked at to find this association. 1221 */ 1222 static struct sctp_association *__sctp_rcv_walk_lookup(struct net *net, 1223 struct sk_buff *skb, 1224 const union sctp_addr *laddr, 1225 struct sctp_transport **transportp) 1226 { 1227 struct sctp_association *asoc = NULL; 1228 struct sctp_chunkhdr *ch; 1229 int have_auth = 0; 1230 unsigned int chunk_num = 1; 1231 __u8 *ch_end; 1232 1233 /* Walk through the chunks looking for AUTH or ASCONF chunks 1234 * to help us find the association. 1235 */ 1236 ch = (struct sctp_chunkhdr *)skb->data; 1237 do { 1238 /* Break out if chunk length is less then minimal. */ 1239 if (ntohs(ch->length) < sizeof(*ch)) 1240 break; 1241 1242 ch_end = ((__u8 *)ch) + SCTP_PAD4(ntohs(ch->length)); 1243 if (ch_end > skb_tail_pointer(skb)) 1244 break; 1245 1246 switch (ch->type) { 1247 case SCTP_CID_AUTH: 1248 have_auth = chunk_num; 1249 break; 1250 1251 case SCTP_CID_COOKIE_ECHO: 1252 /* If a packet arrives containing an AUTH chunk as 1253 * a first chunk, a COOKIE-ECHO chunk as the second 1254 * chunk, and possibly more chunks after them, and 1255 * the receiver does not have an STCB for that 1256 * packet, then authentication is based on 1257 * the contents of the COOKIE- ECHO chunk. 1258 */ 1259 if (have_auth == 1 && chunk_num == 2) 1260 return NULL; 1261 break; 1262 1263 case SCTP_CID_ASCONF: 1264 if (have_auth || net->sctp.addip_noauth) 1265 asoc = __sctp_rcv_asconf_lookup( 1266 net, ch, laddr, 1267 sctp_hdr(skb)->source, 1268 transportp); 1269 break; 1270 default: 1271 break; 1272 } 1273 1274 if (asoc) 1275 break; 1276 1277 ch = (struct sctp_chunkhdr *)ch_end; 1278 chunk_num++; 1279 } while (ch_end + sizeof(*ch) < skb_tail_pointer(skb)); 1280 1281 return asoc; 1282 } 1283 1284 /* 1285 * There are circumstances when we need to look inside the SCTP packet 1286 * for information to help us find the association. Examples 1287 * include looking inside of INIT/INIT-ACK chunks or after the AUTH 1288 * chunks. 1289 */ 1290 static struct sctp_association *__sctp_rcv_lookup_harder(struct net *net, 1291 struct sk_buff *skb, 1292 const union sctp_addr *laddr, 1293 struct sctp_transport **transportp) 1294 { 1295 struct sctp_chunkhdr *ch; 1296 1297 /* We do not allow GSO frames here as we need to linearize and 1298 * then cannot guarantee frame boundaries. This shouldn't be an 1299 * issue as packets hitting this are mostly INIT or INIT-ACK and 1300 * those cannot be on GSO-style anyway. 1301 */ 1302 if (skb_is_gso(skb) && skb_is_gso_sctp(skb)) 1303 return NULL; 1304 1305 ch = (struct sctp_chunkhdr *)skb->data; 1306 1307 /* The code below will attempt to walk the chunk and extract 1308 * parameter information. Before we do that, we need to verify 1309 * that the chunk length doesn't cause overflow. Otherwise, we'll 1310 * walk off the end. 1311 */ 1312 if (SCTP_PAD4(ntohs(ch->length)) > skb->len) 1313 return NULL; 1314 1315 /* If this is INIT/INIT-ACK look inside the chunk too. */ 1316 if (ch->type == SCTP_CID_INIT || ch->type == SCTP_CID_INIT_ACK) 1317 return __sctp_rcv_init_lookup(net, skb, laddr, transportp); 1318 1319 return __sctp_rcv_walk_lookup(net, skb, laddr, transportp); 1320 } 1321 1322 /* Lookup an association for an inbound skb. */ 1323 static struct sctp_association *__sctp_rcv_lookup(struct net *net, 1324 struct sk_buff *skb, 1325 const union sctp_addr *paddr, 1326 const union sctp_addr *laddr, 1327 struct sctp_transport **transportp) 1328 { 1329 struct sctp_association *asoc; 1330 1331 asoc = __sctp_lookup_association(net, laddr, paddr, transportp); 1332 if (asoc) 1333 goto out; 1334 1335 /* Further lookup for INIT/INIT-ACK packets. 1336 * SCTP Implementors Guide, 2.18 Handling of address 1337 * parameters within the INIT or INIT-ACK. 1338 */ 1339 asoc = __sctp_rcv_lookup_harder(net, skb, laddr, transportp); 1340 if (asoc) 1341 goto out; 1342 1343 if (paddr->sa.sa_family == AF_INET) 1344 pr_debug("sctp: asoc not found for src:%pI4:%d dst:%pI4:%d\n", 1345 &laddr->v4.sin_addr, ntohs(laddr->v4.sin_port), 1346 &paddr->v4.sin_addr, ntohs(paddr->v4.sin_port)); 1347 else 1348 pr_debug("sctp: asoc not found for src:%pI6:%d dst:%pI6:%d\n", 1349 &laddr->v6.sin6_addr, ntohs(laddr->v6.sin6_port), 1350 &paddr->v6.sin6_addr, ntohs(paddr->v6.sin6_port)); 1351 1352 out: 1353 return asoc; 1354 } 1355