xref: /openbmc/linux/net/sctp/input.c (revision 2e6ae11dd0d1c37f44cec51a58fb2092e55ed0f5)
1 /* SCTP kernel implementation
2  * Copyright (c) 1999-2000 Cisco, Inc.
3  * Copyright (c) 1999-2001 Motorola, Inc.
4  * Copyright (c) 2001-2003 International Business Machines, Corp.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions handle all input from the IP layer into SCTP.
12  *
13  * This SCTP implementation is free software;
14  * you can redistribute it and/or modify it under the terms of
15  * the GNU General Public License as published by
16  * the Free Software Foundation; either version 2, or (at your option)
17  * any later version.
18  *
19  * This SCTP implementation is distributed in the hope that it
20  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
21  *                 ************************
22  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
23  * See the GNU General Public License for more details.
24  *
25  * You should have received a copy of the GNU General Public License
26  * along with GNU CC; see the file COPYING.  If not, see
27  * <http://www.gnu.org/licenses/>.
28  *
29  * Please send any bug reports or fixes you make to the
30  * email address(es):
31  *    lksctp developers <linux-sctp@vger.kernel.org>
32  *
33  * Written or modified by:
34  *    La Monte H.P. Yarroll <piggy@acm.org>
35  *    Karl Knutson <karl@athena.chicago.il.us>
36  *    Xingang Guo <xingang.guo@intel.com>
37  *    Jon Grimm <jgrimm@us.ibm.com>
38  *    Hui Huang <hui.huang@nokia.com>
39  *    Daisy Chang <daisyc@us.ibm.com>
40  *    Sridhar Samudrala <sri@us.ibm.com>
41  *    Ardelle Fan <ardelle.fan@intel.com>
42  */
43 
44 #include <linux/types.h>
45 #include <linux/list.h> /* For struct list_head */
46 #include <linux/socket.h>
47 #include <linux/ip.h>
48 #include <linux/time.h> /* For struct timeval */
49 #include <linux/slab.h>
50 #include <net/ip.h>
51 #include <net/icmp.h>
52 #include <net/snmp.h>
53 #include <net/sock.h>
54 #include <net/xfrm.h>
55 #include <net/sctp/sctp.h>
56 #include <net/sctp/sm.h>
57 #include <net/sctp/checksum.h>
58 #include <net/net_namespace.h>
59 #include <linux/rhashtable.h>
60 
61 /* Forward declarations for internal helpers. */
62 static int sctp_rcv_ootb(struct sk_buff *);
63 static struct sctp_association *__sctp_rcv_lookup(struct net *net,
64 				      struct sk_buff *skb,
65 				      const union sctp_addr *paddr,
66 				      const union sctp_addr *laddr,
67 				      struct sctp_transport **transportp);
68 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net,
69 						const union sctp_addr *laddr);
70 static struct sctp_association *__sctp_lookup_association(
71 					struct net *net,
72 					const union sctp_addr *local,
73 					const union sctp_addr *peer,
74 					struct sctp_transport **pt);
75 
76 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb);
77 
78 
79 /* Calculate the SCTP checksum of an SCTP packet.  */
80 static inline int sctp_rcv_checksum(struct net *net, struct sk_buff *skb)
81 {
82 	struct sctphdr *sh = sctp_hdr(skb);
83 	__le32 cmp = sh->checksum;
84 	__le32 val = sctp_compute_cksum(skb, 0);
85 
86 	if (val != cmp) {
87 		/* CRC failure, dump it. */
88 		__SCTP_INC_STATS(net, SCTP_MIB_CHECKSUMERRORS);
89 		return -1;
90 	}
91 	return 0;
92 }
93 
94 /*
95  * This is the routine which IP calls when receiving an SCTP packet.
96  */
97 int sctp_rcv(struct sk_buff *skb)
98 {
99 	struct sock *sk;
100 	struct sctp_association *asoc;
101 	struct sctp_endpoint *ep = NULL;
102 	struct sctp_ep_common *rcvr;
103 	struct sctp_transport *transport = NULL;
104 	struct sctp_chunk *chunk;
105 	union sctp_addr src;
106 	union sctp_addr dest;
107 	int family;
108 	struct sctp_af *af;
109 	struct net *net = dev_net(skb->dev);
110 	bool is_gso = skb_is_gso(skb) && skb_is_gso_sctp(skb);
111 
112 	if (skb->pkt_type != PACKET_HOST)
113 		goto discard_it;
114 
115 	__SCTP_INC_STATS(net, SCTP_MIB_INSCTPPACKS);
116 
117 	/* If packet is too small to contain a single chunk, let's not
118 	 * waste time on it anymore.
119 	 */
120 	if (skb->len < sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr) +
121 		       skb_transport_offset(skb))
122 		goto discard_it;
123 
124 	/* If the packet is fragmented and we need to do crc checking,
125 	 * it's better to just linearize it otherwise crc computing
126 	 * takes longer.
127 	 */
128 	if ((!is_gso && skb_linearize(skb)) ||
129 	    !pskb_may_pull(skb, sizeof(struct sctphdr)))
130 		goto discard_it;
131 
132 	/* Pull up the IP header. */
133 	__skb_pull(skb, skb_transport_offset(skb));
134 
135 	skb->csum_valid = 0; /* Previous value not applicable */
136 	if (skb_csum_unnecessary(skb))
137 		__skb_decr_checksum_unnecessary(skb);
138 	else if (!sctp_checksum_disable &&
139 		 !is_gso &&
140 		 sctp_rcv_checksum(net, skb) < 0)
141 		goto discard_it;
142 	skb->csum_valid = 1;
143 
144 	__skb_pull(skb, sizeof(struct sctphdr));
145 
146 	family = ipver2af(ip_hdr(skb)->version);
147 	af = sctp_get_af_specific(family);
148 	if (unlikely(!af))
149 		goto discard_it;
150 	SCTP_INPUT_CB(skb)->af = af;
151 
152 	/* Initialize local addresses for lookups. */
153 	af->from_skb(&src, skb, 1);
154 	af->from_skb(&dest, skb, 0);
155 
156 	/* If the packet is to or from a non-unicast address,
157 	 * silently discard the packet.
158 	 *
159 	 * This is not clearly defined in the RFC except in section
160 	 * 8.4 - OOTB handling.  However, based on the book "Stream Control
161 	 * Transmission Protocol" 2.1, "It is important to note that the
162 	 * IP address of an SCTP transport address must be a routable
163 	 * unicast address.  In other words, IP multicast addresses and
164 	 * IP broadcast addresses cannot be used in an SCTP transport
165 	 * address."
166 	 */
167 	if (!af->addr_valid(&src, NULL, skb) ||
168 	    !af->addr_valid(&dest, NULL, skb))
169 		goto discard_it;
170 
171 	asoc = __sctp_rcv_lookup(net, skb, &src, &dest, &transport);
172 
173 	if (!asoc)
174 		ep = __sctp_rcv_lookup_endpoint(net, &dest);
175 
176 	/* Retrieve the common input handling substructure. */
177 	rcvr = asoc ? &asoc->base : &ep->base;
178 	sk = rcvr->sk;
179 
180 	/*
181 	 * If a frame arrives on an interface and the receiving socket is
182 	 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB
183 	 */
184 	if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb))) {
185 		if (transport) {
186 			sctp_transport_put(transport);
187 			asoc = NULL;
188 			transport = NULL;
189 		} else {
190 			sctp_endpoint_put(ep);
191 			ep = NULL;
192 		}
193 		sk = net->sctp.ctl_sock;
194 		ep = sctp_sk(sk)->ep;
195 		sctp_endpoint_hold(ep);
196 		rcvr = &ep->base;
197 	}
198 
199 	/*
200 	 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
201 	 * An SCTP packet is called an "out of the blue" (OOTB)
202 	 * packet if it is correctly formed, i.e., passed the
203 	 * receiver's checksum check, but the receiver is not
204 	 * able to identify the association to which this
205 	 * packet belongs.
206 	 */
207 	if (!asoc) {
208 		if (sctp_rcv_ootb(skb)) {
209 			__SCTP_INC_STATS(net, SCTP_MIB_OUTOFBLUES);
210 			goto discard_release;
211 		}
212 	}
213 
214 	if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family))
215 		goto discard_release;
216 	nf_reset(skb);
217 
218 	if (sk_filter(sk, skb))
219 		goto discard_release;
220 
221 	/* Create an SCTP packet structure. */
222 	chunk = sctp_chunkify(skb, asoc, sk, GFP_ATOMIC);
223 	if (!chunk)
224 		goto discard_release;
225 	SCTP_INPUT_CB(skb)->chunk = chunk;
226 
227 	/* Remember what endpoint is to handle this packet. */
228 	chunk->rcvr = rcvr;
229 
230 	/* Remember the SCTP header. */
231 	chunk->sctp_hdr = sctp_hdr(skb);
232 
233 	/* Set the source and destination addresses of the incoming chunk.  */
234 	sctp_init_addrs(chunk, &src, &dest);
235 
236 	/* Remember where we came from.  */
237 	chunk->transport = transport;
238 
239 	/* Acquire access to the sock lock. Note: We are safe from other
240 	 * bottom halves on this lock, but a user may be in the lock too,
241 	 * so check if it is busy.
242 	 */
243 	bh_lock_sock(sk);
244 
245 	if (sk != rcvr->sk) {
246 		/* Our cached sk is different from the rcvr->sk.  This is
247 		 * because migrate()/accept() may have moved the association
248 		 * to a new socket and released all the sockets.  So now we
249 		 * are holding a lock on the old socket while the user may
250 		 * be doing something with the new socket.  Switch our veiw
251 		 * of the current sk.
252 		 */
253 		bh_unlock_sock(sk);
254 		sk = rcvr->sk;
255 		bh_lock_sock(sk);
256 	}
257 
258 	if (sock_owned_by_user(sk)) {
259 		if (sctp_add_backlog(sk, skb)) {
260 			bh_unlock_sock(sk);
261 			sctp_chunk_free(chunk);
262 			skb = NULL; /* sctp_chunk_free already freed the skb */
263 			goto discard_release;
264 		}
265 		__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_BACKLOG);
266 	} else {
267 		__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_SOFTIRQ);
268 		sctp_inq_push(&chunk->rcvr->inqueue, chunk);
269 	}
270 
271 	bh_unlock_sock(sk);
272 
273 	/* Release the asoc/ep ref we took in the lookup calls. */
274 	if (transport)
275 		sctp_transport_put(transport);
276 	else
277 		sctp_endpoint_put(ep);
278 
279 	return 0;
280 
281 discard_it:
282 	__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_DISCARDS);
283 	kfree_skb(skb);
284 	return 0;
285 
286 discard_release:
287 	/* Release the asoc/ep ref we took in the lookup calls. */
288 	if (transport)
289 		sctp_transport_put(transport);
290 	else
291 		sctp_endpoint_put(ep);
292 
293 	goto discard_it;
294 }
295 
296 /* Process the backlog queue of the socket.  Every skb on
297  * the backlog holds a ref on an association or endpoint.
298  * We hold this ref throughout the state machine to make
299  * sure that the structure we need is still around.
300  */
301 int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
302 {
303 	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
304 	struct sctp_inq *inqueue = &chunk->rcvr->inqueue;
305 	struct sctp_transport *t = chunk->transport;
306 	struct sctp_ep_common *rcvr = NULL;
307 	int backloged = 0;
308 
309 	rcvr = chunk->rcvr;
310 
311 	/* If the rcvr is dead then the association or endpoint
312 	 * has been deleted and we can safely drop the chunk
313 	 * and refs that we are holding.
314 	 */
315 	if (rcvr->dead) {
316 		sctp_chunk_free(chunk);
317 		goto done;
318 	}
319 
320 	if (unlikely(rcvr->sk != sk)) {
321 		/* In this case, the association moved from one socket to
322 		 * another.  We are currently sitting on the backlog of the
323 		 * old socket, so we need to move.
324 		 * However, since we are here in the process context we
325 		 * need to take make sure that the user doesn't own
326 		 * the new socket when we process the packet.
327 		 * If the new socket is user-owned, queue the chunk to the
328 		 * backlog of the new socket without dropping any refs.
329 		 * Otherwise, we can safely push the chunk on the inqueue.
330 		 */
331 
332 		sk = rcvr->sk;
333 		local_bh_disable();
334 		bh_lock_sock(sk);
335 
336 		if (sock_owned_by_user(sk)) {
337 			if (sk_add_backlog(sk, skb, sk->sk_rcvbuf))
338 				sctp_chunk_free(chunk);
339 			else
340 				backloged = 1;
341 		} else
342 			sctp_inq_push(inqueue, chunk);
343 
344 		bh_unlock_sock(sk);
345 		local_bh_enable();
346 
347 		/* If the chunk was backloged again, don't drop refs */
348 		if (backloged)
349 			return 0;
350 	} else {
351 		sctp_inq_push(inqueue, chunk);
352 	}
353 
354 done:
355 	/* Release the refs we took in sctp_add_backlog */
356 	if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
357 		sctp_transport_put(t);
358 	else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
359 		sctp_endpoint_put(sctp_ep(rcvr));
360 	else
361 		BUG();
362 
363 	return 0;
364 }
365 
366 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb)
367 {
368 	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
369 	struct sctp_transport *t = chunk->transport;
370 	struct sctp_ep_common *rcvr = chunk->rcvr;
371 	int ret;
372 
373 	ret = sk_add_backlog(sk, skb, sk->sk_rcvbuf);
374 	if (!ret) {
375 		/* Hold the assoc/ep while hanging on the backlog queue.
376 		 * This way, we know structures we need will not disappear
377 		 * from us
378 		 */
379 		if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
380 			sctp_transport_hold(t);
381 		else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
382 			sctp_endpoint_hold(sctp_ep(rcvr));
383 		else
384 			BUG();
385 	}
386 	return ret;
387 
388 }
389 
390 /* Handle icmp frag needed error. */
391 void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
392 			   struct sctp_transport *t, __u32 pmtu)
393 {
394 	if (!t || (t->pathmtu <= pmtu))
395 		return;
396 
397 	if (sock_owned_by_user(sk)) {
398 		asoc->pmtu_pending = 1;
399 		t->pmtu_pending = 1;
400 		return;
401 	}
402 
403 	if (!(t->param_flags & SPP_PMTUD_ENABLE))
404 		/* We can't allow retransmitting in such case, as the
405 		 * retransmission would be sized just as before, and thus we
406 		 * would get another icmp, and retransmit again.
407 		 */
408 		return;
409 
410 	/* Update transports view of the MTU. Return if no update was needed.
411 	 * If an update wasn't needed/possible, it also doesn't make sense to
412 	 * try to retransmit now.
413 	 */
414 	if (!sctp_transport_update_pmtu(t, pmtu))
415 		return;
416 
417 	/* Update association pmtu. */
418 	sctp_assoc_sync_pmtu(asoc);
419 
420 	/* Retransmit with the new pmtu setting. */
421 	sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD);
422 }
423 
424 void sctp_icmp_redirect(struct sock *sk, struct sctp_transport *t,
425 			struct sk_buff *skb)
426 {
427 	struct dst_entry *dst;
428 
429 	if (sock_owned_by_user(sk) || !t)
430 		return;
431 	dst = sctp_transport_dst_check(t);
432 	if (dst)
433 		dst->ops->redirect(dst, sk, skb);
434 }
435 
436 /*
437  * SCTP Implementer's Guide, 2.37 ICMP handling procedures
438  *
439  * ICMP8) If the ICMP code is a "Unrecognized next header type encountered"
440  *        or a "Protocol Unreachable" treat this message as an abort
441  *        with the T bit set.
442  *
443  * This function sends an event to the state machine, which will abort the
444  * association.
445  *
446  */
447 void sctp_icmp_proto_unreachable(struct sock *sk,
448 			   struct sctp_association *asoc,
449 			   struct sctp_transport *t)
450 {
451 	if (sock_owned_by_user(sk)) {
452 		if (timer_pending(&t->proto_unreach_timer))
453 			return;
454 		else {
455 			if (!mod_timer(&t->proto_unreach_timer,
456 						jiffies + (HZ/20)))
457 				sctp_association_hold(asoc);
458 		}
459 	} else {
460 		struct net *net = sock_net(sk);
461 
462 		pr_debug("%s: unrecognized next header type "
463 			 "encountered!\n", __func__);
464 
465 		if (del_timer(&t->proto_unreach_timer))
466 			sctp_association_put(asoc);
467 
468 		sctp_do_sm(net, SCTP_EVENT_T_OTHER,
469 			   SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
470 			   asoc->state, asoc->ep, asoc, t,
471 			   GFP_ATOMIC);
472 	}
473 }
474 
475 /* Common lookup code for icmp/icmpv6 error handler. */
476 struct sock *sctp_err_lookup(struct net *net, int family, struct sk_buff *skb,
477 			     struct sctphdr *sctphdr,
478 			     struct sctp_association **app,
479 			     struct sctp_transport **tpp)
480 {
481 	struct sctp_init_chunk *chunkhdr, _chunkhdr;
482 	union sctp_addr saddr;
483 	union sctp_addr daddr;
484 	struct sctp_af *af;
485 	struct sock *sk = NULL;
486 	struct sctp_association *asoc;
487 	struct sctp_transport *transport = NULL;
488 	__u32 vtag = ntohl(sctphdr->vtag);
489 
490 	*app = NULL; *tpp = NULL;
491 
492 	af = sctp_get_af_specific(family);
493 	if (unlikely(!af)) {
494 		return NULL;
495 	}
496 
497 	/* Initialize local addresses for lookups. */
498 	af->from_skb(&saddr, skb, 1);
499 	af->from_skb(&daddr, skb, 0);
500 
501 	/* Look for an association that matches the incoming ICMP error
502 	 * packet.
503 	 */
504 	asoc = __sctp_lookup_association(net, &saddr, &daddr, &transport);
505 	if (!asoc)
506 		return NULL;
507 
508 	sk = asoc->base.sk;
509 
510 	/* RFC 4960, Appendix C. ICMP Handling
511 	 *
512 	 * ICMP6) An implementation MUST validate that the Verification Tag
513 	 * contained in the ICMP message matches the Verification Tag of
514 	 * the peer.  If the Verification Tag is not 0 and does NOT
515 	 * match, discard the ICMP message.  If it is 0 and the ICMP
516 	 * message contains enough bytes to verify that the chunk type is
517 	 * an INIT chunk and that the Initiate Tag matches the tag of the
518 	 * peer, continue with ICMP7.  If the ICMP message is too short
519 	 * or the chunk type or the Initiate Tag does not match, silently
520 	 * discard the packet.
521 	 */
522 	if (vtag == 0) {
523 		/* chunk header + first 4 octects of init header */
524 		chunkhdr = skb_header_pointer(skb, skb_transport_offset(skb) +
525 					      sizeof(struct sctphdr),
526 					      sizeof(struct sctp_chunkhdr) +
527 					      sizeof(__be32), &_chunkhdr);
528 		if (!chunkhdr ||
529 		    chunkhdr->chunk_hdr.type != SCTP_CID_INIT ||
530 		    ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag)
531 			goto out;
532 
533 	} else if (vtag != asoc->c.peer_vtag) {
534 		goto out;
535 	}
536 
537 	bh_lock_sock(sk);
538 
539 	/* If too many ICMPs get dropped on busy
540 	 * servers this needs to be solved differently.
541 	 */
542 	if (sock_owned_by_user(sk))
543 		__NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
544 
545 	*app = asoc;
546 	*tpp = transport;
547 	return sk;
548 
549 out:
550 	sctp_transport_put(transport);
551 	return NULL;
552 }
553 
554 /* Common cleanup code for icmp/icmpv6 error handler. */
555 void sctp_err_finish(struct sock *sk, struct sctp_transport *t)
556 {
557 	bh_unlock_sock(sk);
558 	sctp_transport_put(t);
559 }
560 
561 /*
562  * This routine is called by the ICMP module when it gets some
563  * sort of error condition.  If err < 0 then the socket should
564  * be closed and the error returned to the user.  If err > 0
565  * it's just the icmp type << 8 | icmp code.  After adjustment
566  * header points to the first 8 bytes of the sctp header.  We need
567  * to find the appropriate port.
568  *
569  * The locking strategy used here is very "optimistic". When
570  * someone else accesses the socket the ICMP is just dropped
571  * and for some paths there is no check at all.
572  * A more general error queue to queue errors for later handling
573  * is probably better.
574  *
575  */
576 void sctp_v4_err(struct sk_buff *skb, __u32 info)
577 {
578 	const struct iphdr *iph = (const struct iphdr *)skb->data;
579 	const int ihlen = iph->ihl * 4;
580 	const int type = icmp_hdr(skb)->type;
581 	const int code = icmp_hdr(skb)->code;
582 	struct sock *sk;
583 	struct sctp_association *asoc = NULL;
584 	struct sctp_transport *transport;
585 	struct inet_sock *inet;
586 	__u16 saveip, savesctp;
587 	int err;
588 	struct net *net = dev_net(skb->dev);
589 
590 	/* Fix up skb to look at the embedded net header. */
591 	saveip = skb->network_header;
592 	savesctp = skb->transport_header;
593 	skb_reset_network_header(skb);
594 	skb_set_transport_header(skb, ihlen);
595 	sk = sctp_err_lookup(net, AF_INET, skb, sctp_hdr(skb), &asoc, &transport);
596 	/* Put back, the original values. */
597 	skb->network_header = saveip;
598 	skb->transport_header = savesctp;
599 	if (!sk) {
600 		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
601 		return;
602 	}
603 	/* Warning:  The sock lock is held.  Remember to call
604 	 * sctp_err_finish!
605 	 */
606 
607 	switch (type) {
608 	case ICMP_PARAMETERPROB:
609 		err = EPROTO;
610 		break;
611 	case ICMP_DEST_UNREACH:
612 		if (code > NR_ICMP_UNREACH)
613 			goto out_unlock;
614 
615 		/* PMTU discovery (RFC1191) */
616 		if (ICMP_FRAG_NEEDED == code) {
617 			sctp_icmp_frag_needed(sk, asoc, transport,
618 					      SCTP_TRUNC4(info));
619 			goto out_unlock;
620 		} else {
621 			if (ICMP_PROT_UNREACH == code) {
622 				sctp_icmp_proto_unreachable(sk, asoc,
623 							    transport);
624 				goto out_unlock;
625 			}
626 		}
627 		err = icmp_err_convert[code].errno;
628 		break;
629 	case ICMP_TIME_EXCEEDED:
630 		/* Ignore any time exceeded errors due to fragment reassembly
631 		 * timeouts.
632 		 */
633 		if (ICMP_EXC_FRAGTIME == code)
634 			goto out_unlock;
635 
636 		err = EHOSTUNREACH;
637 		break;
638 	case ICMP_REDIRECT:
639 		sctp_icmp_redirect(sk, transport, skb);
640 		/* Fall through to out_unlock. */
641 	default:
642 		goto out_unlock;
643 	}
644 
645 	inet = inet_sk(sk);
646 	if (!sock_owned_by_user(sk) && inet->recverr) {
647 		sk->sk_err = err;
648 		sk->sk_error_report(sk);
649 	} else {  /* Only an error on timeout */
650 		sk->sk_err_soft = err;
651 	}
652 
653 out_unlock:
654 	sctp_err_finish(sk, transport);
655 }
656 
657 /*
658  * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
659  *
660  * This function scans all the chunks in the OOTB packet to determine if
661  * the packet should be discarded right away.  If a response might be needed
662  * for this packet, or, if further processing is possible, the packet will
663  * be queued to a proper inqueue for the next phase of handling.
664  *
665  * Output:
666  * Return 0 - If further processing is needed.
667  * Return 1 - If the packet can be discarded right away.
668  */
669 static int sctp_rcv_ootb(struct sk_buff *skb)
670 {
671 	struct sctp_chunkhdr *ch, _ch;
672 	int ch_end, offset = 0;
673 
674 	/* Scan through all the chunks in the packet.  */
675 	do {
676 		/* Make sure we have at least the header there */
677 		if (offset + sizeof(_ch) > skb->len)
678 			break;
679 
680 		ch = skb_header_pointer(skb, offset, sizeof(*ch), &_ch);
681 
682 		/* Break out if chunk length is less then minimal. */
683 		if (ntohs(ch->length) < sizeof(_ch))
684 			break;
685 
686 		ch_end = offset + SCTP_PAD4(ntohs(ch->length));
687 		if (ch_end > skb->len)
688 			break;
689 
690 		/* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the
691 		 * receiver MUST silently discard the OOTB packet and take no
692 		 * further action.
693 		 */
694 		if (SCTP_CID_ABORT == ch->type)
695 			goto discard;
696 
697 		/* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE
698 		 * chunk, the receiver should silently discard the packet
699 		 * and take no further action.
700 		 */
701 		if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type)
702 			goto discard;
703 
704 		/* RFC 4460, 2.11.2
705 		 * This will discard packets with INIT chunk bundled as
706 		 * subsequent chunks in the packet.  When INIT is first,
707 		 * the normal INIT processing will discard the chunk.
708 		 */
709 		if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data)
710 			goto discard;
711 
712 		offset = ch_end;
713 	} while (ch_end < skb->len);
714 
715 	return 0;
716 
717 discard:
718 	return 1;
719 }
720 
721 /* Insert endpoint into the hash table.  */
722 static void __sctp_hash_endpoint(struct sctp_endpoint *ep)
723 {
724 	struct net *net = sock_net(ep->base.sk);
725 	struct sctp_ep_common *epb;
726 	struct sctp_hashbucket *head;
727 
728 	epb = &ep->base;
729 
730 	epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port);
731 	head = &sctp_ep_hashtable[epb->hashent];
732 
733 	write_lock(&head->lock);
734 	hlist_add_head(&epb->node, &head->chain);
735 	write_unlock(&head->lock);
736 }
737 
738 /* Add an endpoint to the hash. Local BH-safe. */
739 void sctp_hash_endpoint(struct sctp_endpoint *ep)
740 {
741 	local_bh_disable();
742 	__sctp_hash_endpoint(ep);
743 	local_bh_enable();
744 }
745 
746 /* Remove endpoint from the hash table.  */
747 static void __sctp_unhash_endpoint(struct sctp_endpoint *ep)
748 {
749 	struct net *net = sock_net(ep->base.sk);
750 	struct sctp_hashbucket *head;
751 	struct sctp_ep_common *epb;
752 
753 	epb = &ep->base;
754 
755 	epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port);
756 
757 	head = &sctp_ep_hashtable[epb->hashent];
758 
759 	write_lock(&head->lock);
760 	hlist_del_init(&epb->node);
761 	write_unlock(&head->lock);
762 }
763 
764 /* Remove endpoint from the hash.  Local BH-safe. */
765 void sctp_unhash_endpoint(struct sctp_endpoint *ep)
766 {
767 	local_bh_disable();
768 	__sctp_unhash_endpoint(ep);
769 	local_bh_enable();
770 }
771 
772 /* Look up an endpoint. */
773 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net,
774 						const union sctp_addr *laddr)
775 {
776 	struct sctp_hashbucket *head;
777 	struct sctp_ep_common *epb;
778 	struct sctp_endpoint *ep;
779 	int hash;
780 
781 	hash = sctp_ep_hashfn(net, ntohs(laddr->v4.sin_port));
782 	head = &sctp_ep_hashtable[hash];
783 	read_lock(&head->lock);
784 	sctp_for_each_hentry(epb, &head->chain) {
785 		ep = sctp_ep(epb);
786 		if (sctp_endpoint_is_match(ep, net, laddr))
787 			goto hit;
788 	}
789 
790 	ep = sctp_sk(net->sctp.ctl_sock)->ep;
791 
792 hit:
793 	sctp_endpoint_hold(ep);
794 	read_unlock(&head->lock);
795 	return ep;
796 }
797 
798 /* rhashtable for transport */
799 struct sctp_hash_cmp_arg {
800 	const union sctp_addr	*paddr;
801 	const struct net	*net;
802 	__be16			lport;
803 };
804 
805 static inline int sctp_hash_cmp(struct rhashtable_compare_arg *arg,
806 				const void *ptr)
807 {
808 	struct sctp_transport *t = (struct sctp_transport *)ptr;
809 	const struct sctp_hash_cmp_arg *x = arg->key;
810 	int err = 1;
811 
812 	if (!sctp_cmp_addr_exact(&t->ipaddr, x->paddr))
813 		return err;
814 	if (!sctp_transport_hold(t))
815 		return err;
816 
817 	if (!net_eq(sock_net(t->asoc->base.sk), x->net))
818 		goto out;
819 	if (x->lport != htons(t->asoc->base.bind_addr.port))
820 		goto out;
821 
822 	err = 0;
823 out:
824 	sctp_transport_put(t);
825 	return err;
826 }
827 
828 static inline __u32 sctp_hash_obj(const void *data, u32 len, u32 seed)
829 {
830 	const struct sctp_transport *t = data;
831 	const union sctp_addr *paddr = &t->ipaddr;
832 	const struct net *net = sock_net(t->asoc->base.sk);
833 	__be16 lport = htons(t->asoc->base.bind_addr.port);
834 	__u32 addr;
835 
836 	if (paddr->sa.sa_family == AF_INET6)
837 		addr = jhash(&paddr->v6.sin6_addr, 16, seed);
838 	else
839 		addr = (__force __u32)paddr->v4.sin_addr.s_addr;
840 
841 	return  jhash_3words(addr, ((__force __u32)paddr->v4.sin_port) << 16 |
842 			     (__force __u32)lport, net_hash_mix(net), seed);
843 }
844 
845 static inline __u32 sctp_hash_key(const void *data, u32 len, u32 seed)
846 {
847 	const struct sctp_hash_cmp_arg *x = data;
848 	const union sctp_addr *paddr = x->paddr;
849 	const struct net *net = x->net;
850 	__be16 lport = x->lport;
851 	__u32 addr;
852 
853 	if (paddr->sa.sa_family == AF_INET6)
854 		addr = jhash(&paddr->v6.sin6_addr, 16, seed);
855 	else
856 		addr = (__force __u32)paddr->v4.sin_addr.s_addr;
857 
858 	return  jhash_3words(addr, ((__force __u32)paddr->v4.sin_port) << 16 |
859 			     (__force __u32)lport, net_hash_mix(net), seed);
860 }
861 
862 static const struct rhashtable_params sctp_hash_params = {
863 	.head_offset		= offsetof(struct sctp_transport, node),
864 	.hashfn			= sctp_hash_key,
865 	.obj_hashfn		= sctp_hash_obj,
866 	.obj_cmpfn		= sctp_hash_cmp,
867 	.automatic_shrinking	= true,
868 };
869 
870 int sctp_transport_hashtable_init(void)
871 {
872 	return rhltable_init(&sctp_transport_hashtable, &sctp_hash_params);
873 }
874 
875 void sctp_transport_hashtable_destroy(void)
876 {
877 	rhltable_destroy(&sctp_transport_hashtable);
878 }
879 
880 int sctp_hash_transport(struct sctp_transport *t)
881 {
882 	struct sctp_transport *transport;
883 	struct rhlist_head *tmp, *list;
884 	struct sctp_hash_cmp_arg arg;
885 	int err;
886 
887 	if (t->asoc->temp)
888 		return 0;
889 
890 	arg.net   = sock_net(t->asoc->base.sk);
891 	arg.paddr = &t->ipaddr;
892 	arg.lport = htons(t->asoc->base.bind_addr.port);
893 
894 	rcu_read_lock();
895 	list = rhltable_lookup(&sctp_transport_hashtable, &arg,
896 			       sctp_hash_params);
897 
898 	rhl_for_each_entry_rcu(transport, tmp, list, node)
899 		if (transport->asoc->ep == t->asoc->ep) {
900 			rcu_read_unlock();
901 			return -EEXIST;
902 		}
903 	rcu_read_unlock();
904 
905 	err = rhltable_insert_key(&sctp_transport_hashtable, &arg,
906 				  &t->node, sctp_hash_params);
907 	if (err)
908 		pr_err_once("insert transport fail, errno %d\n", err);
909 
910 	return err;
911 }
912 
913 void sctp_unhash_transport(struct sctp_transport *t)
914 {
915 	if (t->asoc->temp)
916 		return;
917 
918 	rhltable_remove(&sctp_transport_hashtable, &t->node,
919 			sctp_hash_params);
920 }
921 
922 /* return a transport with holding it */
923 struct sctp_transport *sctp_addrs_lookup_transport(
924 				struct net *net,
925 				const union sctp_addr *laddr,
926 				const union sctp_addr *paddr)
927 {
928 	struct rhlist_head *tmp, *list;
929 	struct sctp_transport *t;
930 	struct sctp_hash_cmp_arg arg = {
931 		.paddr = paddr,
932 		.net   = net,
933 		.lport = laddr->v4.sin_port,
934 	};
935 
936 	list = rhltable_lookup(&sctp_transport_hashtable, &arg,
937 			       sctp_hash_params);
938 
939 	rhl_for_each_entry_rcu(t, tmp, list, node) {
940 		if (!sctp_transport_hold(t))
941 			continue;
942 
943 		if (sctp_bind_addr_match(&t->asoc->base.bind_addr,
944 					 laddr, sctp_sk(t->asoc->base.sk)))
945 			return t;
946 		sctp_transport_put(t);
947 	}
948 
949 	return NULL;
950 }
951 
952 /* return a transport without holding it, as it's only used under sock lock */
953 struct sctp_transport *sctp_epaddr_lookup_transport(
954 				const struct sctp_endpoint *ep,
955 				const union sctp_addr *paddr)
956 {
957 	struct net *net = sock_net(ep->base.sk);
958 	struct rhlist_head *tmp, *list;
959 	struct sctp_transport *t;
960 	struct sctp_hash_cmp_arg arg = {
961 		.paddr = paddr,
962 		.net   = net,
963 		.lport = htons(ep->base.bind_addr.port),
964 	};
965 
966 	list = rhltable_lookup(&sctp_transport_hashtable, &arg,
967 			       sctp_hash_params);
968 
969 	rhl_for_each_entry_rcu(t, tmp, list, node)
970 		if (ep == t->asoc->ep)
971 			return t;
972 
973 	return NULL;
974 }
975 
976 /* Look up an association. */
977 static struct sctp_association *__sctp_lookup_association(
978 					struct net *net,
979 					const union sctp_addr *local,
980 					const union sctp_addr *peer,
981 					struct sctp_transport **pt)
982 {
983 	struct sctp_transport *t;
984 	struct sctp_association *asoc = NULL;
985 
986 	t = sctp_addrs_lookup_transport(net, local, peer);
987 	if (!t)
988 		goto out;
989 
990 	asoc = t->asoc;
991 	*pt = t;
992 
993 out:
994 	return asoc;
995 }
996 
997 /* Look up an association. protected by RCU read lock */
998 static
999 struct sctp_association *sctp_lookup_association(struct net *net,
1000 						 const union sctp_addr *laddr,
1001 						 const union sctp_addr *paddr,
1002 						 struct sctp_transport **transportp)
1003 {
1004 	struct sctp_association *asoc;
1005 
1006 	rcu_read_lock();
1007 	asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1008 	rcu_read_unlock();
1009 
1010 	return asoc;
1011 }
1012 
1013 /* Is there an association matching the given local and peer addresses? */
1014 bool sctp_has_association(struct net *net,
1015 			  const union sctp_addr *laddr,
1016 			  const union sctp_addr *paddr)
1017 {
1018 	struct sctp_transport *transport;
1019 
1020 	if (sctp_lookup_association(net, laddr, paddr, &transport)) {
1021 		sctp_transport_put(transport);
1022 		return true;
1023 	}
1024 
1025 	return false;
1026 }
1027 
1028 /*
1029  * SCTP Implementors Guide, 2.18 Handling of address
1030  * parameters within the INIT or INIT-ACK.
1031  *
1032  * D) When searching for a matching TCB upon reception of an INIT
1033  *    or INIT-ACK chunk the receiver SHOULD use not only the
1034  *    source address of the packet (containing the INIT or
1035  *    INIT-ACK) but the receiver SHOULD also use all valid
1036  *    address parameters contained within the chunk.
1037  *
1038  * 2.18.3 Solution description
1039  *
1040  * This new text clearly specifies to an implementor the need
1041  * to look within the INIT or INIT-ACK. Any implementation that
1042  * does not do this, may not be able to establish associations
1043  * in certain circumstances.
1044  *
1045  */
1046 static struct sctp_association *__sctp_rcv_init_lookup(struct net *net,
1047 	struct sk_buff *skb,
1048 	const union sctp_addr *laddr, struct sctp_transport **transportp)
1049 {
1050 	struct sctp_association *asoc;
1051 	union sctp_addr addr;
1052 	union sctp_addr *paddr = &addr;
1053 	struct sctphdr *sh = sctp_hdr(skb);
1054 	union sctp_params params;
1055 	struct sctp_init_chunk *init;
1056 	struct sctp_af *af;
1057 
1058 	/*
1059 	 * This code will NOT touch anything inside the chunk--it is
1060 	 * strictly READ-ONLY.
1061 	 *
1062 	 * RFC 2960 3  SCTP packet Format
1063 	 *
1064 	 * Multiple chunks can be bundled into one SCTP packet up to
1065 	 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN
1066 	 * COMPLETE chunks.  These chunks MUST NOT be bundled with any
1067 	 * other chunk in a packet.  See Section 6.10 for more details
1068 	 * on chunk bundling.
1069 	 */
1070 
1071 	/* Find the start of the TLVs and the end of the chunk.  This is
1072 	 * the region we search for address parameters.
1073 	 */
1074 	init = (struct sctp_init_chunk *)skb->data;
1075 
1076 	/* Walk the parameters looking for embedded addresses. */
1077 	sctp_walk_params(params, init, init_hdr.params) {
1078 
1079 		/* Note: Ignoring hostname addresses. */
1080 		af = sctp_get_af_specific(param_type2af(params.p->type));
1081 		if (!af)
1082 			continue;
1083 
1084 		af->from_addr_param(paddr, params.addr, sh->source, 0);
1085 
1086 		asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1087 		if (asoc)
1088 			return asoc;
1089 	}
1090 
1091 	return NULL;
1092 }
1093 
1094 /* ADD-IP, Section 5.2
1095  * When an endpoint receives an ASCONF Chunk from the remote peer
1096  * special procedures may be needed to identify the association the
1097  * ASCONF Chunk is associated with. To properly find the association
1098  * the following procedures SHOULD be followed:
1099  *
1100  * D2) If the association is not found, use the address found in the
1101  * Address Parameter TLV combined with the port number found in the
1102  * SCTP common header. If found proceed to rule D4.
1103  *
1104  * D2-ext) If more than one ASCONF Chunks are packed together, use the
1105  * address found in the ASCONF Address Parameter TLV of each of the
1106  * subsequent ASCONF Chunks. If found, proceed to rule D4.
1107  */
1108 static struct sctp_association *__sctp_rcv_asconf_lookup(
1109 					struct net *net,
1110 					struct sctp_chunkhdr *ch,
1111 					const union sctp_addr *laddr,
1112 					__be16 peer_port,
1113 					struct sctp_transport **transportp)
1114 {
1115 	struct sctp_addip_chunk *asconf = (struct sctp_addip_chunk *)ch;
1116 	struct sctp_af *af;
1117 	union sctp_addr_param *param;
1118 	union sctp_addr paddr;
1119 
1120 	/* Skip over the ADDIP header and find the Address parameter */
1121 	param = (union sctp_addr_param *)(asconf + 1);
1122 
1123 	af = sctp_get_af_specific(param_type2af(param->p.type));
1124 	if (unlikely(!af))
1125 		return NULL;
1126 
1127 	af->from_addr_param(&paddr, param, peer_port, 0);
1128 
1129 	return __sctp_lookup_association(net, laddr, &paddr, transportp);
1130 }
1131 
1132 
1133 /* SCTP-AUTH, Section 6.3:
1134 *    If the receiver does not find a STCB for a packet containing an AUTH
1135 *    chunk as the first chunk and not a COOKIE-ECHO chunk as the second
1136 *    chunk, it MUST use the chunks after the AUTH chunk to look up an existing
1137 *    association.
1138 *
1139 * This means that any chunks that can help us identify the association need
1140 * to be looked at to find this association.
1141 */
1142 static struct sctp_association *__sctp_rcv_walk_lookup(struct net *net,
1143 				      struct sk_buff *skb,
1144 				      const union sctp_addr *laddr,
1145 				      struct sctp_transport **transportp)
1146 {
1147 	struct sctp_association *asoc = NULL;
1148 	struct sctp_chunkhdr *ch;
1149 	int have_auth = 0;
1150 	unsigned int chunk_num = 1;
1151 	__u8 *ch_end;
1152 
1153 	/* Walk through the chunks looking for AUTH or ASCONF chunks
1154 	 * to help us find the association.
1155 	 */
1156 	ch = (struct sctp_chunkhdr *)skb->data;
1157 	do {
1158 		/* Break out if chunk length is less then minimal. */
1159 		if (ntohs(ch->length) < sizeof(*ch))
1160 			break;
1161 
1162 		ch_end = ((__u8 *)ch) + SCTP_PAD4(ntohs(ch->length));
1163 		if (ch_end > skb_tail_pointer(skb))
1164 			break;
1165 
1166 		switch (ch->type) {
1167 		case SCTP_CID_AUTH:
1168 			have_auth = chunk_num;
1169 			break;
1170 
1171 		case SCTP_CID_COOKIE_ECHO:
1172 			/* If a packet arrives containing an AUTH chunk as
1173 			 * a first chunk, a COOKIE-ECHO chunk as the second
1174 			 * chunk, and possibly more chunks after them, and
1175 			 * the receiver does not have an STCB for that
1176 			 * packet, then authentication is based on
1177 			 * the contents of the COOKIE- ECHO chunk.
1178 			 */
1179 			if (have_auth == 1 && chunk_num == 2)
1180 				return NULL;
1181 			break;
1182 
1183 		case SCTP_CID_ASCONF:
1184 			if (have_auth || net->sctp.addip_noauth)
1185 				asoc = __sctp_rcv_asconf_lookup(
1186 						net, ch, laddr,
1187 						sctp_hdr(skb)->source,
1188 						transportp);
1189 		default:
1190 			break;
1191 		}
1192 
1193 		if (asoc)
1194 			break;
1195 
1196 		ch = (struct sctp_chunkhdr *)ch_end;
1197 		chunk_num++;
1198 	} while (ch_end < skb_tail_pointer(skb));
1199 
1200 	return asoc;
1201 }
1202 
1203 /*
1204  * There are circumstances when we need to look inside the SCTP packet
1205  * for information to help us find the association.   Examples
1206  * include looking inside of INIT/INIT-ACK chunks or after the AUTH
1207  * chunks.
1208  */
1209 static struct sctp_association *__sctp_rcv_lookup_harder(struct net *net,
1210 				      struct sk_buff *skb,
1211 				      const union sctp_addr *laddr,
1212 				      struct sctp_transport **transportp)
1213 {
1214 	struct sctp_chunkhdr *ch;
1215 
1216 	/* We do not allow GSO frames here as we need to linearize and
1217 	 * then cannot guarantee frame boundaries. This shouldn't be an
1218 	 * issue as packets hitting this are mostly INIT or INIT-ACK and
1219 	 * those cannot be on GSO-style anyway.
1220 	 */
1221 	if (skb_is_gso(skb) && skb_is_gso_sctp(skb))
1222 		return NULL;
1223 
1224 	ch = (struct sctp_chunkhdr *)skb->data;
1225 
1226 	/* The code below will attempt to walk the chunk and extract
1227 	 * parameter information.  Before we do that, we need to verify
1228 	 * that the chunk length doesn't cause overflow.  Otherwise, we'll
1229 	 * walk off the end.
1230 	 */
1231 	if (SCTP_PAD4(ntohs(ch->length)) > skb->len)
1232 		return NULL;
1233 
1234 	/* If this is INIT/INIT-ACK look inside the chunk too. */
1235 	if (ch->type == SCTP_CID_INIT || ch->type == SCTP_CID_INIT_ACK)
1236 		return __sctp_rcv_init_lookup(net, skb, laddr, transportp);
1237 
1238 	return __sctp_rcv_walk_lookup(net, skb, laddr, transportp);
1239 }
1240 
1241 /* Lookup an association for an inbound skb. */
1242 static struct sctp_association *__sctp_rcv_lookup(struct net *net,
1243 				      struct sk_buff *skb,
1244 				      const union sctp_addr *paddr,
1245 				      const union sctp_addr *laddr,
1246 				      struct sctp_transport **transportp)
1247 {
1248 	struct sctp_association *asoc;
1249 
1250 	asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1251 	if (asoc)
1252 		goto out;
1253 
1254 	/* Further lookup for INIT/INIT-ACK packets.
1255 	 * SCTP Implementors Guide, 2.18 Handling of address
1256 	 * parameters within the INIT or INIT-ACK.
1257 	 */
1258 	asoc = __sctp_rcv_lookup_harder(net, skb, laddr, transportp);
1259 	if (asoc)
1260 		goto out;
1261 
1262 	if (paddr->sa.sa_family == AF_INET)
1263 		pr_debug("sctp: asoc not found for src:%pI4:%d dst:%pI4:%d\n",
1264 			 &laddr->v4.sin_addr, ntohs(laddr->v4.sin_port),
1265 			 &paddr->v4.sin_addr, ntohs(paddr->v4.sin_port));
1266 	else
1267 		pr_debug("sctp: asoc not found for src:%pI6:%d dst:%pI6:%d\n",
1268 			 &laddr->v6.sin6_addr, ntohs(laddr->v6.sin6_port),
1269 			 &paddr->v6.sin6_addr, ntohs(paddr->v6.sin6_port));
1270 
1271 out:
1272 	return asoc;
1273 }
1274