xref: /openbmc/linux/net/sctp/input.c (revision 3dc4b6fb)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* SCTP kernel implementation
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 International Business Machines, Corp.
6  * Copyright (c) 2001 Intel Corp.
7  * Copyright (c) 2001 Nokia, Inc.
8  * Copyright (c) 2001 La Monte H.P. Yarroll
9  *
10  * This file is part of the SCTP kernel implementation
11  *
12  * These functions handle all input from the IP layer into SCTP.
13  *
14  * Please send any bug reports or fixes you make to the
15  * email address(es):
16  *    lksctp developers <linux-sctp@vger.kernel.org>
17  *
18  * Written or modified by:
19  *    La Monte H.P. Yarroll <piggy@acm.org>
20  *    Karl Knutson <karl@athena.chicago.il.us>
21  *    Xingang Guo <xingang.guo@intel.com>
22  *    Jon Grimm <jgrimm@us.ibm.com>
23  *    Hui Huang <hui.huang@nokia.com>
24  *    Daisy Chang <daisyc@us.ibm.com>
25  *    Sridhar Samudrala <sri@us.ibm.com>
26  *    Ardelle Fan <ardelle.fan@intel.com>
27  */
28 
29 #include <linux/types.h>
30 #include <linux/list.h> /* For struct list_head */
31 #include <linux/socket.h>
32 #include <linux/ip.h>
33 #include <linux/time.h> /* For struct timeval */
34 #include <linux/slab.h>
35 #include <net/ip.h>
36 #include <net/icmp.h>
37 #include <net/snmp.h>
38 #include <net/sock.h>
39 #include <net/xfrm.h>
40 #include <net/sctp/sctp.h>
41 #include <net/sctp/sm.h>
42 #include <net/sctp/checksum.h>
43 #include <net/net_namespace.h>
44 #include <linux/rhashtable.h>
45 #include <net/sock_reuseport.h>
46 
47 /* Forward declarations for internal helpers. */
48 static int sctp_rcv_ootb(struct sk_buff *);
49 static struct sctp_association *__sctp_rcv_lookup(struct net *net,
50 				      struct sk_buff *skb,
51 				      const union sctp_addr *paddr,
52 				      const union sctp_addr *laddr,
53 				      struct sctp_transport **transportp);
54 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(
55 					struct net *net, struct sk_buff *skb,
56 					const union sctp_addr *laddr,
57 					const union sctp_addr *daddr);
58 static struct sctp_association *__sctp_lookup_association(
59 					struct net *net,
60 					const union sctp_addr *local,
61 					const union sctp_addr *peer,
62 					struct sctp_transport **pt);
63 
64 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb);
65 
66 
67 /* Calculate the SCTP checksum of an SCTP packet.  */
68 static inline int sctp_rcv_checksum(struct net *net, struct sk_buff *skb)
69 {
70 	struct sctphdr *sh = sctp_hdr(skb);
71 	__le32 cmp = sh->checksum;
72 	__le32 val = sctp_compute_cksum(skb, 0);
73 
74 	if (val != cmp) {
75 		/* CRC failure, dump it. */
76 		__SCTP_INC_STATS(net, SCTP_MIB_CHECKSUMERRORS);
77 		return -1;
78 	}
79 	return 0;
80 }
81 
82 /*
83  * This is the routine which IP calls when receiving an SCTP packet.
84  */
85 int sctp_rcv(struct sk_buff *skb)
86 {
87 	struct sock *sk;
88 	struct sctp_association *asoc;
89 	struct sctp_endpoint *ep = NULL;
90 	struct sctp_ep_common *rcvr;
91 	struct sctp_transport *transport = NULL;
92 	struct sctp_chunk *chunk;
93 	union sctp_addr src;
94 	union sctp_addr dest;
95 	int family;
96 	struct sctp_af *af;
97 	struct net *net = dev_net(skb->dev);
98 	bool is_gso = skb_is_gso(skb) && skb_is_gso_sctp(skb);
99 
100 	if (skb->pkt_type != PACKET_HOST)
101 		goto discard_it;
102 
103 	__SCTP_INC_STATS(net, SCTP_MIB_INSCTPPACKS);
104 
105 	/* If packet is too small to contain a single chunk, let's not
106 	 * waste time on it anymore.
107 	 */
108 	if (skb->len < sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr) +
109 		       skb_transport_offset(skb))
110 		goto discard_it;
111 
112 	/* If the packet is fragmented and we need to do crc checking,
113 	 * it's better to just linearize it otherwise crc computing
114 	 * takes longer.
115 	 */
116 	if ((!is_gso && skb_linearize(skb)) ||
117 	    !pskb_may_pull(skb, sizeof(struct sctphdr)))
118 		goto discard_it;
119 
120 	/* Pull up the IP header. */
121 	__skb_pull(skb, skb_transport_offset(skb));
122 
123 	skb->csum_valid = 0; /* Previous value not applicable */
124 	if (skb_csum_unnecessary(skb))
125 		__skb_decr_checksum_unnecessary(skb);
126 	else if (!sctp_checksum_disable &&
127 		 !is_gso &&
128 		 sctp_rcv_checksum(net, skb) < 0)
129 		goto discard_it;
130 	skb->csum_valid = 1;
131 
132 	__skb_pull(skb, sizeof(struct sctphdr));
133 
134 	family = ipver2af(ip_hdr(skb)->version);
135 	af = sctp_get_af_specific(family);
136 	if (unlikely(!af))
137 		goto discard_it;
138 	SCTP_INPUT_CB(skb)->af = af;
139 
140 	/* Initialize local addresses for lookups. */
141 	af->from_skb(&src, skb, 1);
142 	af->from_skb(&dest, skb, 0);
143 
144 	/* If the packet is to or from a non-unicast address,
145 	 * silently discard the packet.
146 	 *
147 	 * This is not clearly defined in the RFC except in section
148 	 * 8.4 - OOTB handling.  However, based on the book "Stream Control
149 	 * Transmission Protocol" 2.1, "It is important to note that the
150 	 * IP address of an SCTP transport address must be a routable
151 	 * unicast address.  In other words, IP multicast addresses and
152 	 * IP broadcast addresses cannot be used in an SCTP transport
153 	 * address."
154 	 */
155 	if (!af->addr_valid(&src, NULL, skb) ||
156 	    !af->addr_valid(&dest, NULL, skb))
157 		goto discard_it;
158 
159 	asoc = __sctp_rcv_lookup(net, skb, &src, &dest, &transport);
160 
161 	if (!asoc)
162 		ep = __sctp_rcv_lookup_endpoint(net, skb, &dest, &src);
163 
164 	/* Retrieve the common input handling substructure. */
165 	rcvr = asoc ? &asoc->base : &ep->base;
166 	sk = rcvr->sk;
167 
168 	/*
169 	 * If a frame arrives on an interface and the receiving socket is
170 	 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB
171 	 */
172 	if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb))) {
173 		if (transport) {
174 			sctp_transport_put(transport);
175 			asoc = NULL;
176 			transport = NULL;
177 		} else {
178 			sctp_endpoint_put(ep);
179 			ep = NULL;
180 		}
181 		sk = net->sctp.ctl_sock;
182 		ep = sctp_sk(sk)->ep;
183 		sctp_endpoint_hold(ep);
184 		rcvr = &ep->base;
185 	}
186 
187 	/*
188 	 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
189 	 * An SCTP packet is called an "out of the blue" (OOTB)
190 	 * packet if it is correctly formed, i.e., passed the
191 	 * receiver's checksum check, but the receiver is not
192 	 * able to identify the association to which this
193 	 * packet belongs.
194 	 */
195 	if (!asoc) {
196 		if (sctp_rcv_ootb(skb)) {
197 			__SCTP_INC_STATS(net, SCTP_MIB_OUTOFBLUES);
198 			goto discard_release;
199 		}
200 	}
201 
202 	if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family))
203 		goto discard_release;
204 	nf_reset(skb);
205 
206 	if (sk_filter(sk, skb))
207 		goto discard_release;
208 
209 	/* Create an SCTP packet structure. */
210 	chunk = sctp_chunkify(skb, asoc, sk, GFP_ATOMIC);
211 	if (!chunk)
212 		goto discard_release;
213 	SCTP_INPUT_CB(skb)->chunk = chunk;
214 
215 	/* Remember what endpoint is to handle this packet. */
216 	chunk->rcvr = rcvr;
217 
218 	/* Remember the SCTP header. */
219 	chunk->sctp_hdr = sctp_hdr(skb);
220 
221 	/* Set the source and destination addresses of the incoming chunk.  */
222 	sctp_init_addrs(chunk, &src, &dest);
223 
224 	/* Remember where we came from.  */
225 	chunk->transport = transport;
226 
227 	/* Acquire access to the sock lock. Note: We are safe from other
228 	 * bottom halves on this lock, but a user may be in the lock too,
229 	 * so check if it is busy.
230 	 */
231 	bh_lock_sock(sk);
232 
233 	if (sk != rcvr->sk) {
234 		/* Our cached sk is different from the rcvr->sk.  This is
235 		 * because migrate()/accept() may have moved the association
236 		 * to a new socket and released all the sockets.  So now we
237 		 * are holding a lock on the old socket while the user may
238 		 * be doing something with the new socket.  Switch our veiw
239 		 * of the current sk.
240 		 */
241 		bh_unlock_sock(sk);
242 		sk = rcvr->sk;
243 		bh_lock_sock(sk);
244 	}
245 
246 	if (sock_owned_by_user(sk)) {
247 		if (sctp_add_backlog(sk, skb)) {
248 			bh_unlock_sock(sk);
249 			sctp_chunk_free(chunk);
250 			skb = NULL; /* sctp_chunk_free already freed the skb */
251 			goto discard_release;
252 		}
253 		__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_BACKLOG);
254 	} else {
255 		__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_SOFTIRQ);
256 		sctp_inq_push(&chunk->rcvr->inqueue, chunk);
257 	}
258 
259 	bh_unlock_sock(sk);
260 
261 	/* Release the asoc/ep ref we took in the lookup calls. */
262 	if (transport)
263 		sctp_transport_put(transport);
264 	else
265 		sctp_endpoint_put(ep);
266 
267 	return 0;
268 
269 discard_it:
270 	__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_DISCARDS);
271 	kfree_skb(skb);
272 	return 0;
273 
274 discard_release:
275 	/* Release the asoc/ep ref we took in the lookup calls. */
276 	if (transport)
277 		sctp_transport_put(transport);
278 	else
279 		sctp_endpoint_put(ep);
280 
281 	goto discard_it;
282 }
283 
284 /* Process the backlog queue of the socket.  Every skb on
285  * the backlog holds a ref on an association or endpoint.
286  * We hold this ref throughout the state machine to make
287  * sure that the structure we need is still around.
288  */
289 int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
290 {
291 	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
292 	struct sctp_inq *inqueue = &chunk->rcvr->inqueue;
293 	struct sctp_transport *t = chunk->transport;
294 	struct sctp_ep_common *rcvr = NULL;
295 	int backloged = 0;
296 
297 	rcvr = chunk->rcvr;
298 
299 	/* If the rcvr is dead then the association or endpoint
300 	 * has been deleted and we can safely drop the chunk
301 	 * and refs that we are holding.
302 	 */
303 	if (rcvr->dead) {
304 		sctp_chunk_free(chunk);
305 		goto done;
306 	}
307 
308 	if (unlikely(rcvr->sk != sk)) {
309 		/* In this case, the association moved from one socket to
310 		 * another.  We are currently sitting on the backlog of the
311 		 * old socket, so we need to move.
312 		 * However, since we are here in the process context we
313 		 * need to take make sure that the user doesn't own
314 		 * the new socket when we process the packet.
315 		 * If the new socket is user-owned, queue the chunk to the
316 		 * backlog of the new socket without dropping any refs.
317 		 * Otherwise, we can safely push the chunk on the inqueue.
318 		 */
319 
320 		sk = rcvr->sk;
321 		local_bh_disable();
322 		bh_lock_sock(sk);
323 
324 		if (sock_owned_by_user(sk)) {
325 			if (sk_add_backlog(sk, skb, sk->sk_rcvbuf))
326 				sctp_chunk_free(chunk);
327 			else
328 				backloged = 1;
329 		} else
330 			sctp_inq_push(inqueue, chunk);
331 
332 		bh_unlock_sock(sk);
333 		local_bh_enable();
334 
335 		/* If the chunk was backloged again, don't drop refs */
336 		if (backloged)
337 			return 0;
338 	} else {
339 		sctp_inq_push(inqueue, chunk);
340 	}
341 
342 done:
343 	/* Release the refs we took in sctp_add_backlog */
344 	if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
345 		sctp_transport_put(t);
346 	else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
347 		sctp_endpoint_put(sctp_ep(rcvr));
348 	else
349 		BUG();
350 
351 	return 0;
352 }
353 
354 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb)
355 {
356 	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
357 	struct sctp_transport *t = chunk->transport;
358 	struct sctp_ep_common *rcvr = chunk->rcvr;
359 	int ret;
360 
361 	ret = sk_add_backlog(sk, skb, sk->sk_rcvbuf);
362 	if (!ret) {
363 		/* Hold the assoc/ep while hanging on the backlog queue.
364 		 * This way, we know structures we need will not disappear
365 		 * from us
366 		 */
367 		if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
368 			sctp_transport_hold(t);
369 		else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
370 			sctp_endpoint_hold(sctp_ep(rcvr));
371 		else
372 			BUG();
373 	}
374 	return ret;
375 
376 }
377 
378 /* Handle icmp frag needed error. */
379 void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
380 			   struct sctp_transport *t, __u32 pmtu)
381 {
382 	if (!t || (t->pathmtu <= pmtu))
383 		return;
384 
385 	if (sock_owned_by_user(sk)) {
386 		atomic_set(&t->mtu_info, pmtu);
387 		asoc->pmtu_pending = 1;
388 		t->pmtu_pending = 1;
389 		return;
390 	}
391 
392 	if (!(t->param_flags & SPP_PMTUD_ENABLE))
393 		/* We can't allow retransmitting in such case, as the
394 		 * retransmission would be sized just as before, and thus we
395 		 * would get another icmp, and retransmit again.
396 		 */
397 		return;
398 
399 	/* Update transports view of the MTU. Return if no update was needed.
400 	 * If an update wasn't needed/possible, it also doesn't make sense to
401 	 * try to retransmit now.
402 	 */
403 	if (!sctp_transport_update_pmtu(t, pmtu))
404 		return;
405 
406 	/* Update association pmtu. */
407 	sctp_assoc_sync_pmtu(asoc);
408 
409 	/* Retransmit with the new pmtu setting. */
410 	sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD);
411 }
412 
413 void sctp_icmp_redirect(struct sock *sk, struct sctp_transport *t,
414 			struct sk_buff *skb)
415 {
416 	struct dst_entry *dst;
417 
418 	if (sock_owned_by_user(sk) || !t)
419 		return;
420 	dst = sctp_transport_dst_check(t);
421 	if (dst)
422 		dst->ops->redirect(dst, sk, skb);
423 }
424 
425 /*
426  * SCTP Implementer's Guide, 2.37 ICMP handling procedures
427  *
428  * ICMP8) If the ICMP code is a "Unrecognized next header type encountered"
429  *        or a "Protocol Unreachable" treat this message as an abort
430  *        with the T bit set.
431  *
432  * This function sends an event to the state machine, which will abort the
433  * association.
434  *
435  */
436 void sctp_icmp_proto_unreachable(struct sock *sk,
437 			   struct sctp_association *asoc,
438 			   struct sctp_transport *t)
439 {
440 	if (sock_owned_by_user(sk)) {
441 		if (timer_pending(&t->proto_unreach_timer))
442 			return;
443 		else {
444 			if (!mod_timer(&t->proto_unreach_timer,
445 						jiffies + (HZ/20)))
446 				sctp_association_hold(asoc);
447 		}
448 	} else {
449 		struct net *net = sock_net(sk);
450 
451 		pr_debug("%s: unrecognized next header type "
452 			 "encountered!\n", __func__);
453 
454 		if (del_timer(&t->proto_unreach_timer))
455 			sctp_association_put(asoc);
456 
457 		sctp_do_sm(net, SCTP_EVENT_T_OTHER,
458 			   SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
459 			   asoc->state, asoc->ep, asoc, t,
460 			   GFP_ATOMIC);
461 	}
462 }
463 
464 /* Common lookup code for icmp/icmpv6 error handler. */
465 struct sock *sctp_err_lookup(struct net *net, int family, struct sk_buff *skb,
466 			     struct sctphdr *sctphdr,
467 			     struct sctp_association **app,
468 			     struct sctp_transport **tpp)
469 {
470 	struct sctp_init_chunk *chunkhdr, _chunkhdr;
471 	union sctp_addr saddr;
472 	union sctp_addr daddr;
473 	struct sctp_af *af;
474 	struct sock *sk = NULL;
475 	struct sctp_association *asoc;
476 	struct sctp_transport *transport = NULL;
477 	__u32 vtag = ntohl(sctphdr->vtag);
478 
479 	*app = NULL; *tpp = NULL;
480 
481 	af = sctp_get_af_specific(family);
482 	if (unlikely(!af)) {
483 		return NULL;
484 	}
485 
486 	/* Initialize local addresses for lookups. */
487 	af->from_skb(&saddr, skb, 1);
488 	af->from_skb(&daddr, skb, 0);
489 
490 	/* Look for an association that matches the incoming ICMP error
491 	 * packet.
492 	 */
493 	asoc = __sctp_lookup_association(net, &saddr, &daddr, &transport);
494 	if (!asoc)
495 		return NULL;
496 
497 	sk = asoc->base.sk;
498 
499 	/* RFC 4960, Appendix C. ICMP Handling
500 	 *
501 	 * ICMP6) An implementation MUST validate that the Verification Tag
502 	 * contained in the ICMP message matches the Verification Tag of
503 	 * the peer.  If the Verification Tag is not 0 and does NOT
504 	 * match, discard the ICMP message.  If it is 0 and the ICMP
505 	 * message contains enough bytes to verify that the chunk type is
506 	 * an INIT chunk and that the Initiate Tag matches the tag of the
507 	 * peer, continue with ICMP7.  If the ICMP message is too short
508 	 * or the chunk type or the Initiate Tag does not match, silently
509 	 * discard the packet.
510 	 */
511 	if (vtag == 0) {
512 		/* chunk header + first 4 octects of init header */
513 		chunkhdr = skb_header_pointer(skb, skb_transport_offset(skb) +
514 					      sizeof(struct sctphdr),
515 					      sizeof(struct sctp_chunkhdr) +
516 					      sizeof(__be32), &_chunkhdr);
517 		if (!chunkhdr ||
518 		    chunkhdr->chunk_hdr.type != SCTP_CID_INIT ||
519 		    ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag)
520 			goto out;
521 
522 	} else if (vtag != asoc->c.peer_vtag) {
523 		goto out;
524 	}
525 
526 	bh_lock_sock(sk);
527 
528 	/* If too many ICMPs get dropped on busy
529 	 * servers this needs to be solved differently.
530 	 */
531 	if (sock_owned_by_user(sk))
532 		__NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
533 
534 	*app = asoc;
535 	*tpp = transport;
536 	return sk;
537 
538 out:
539 	sctp_transport_put(transport);
540 	return NULL;
541 }
542 
543 /* Common cleanup code for icmp/icmpv6 error handler. */
544 void sctp_err_finish(struct sock *sk, struct sctp_transport *t)
545 {
546 	bh_unlock_sock(sk);
547 	sctp_transport_put(t);
548 }
549 
550 /*
551  * This routine is called by the ICMP module when it gets some
552  * sort of error condition.  If err < 0 then the socket should
553  * be closed and the error returned to the user.  If err > 0
554  * it's just the icmp type << 8 | icmp code.  After adjustment
555  * header points to the first 8 bytes of the sctp header.  We need
556  * to find the appropriate port.
557  *
558  * The locking strategy used here is very "optimistic". When
559  * someone else accesses the socket the ICMP is just dropped
560  * and for some paths there is no check at all.
561  * A more general error queue to queue errors for later handling
562  * is probably better.
563  *
564  */
565 int sctp_v4_err(struct sk_buff *skb, __u32 info)
566 {
567 	const struct iphdr *iph = (const struct iphdr *)skb->data;
568 	const int ihlen = iph->ihl * 4;
569 	const int type = icmp_hdr(skb)->type;
570 	const int code = icmp_hdr(skb)->code;
571 	struct sock *sk;
572 	struct sctp_association *asoc = NULL;
573 	struct sctp_transport *transport;
574 	struct inet_sock *inet;
575 	__u16 saveip, savesctp;
576 	int err;
577 	struct net *net = dev_net(skb->dev);
578 
579 	/* Fix up skb to look at the embedded net header. */
580 	saveip = skb->network_header;
581 	savesctp = skb->transport_header;
582 	skb_reset_network_header(skb);
583 	skb_set_transport_header(skb, ihlen);
584 	sk = sctp_err_lookup(net, AF_INET, skb, sctp_hdr(skb), &asoc, &transport);
585 	/* Put back, the original values. */
586 	skb->network_header = saveip;
587 	skb->transport_header = savesctp;
588 	if (!sk) {
589 		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
590 		return -ENOENT;
591 	}
592 	/* Warning:  The sock lock is held.  Remember to call
593 	 * sctp_err_finish!
594 	 */
595 
596 	switch (type) {
597 	case ICMP_PARAMETERPROB:
598 		err = EPROTO;
599 		break;
600 	case ICMP_DEST_UNREACH:
601 		if (code > NR_ICMP_UNREACH)
602 			goto out_unlock;
603 
604 		/* PMTU discovery (RFC1191) */
605 		if (ICMP_FRAG_NEEDED == code) {
606 			sctp_icmp_frag_needed(sk, asoc, transport,
607 					      SCTP_TRUNC4(info));
608 			goto out_unlock;
609 		} else {
610 			if (ICMP_PROT_UNREACH == code) {
611 				sctp_icmp_proto_unreachable(sk, asoc,
612 							    transport);
613 				goto out_unlock;
614 			}
615 		}
616 		err = icmp_err_convert[code].errno;
617 		break;
618 	case ICMP_TIME_EXCEEDED:
619 		/* Ignore any time exceeded errors due to fragment reassembly
620 		 * timeouts.
621 		 */
622 		if (ICMP_EXC_FRAGTIME == code)
623 			goto out_unlock;
624 
625 		err = EHOSTUNREACH;
626 		break;
627 	case ICMP_REDIRECT:
628 		sctp_icmp_redirect(sk, transport, skb);
629 		/* Fall through to out_unlock. */
630 	default:
631 		goto out_unlock;
632 	}
633 
634 	inet = inet_sk(sk);
635 	if (!sock_owned_by_user(sk) && inet->recverr) {
636 		sk->sk_err = err;
637 		sk->sk_error_report(sk);
638 	} else {  /* Only an error on timeout */
639 		sk->sk_err_soft = err;
640 	}
641 
642 out_unlock:
643 	sctp_err_finish(sk, transport);
644 	return 0;
645 }
646 
647 /*
648  * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
649  *
650  * This function scans all the chunks in the OOTB packet to determine if
651  * the packet should be discarded right away.  If a response might be needed
652  * for this packet, or, if further processing is possible, the packet will
653  * be queued to a proper inqueue for the next phase of handling.
654  *
655  * Output:
656  * Return 0 - If further processing is needed.
657  * Return 1 - If the packet can be discarded right away.
658  */
659 static int sctp_rcv_ootb(struct sk_buff *skb)
660 {
661 	struct sctp_chunkhdr *ch, _ch;
662 	int ch_end, offset = 0;
663 
664 	/* Scan through all the chunks in the packet.  */
665 	do {
666 		/* Make sure we have at least the header there */
667 		if (offset + sizeof(_ch) > skb->len)
668 			break;
669 
670 		ch = skb_header_pointer(skb, offset, sizeof(*ch), &_ch);
671 
672 		/* Break out if chunk length is less then minimal. */
673 		if (ntohs(ch->length) < sizeof(_ch))
674 			break;
675 
676 		ch_end = offset + SCTP_PAD4(ntohs(ch->length));
677 		if (ch_end > skb->len)
678 			break;
679 
680 		/* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the
681 		 * receiver MUST silently discard the OOTB packet and take no
682 		 * further action.
683 		 */
684 		if (SCTP_CID_ABORT == ch->type)
685 			goto discard;
686 
687 		/* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE
688 		 * chunk, the receiver should silently discard the packet
689 		 * and take no further action.
690 		 */
691 		if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type)
692 			goto discard;
693 
694 		/* RFC 4460, 2.11.2
695 		 * This will discard packets with INIT chunk bundled as
696 		 * subsequent chunks in the packet.  When INIT is first,
697 		 * the normal INIT processing will discard the chunk.
698 		 */
699 		if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data)
700 			goto discard;
701 
702 		offset = ch_end;
703 	} while (ch_end < skb->len);
704 
705 	return 0;
706 
707 discard:
708 	return 1;
709 }
710 
711 /* Insert endpoint into the hash table.  */
712 static int __sctp_hash_endpoint(struct sctp_endpoint *ep)
713 {
714 	struct sock *sk = ep->base.sk;
715 	struct net *net = sock_net(sk);
716 	struct sctp_hashbucket *head;
717 	struct sctp_ep_common *epb;
718 
719 	epb = &ep->base;
720 	epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port);
721 	head = &sctp_ep_hashtable[epb->hashent];
722 
723 	if (sk->sk_reuseport) {
724 		bool any = sctp_is_ep_boundall(sk);
725 		struct sctp_ep_common *epb2;
726 		struct list_head *list;
727 		int cnt = 0, err = 1;
728 
729 		list_for_each(list, &ep->base.bind_addr.address_list)
730 			cnt++;
731 
732 		sctp_for_each_hentry(epb2, &head->chain) {
733 			struct sock *sk2 = epb2->sk;
734 
735 			if (!net_eq(sock_net(sk2), net) || sk2 == sk ||
736 			    !uid_eq(sock_i_uid(sk2), sock_i_uid(sk)) ||
737 			    !sk2->sk_reuseport)
738 				continue;
739 
740 			err = sctp_bind_addrs_check(sctp_sk(sk2),
741 						    sctp_sk(sk), cnt);
742 			if (!err) {
743 				err = reuseport_add_sock(sk, sk2, any);
744 				if (err)
745 					return err;
746 				break;
747 			} else if (err < 0) {
748 				return err;
749 			}
750 		}
751 
752 		if (err) {
753 			err = reuseport_alloc(sk, any);
754 			if (err)
755 				return err;
756 		}
757 	}
758 
759 	write_lock(&head->lock);
760 	hlist_add_head(&epb->node, &head->chain);
761 	write_unlock(&head->lock);
762 	return 0;
763 }
764 
765 /* Add an endpoint to the hash. Local BH-safe. */
766 int sctp_hash_endpoint(struct sctp_endpoint *ep)
767 {
768 	int err;
769 
770 	local_bh_disable();
771 	err = __sctp_hash_endpoint(ep);
772 	local_bh_enable();
773 
774 	return err;
775 }
776 
777 /* Remove endpoint from the hash table.  */
778 static void __sctp_unhash_endpoint(struct sctp_endpoint *ep)
779 {
780 	struct sock *sk = ep->base.sk;
781 	struct sctp_hashbucket *head;
782 	struct sctp_ep_common *epb;
783 
784 	epb = &ep->base;
785 
786 	epb->hashent = sctp_ep_hashfn(sock_net(sk), epb->bind_addr.port);
787 
788 	head = &sctp_ep_hashtable[epb->hashent];
789 
790 	if (rcu_access_pointer(sk->sk_reuseport_cb))
791 		reuseport_detach_sock(sk);
792 
793 	write_lock(&head->lock);
794 	hlist_del_init(&epb->node);
795 	write_unlock(&head->lock);
796 }
797 
798 /* Remove endpoint from the hash.  Local BH-safe. */
799 void sctp_unhash_endpoint(struct sctp_endpoint *ep)
800 {
801 	local_bh_disable();
802 	__sctp_unhash_endpoint(ep);
803 	local_bh_enable();
804 }
805 
806 static inline __u32 sctp_hashfn(const struct net *net, __be16 lport,
807 				const union sctp_addr *paddr, __u32 seed)
808 {
809 	__u32 addr;
810 
811 	if (paddr->sa.sa_family == AF_INET6)
812 		addr = jhash(&paddr->v6.sin6_addr, 16, seed);
813 	else
814 		addr = (__force __u32)paddr->v4.sin_addr.s_addr;
815 
816 	return  jhash_3words(addr, ((__force __u32)paddr->v4.sin_port) << 16 |
817 			     (__force __u32)lport, net_hash_mix(net), seed);
818 }
819 
820 /* Look up an endpoint. */
821 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(
822 					struct net *net, struct sk_buff *skb,
823 					const union sctp_addr *laddr,
824 					const union sctp_addr *paddr)
825 {
826 	struct sctp_hashbucket *head;
827 	struct sctp_ep_common *epb;
828 	struct sctp_endpoint *ep;
829 	struct sock *sk;
830 	__be16 lport;
831 	int hash;
832 
833 	lport = laddr->v4.sin_port;
834 	hash = sctp_ep_hashfn(net, ntohs(lport));
835 	head = &sctp_ep_hashtable[hash];
836 	read_lock(&head->lock);
837 	sctp_for_each_hentry(epb, &head->chain) {
838 		ep = sctp_ep(epb);
839 		if (sctp_endpoint_is_match(ep, net, laddr))
840 			goto hit;
841 	}
842 
843 	ep = sctp_sk(net->sctp.ctl_sock)->ep;
844 
845 hit:
846 	sk = ep->base.sk;
847 	if (sk->sk_reuseport) {
848 		__u32 phash = sctp_hashfn(net, lport, paddr, 0);
849 
850 		sk = reuseport_select_sock(sk, phash, skb,
851 					   sizeof(struct sctphdr));
852 		if (sk)
853 			ep = sctp_sk(sk)->ep;
854 	}
855 	sctp_endpoint_hold(ep);
856 	read_unlock(&head->lock);
857 	return ep;
858 }
859 
860 /* rhashtable for transport */
861 struct sctp_hash_cmp_arg {
862 	const union sctp_addr	*paddr;
863 	const struct net	*net;
864 	__be16			lport;
865 };
866 
867 static inline int sctp_hash_cmp(struct rhashtable_compare_arg *arg,
868 				const void *ptr)
869 {
870 	struct sctp_transport *t = (struct sctp_transport *)ptr;
871 	const struct sctp_hash_cmp_arg *x = arg->key;
872 	int err = 1;
873 
874 	if (!sctp_cmp_addr_exact(&t->ipaddr, x->paddr))
875 		return err;
876 	if (!sctp_transport_hold(t))
877 		return err;
878 
879 	if (!net_eq(sock_net(t->asoc->base.sk), x->net))
880 		goto out;
881 	if (x->lport != htons(t->asoc->base.bind_addr.port))
882 		goto out;
883 
884 	err = 0;
885 out:
886 	sctp_transport_put(t);
887 	return err;
888 }
889 
890 static inline __u32 sctp_hash_obj(const void *data, u32 len, u32 seed)
891 {
892 	const struct sctp_transport *t = data;
893 
894 	return sctp_hashfn(sock_net(t->asoc->base.sk),
895 			   htons(t->asoc->base.bind_addr.port),
896 			   &t->ipaddr, seed);
897 }
898 
899 static inline __u32 sctp_hash_key(const void *data, u32 len, u32 seed)
900 {
901 	const struct sctp_hash_cmp_arg *x = data;
902 
903 	return sctp_hashfn(x->net, x->lport, x->paddr, seed);
904 }
905 
906 static const struct rhashtable_params sctp_hash_params = {
907 	.head_offset		= offsetof(struct sctp_transport, node),
908 	.hashfn			= sctp_hash_key,
909 	.obj_hashfn		= sctp_hash_obj,
910 	.obj_cmpfn		= sctp_hash_cmp,
911 	.automatic_shrinking	= true,
912 };
913 
914 int sctp_transport_hashtable_init(void)
915 {
916 	return rhltable_init(&sctp_transport_hashtable, &sctp_hash_params);
917 }
918 
919 void sctp_transport_hashtable_destroy(void)
920 {
921 	rhltable_destroy(&sctp_transport_hashtable);
922 }
923 
924 int sctp_hash_transport(struct sctp_transport *t)
925 {
926 	struct sctp_transport *transport;
927 	struct rhlist_head *tmp, *list;
928 	struct sctp_hash_cmp_arg arg;
929 	int err;
930 
931 	if (t->asoc->temp)
932 		return 0;
933 
934 	arg.net   = sock_net(t->asoc->base.sk);
935 	arg.paddr = &t->ipaddr;
936 	arg.lport = htons(t->asoc->base.bind_addr.port);
937 
938 	rcu_read_lock();
939 	list = rhltable_lookup(&sctp_transport_hashtable, &arg,
940 			       sctp_hash_params);
941 
942 	rhl_for_each_entry_rcu(transport, tmp, list, node)
943 		if (transport->asoc->ep == t->asoc->ep) {
944 			rcu_read_unlock();
945 			return -EEXIST;
946 		}
947 	rcu_read_unlock();
948 
949 	err = rhltable_insert_key(&sctp_transport_hashtable, &arg,
950 				  &t->node, sctp_hash_params);
951 	if (err)
952 		pr_err_once("insert transport fail, errno %d\n", err);
953 
954 	return err;
955 }
956 
957 void sctp_unhash_transport(struct sctp_transport *t)
958 {
959 	if (t->asoc->temp)
960 		return;
961 
962 	rhltable_remove(&sctp_transport_hashtable, &t->node,
963 			sctp_hash_params);
964 }
965 
966 /* return a transport with holding it */
967 struct sctp_transport *sctp_addrs_lookup_transport(
968 				struct net *net,
969 				const union sctp_addr *laddr,
970 				const union sctp_addr *paddr)
971 {
972 	struct rhlist_head *tmp, *list;
973 	struct sctp_transport *t;
974 	struct sctp_hash_cmp_arg arg = {
975 		.paddr = paddr,
976 		.net   = net,
977 		.lport = laddr->v4.sin_port,
978 	};
979 
980 	list = rhltable_lookup(&sctp_transport_hashtable, &arg,
981 			       sctp_hash_params);
982 
983 	rhl_for_each_entry_rcu(t, tmp, list, node) {
984 		if (!sctp_transport_hold(t))
985 			continue;
986 
987 		if (sctp_bind_addr_match(&t->asoc->base.bind_addr,
988 					 laddr, sctp_sk(t->asoc->base.sk)))
989 			return t;
990 		sctp_transport_put(t);
991 	}
992 
993 	return NULL;
994 }
995 
996 /* return a transport without holding it, as it's only used under sock lock */
997 struct sctp_transport *sctp_epaddr_lookup_transport(
998 				const struct sctp_endpoint *ep,
999 				const union sctp_addr *paddr)
1000 {
1001 	struct net *net = sock_net(ep->base.sk);
1002 	struct rhlist_head *tmp, *list;
1003 	struct sctp_transport *t;
1004 	struct sctp_hash_cmp_arg arg = {
1005 		.paddr = paddr,
1006 		.net   = net,
1007 		.lport = htons(ep->base.bind_addr.port),
1008 	};
1009 
1010 	list = rhltable_lookup(&sctp_transport_hashtable, &arg,
1011 			       sctp_hash_params);
1012 
1013 	rhl_for_each_entry_rcu(t, tmp, list, node)
1014 		if (ep == t->asoc->ep)
1015 			return t;
1016 
1017 	return NULL;
1018 }
1019 
1020 /* Look up an association. */
1021 static struct sctp_association *__sctp_lookup_association(
1022 					struct net *net,
1023 					const union sctp_addr *local,
1024 					const union sctp_addr *peer,
1025 					struct sctp_transport **pt)
1026 {
1027 	struct sctp_transport *t;
1028 	struct sctp_association *asoc = NULL;
1029 
1030 	t = sctp_addrs_lookup_transport(net, local, peer);
1031 	if (!t)
1032 		goto out;
1033 
1034 	asoc = t->asoc;
1035 	*pt = t;
1036 
1037 out:
1038 	return asoc;
1039 }
1040 
1041 /* Look up an association. protected by RCU read lock */
1042 static
1043 struct sctp_association *sctp_lookup_association(struct net *net,
1044 						 const union sctp_addr *laddr,
1045 						 const union sctp_addr *paddr,
1046 						 struct sctp_transport **transportp)
1047 {
1048 	struct sctp_association *asoc;
1049 
1050 	rcu_read_lock();
1051 	asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1052 	rcu_read_unlock();
1053 
1054 	return asoc;
1055 }
1056 
1057 /* Is there an association matching the given local and peer addresses? */
1058 bool sctp_has_association(struct net *net,
1059 			  const union sctp_addr *laddr,
1060 			  const union sctp_addr *paddr)
1061 {
1062 	struct sctp_transport *transport;
1063 
1064 	if (sctp_lookup_association(net, laddr, paddr, &transport)) {
1065 		sctp_transport_put(transport);
1066 		return true;
1067 	}
1068 
1069 	return false;
1070 }
1071 
1072 /*
1073  * SCTP Implementors Guide, 2.18 Handling of address
1074  * parameters within the INIT or INIT-ACK.
1075  *
1076  * D) When searching for a matching TCB upon reception of an INIT
1077  *    or INIT-ACK chunk the receiver SHOULD use not only the
1078  *    source address of the packet (containing the INIT or
1079  *    INIT-ACK) but the receiver SHOULD also use all valid
1080  *    address parameters contained within the chunk.
1081  *
1082  * 2.18.3 Solution description
1083  *
1084  * This new text clearly specifies to an implementor the need
1085  * to look within the INIT or INIT-ACK. Any implementation that
1086  * does not do this, may not be able to establish associations
1087  * in certain circumstances.
1088  *
1089  */
1090 static struct sctp_association *__sctp_rcv_init_lookup(struct net *net,
1091 	struct sk_buff *skb,
1092 	const union sctp_addr *laddr, struct sctp_transport **transportp)
1093 {
1094 	struct sctp_association *asoc;
1095 	union sctp_addr addr;
1096 	union sctp_addr *paddr = &addr;
1097 	struct sctphdr *sh = sctp_hdr(skb);
1098 	union sctp_params params;
1099 	struct sctp_init_chunk *init;
1100 	struct sctp_af *af;
1101 
1102 	/*
1103 	 * This code will NOT touch anything inside the chunk--it is
1104 	 * strictly READ-ONLY.
1105 	 *
1106 	 * RFC 2960 3  SCTP packet Format
1107 	 *
1108 	 * Multiple chunks can be bundled into one SCTP packet up to
1109 	 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN
1110 	 * COMPLETE chunks.  These chunks MUST NOT be bundled with any
1111 	 * other chunk in a packet.  See Section 6.10 for more details
1112 	 * on chunk bundling.
1113 	 */
1114 
1115 	/* Find the start of the TLVs and the end of the chunk.  This is
1116 	 * the region we search for address parameters.
1117 	 */
1118 	init = (struct sctp_init_chunk *)skb->data;
1119 
1120 	/* Walk the parameters looking for embedded addresses. */
1121 	sctp_walk_params(params, init, init_hdr.params) {
1122 
1123 		/* Note: Ignoring hostname addresses. */
1124 		af = sctp_get_af_specific(param_type2af(params.p->type));
1125 		if (!af)
1126 			continue;
1127 
1128 		af->from_addr_param(paddr, params.addr, sh->source, 0);
1129 
1130 		asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1131 		if (asoc)
1132 			return asoc;
1133 	}
1134 
1135 	return NULL;
1136 }
1137 
1138 /* ADD-IP, Section 5.2
1139  * When an endpoint receives an ASCONF Chunk from the remote peer
1140  * special procedures may be needed to identify the association the
1141  * ASCONF Chunk is associated with. To properly find the association
1142  * the following procedures SHOULD be followed:
1143  *
1144  * D2) If the association is not found, use the address found in the
1145  * Address Parameter TLV combined with the port number found in the
1146  * SCTP common header. If found proceed to rule D4.
1147  *
1148  * D2-ext) If more than one ASCONF Chunks are packed together, use the
1149  * address found in the ASCONF Address Parameter TLV of each of the
1150  * subsequent ASCONF Chunks. If found, proceed to rule D4.
1151  */
1152 static struct sctp_association *__sctp_rcv_asconf_lookup(
1153 					struct net *net,
1154 					struct sctp_chunkhdr *ch,
1155 					const union sctp_addr *laddr,
1156 					__be16 peer_port,
1157 					struct sctp_transport **transportp)
1158 {
1159 	struct sctp_addip_chunk *asconf = (struct sctp_addip_chunk *)ch;
1160 	struct sctp_af *af;
1161 	union sctp_addr_param *param;
1162 	union sctp_addr paddr;
1163 
1164 	/* Skip over the ADDIP header and find the Address parameter */
1165 	param = (union sctp_addr_param *)(asconf + 1);
1166 
1167 	af = sctp_get_af_specific(param_type2af(param->p.type));
1168 	if (unlikely(!af))
1169 		return NULL;
1170 
1171 	af->from_addr_param(&paddr, param, peer_port, 0);
1172 
1173 	return __sctp_lookup_association(net, laddr, &paddr, transportp);
1174 }
1175 
1176 
1177 /* SCTP-AUTH, Section 6.3:
1178 *    If the receiver does not find a STCB for a packet containing an AUTH
1179 *    chunk as the first chunk and not a COOKIE-ECHO chunk as the second
1180 *    chunk, it MUST use the chunks after the AUTH chunk to look up an existing
1181 *    association.
1182 *
1183 * This means that any chunks that can help us identify the association need
1184 * to be looked at to find this association.
1185 */
1186 static struct sctp_association *__sctp_rcv_walk_lookup(struct net *net,
1187 				      struct sk_buff *skb,
1188 				      const union sctp_addr *laddr,
1189 				      struct sctp_transport **transportp)
1190 {
1191 	struct sctp_association *asoc = NULL;
1192 	struct sctp_chunkhdr *ch;
1193 	int have_auth = 0;
1194 	unsigned int chunk_num = 1;
1195 	__u8 *ch_end;
1196 
1197 	/* Walk through the chunks looking for AUTH or ASCONF chunks
1198 	 * to help us find the association.
1199 	 */
1200 	ch = (struct sctp_chunkhdr *)skb->data;
1201 	do {
1202 		/* Break out if chunk length is less then minimal. */
1203 		if (ntohs(ch->length) < sizeof(*ch))
1204 			break;
1205 
1206 		ch_end = ((__u8 *)ch) + SCTP_PAD4(ntohs(ch->length));
1207 		if (ch_end > skb_tail_pointer(skb))
1208 			break;
1209 
1210 		switch (ch->type) {
1211 		case SCTP_CID_AUTH:
1212 			have_auth = chunk_num;
1213 			break;
1214 
1215 		case SCTP_CID_COOKIE_ECHO:
1216 			/* If a packet arrives containing an AUTH chunk as
1217 			 * a first chunk, a COOKIE-ECHO chunk as the second
1218 			 * chunk, and possibly more chunks after them, and
1219 			 * the receiver does not have an STCB for that
1220 			 * packet, then authentication is based on
1221 			 * the contents of the COOKIE- ECHO chunk.
1222 			 */
1223 			if (have_auth == 1 && chunk_num == 2)
1224 				return NULL;
1225 			break;
1226 
1227 		case SCTP_CID_ASCONF:
1228 			if (have_auth || net->sctp.addip_noauth)
1229 				asoc = __sctp_rcv_asconf_lookup(
1230 						net, ch, laddr,
1231 						sctp_hdr(skb)->source,
1232 						transportp);
1233 		default:
1234 			break;
1235 		}
1236 
1237 		if (asoc)
1238 			break;
1239 
1240 		ch = (struct sctp_chunkhdr *)ch_end;
1241 		chunk_num++;
1242 	} while (ch_end < skb_tail_pointer(skb));
1243 
1244 	return asoc;
1245 }
1246 
1247 /*
1248  * There are circumstances when we need to look inside the SCTP packet
1249  * for information to help us find the association.   Examples
1250  * include looking inside of INIT/INIT-ACK chunks or after the AUTH
1251  * chunks.
1252  */
1253 static struct sctp_association *__sctp_rcv_lookup_harder(struct net *net,
1254 				      struct sk_buff *skb,
1255 				      const union sctp_addr *laddr,
1256 				      struct sctp_transport **transportp)
1257 {
1258 	struct sctp_chunkhdr *ch;
1259 
1260 	/* We do not allow GSO frames here as we need to linearize and
1261 	 * then cannot guarantee frame boundaries. This shouldn't be an
1262 	 * issue as packets hitting this are mostly INIT or INIT-ACK and
1263 	 * those cannot be on GSO-style anyway.
1264 	 */
1265 	if (skb_is_gso(skb) && skb_is_gso_sctp(skb))
1266 		return NULL;
1267 
1268 	ch = (struct sctp_chunkhdr *)skb->data;
1269 
1270 	/* The code below will attempt to walk the chunk and extract
1271 	 * parameter information.  Before we do that, we need to verify
1272 	 * that the chunk length doesn't cause overflow.  Otherwise, we'll
1273 	 * walk off the end.
1274 	 */
1275 	if (SCTP_PAD4(ntohs(ch->length)) > skb->len)
1276 		return NULL;
1277 
1278 	/* If this is INIT/INIT-ACK look inside the chunk too. */
1279 	if (ch->type == SCTP_CID_INIT || ch->type == SCTP_CID_INIT_ACK)
1280 		return __sctp_rcv_init_lookup(net, skb, laddr, transportp);
1281 
1282 	return __sctp_rcv_walk_lookup(net, skb, laddr, transportp);
1283 }
1284 
1285 /* Lookup an association for an inbound skb. */
1286 static struct sctp_association *__sctp_rcv_lookup(struct net *net,
1287 				      struct sk_buff *skb,
1288 				      const union sctp_addr *paddr,
1289 				      const union sctp_addr *laddr,
1290 				      struct sctp_transport **transportp)
1291 {
1292 	struct sctp_association *asoc;
1293 
1294 	asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1295 	if (asoc)
1296 		goto out;
1297 
1298 	/* Further lookup for INIT/INIT-ACK packets.
1299 	 * SCTP Implementors Guide, 2.18 Handling of address
1300 	 * parameters within the INIT or INIT-ACK.
1301 	 */
1302 	asoc = __sctp_rcv_lookup_harder(net, skb, laddr, transportp);
1303 	if (asoc)
1304 		goto out;
1305 
1306 	if (paddr->sa.sa_family == AF_INET)
1307 		pr_debug("sctp: asoc not found for src:%pI4:%d dst:%pI4:%d\n",
1308 			 &laddr->v4.sin_addr, ntohs(laddr->v4.sin_port),
1309 			 &paddr->v4.sin_addr, ntohs(paddr->v4.sin_port));
1310 	else
1311 		pr_debug("sctp: asoc not found for src:%pI6:%d dst:%pI6:%d\n",
1312 			 &laddr->v6.sin6_addr, ntohs(laddr->v6.sin6_port),
1313 			 &paddr->v6.sin6_addr, ntohs(paddr->v6.sin6_port));
1314 
1315 out:
1316 	return asoc;
1317 }
1318