xref: /openbmc/linux/net/sctp/input.c (revision 4f205687)
1 /* SCTP kernel implementation
2  * Copyright (c) 1999-2000 Cisco, Inc.
3  * Copyright (c) 1999-2001 Motorola, Inc.
4  * Copyright (c) 2001-2003 International Business Machines, Corp.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions handle all input from the IP layer into SCTP.
12  *
13  * This SCTP implementation is free software;
14  * you can redistribute it and/or modify it under the terms of
15  * the GNU General Public License as published by
16  * the Free Software Foundation; either version 2, or (at your option)
17  * any later version.
18  *
19  * This SCTP implementation is distributed in the hope that it
20  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
21  *                 ************************
22  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
23  * See the GNU General Public License for more details.
24  *
25  * You should have received a copy of the GNU General Public License
26  * along with GNU CC; see the file COPYING.  If not, see
27  * <http://www.gnu.org/licenses/>.
28  *
29  * Please send any bug reports or fixes you make to the
30  * email address(es):
31  *    lksctp developers <linux-sctp@vger.kernel.org>
32  *
33  * Written or modified by:
34  *    La Monte H.P. Yarroll <piggy@acm.org>
35  *    Karl Knutson <karl@athena.chicago.il.us>
36  *    Xingang Guo <xingang.guo@intel.com>
37  *    Jon Grimm <jgrimm@us.ibm.com>
38  *    Hui Huang <hui.huang@nokia.com>
39  *    Daisy Chang <daisyc@us.ibm.com>
40  *    Sridhar Samudrala <sri@us.ibm.com>
41  *    Ardelle Fan <ardelle.fan@intel.com>
42  */
43 
44 #include <linux/types.h>
45 #include <linux/list.h> /* For struct list_head */
46 #include <linux/socket.h>
47 #include <linux/ip.h>
48 #include <linux/time.h> /* For struct timeval */
49 #include <linux/slab.h>
50 #include <net/ip.h>
51 #include <net/icmp.h>
52 #include <net/snmp.h>
53 #include <net/sock.h>
54 #include <net/xfrm.h>
55 #include <net/sctp/sctp.h>
56 #include <net/sctp/sm.h>
57 #include <net/sctp/checksum.h>
58 #include <net/net_namespace.h>
59 
60 /* Forward declarations for internal helpers. */
61 static int sctp_rcv_ootb(struct sk_buff *);
62 static struct sctp_association *__sctp_rcv_lookup(struct net *net,
63 				      struct sk_buff *skb,
64 				      const union sctp_addr *paddr,
65 				      const union sctp_addr *laddr,
66 				      struct sctp_transport **transportp);
67 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net,
68 						const union sctp_addr *laddr);
69 static struct sctp_association *__sctp_lookup_association(
70 					struct net *net,
71 					const union sctp_addr *local,
72 					const union sctp_addr *peer,
73 					struct sctp_transport **pt);
74 
75 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb);
76 
77 
78 /* Calculate the SCTP checksum of an SCTP packet.  */
79 static inline int sctp_rcv_checksum(struct net *net, struct sk_buff *skb)
80 {
81 	struct sctphdr *sh = sctp_hdr(skb);
82 	__le32 cmp = sh->checksum;
83 	__le32 val = sctp_compute_cksum(skb, 0);
84 
85 	if (val != cmp) {
86 		/* CRC failure, dump it. */
87 		__SCTP_INC_STATS(net, SCTP_MIB_CHECKSUMERRORS);
88 		return -1;
89 	}
90 	return 0;
91 }
92 
93 struct sctp_input_cb {
94 	union {
95 		struct inet_skb_parm	h4;
96 #if IS_ENABLED(CONFIG_IPV6)
97 		struct inet6_skb_parm	h6;
98 #endif
99 	} header;
100 	struct sctp_chunk *chunk;
101 };
102 #define SCTP_INPUT_CB(__skb)	((struct sctp_input_cb *)&((__skb)->cb[0]))
103 
104 /*
105  * This is the routine which IP calls when receiving an SCTP packet.
106  */
107 int sctp_rcv(struct sk_buff *skb)
108 {
109 	struct sock *sk;
110 	struct sctp_association *asoc;
111 	struct sctp_endpoint *ep = NULL;
112 	struct sctp_ep_common *rcvr;
113 	struct sctp_transport *transport = NULL;
114 	struct sctp_chunk *chunk;
115 	union sctp_addr src;
116 	union sctp_addr dest;
117 	int family;
118 	struct sctp_af *af;
119 	struct net *net = dev_net(skb->dev);
120 
121 	if (skb->pkt_type != PACKET_HOST)
122 		goto discard_it;
123 
124 	__SCTP_INC_STATS(net, SCTP_MIB_INSCTPPACKS);
125 
126 	if (skb_linearize(skb))
127 		goto discard_it;
128 
129 	/* Pull up the IP and SCTP headers. */
130 	__skb_pull(skb, skb_transport_offset(skb));
131 	if (skb->len < sizeof(struct sctphdr))
132 		goto discard_it;
133 
134 	skb->csum_valid = 0; /* Previous value not applicable */
135 	if (skb_csum_unnecessary(skb))
136 		__skb_decr_checksum_unnecessary(skb);
137 	else if (!sctp_checksum_disable && sctp_rcv_checksum(net, skb) < 0)
138 		goto discard_it;
139 	skb->csum_valid = 1;
140 
141 	skb_pull(skb, sizeof(struct sctphdr));
142 
143 	/* Make sure we at least have chunk headers worth of data left. */
144 	if (skb->len < sizeof(struct sctp_chunkhdr))
145 		goto discard_it;
146 
147 	family = ipver2af(ip_hdr(skb)->version);
148 	af = sctp_get_af_specific(family);
149 	if (unlikely(!af))
150 		goto discard_it;
151 
152 	/* Initialize local addresses for lookups. */
153 	af->from_skb(&src, skb, 1);
154 	af->from_skb(&dest, skb, 0);
155 
156 	/* If the packet is to or from a non-unicast address,
157 	 * silently discard the packet.
158 	 *
159 	 * This is not clearly defined in the RFC except in section
160 	 * 8.4 - OOTB handling.  However, based on the book "Stream Control
161 	 * Transmission Protocol" 2.1, "It is important to note that the
162 	 * IP address of an SCTP transport address must be a routable
163 	 * unicast address.  In other words, IP multicast addresses and
164 	 * IP broadcast addresses cannot be used in an SCTP transport
165 	 * address."
166 	 */
167 	if (!af->addr_valid(&src, NULL, skb) ||
168 	    !af->addr_valid(&dest, NULL, skb))
169 		goto discard_it;
170 
171 	asoc = __sctp_rcv_lookup(net, skb, &src, &dest, &transport);
172 
173 	if (!asoc)
174 		ep = __sctp_rcv_lookup_endpoint(net, &dest);
175 
176 	/* Retrieve the common input handling substructure. */
177 	rcvr = asoc ? &asoc->base : &ep->base;
178 	sk = rcvr->sk;
179 
180 	/*
181 	 * If a frame arrives on an interface and the receiving socket is
182 	 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB
183 	 */
184 	if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb))) {
185 		if (asoc) {
186 			sctp_association_put(asoc);
187 			asoc = NULL;
188 		} else {
189 			sctp_endpoint_put(ep);
190 			ep = NULL;
191 		}
192 		sk = net->sctp.ctl_sock;
193 		ep = sctp_sk(sk)->ep;
194 		sctp_endpoint_hold(ep);
195 		rcvr = &ep->base;
196 	}
197 
198 	/*
199 	 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
200 	 * An SCTP packet is called an "out of the blue" (OOTB)
201 	 * packet if it is correctly formed, i.e., passed the
202 	 * receiver's checksum check, but the receiver is not
203 	 * able to identify the association to which this
204 	 * packet belongs.
205 	 */
206 	if (!asoc) {
207 		if (sctp_rcv_ootb(skb)) {
208 			__SCTP_INC_STATS(net, SCTP_MIB_OUTOFBLUES);
209 			goto discard_release;
210 		}
211 	}
212 
213 	if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family))
214 		goto discard_release;
215 	nf_reset(skb);
216 
217 	if (sk_filter(sk, skb))
218 		goto discard_release;
219 
220 	/* Create an SCTP packet structure. */
221 	chunk = sctp_chunkify(skb, asoc, sk, GFP_ATOMIC);
222 	if (!chunk)
223 		goto discard_release;
224 	SCTP_INPUT_CB(skb)->chunk = chunk;
225 
226 	/* Remember what endpoint is to handle this packet. */
227 	chunk->rcvr = rcvr;
228 
229 	/* Remember the SCTP header. */
230 	chunk->sctp_hdr = sctp_hdr(skb);
231 
232 	/* Set the source and destination addresses of the incoming chunk.  */
233 	sctp_init_addrs(chunk, &src, &dest);
234 
235 	/* Remember where we came from.  */
236 	chunk->transport = transport;
237 
238 	/* Acquire access to the sock lock. Note: We are safe from other
239 	 * bottom halves on this lock, but a user may be in the lock too,
240 	 * so check if it is busy.
241 	 */
242 	bh_lock_sock(sk);
243 
244 	if (sk != rcvr->sk) {
245 		/* Our cached sk is different from the rcvr->sk.  This is
246 		 * because migrate()/accept() may have moved the association
247 		 * to a new socket and released all the sockets.  So now we
248 		 * are holding a lock on the old socket while the user may
249 		 * be doing something with the new socket.  Switch our veiw
250 		 * of the current sk.
251 		 */
252 		bh_unlock_sock(sk);
253 		sk = rcvr->sk;
254 		bh_lock_sock(sk);
255 	}
256 
257 	if (sock_owned_by_user(sk)) {
258 		if (sctp_add_backlog(sk, skb)) {
259 			bh_unlock_sock(sk);
260 			sctp_chunk_free(chunk);
261 			skb = NULL; /* sctp_chunk_free already freed the skb */
262 			goto discard_release;
263 		}
264 		__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_BACKLOG);
265 	} else {
266 		__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_SOFTIRQ);
267 		sctp_inq_push(&chunk->rcvr->inqueue, chunk);
268 	}
269 
270 	bh_unlock_sock(sk);
271 
272 	/* Release the asoc/ep ref we took in the lookup calls. */
273 	if (asoc)
274 		sctp_association_put(asoc);
275 	else
276 		sctp_endpoint_put(ep);
277 
278 	return 0;
279 
280 discard_it:
281 	__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_DISCARDS);
282 	kfree_skb(skb);
283 	return 0;
284 
285 discard_release:
286 	/* Release the asoc/ep ref we took in the lookup calls. */
287 	if (asoc)
288 		sctp_association_put(asoc);
289 	else
290 		sctp_endpoint_put(ep);
291 
292 	goto discard_it;
293 }
294 
295 /* Process the backlog queue of the socket.  Every skb on
296  * the backlog holds a ref on an association or endpoint.
297  * We hold this ref throughout the state machine to make
298  * sure that the structure we need is still around.
299  */
300 int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
301 {
302 	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
303 	struct sctp_inq *inqueue = &chunk->rcvr->inqueue;
304 	struct sctp_ep_common *rcvr = NULL;
305 	int backloged = 0;
306 
307 	rcvr = chunk->rcvr;
308 
309 	/* If the rcvr is dead then the association or endpoint
310 	 * has been deleted and we can safely drop the chunk
311 	 * and refs that we are holding.
312 	 */
313 	if (rcvr->dead) {
314 		sctp_chunk_free(chunk);
315 		goto done;
316 	}
317 
318 	if (unlikely(rcvr->sk != sk)) {
319 		/* In this case, the association moved from one socket to
320 		 * another.  We are currently sitting on the backlog of the
321 		 * old socket, so we need to move.
322 		 * However, since we are here in the process context we
323 		 * need to take make sure that the user doesn't own
324 		 * the new socket when we process the packet.
325 		 * If the new socket is user-owned, queue the chunk to the
326 		 * backlog of the new socket without dropping any refs.
327 		 * Otherwise, we can safely push the chunk on the inqueue.
328 		 */
329 
330 		sk = rcvr->sk;
331 		bh_lock_sock(sk);
332 
333 		if (sock_owned_by_user(sk)) {
334 			if (sk_add_backlog(sk, skb, sk->sk_rcvbuf))
335 				sctp_chunk_free(chunk);
336 			else
337 				backloged = 1;
338 		} else
339 			sctp_inq_push(inqueue, chunk);
340 
341 		bh_unlock_sock(sk);
342 
343 		/* If the chunk was backloged again, don't drop refs */
344 		if (backloged)
345 			return 0;
346 	} else {
347 		sctp_inq_push(inqueue, chunk);
348 	}
349 
350 done:
351 	/* Release the refs we took in sctp_add_backlog */
352 	if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
353 		sctp_association_put(sctp_assoc(rcvr));
354 	else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
355 		sctp_endpoint_put(sctp_ep(rcvr));
356 	else
357 		BUG();
358 
359 	return 0;
360 }
361 
362 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb)
363 {
364 	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
365 	struct sctp_ep_common *rcvr = chunk->rcvr;
366 	int ret;
367 
368 	ret = sk_add_backlog(sk, skb, sk->sk_rcvbuf);
369 	if (!ret) {
370 		/* Hold the assoc/ep while hanging on the backlog queue.
371 		 * This way, we know structures we need will not disappear
372 		 * from us
373 		 */
374 		if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
375 			sctp_association_hold(sctp_assoc(rcvr));
376 		else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
377 			sctp_endpoint_hold(sctp_ep(rcvr));
378 		else
379 			BUG();
380 	}
381 	return ret;
382 
383 }
384 
385 /* Handle icmp frag needed error. */
386 void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
387 			   struct sctp_transport *t, __u32 pmtu)
388 {
389 	if (!t || (t->pathmtu <= pmtu))
390 		return;
391 
392 	if (sock_owned_by_user(sk)) {
393 		asoc->pmtu_pending = 1;
394 		t->pmtu_pending = 1;
395 		return;
396 	}
397 
398 	if (t->param_flags & SPP_PMTUD_ENABLE) {
399 		/* Update transports view of the MTU */
400 		sctp_transport_update_pmtu(sk, t, pmtu);
401 
402 		/* Update association pmtu. */
403 		sctp_assoc_sync_pmtu(sk, asoc);
404 	}
405 
406 	/* Retransmit with the new pmtu setting.
407 	 * Normally, if PMTU discovery is disabled, an ICMP Fragmentation
408 	 * Needed will never be sent, but if a message was sent before
409 	 * PMTU discovery was disabled that was larger than the PMTU, it
410 	 * would not be fragmented, so it must be re-transmitted fragmented.
411 	 */
412 	sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD);
413 }
414 
415 void sctp_icmp_redirect(struct sock *sk, struct sctp_transport *t,
416 			struct sk_buff *skb)
417 {
418 	struct dst_entry *dst;
419 
420 	if (!t)
421 		return;
422 	dst = sctp_transport_dst_check(t);
423 	if (dst)
424 		dst->ops->redirect(dst, sk, skb);
425 }
426 
427 /*
428  * SCTP Implementer's Guide, 2.37 ICMP handling procedures
429  *
430  * ICMP8) If the ICMP code is a "Unrecognized next header type encountered"
431  *        or a "Protocol Unreachable" treat this message as an abort
432  *        with the T bit set.
433  *
434  * This function sends an event to the state machine, which will abort the
435  * association.
436  *
437  */
438 void sctp_icmp_proto_unreachable(struct sock *sk,
439 			   struct sctp_association *asoc,
440 			   struct sctp_transport *t)
441 {
442 	if (sock_owned_by_user(sk)) {
443 		if (timer_pending(&t->proto_unreach_timer))
444 			return;
445 		else {
446 			if (!mod_timer(&t->proto_unreach_timer,
447 						jiffies + (HZ/20)))
448 				sctp_association_hold(asoc);
449 		}
450 	} else {
451 		struct net *net = sock_net(sk);
452 
453 		pr_debug("%s: unrecognized next header type "
454 			 "encountered!\n", __func__);
455 
456 		if (del_timer(&t->proto_unreach_timer))
457 			sctp_association_put(asoc);
458 
459 		sctp_do_sm(net, SCTP_EVENT_T_OTHER,
460 			   SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
461 			   asoc->state, asoc->ep, asoc, t,
462 			   GFP_ATOMIC);
463 	}
464 }
465 
466 /* Common lookup code for icmp/icmpv6 error handler. */
467 struct sock *sctp_err_lookup(struct net *net, int family, struct sk_buff *skb,
468 			     struct sctphdr *sctphdr,
469 			     struct sctp_association **app,
470 			     struct sctp_transport **tpp)
471 {
472 	union sctp_addr saddr;
473 	union sctp_addr daddr;
474 	struct sctp_af *af;
475 	struct sock *sk = NULL;
476 	struct sctp_association *asoc;
477 	struct sctp_transport *transport = NULL;
478 	struct sctp_init_chunk *chunkhdr;
479 	__u32 vtag = ntohl(sctphdr->vtag);
480 	int len = skb->len - ((void *)sctphdr - (void *)skb->data);
481 
482 	*app = NULL; *tpp = NULL;
483 
484 	af = sctp_get_af_specific(family);
485 	if (unlikely(!af)) {
486 		return NULL;
487 	}
488 
489 	/* Initialize local addresses for lookups. */
490 	af->from_skb(&saddr, skb, 1);
491 	af->from_skb(&daddr, skb, 0);
492 
493 	/* Look for an association that matches the incoming ICMP error
494 	 * packet.
495 	 */
496 	asoc = __sctp_lookup_association(net, &saddr, &daddr, &transport);
497 	if (!asoc)
498 		return NULL;
499 
500 	sk = asoc->base.sk;
501 
502 	/* RFC 4960, Appendix C. ICMP Handling
503 	 *
504 	 * ICMP6) An implementation MUST validate that the Verification Tag
505 	 * contained in the ICMP message matches the Verification Tag of
506 	 * the peer.  If the Verification Tag is not 0 and does NOT
507 	 * match, discard the ICMP message.  If it is 0 and the ICMP
508 	 * message contains enough bytes to verify that the chunk type is
509 	 * an INIT chunk and that the Initiate Tag matches the tag of the
510 	 * peer, continue with ICMP7.  If the ICMP message is too short
511 	 * or the chunk type or the Initiate Tag does not match, silently
512 	 * discard the packet.
513 	 */
514 	if (vtag == 0) {
515 		chunkhdr = (void *)sctphdr + sizeof(struct sctphdr);
516 		if (len < sizeof(struct sctphdr) + sizeof(sctp_chunkhdr_t)
517 			  + sizeof(__be32) ||
518 		    chunkhdr->chunk_hdr.type != SCTP_CID_INIT ||
519 		    ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag) {
520 			goto out;
521 		}
522 	} else if (vtag != asoc->c.peer_vtag) {
523 		goto out;
524 	}
525 
526 	bh_lock_sock(sk);
527 
528 	/* If too many ICMPs get dropped on busy
529 	 * servers this needs to be solved differently.
530 	 */
531 	if (sock_owned_by_user(sk))
532 		__NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
533 
534 	*app = asoc;
535 	*tpp = transport;
536 	return sk;
537 
538 out:
539 	sctp_association_put(asoc);
540 	return NULL;
541 }
542 
543 /* Common cleanup code for icmp/icmpv6 error handler. */
544 void sctp_err_finish(struct sock *sk, struct sctp_association *asoc)
545 {
546 	bh_unlock_sock(sk);
547 	sctp_association_put(asoc);
548 }
549 
550 /*
551  * This routine is called by the ICMP module when it gets some
552  * sort of error condition.  If err < 0 then the socket should
553  * be closed and the error returned to the user.  If err > 0
554  * it's just the icmp type << 8 | icmp code.  After adjustment
555  * header points to the first 8 bytes of the sctp header.  We need
556  * to find the appropriate port.
557  *
558  * The locking strategy used here is very "optimistic". When
559  * someone else accesses the socket the ICMP is just dropped
560  * and for some paths there is no check at all.
561  * A more general error queue to queue errors for later handling
562  * is probably better.
563  *
564  */
565 void sctp_v4_err(struct sk_buff *skb, __u32 info)
566 {
567 	const struct iphdr *iph = (const struct iphdr *)skb->data;
568 	const int ihlen = iph->ihl * 4;
569 	const int type = icmp_hdr(skb)->type;
570 	const int code = icmp_hdr(skb)->code;
571 	struct sock *sk;
572 	struct sctp_association *asoc = NULL;
573 	struct sctp_transport *transport;
574 	struct inet_sock *inet;
575 	__u16 saveip, savesctp;
576 	int err;
577 	struct net *net = dev_net(skb->dev);
578 
579 	/* Fix up skb to look at the embedded net header. */
580 	saveip = skb->network_header;
581 	savesctp = skb->transport_header;
582 	skb_reset_network_header(skb);
583 	skb_set_transport_header(skb, ihlen);
584 	sk = sctp_err_lookup(net, AF_INET, skb, sctp_hdr(skb), &asoc, &transport);
585 	/* Put back, the original values. */
586 	skb->network_header = saveip;
587 	skb->transport_header = savesctp;
588 	if (!sk) {
589 		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
590 		return;
591 	}
592 	/* Warning:  The sock lock is held.  Remember to call
593 	 * sctp_err_finish!
594 	 */
595 
596 	switch (type) {
597 	case ICMP_PARAMETERPROB:
598 		err = EPROTO;
599 		break;
600 	case ICMP_DEST_UNREACH:
601 		if (code > NR_ICMP_UNREACH)
602 			goto out_unlock;
603 
604 		/* PMTU discovery (RFC1191) */
605 		if (ICMP_FRAG_NEEDED == code) {
606 			sctp_icmp_frag_needed(sk, asoc, transport,
607 					      WORD_TRUNC(info));
608 			goto out_unlock;
609 		} else {
610 			if (ICMP_PROT_UNREACH == code) {
611 				sctp_icmp_proto_unreachable(sk, asoc,
612 							    transport);
613 				goto out_unlock;
614 			}
615 		}
616 		err = icmp_err_convert[code].errno;
617 		break;
618 	case ICMP_TIME_EXCEEDED:
619 		/* Ignore any time exceeded errors due to fragment reassembly
620 		 * timeouts.
621 		 */
622 		if (ICMP_EXC_FRAGTIME == code)
623 			goto out_unlock;
624 
625 		err = EHOSTUNREACH;
626 		break;
627 	case ICMP_REDIRECT:
628 		sctp_icmp_redirect(sk, transport, skb);
629 		/* Fall through to out_unlock. */
630 	default:
631 		goto out_unlock;
632 	}
633 
634 	inet = inet_sk(sk);
635 	if (!sock_owned_by_user(sk) && inet->recverr) {
636 		sk->sk_err = err;
637 		sk->sk_error_report(sk);
638 	} else {  /* Only an error on timeout */
639 		sk->sk_err_soft = err;
640 	}
641 
642 out_unlock:
643 	sctp_err_finish(sk, asoc);
644 }
645 
646 /*
647  * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
648  *
649  * This function scans all the chunks in the OOTB packet to determine if
650  * the packet should be discarded right away.  If a response might be needed
651  * for this packet, or, if further processing is possible, the packet will
652  * be queued to a proper inqueue for the next phase of handling.
653  *
654  * Output:
655  * Return 0 - If further processing is needed.
656  * Return 1 - If the packet can be discarded right away.
657  */
658 static int sctp_rcv_ootb(struct sk_buff *skb)
659 {
660 	sctp_chunkhdr_t *ch;
661 	__u8 *ch_end;
662 
663 	ch = (sctp_chunkhdr_t *) skb->data;
664 
665 	/* Scan through all the chunks in the packet.  */
666 	do {
667 		/* Break out if chunk length is less then minimal. */
668 		if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t))
669 			break;
670 
671 		ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length));
672 		if (ch_end > skb_tail_pointer(skb))
673 			break;
674 
675 		/* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the
676 		 * receiver MUST silently discard the OOTB packet and take no
677 		 * further action.
678 		 */
679 		if (SCTP_CID_ABORT == ch->type)
680 			goto discard;
681 
682 		/* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE
683 		 * chunk, the receiver should silently discard the packet
684 		 * and take no further action.
685 		 */
686 		if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type)
687 			goto discard;
688 
689 		/* RFC 4460, 2.11.2
690 		 * This will discard packets with INIT chunk bundled as
691 		 * subsequent chunks in the packet.  When INIT is first,
692 		 * the normal INIT processing will discard the chunk.
693 		 */
694 		if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data)
695 			goto discard;
696 
697 		ch = (sctp_chunkhdr_t *) ch_end;
698 	} while (ch_end < skb_tail_pointer(skb));
699 
700 	return 0;
701 
702 discard:
703 	return 1;
704 }
705 
706 /* Insert endpoint into the hash table.  */
707 static void __sctp_hash_endpoint(struct sctp_endpoint *ep)
708 {
709 	struct net *net = sock_net(ep->base.sk);
710 	struct sctp_ep_common *epb;
711 	struct sctp_hashbucket *head;
712 
713 	epb = &ep->base;
714 
715 	epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port);
716 	head = &sctp_ep_hashtable[epb->hashent];
717 
718 	write_lock(&head->lock);
719 	hlist_add_head(&epb->node, &head->chain);
720 	write_unlock(&head->lock);
721 }
722 
723 /* Add an endpoint to the hash. Local BH-safe. */
724 void sctp_hash_endpoint(struct sctp_endpoint *ep)
725 {
726 	local_bh_disable();
727 	__sctp_hash_endpoint(ep);
728 	local_bh_enable();
729 }
730 
731 /* Remove endpoint from the hash table.  */
732 static void __sctp_unhash_endpoint(struct sctp_endpoint *ep)
733 {
734 	struct net *net = sock_net(ep->base.sk);
735 	struct sctp_hashbucket *head;
736 	struct sctp_ep_common *epb;
737 
738 	epb = &ep->base;
739 
740 	epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port);
741 
742 	head = &sctp_ep_hashtable[epb->hashent];
743 
744 	write_lock(&head->lock);
745 	hlist_del_init(&epb->node);
746 	write_unlock(&head->lock);
747 }
748 
749 /* Remove endpoint from the hash.  Local BH-safe. */
750 void sctp_unhash_endpoint(struct sctp_endpoint *ep)
751 {
752 	local_bh_disable();
753 	__sctp_unhash_endpoint(ep);
754 	local_bh_enable();
755 }
756 
757 /* Look up an endpoint. */
758 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net,
759 						const union sctp_addr *laddr)
760 {
761 	struct sctp_hashbucket *head;
762 	struct sctp_ep_common *epb;
763 	struct sctp_endpoint *ep;
764 	int hash;
765 
766 	hash = sctp_ep_hashfn(net, ntohs(laddr->v4.sin_port));
767 	head = &sctp_ep_hashtable[hash];
768 	read_lock(&head->lock);
769 	sctp_for_each_hentry(epb, &head->chain) {
770 		ep = sctp_ep(epb);
771 		if (sctp_endpoint_is_match(ep, net, laddr))
772 			goto hit;
773 	}
774 
775 	ep = sctp_sk(net->sctp.ctl_sock)->ep;
776 
777 hit:
778 	sctp_endpoint_hold(ep);
779 	read_unlock(&head->lock);
780 	return ep;
781 }
782 
783 /* rhashtable for transport */
784 struct sctp_hash_cmp_arg {
785 	const struct sctp_endpoint	*ep;
786 	const union sctp_addr		*laddr;
787 	const union sctp_addr		*paddr;
788 	const struct net		*net;
789 };
790 
791 static inline int sctp_hash_cmp(struct rhashtable_compare_arg *arg,
792 				const void *ptr)
793 {
794 	const struct sctp_hash_cmp_arg *x = arg->key;
795 	const struct sctp_transport *t = ptr;
796 	struct sctp_association *asoc = t->asoc;
797 	const struct net *net = x->net;
798 
799 	if (!sctp_cmp_addr_exact(&t->ipaddr, x->paddr))
800 		return 1;
801 	if (!net_eq(sock_net(asoc->base.sk), net))
802 		return 1;
803 	if (x->ep) {
804 		if (x->ep != asoc->ep)
805 			return 1;
806 	} else {
807 		if (x->laddr->v4.sin_port != htons(asoc->base.bind_addr.port))
808 			return 1;
809 		if (!sctp_bind_addr_match(&asoc->base.bind_addr,
810 					  x->laddr, sctp_sk(asoc->base.sk)))
811 			return 1;
812 	}
813 
814 	return 0;
815 }
816 
817 static inline u32 sctp_hash_obj(const void *data, u32 len, u32 seed)
818 {
819 	const struct sctp_transport *t = data;
820 	const union sctp_addr *paddr = &t->ipaddr;
821 	const struct net *net = sock_net(t->asoc->base.sk);
822 	u16 lport = htons(t->asoc->base.bind_addr.port);
823 	u32 addr;
824 
825 	if (paddr->sa.sa_family == AF_INET6)
826 		addr = jhash(&paddr->v6.sin6_addr, 16, seed);
827 	else
828 		addr = paddr->v4.sin_addr.s_addr;
829 
830 	return  jhash_3words(addr, ((__u32)paddr->v4.sin_port) << 16 |
831 			     (__force __u32)lport, net_hash_mix(net), seed);
832 }
833 
834 static inline u32 sctp_hash_key(const void *data, u32 len, u32 seed)
835 {
836 	const struct sctp_hash_cmp_arg *x = data;
837 	const union sctp_addr *paddr = x->paddr;
838 	const struct net *net = x->net;
839 	u16 lport;
840 	u32 addr;
841 
842 	lport = x->ep ? htons(x->ep->base.bind_addr.port) :
843 			x->laddr->v4.sin_port;
844 	if (paddr->sa.sa_family == AF_INET6)
845 		addr = jhash(&paddr->v6.sin6_addr, 16, seed);
846 	else
847 		addr = paddr->v4.sin_addr.s_addr;
848 
849 	return  jhash_3words(addr, ((__u32)paddr->v4.sin_port) << 16 |
850 			     (__force __u32)lport, net_hash_mix(net), seed);
851 }
852 
853 static const struct rhashtable_params sctp_hash_params = {
854 	.head_offset		= offsetof(struct sctp_transport, node),
855 	.hashfn			= sctp_hash_key,
856 	.obj_hashfn		= sctp_hash_obj,
857 	.obj_cmpfn		= sctp_hash_cmp,
858 	.automatic_shrinking	= true,
859 };
860 
861 int sctp_transport_hashtable_init(void)
862 {
863 	return rhashtable_init(&sctp_transport_hashtable, &sctp_hash_params);
864 }
865 
866 void sctp_transport_hashtable_destroy(void)
867 {
868 	rhashtable_destroy(&sctp_transport_hashtable);
869 }
870 
871 void sctp_hash_transport(struct sctp_transport *t)
872 {
873 	struct sctp_hash_cmp_arg arg;
874 
875 	if (t->asoc->temp)
876 		return;
877 
878 	arg.ep = t->asoc->ep;
879 	arg.paddr = &t->ipaddr;
880 	arg.net   = sock_net(t->asoc->base.sk);
881 
882 reinsert:
883 	if (rhashtable_lookup_insert_key(&sctp_transport_hashtable, &arg,
884 					 &t->node, sctp_hash_params) == -EBUSY)
885 		goto reinsert;
886 }
887 
888 void sctp_unhash_transport(struct sctp_transport *t)
889 {
890 	if (t->asoc->temp)
891 		return;
892 
893 	rhashtable_remove_fast(&sctp_transport_hashtable, &t->node,
894 			       sctp_hash_params);
895 }
896 
897 struct sctp_transport *sctp_addrs_lookup_transport(
898 				struct net *net,
899 				const union sctp_addr *laddr,
900 				const union sctp_addr *paddr)
901 {
902 	struct sctp_hash_cmp_arg arg = {
903 		.ep    = NULL,
904 		.laddr = laddr,
905 		.paddr = paddr,
906 		.net   = net,
907 	};
908 
909 	return rhashtable_lookup_fast(&sctp_transport_hashtable, &arg,
910 				      sctp_hash_params);
911 }
912 
913 struct sctp_transport *sctp_epaddr_lookup_transport(
914 				const struct sctp_endpoint *ep,
915 				const union sctp_addr *paddr)
916 {
917 	struct net *net = sock_net(ep->base.sk);
918 	struct sctp_hash_cmp_arg arg = {
919 		.ep    = ep,
920 		.paddr = paddr,
921 		.net   = net,
922 	};
923 
924 	return rhashtable_lookup_fast(&sctp_transport_hashtable, &arg,
925 				      sctp_hash_params);
926 }
927 
928 /* Look up an association. */
929 static struct sctp_association *__sctp_lookup_association(
930 					struct net *net,
931 					const union sctp_addr *local,
932 					const union sctp_addr *peer,
933 					struct sctp_transport **pt)
934 {
935 	struct sctp_transport *t;
936 	struct sctp_association *asoc = NULL;
937 
938 	t = sctp_addrs_lookup_transport(net, local, peer);
939 	if (!t || !sctp_transport_hold(t))
940 		goto out;
941 
942 	asoc = t->asoc;
943 	sctp_association_hold(asoc);
944 	*pt = t;
945 
946 	sctp_transport_put(t);
947 
948 out:
949 	return asoc;
950 }
951 
952 /* Look up an association. protected by RCU read lock */
953 static
954 struct sctp_association *sctp_lookup_association(struct net *net,
955 						 const union sctp_addr *laddr,
956 						 const union sctp_addr *paddr,
957 						 struct sctp_transport **transportp)
958 {
959 	struct sctp_association *asoc;
960 
961 	rcu_read_lock();
962 	asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
963 	rcu_read_unlock();
964 
965 	return asoc;
966 }
967 
968 /* Is there an association matching the given local and peer addresses? */
969 int sctp_has_association(struct net *net,
970 			 const union sctp_addr *laddr,
971 			 const union sctp_addr *paddr)
972 {
973 	struct sctp_association *asoc;
974 	struct sctp_transport *transport;
975 
976 	if ((asoc = sctp_lookup_association(net, laddr, paddr, &transport))) {
977 		sctp_association_put(asoc);
978 		return 1;
979 	}
980 
981 	return 0;
982 }
983 
984 /*
985  * SCTP Implementors Guide, 2.18 Handling of address
986  * parameters within the INIT or INIT-ACK.
987  *
988  * D) When searching for a matching TCB upon reception of an INIT
989  *    or INIT-ACK chunk the receiver SHOULD use not only the
990  *    source address of the packet (containing the INIT or
991  *    INIT-ACK) but the receiver SHOULD also use all valid
992  *    address parameters contained within the chunk.
993  *
994  * 2.18.3 Solution description
995  *
996  * This new text clearly specifies to an implementor the need
997  * to look within the INIT or INIT-ACK. Any implementation that
998  * does not do this, may not be able to establish associations
999  * in certain circumstances.
1000  *
1001  */
1002 static struct sctp_association *__sctp_rcv_init_lookup(struct net *net,
1003 	struct sk_buff *skb,
1004 	const union sctp_addr *laddr, struct sctp_transport **transportp)
1005 {
1006 	struct sctp_association *asoc;
1007 	union sctp_addr addr;
1008 	union sctp_addr *paddr = &addr;
1009 	struct sctphdr *sh = sctp_hdr(skb);
1010 	union sctp_params params;
1011 	sctp_init_chunk_t *init;
1012 	struct sctp_transport *transport;
1013 	struct sctp_af *af;
1014 
1015 	/*
1016 	 * This code will NOT touch anything inside the chunk--it is
1017 	 * strictly READ-ONLY.
1018 	 *
1019 	 * RFC 2960 3  SCTP packet Format
1020 	 *
1021 	 * Multiple chunks can be bundled into one SCTP packet up to
1022 	 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN
1023 	 * COMPLETE chunks.  These chunks MUST NOT be bundled with any
1024 	 * other chunk in a packet.  See Section 6.10 for more details
1025 	 * on chunk bundling.
1026 	 */
1027 
1028 	/* Find the start of the TLVs and the end of the chunk.  This is
1029 	 * the region we search for address parameters.
1030 	 */
1031 	init = (sctp_init_chunk_t *)skb->data;
1032 
1033 	/* Walk the parameters looking for embedded addresses. */
1034 	sctp_walk_params(params, init, init_hdr.params) {
1035 
1036 		/* Note: Ignoring hostname addresses. */
1037 		af = sctp_get_af_specific(param_type2af(params.p->type));
1038 		if (!af)
1039 			continue;
1040 
1041 		af->from_addr_param(paddr, params.addr, sh->source, 0);
1042 
1043 		asoc = __sctp_lookup_association(net, laddr, paddr, &transport);
1044 		if (asoc)
1045 			return asoc;
1046 	}
1047 
1048 	return NULL;
1049 }
1050 
1051 /* ADD-IP, Section 5.2
1052  * When an endpoint receives an ASCONF Chunk from the remote peer
1053  * special procedures may be needed to identify the association the
1054  * ASCONF Chunk is associated with. To properly find the association
1055  * the following procedures SHOULD be followed:
1056  *
1057  * D2) If the association is not found, use the address found in the
1058  * Address Parameter TLV combined with the port number found in the
1059  * SCTP common header. If found proceed to rule D4.
1060  *
1061  * D2-ext) If more than one ASCONF Chunks are packed together, use the
1062  * address found in the ASCONF Address Parameter TLV of each of the
1063  * subsequent ASCONF Chunks. If found, proceed to rule D4.
1064  */
1065 static struct sctp_association *__sctp_rcv_asconf_lookup(
1066 					struct net *net,
1067 					sctp_chunkhdr_t *ch,
1068 					const union sctp_addr *laddr,
1069 					__be16 peer_port,
1070 					struct sctp_transport **transportp)
1071 {
1072 	sctp_addip_chunk_t *asconf = (struct sctp_addip_chunk *)ch;
1073 	struct sctp_af *af;
1074 	union sctp_addr_param *param;
1075 	union sctp_addr paddr;
1076 
1077 	/* Skip over the ADDIP header and find the Address parameter */
1078 	param = (union sctp_addr_param *)(asconf + 1);
1079 
1080 	af = sctp_get_af_specific(param_type2af(param->p.type));
1081 	if (unlikely(!af))
1082 		return NULL;
1083 
1084 	af->from_addr_param(&paddr, param, peer_port, 0);
1085 
1086 	return __sctp_lookup_association(net, laddr, &paddr, transportp);
1087 }
1088 
1089 
1090 /* SCTP-AUTH, Section 6.3:
1091 *    If the receiver does not find a STCB for a packet containing an AUTH
1092 *    chunk as the first chunk and not a COOKIE-ECHO chunk as the second
1093 *    chunk, it MUST use the chunks after the AUTH chunk to look up an existing
1094 *    association.
1095 *
1096 * This means that any chunks that can help us identify the association need
1097 * to be looked at to find this association.
1098 */
1099 static struct sctp_association *__sctp_rcv_walk_lookup(struct net *net,
1100 				      struct sk_buff *skb,
1101 				      const union sctp_addr *laddr,
1102 				      struct sctp_transport **transportp)
1103 {
1104 	struct sctp_association *asoc = NULL;
1105 	sctp_chunkhdr_t *ch;
1106 	int have_auth = 0;
1107 	unsigned int chunk_num = 1;
1108 	__u8 *ch_end;
1109 
1110 	/* Walk through the chunks looking for AUTH or ASCONF chunks
1111 	 * to help us find the association.
1112 	 */
1113 	ch = (sctp_chunkhdr_t *) skb->data;
1114 	do {
1115 		/* Break out if chunk length is less then minimal. */
1116 		if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t))
1117 			break;
1118 
1119 		ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length));
1120 		if (ch_end > skb_tail_pointer(skb))
1121 			break;
1122 
1123 		switch (ch->type) {
1124 		case SCTP_CID_AUTH:
1125 			have_auth = chunk_num;
1126 			break;
1127 
1128 		case SCTP_CID_COOKIE_ECHO:
1129 			/* If a packet arrives containing an AUTH chunk as
1130 			 * a first chunk, a COOKIE-ECHO chunk as the second
1131 			 * chunk, and possibly more chunks after them, and
1132 			 * the receiver does not have an STCB for that
1133 			 * packet, then authentication is based on
1134 			 * the contents of the COOKIE- ECHO chunk.
1135 			 */
1136 			if (have_auth == 1 && chunk_num == 2)
1137 				return NULL;
1138 			break;
1139 
1140 		case SCTP_CID_ASCONF:
1141 			if (have_auth || net->sctp.addip_noauth)
1142 				asoc = __sctp_rcv_asconf_lookup(
1143 						net, ch, laddr,
1144 						sctp_hdr(skb)->source,
1145 						transportp);
1146 		default:
1147 			break;
1148 		}
1149 
1150 		if (asoc)
1151 			break;
1152 
1153 		ch = (sctp_chunkhdr_t *) ch_end;
1154 		chunk_num++;
1155 	} while (ch_end < skb_tail_pointer(skb));
1156 
1157 	return asoc;
1158 }
1159 
1160 /*
1161  * There are circumstances when we need to look inside the SCTP packet
1162  * for information to help us find the association.   Examples
1163  * include looking inside of INIT/INIT-ACK chunks or after the AUTH
1164  * chunks.
1165  */
1166 static struct sctp_association *__sctp_rcv_lookup_harder(struct net *net,
1167 				      struct sk_buff *skb,
1168 				      const union sctp_addr *laddr,
1169 				      struct sctp_transport **transportp)
1170 {
1171 	sctp_chunkhdr_t *ch;
1172 
1173 	ch = (sctp_chunkhdr_t *) skb->data;
1174 
1175 	/* The code below will attempt to walk the chunk and extract
1176 	 * parameter information.  Before we do that, we need to verify
1177 	 * that the chunk length doesn't cause overflow.  Otherwise, we'll
1178 	 * walk off the end.
1179 	 */
1180 	if (WORD_ROUND(ntohs(ch->length)) > skb->len)
1181 		return NULL;
1182 
1183 	/* If this is INIT/INIT-ACK look inside the chunk too. */
1184 	if (ch->type == SCTP_CID_INIT || ch->type == SCTP_CID_INIT_ACK)
1185 		return __sctp_rcv_init_lookup(net, skb, laddr, transportp);
1186 
1187 	return __sctp_rcv_walk_lookup(net, skb, laddr, transportp);
1188 }
1189 
1190 /* Lookup an association for an inbound skb. */
1191 static struct sctp_association *__sctp_rcv_lookup(struct net *net,
1192 				      struct sk_buff *skb,
1193 				      const union sctp_addr *paddr,
1194 				      const union sctp_addr *laddr,
1195 				      struct sctp_transport **transportp)
1196 {
1197 	struct sctp_association *asoc;
1198 
1199 	asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1200 
1201 	/* Further lookup for INIT/INIT-ACK packets.
1202 	 * SCTP Implementors Guide, 2.18 Handling of address
1203 	 * parameters within the INIT or INIT-ACK.
1204 	 */
1205 	if (!asoc)
1206 		asoc = __sctp_rcv_lookup_harder(net, skb, laddr, transportp);
1207 
1208 	return asoc;
1209 }
1210