xref: /openbmc/linux/net/sctp/input.c (revision 275876e2)
1 /* SCTP kernel implementation
2  * Copyright (c) 1999-2000 Cisco, Inc.
3  * Copyright (c) 1999-2001 Motorola, Inc.
4  * Copyright (c) 2001-2003 International Business Machines, Corp.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions handle all input from the IP layer into SCTP.
12  *
13  * This SCTP implementation is free software;
14  * you can redistribute it and/or modify it under the terms of
15  * the GNU General Public License as published by
16  * the Free Software Foundation; either version 2, or (at your option)
17  * any later version.
18  *
19  * This SCTP implementation is distributed in the hope that it
20  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
21  *                 ************************
22  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
23  * See the GNU General Public License for more details.
24  *
25  * You should have received a copy of the GNU General Public License
26  * along with GNU CC; see the file COPYING.  If not, see
27  * <http://www.gnu.org/licenses/>.
28  *
29  * Please send any bug reports or fixes you make to the
30  * email address(es):
31  *    lksctp developers <linux-sctp@vger.kernel.org>
32  *
33  * Written or modified by:
34  *    La Monte H.P. Yarroll <piggy@acm.org>
35  *    Karl Knutson <karl@athena.chicago.il.us>
36  *    Xingang Guo <xingang.guo@intel.com>
37  *    Jon Grimm <jgrimm@us.ibm.com>
38  *    Hui Huang <hui.huang@nokia.com>
39  *    Daisy Chang <daisyc@us.ibm.com>
40  *    Sridhar Samudrala <sri@us.ibm.com>
41  *    Ardelle Fan <ardelle.fan@intel.com>
42  */
43 
44 #include <linux/types.h>
45 #include <linux/list.h> /* For struct list_head */
46 #include <linux/socket.h>
47 #include <linux/ip.h>
48 #include <linux/time.h> /* For struct timeval */
49 #include <linux/slab.h>
50 #include <net/ip.h>
51 #include <net/icmp.h>
52 #include <net/snmp.h>
53 #include <net/sock.h>
54 #include <net/xfrm.h>
55 #include <net/sctp/sctp.h>
56 #include <net/sctp/sm.h>
57 #include <net/sctp/checksum.h>
58 #include <net/net_namespace.h>
59 
60 /* Forward declarations for internal helpers. */
61 static int sctp_rcv_ootb(struct sk_buff *);
62 static struct sctp_association *__sctp_rcv_lookup(struct net *net,
63 				      struct sk_buff *skb,
64 				      const union sctp_addr *paddr,
65 				      const union sctp_addr *laddr,
66 				      struct sctp_transport **transportp);
67 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net,
68 						const union sctp_addr *laddr);
69 static struct sctp_association *__sctp_lookup_association(
70 					struct net *net,
71 					const union sctp_addr *local,
72 					const union sctp_addr *peer,
73 					struct sctp_transport **pt);
74 
75 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb);
76 
77 
78 /* Calculate the SCTP checksum of an SCTP packet.  */
79 static inline int sctp_rcv_checksum(struct net *net, struct sk_buff *skb)
80 {
81 	struct sctphdr *sh = sctp_hdr(skb);
82 	__le32 cmp = sh->checksum;
83 	__le32 val = sctp_compute_cksum(skb, 0);
84 
85 	if (val != cmp) {
86 		/* CRC failure, dump it. */
87 		SCTP_INC_STATS_BH(net, SCTP_MIB_CHECKSUMERRORS);
88 		return -1;
89 	}
90 	return 0;
91 }
92 
93 struct sctp_input_cb {
94 	union {
95 		struct inet_skb_parm	h4;
96 #if IS_ENABLED(CONFIG_IPV6)
97 		struct inet6_skb_parm	h6;
98 #endif
99 	} header;
100 	struct sctp_chunk *chunk;
101 };
102 #define SCTP_INPUT_CB(__skb)	((struct sctp_input_cb *)&((__skb)->cb[0]))
103 
104 /*
105  * This is the routine which IP calls when receiving an SCTP packet.
106  */
107 int sctp_rcv(struct sk_buff *skb)
108 {
109 	struct sock *sk;
110 	struct sctp_association *asoc;
111 	struct sctp_endpoint *ep = NULL;
112 	struct sctp_ep_common *rcvr;
113 	struct sctp_transport *transport = NULL;
114 	struct sctp_chunk *chunk;
115 	struct sctphdr *sh;
116 	union sctp_addr src;
117 	union sctp_addr dest;
118 	int family;
119 	struct sctp_af *af;
120 	struct net *net = dev_net(skb->dev);
121 
122 	if (skb->pkt_type != PACKET_HOST)
123 		goto discard_it;
124 
125 	SCTP_INC_STATS_BH(net, SCTP_MIB_INSCTPPACKS);
126 
127 	if (skb_linearize(skb))
128 		goto discard_it;
129 
130 	sh = sctp_hdr(skb);
131 
132 	/* Pull up the IP and SCTP headers. */
133 	__skb_pull(skb, skb_transport_offset(skb));
134 	if (skb->len < sizeof(struct sctphdr))
135 		goto discard_it;
136 	if (!sctp_checksum_disable && !skb_csum_unnecessary(skb) &&
137 		  sctp_rcv_checksum(net, skb) < 0)
138 		goto discard_it;
139 
140 	skb_pull(skb, sizeof(struct sctphdr));
141 
142 	/* Make sure we at least have chunk headers worth of data left. */
143 	if (skb->len < sizeof(struct sctp_chunkhdr))
144 		goto discard_it;
145 
146 	family = ipver2af(ip_hdr(skb)->version);
147 	af = sctp_get_af_specific(family);
148 	if (unlikely(!af))
149 		goto discard_it;
150 
151 	/* Initialize local addresses for lookups. */
152 	af->from_skb(&src, skb, 1);
153 	af->from_skb(&dest, skb, 0);
154 
155 	/* If the packet is to or from a non-unicast address,
156 	 * silently discard the packet.
157 	 *
158 	 * This is not clearly defined in the RFC except in section
159 	 * 8.4 - OOTB handling.  However, based on the book "Stream Control
160 	 * Transmission Protocol" 2.1, "It is important to note that the
161 	 * IP address of an SCTP transport address must be a routable
162 	 * unicast address.  In other words, IP multicast addresses and
163 	 * IP broadcast addresses cannot be used in an SCTP transport
164 	 * address."
165 	 */
166 	if (!af->addr_valid(&src, NULL, skb) ||
167 	    !af->addr_valid(&dest, NULL, skb))
168 		goto discard_it;
169 
170 	asoc = __sctp_rcv_lookup(net, skb, &src, &dest, &transport);
171 
172 	if (!asoc)
173 		ep = __sctp_rcv_lookup_endpoint(net, &dest);
174 
175 	/* Retrieve the common input handling substructure. */
176 	rcvr = asoc ? &asoc->base : &ep->base;
177 	sk = rcvr->sk;
178 
179 	/*
180 	 * If a frame arrives on an interface and the receiving socket is
181 	 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB
182 	 */
183 	if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb))) {
184 		if (asoc) {
185 			sctp_association_put(asoc);
186 			asoc = NULL;
187 		} else {
188 			sctp_endpoint_put(ep);
189 			ep = NULL;
190 		}
191 		sk = net->sctp.ctl_sock;
192 		ep = sctp_sk(sk)->ep;
193 		sctp_endpoint_hold(ep);
194 		rcvr = &ep->base;
195 	}
196 
197 	/*
198 	 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
199 	 * An SCTP packet is called an "out of the blue" (OOTB)
200 	 * packet if it is correctly formed, i.e., passed the
201 	 * receiver's checksum check, but the receiver is not
202 	 * able to identify the association to which this
203 	 * packet belongs.
204 	 */
205 	if (!asoc) {
206 		if (sctp_rcv_ootb(skb)) {
207 			SCTP_INC_STATS_BH(net, SCTP_MIB_OUTOFBLUES);
208 			goto discard_release;
209 		}
210 	}
211 
212 	if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family))
213 		goto discard_release;
214 	nf_reset(skb);
215 
216 	if (sk_filter(sk, skb))
217 		goto discard_release;
218 
219 	/* Create an SCTP packet structure. */
220 	chunk = sctp_chunkify(skb, asoc, sk);
221 	if (!chunk)
222 		goto discard_release;
223 	SCTP_INPUT_CB(skb)->chunk = chunk;
224 
225 	/* Remember what endpoint is to handle this packet. */
226 	chunk->rcvr = rcvr;
227 
228 	/* Remember the SCTP header. */
229 	chunk->sctp_hdr = sh;
230 
231 	/* Set the source and destination addresses of the incoming chunk.  */
232 	sctp_init_addrs(chunk, &src, &dest);
233 
234 	/* Remember where we came from.  */
235 	chunk->transport = transport;
236 
237 	/* Acquire access to the sock lock. Note: We are safe from other
238 	 * bottom halves on this lock, but a user may be in the lock too,
239 	 * so check if it is busy.
240 	 */
241 	bh_lock_sock(sk);
242 
243 	if (sk != rcvr->sk) {
244 		/* Our cached sk is different from the rcvr->sk.  This is
245 		 * because migrate()/accept() may have moved the association
246 		 * to a new socket and released all the sockets.  So now we
247 		 * are holding a lock on the old socket while the user may
248 		 * be doing something with the new socket.  Switch our veiw
249 		 * of the current sk.
250 		 */
251 		bh_unlock_sock(sk);
252 		sk = rcvr->sk;
253 		bh_lock_sock(sk);
254 	}
255 
256 	if (sock_owned_by_user(sk)) {
257 		if (sctp_add_backlog(sk, skb)) {
258 			bh_unlock_sock(sk);
259 			sctp_chunk_free(chunk);
260 			skb = NULL; /* sctp_chunk_free already freed the skb */
261 			goto discard_release;
262 		}
263 		SCTP_INC_STATS_BH(net, SCTP_MIB_IN_PKT_BACKLOG);
264 	} else {
265 		SCTP_INC_STATS_BH(net, SCTP_MIB_IN_PKT_SOFTIRQ);
266 		sctp_inq_push(&chunk->rcvr->inqueue, chunk);
267 	}
268 
269 	bh_unlock_sock(sk);
270 
271 	/* Release the asoc/ep ref we took in the lookup calls. */
272 	if (asoc)
273 		sctp_association_put(asoc);
274 	else
275 		sctp_endpoint_put(ep);
276 
277 	return 0;
278 
279 discard_it:
280 	SCTP_INC_STATS_BH(net, SCTP_MIB_IN_PKT_DISCARDS);
281 	kfree_skb(skb);
282 	return 0;
283 
284 discard_release:
285 	/* Release the asoc/ep ref we took in the lookup calls. */
286 	if (asoc)
287 		sctp_association_put(asoc);
288 	else
289 		sctp_endpoint_put(ep);
290 
291 	goto discard_it;
292 }
293 
294 /* Process the backlog queue of the socket.  Every skb on
295  * the backlog holds a ref on an association or endpoint.
296  * We hold this ref throughout the state machine to make
297  * sure that the structure we need is still around.
298  */
299 int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
300 {
301 	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
302 	struct sctp_inq *inqueue = &chunk->rcvr->inqueue;
303 	struct sctp_ep_common *rcvr = NULL;
304 	int backloged = 0;
305 
306 	rcvr = chunk->rcvr;
307 
308 	/* If the rcvr is dead then the association or endpoint
309 	 * has been deleted and we can safely drop the chunk
310 	 * and refs that we are holding.
311 	 */
312 	if (rcvr->dead) {
313 		sctp_chunk_free(chunk);
314 		goto done;
315 	}
316 
317 	if (unlikely(rcvr->sk != sk)) {
318 		/* In this case, the association moved from one socket to
319 		 * another.  We are currently sitting on the backlog of the
320 		 * old socket, so we need to move.
321 		 * However, since we are here in the process context we
322 		 * need to take make sure that the user doesn't own
323 		 * the new socket when we process the packet.
324 		 * If the new socket is user-owned, queue the chunk to the
325 		 * backlog of the new socket without dropping any refs.
326 		 * Otherwise, we can safely push the chunk on the inqueue.
327 		 */
328 
329 		sk = rcvr->sk;
330 		bh_lock_sock(sk);
331 
332 		if (sock_owned_by_user(sk)) {
333 			if (sk_add_backlog(sk, skb, sk->sk_rcvbuf))
334 				sctp_chunk_free(chunk);
335 			else
336 				backloged = 1;
337 		} else
338 			sctp_inq_push(inqueue, chunk);
339 
340 		bh_unlock_sock(sk);
341 
342 		/* If the chunk was backloged again, don't drop refs */
343 		if (backloged)
344 			return 0;
345 	} else {
346 		sctp_inq_push(inqueue, chunk);
347 	}
348 
349 done:
350 	/* Release the refs we took in sctp_add_backlog */
351 	if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
352 		sctp_association_put(sctp_assoc(rcvr));
353 	else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
354 		sctp_endpoint_put(sctp_ep(rcvr));
355 	else
356 		BUG();
357 
358 	return 0;
359 }
360 
361 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb)
362 {
363 	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
364 	struct sctp_ep_common *rcvr = chunk->rcvr;
365 	int ret;
366 
367 	ret = sk_add_backlog(sk, skb, sk->sk_rcvbuf);
368 	if (!ret) {
369 		/* Hold the assoc/ep while hanging on the backlog queue.
370 		 * This way, we know structures we need will not disappear
371 		 * from us
372 		 */
373 		if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
374 			sctp_association_hold(sctp_assoc(rcvr));
375 		else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
376 			sctp_endpoint_hold(sctp_ep(rcvr));
377 		else
378 			BUG();
379 	}
380 	return ret;
381 
382 }
383 
384 /* Handle icmp frag needed error. */
385 void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
386 			   struct sctp_transport *t, __u32 pmtu)
387 {
388 	if (!t || (t->pathmtu <= pmtu))
389 		return;
390 
391 	if (sock_owned_by_user(sk)) {
392 		asoc->pmtu_pending = 1;
393 		t->pmtu_pending = 1;
394 		return;
395 	}
396 
397 	if (t->param_flags & SPP_PMTUD_ENABLE) {
398 		/* Update transports view of the MTU */
399 		sctp_transport_update_pmtu(sk, t, pmtu);
400 
401 		/* Update association pmtu. */
402 		sctp_assoc_sync_pmtu(sk, asoc);
403 	}
404 
405 	/* Retransmit with the new pmtu setting.
406 	 * Normally, if PMTU discovery is disabled, an ICMP Fragmentation
407 	 * Needed will never be sent, but if a message was sent before
408 	 * PMTU discovery was disabled that was larger than the PMTU, it
409 	 * would not be fragmented, so it must be re-transmitted fragmented.
410 	 */
411 	sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD);
412 }
413 
414 void sctp_icmp_redirect(struct sock *sk, struct sctp_transport *t,
415 			struct sk_buff *skb)
416 {
417 	struct dst_entry *dst;
418 
419 	if (!t)
420 		return;
421 	dst = sctp_transport_dst_check(t);
422 	if (dst)
423 		dst->ops->redirect(dst, sk, skb);
424 }
425 
426 /*
427  * SCTP Implementer's Guide, 2.37 ICMP handling procedures
428  *
429  * ICMP8) If the ICMP code is a "Unrecognized next header type encountered"
430  *        or a "Protocol Unreachable" treat this message as an abort
431  *        with the T bit set.
432  *
433  * This function sends an event to the state machine, which will abort the
434  * association.
435  *
436  */
437 void sctp_icmp_proto_unreachable(struct sock *sk,
438 			   struct sctp_association *asoc,
439 			   struct sctp_transport *t)
440 {
441 	if (sock_owned_by_user(sk)) {
442 		if (timer_pending(&t->proto_unreach_timer))
443 			return;
444 		else {
445 			if (!mod_timer(&t->proto_unreach_timer,
446 						jiffies + (HZ/20)))
447 				sctp_association_hold(asoc);
448 		}
449 	} else {
450 		struct net *net = sock_net(sk);
451 
452 		pr_debug("%s: unrecognized next header type "
453 			 "encountered!\n", __func__);
454 
455 		if (del_timer(&t->proto_unreach_timer))
456 			sctp_association_put(asoc);
457 
458 		sctp_do_sm(net, SCTP_EVENT_T_OTHER,
459 			   SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
460 			   asoc->state, asoc->ep, asoc, t,
461 			   GFP_ATOMIC);
462 	}
463 }
464 
465 /* Common lookup code for icmp/icmpv6 error handler. */
466 struct sock *sctp_err_lookup(struct net *net, int family, struct sk_buff *skb,
467 			     struct sctphdr *sctphdr,
468 			     struct sctp_association **app,
469 			     struct sctp_transport **tpp)
470 {
471 	union sctp_addr saddr;
472 	union sctp_addr daddr;
473 	struct sctp_af *af;
474 	struct sock *sk = NULL;
475 	struct sctp_association *asoc;
476 	struct sctp_transport *transport = NULL;
477 	struct sctp_init_chunk *chunkhdr;
478 	__u32 vtag = ntohl(sctphdr->vtag);
479 	int len = skb->len - ((void *)sctphdr - (void *)skb->data);
480 
481 	*app = NULL; *tpp = NULL;
482 
483 	af = sctp_get_af_specific(family);
484 	if (unlikely(!af)) {
485 		return NULL;
486 	}
487 
488 	/* Initialize local addresses for lookups. */
489 	af->from_skb(&saddr, skb, 1);
490 	af->from_skb(&daddr, skb, 0);
491 
492 	/* Look for an association that matches the incoming ICMP error
493 	 * packet.
494 	 */
495 	asoc = __sctp_lookup_association(net, &saddr, &daddr, &transport);
496 	if (!asoc)
497 		return NULL;
498 
499 	sk = asoc->base.sk;
500 
501 	/* RFC 4960, Appendix C. ICMP Handling
502 	 *
503 	 * ICMP6) An implementation MUST validate that the Verification Tag
504 	 * contained in the ICMP message matches the Verification Tag of
505 	 * the peer.  If the Verification Tag is not 0 and does NOT
506 	 * match, discard the ICMP message.  If it is 0 and the ICMP
507 	 * message contains enough bytes to verify that the chunk type is
508 	 * an INIT chunk and that the Initiate Tag matches the tag of the
509 	 * peer, continue with ICMP7.  If the ICMP message is too short
510 	 * or the chunk type or the Initiate Tag does not match, silently
511 	 * discard the packet.
512 	 */
513 	if (vtag == 0) {
514 		chunkhdr = (void *)sctphdr + sizeof(struct sctphdr);
515 		if (len < sizeof(struct sctphdr) + sizeof(sctp_chunkhdr_t)
516 			  + sizeof(__be32) ||
517 		    chunkhdr->chunk_hdr.type != SCTP_CID_INIT ||
518 		    ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag) {
519 			goto out;
520 		}
521 	} else if (vtag != asoc->c.peer_vtag) {
522 		goto out;
523 	}
524 
525 	bh_lock_sock(sk);
526 
527 	/* If too many ICMPs get dropped on busy
528 	 * servers this needs to be solved differently.
529 	 */
530 	if (sock_owned_by_user(sk))
531 		NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
532 
533 	*app = asoc;
534 	*tpp = transport;
535 	return sk;
536 
537 out:
538 	sctp_association_put(asoc);
539 	return NULL;
540 }
541 
542 /* Common cleanup code for icmp/icmpv6 error handler. */
543 void sctp_err_finish(struct sock *sk, struct sctp_association *asoc)
544 {
545 	bh_unlock_sock(sk);
546 	sctp_association_put(asoc);
547 }
548 
549 /*
550  * This routine is called by the ICMP module when it gets some
551  * sort of error condition.  If err < 0 then the socket should
552  * be closed and the error returned to the user.  If err > 0
553  * it's just the icmp type << 8 | icmp code.  After adjustment
554  * header points to the first 8 bytes of the sctp header.  We need
555  * to find the appropriate port.
556  *
557  * The locking strategy used here is very "optimistic". When
558  * someone else accesses the socket the ICMP is just dropped
559  * and for some paths there is no check at all.
560  * A more general error queue to queue errors for later handling
561  * is probably better.
562  *
563  */
564 void sctp_v4_err(struct sk_buff *skb, __u32 info)
565 {
566 	const struct iphdr *iph = (const struct iphdr *)skb->data;
567 	const int ihlen = iph->ihl * 4;
568 	const int type = icmp_hdr(skb)->type;
569 	const int code = icmp_hdr(skb)->code;
570 	struct sock *sk;
571 	struct sctp_association *asoc = NULL;
572 	struct sctp_transport *transport;
573 	struct inet_sock *inet;
574 	__u16 saveip, savesctp;
575 	int err;
576 	struct net *net = dev_net(skb->dev);
577 
578 	/* Fix up skb to look at the embedded net header. */
579 	saveip = skb->network_header;
580 	savesctp = skb->transport_header;
581 	skb_reset_network_header(skb);
582 	skb_set_transport_header(skb, ihlen);
583 	sk = sctp_err_lookup(net, AF_INET, skb, sctp_hdr(skb), &asoc, &transport);
584 	/* Put back, the original values. */
585 	skb->network_header = saveip;
586 	skb->transport_header = savesctp;
587 	if (!sk) {
588 		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
589 		return;
590 	}
591 	/* Warning:  The sock lock is held.  Remember to call
592 	 * sctp_err_finish!
593 	 */
594 
595 	switch (type) {
596 	case ICMP_PARAMETERPROB:
597 		err = EPROTO;
598 		break;
599 	case ICMP_DEST_UNREACH:
600 		if (code > NR_ICMP_UNREACH)
601 			goto out_unlock;
602 
603 		/* PMTU discovery (RFC1191) */
604 		if (ICMP_FRAG_NEEDED == code) {
605 			sctp_icmp_frag_needed(sk, asoc, transport, info);
606 			goto out_unlock;
607 		} else {
608 			if (ICMP_PROT_UNREACH == code) {
609 				sctp_icmp_proto_unreachable(sk, asoc,
610 							    transport);
611 				goto out_unlock;
612 			}
613 		}
614 		err = icmp_err_convert[code].errno;
615 		break;
616 	case ICMP_TIME_EXCEEDED:
617 		/* Ignore any time exceeded errors due to fragment reassembly
618 		 * timeouts.
619 		 */
620 		if (ICMP_EXC_FRAGTIME == code)
621 			goto out_unlock;
622 
623 		err = EHOSTUNREACH;
624 		break;
625 	case ICMP_REDIRECT:
626 		sctp_icmp_redirect(sk, transport, skb);
627 		/* Fall through to out_unlock. */
628 	default:
629 		goto out_unlock;
630 	}
631 
632 	inet = inet_sk(sk);
633 	if (!sock_owned_by_user(sk) && inet->recverr) {
634 		sk->sk_err = err;
635 		sk->sk_error_report(sk);
636 	} else {  /* Only an error on timeout */
637 		sk->sk_err_soft = err;
638 	}
639 
640 out_unlock:
641 	sctp_err_finish(sk, asoc);
642 }
643 
644 /*
645  * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
646  *
647  * This function scans all the chunks in the OOTB packet to determine if
648  * the packet should be discarded right away.  If a response might be needed
649  * for this packet, or, if further processing is possible, the packet will
650  * be queued to a proper inqueue for the next phase of handling.
651  *
652  * Output:
653  * Return 0 - If further processing is needed.
654  * Return 1 - If the packet can be discarded right away.
655  */
656 static int sctp_rcv_ootb(struct sk_buff *skb)
657 {
658 	sctp_chunkhdr_t *ch;
659 	__u8 *ch_end;
660 
661 	ch = (sctp_chunkhdr_t *) skb->data;
662 
663 	/* Scan through all the chunks in the packet.  */
664 	do {
665 		/* Break out if chunk length is less then minimal. */
666 		if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t))
667 			break;
668 
669 		ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length));
670 		if (ch_end > skb_tail_pointer(skb))
671 			break;
672 
673 		/* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the
674 		 * receiver MUST silently discard the OOTB packet and take no
675 		 * further action.
676 		 */
677 		if (SCTP_CID_ABORT == ch->type)
678 			goto discard;
679 
680 		/* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE
681 		 * chunk, the receiver should silently discard the packet
682 		 * and take no further action.
683 		 */
684 		if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type)
685 			goto discard;
686 
687 		/* RFC 4460, 2.11.2
688 		 * This will discard packets with INIT chunk bundled as
689 		 * subsequent chunks in the packet.  When INIT is first,
690 		 * the normal INIT processing will discard the chunk.
691 		 */
692 		if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data)
693 			goto discard;
694 
695 		ch = (sctp_chunkhdr_t *) ch_end;
696 	} while (ch_end < skb_tail_pointer(skb));
697 
698 	return 0;
699 
700 discard:
701 	return 1;
702 }
703 
704 /* Insert endpoint into the hash table.  */
705 static void __sctp_hash_endpoint(struct sctp_endpoint *ep)
706 {
707 	struct net *net = sock_net(ep->base.sk);
708 	struct sctp_ep_common *epb;
709 	struct sctp_hashbucket *head;
710 
711 	epb = &ep->base;
712 
713 	epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port);
714 	head = &sctp_ep_hashtable[epb->hashent];
715 
716 	write_lock(&head->lock);
717 	hlist_add_head(&epb->node, &head->chain);
718 	write_unlock(&head->lock);
719 }
720 
721 /* Add an endpoint to the hash. Local BH-safe. */
722 void sctp_hash_endpoint(struct sctp_endpoint *ep)
723 {
724 	local_bh_disable();
725 	__sctp_hash_endpoint(ep);
726 	local_bh_enable();
727 }
728 
729 /* Remove endpoint from the hash table.  */
730 static void __sctp_unhash_endpoint(struct sctp_endpoint *ep)
731 {
732 	struct net *net = sock_net(ep->base.sk);
733 	struct sctp_hashbucket *head;
734 	struct sctp_ep_common *epb;
735 
736 	epb = &ep->base;
737 
738 	epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port);
739 
740 	head = &sctp_ep_hashtable[epb->hashent];
741 
742 	write_lock(&head->lock);
743 	hlist_del_init(&epb->node);
744 	write_unlock(&head->lock);
745 }
746 
747 /* Remove endpoint from the hash.  Local BH-safe. */
748 void sctp_unhash_endpoint(struct sctp_endpoint *ep)
749 {
750 	local_bh_disable();
751 	__sctp_unhash_endpoint(ep);
752 	local_bh_enable();
753 }
754 
755 /* Look up an endpoint. */
756 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net,
757 						const union sctp_addr *laddr)
758 {
759 	struct sctp_hashbucket *head;
760 	struct sctp_ep_common *epb;
761 	struct sctp_endpoint *ep;
762 	int hash;
763 
764 	hash = sctp_ep_hashfn(net, ntohs(laddr->v4.sin_port));
765 	head = &sctp_ep_hashtable[hash];
766 	read_lock(&head->lock);
767 	sctp_for_each_hentry(epb, &head->chain) {
768 		ep = sctp_ep(epb);
769 		if (sctp_endpoint_is_match(ep, net, laddr))
770 			goto hit;
771 	}
772 
773 	ep = sctp_sk(net->sctp.ctl_sock)->ep;
774 
775 hit:
776 	sctp_endpoint_hold(ep);
777 	read_unlock(&head->lock);
778 	return ep;
779 }
780 
781 /* Insert association into the hash table.  */
782 static void __sctp_hash_established(struct sctp_association *asoc)
783 {
784 	struct net *net = sock_net(asoc->base.sk);
785 	struct sctp_ep_common *epb;
786 	struct sctp_hashbucket *head;
787 
788 	epb = &asoc->base;
789 
790 	/* Calculate which chain this entry will belong to. */
791 	epb->hashent = sctp_assoc_hashfn(net, epb->bind_addr.port,
792 					 asoc->peer.port);
793 
794 	head = &sctp_assoc_hashtable[epb->hashent];
795 
796 	write_lock(&head->lock);
797 	hlist_add_head(&epb->node, &head->chain);
798 	write_unlock(&head->lock);
799 }
800 
801 /* Add an association to the hash. Local BH-safe. */
802 void sctp_hash_established(struct sctp_association *asoc)
803 {
804 	if (asoc->temp)
805 		return;
806 
807 	local_bh_disable();
808 	__sctp_hash_established(asoc);
809 	local_bh_enable();
810 }
811 
812 /* Remove association from the hash table.  */
813 static void __sctp_unhash_established(struct sctp_association *asoc)
814 {
815 	struct net *net = sock_net(asoc->base.sk);
816 	struct sctp_hashbucket *head;
817 	struct sctp_ep_common *epb;
818 
819 	epb = &asoc->base;
820 
821 	epb->hashent = sctp_assoc_hashfn(net, epb->bind_addr.port,
822 					 asoc->peer.port);
823 
824 	head = &sctp_assoc_hashtable[epb->hashent];
825 
826 	write_lock(&head->lock);
827 	hlist_del_init(&epb->node);
828 	write_unlock(&head->lock);
829 }
830 
831 /* Remove association from the hash table.  Local BH-safe. */
832 void sctp_unhash_established(struct sctp_association *asoc)
833 {
834 	if (asoc->temp)
835 		return;
836 
837 	local_bh_disable();
838 	__sctp_unhash_established(asoc);
839 	local_bh_enable();
840 }
841 
842 /* Look up an association. */
843 static struct sctp_association *__sctp_lookup_association(
844 					struct net *net,
845 					const union sctp_addr *local,
846 					const union sctp_addr *peer,
847 					struct sctp_transport **pt)
848 {
849 	struct sctp_hashbucket *head;
850 	struct sctp_ep_common *epb;
851 	struct sctp_association *asoc;
852 	struct sctp_transport *transport;
853 	int hash;
854 
855 	/* Optimize here for direct hit, only listening connections can
856 	 * have wildcards anyways.
857 	 */
858 	hash = sctp_assoc_hashfn(net, ntohs(local->v4.sin_port),
859 				 ntohs(peer->v4.sin_port));
860 	head = &sctp_assoc_hashtable[hash];
861 	read_lock(&head->lock);
862 	sctp_for_each_hentry(epb, &head->chain) {
863 		asoc = sctp_assoc(epb);
864 		transport = sctp_assoc_is_match(asoc, net, local, peer);
865 		if (transport)
866 			goto hit;
867 	}
868 
869 	read_unlock(&head->lock);
870 
871 	return NULL;
872 
873 hit:
874 	*pt = transport;
875 	sctp_association_hold(asoc);
876 	read_unlock(&head->lock);
877 	return asoc;
878 }
879 
880 /* Look up an association. BH-safe. */
881 static
882 struct sctp_association *sctp_lookup_association(struct net *net,
883 						 const union sctp_addr *laddr,
884 						 const union sctp_addr *paddr,
885 						 struct sctp_transport **transportp)
886 {
887 	struct sctp_association *asoc;
888 
889 	local_bh_disable();
890 	asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
891 	local_bh_enable();
892 
893 	return asoc;
894 }
895 
896 /* Is there an association matching the given local and peer addresses? */
897 int sctp_has_association(struct net *net,
898 			 const union sctp_addr *laddr,
899 			 const union sctp_addr *paddr)
900 {
901 	struct sctp_association *asoc;
902 	struct sctp_transport *transport;
903 
904 	if ((asoc = sctp_lookup_association(net, laddr, paddr, &transport))) {
905 		sctp_association_put(asoc);
906 		return 1;
907 	}
908 
909 	return 0;
910 }
911 
912 /*
913  * SCTP Implementors Guide, 2.18 Handling of address
914  * parameters within the INIT or INIT-ACK.
915  *
916  * D) When searching for a matching TCB upon reception of an INIT
917  *    or INIT-ACK chunk the receiver SHOULD use not only the
918  *    source address of the packet (containing the INIT or
919  *    INIT-ACK) but the receiver SHOULD also use all valid
920  *    address parameters contained within the chunk.
921  *
922  * 2.18.3 Solution description
923  *
924  * This new text clearly specifies to an implementor the need
925  * to look within the INIT or INIT-ACK. Any implementation that
926  * does not do this, may not be able to establish associations
927  * in certain circumstances.
928  *
929  */
930 static struct sctp_association *__sctp_rcv_init_lookup(struct net *net,
931 	struct sk_buff *skb,
932 	const union sctp_addr *laddr, struct sctp_transport **transportp)
933 {
934 	struct sctp_association *asoc;
935 	union sctp_addr addr;
936 	union sctp_addr *paddr = &addr;
937 	struct sctphdr *sh = sctp_hdr(skb);
938 	union sctp_params params;
939 	sctp_init_chunk_t *init;
940 	struct sctp_transport *transport;
941 	struct sctp_af *af;
942 
943 	/*
944 	 * This code will NOT touch anything inside the chunk--it is
945 	 * strictly READ-ONLY.
946 	 *
947 	 * RFC 2960 3  SCTP packet Format
948 	 *
949 	 * Multiple chunks can be bundled into one SCTP packet up to
950 	 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN
951 	 * COMPLETE chunks.  These chunks MUST NOT be bundled with any
952 	 * other chunk in a packet.  See Section 6.10 for more details
953 	 * on chunk bundling.
954 	 */
955 
956 	/* Find the start of the TLVs and the end of the chunk.  This is
957 	 * the region we search for address parameters.
958 	 */
959 	init = (sctp_init_chunk_t *)skb->data;
960 
961 	/* Walk the parameters looking for embedded addresses. */
962 	sctp_walk_params(params, init, init_hdr.params) {
963 
964 		/* Note: Ignoring hostname addresses. */
965 		af = sctp_get_af_specific(param_type2af(params.p->type));
966 		if (!af)
967 			continue;
968 
969 		af->from_addr_param(paddr, params.addr, sh->source, 0);
970 
971 		asoc = __sctp_lookup_association(net, laddr, paddr, &transport);
972 		if (asoc)
973 			return asoc;
974 	}
975 
976 	return NULL;
977 }
978 
979 /* ADD-IP, Section 5.2
980  * When an endpoint receives an ASCONF Chunk from the remote peer
981  * special procedures may be needed to identify the association the
982  * ASCONF Chunk is associated with. To properly find the association
983  * the following procedures SHOULD be followed:
984  *
985  * D2) If the association is not found, use the address found in the
986  * Address Parameter TLV combined with the port number found in the
987  * SCTP common header. If found proceed to rule D4.
988  *
989  * D2-ext) If more than one ASCONF Chunks are packed together, use the
990  * address found in the ASCONF Address Parameter TLV of each of the
991  * subsequent ASCONF Chunks. If found, proceed to rule D4.
992  */
993 static struct sctp_association *__sctp_rcv_asconf_lookup(
994 					struct net *net,
995 					sctp_chunkhdr_t *ch,
996 					const union sctp_addr *laddr,
997 					__be16 peer_port,
998 					struct sctp_transport **transportp)
999 {
1000 	sctp_addip_chunk_t *asconf = (struct sctp_addip_chunk *)ch;
1001 	struct sctp_af *af;
1002 	union sctp_addr_param *param;
1003 	union sctp_addr paddr;
1004 
1005 	/* Skip over the ADDIP header and find the Address parameter */
1006 	param = (union sctp_addr_param *)(asconf + 1);
1007 
1008 	af = sctp_get_af_specific(param_type2af(param->p.type));
1009 	if (unlikely(!af))
1010 		return NULL;
1011 
1012 	af->from_addr_param(&paddr, param, peer_port, 0);
1013 
1014 	return __sctp_lookup_association(net, laddr, &paddr, transportp);
1015 }
1016 
1017 
1018 /* SCTP-AUTH, Section 6.3:
1019 *    If the receiver does not find a STCB for a packet containing an AUTH
1020 *    chunk as the first chunk and not a COOKIE-ECHO chunk as the second
1021 *    chunk, it MUST use the chunks after the AUTH chunk to look up an existing
1022 *    association.
1023 *
1024 * This means that any chunks that can help us identify the association need
1025 * to be looked at to find this association.
1026 */
1027 static struct sctp_association *__sctp_rcv_walk_lookup(struct net *net,
1028 				      struct sk_buff *skb,
1029 				      const union sctp_addr *laddr,
1030 				      struct sctp_transport **transportp)
1031 {
1032 	struct sctp_association *asoc = NULL;
1033 	sctp_chunkhdr_t *ch;
1034 	int have_auth = 0;
1035 	unsigned int chunk_num = 1;
1036 	__u8 *ch_end;
1037 
1038 	/* Walk through the chunks looking for AUTH or ASCONF chunks
1039 	 * to help us find the association.
1040 	 */
1041 	ch = (sctp_chunkhdr_t *) skb->data;
1042 	do {
1043 		/* Break out if chunk length is less then minimal. */
1044 		if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t))
1045 			break;
1046 
1047 		ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length));
1048 		if (ch_end > skb_tail_pointer(skb))
1049 			break;
1050 
1051 		switch (ch->type) {
1052 		case SCTP_CID_AUTH:
1053 			have_auth = chunk_num;
1054 			break;
1055 
1056 		case SCTP_CID_COOKIE_ECHO:
1057 			/* If a packet arrives containing an AUTH chunk as
1058 			 * a first chunk, a COOKIE-ECHO chunk as the second
1059 			 * chunk, and possibly more chunks after them, and
1060 			 * the receiver does not have an STCB for that
1061 			 * packet, then authentication is based on
1062 			 * the contents of the COOKIE- ECHO chunk.
1063 			 */
1064 			if (have_auth == 1 && chunk_num == 2)
1065 				return NULL;
1066 			break;
1067 
1068 		case SCTP_CID_ASCONF:
1069 			if (have_auth || net->sctp.addip_noauth)
1070 				asoc = __sctp_rcv_asconf_lookup(
1071 						net, ch, laddr,
1072 						sctp_hdr(skb)->source,
1073 						transportp);
1074 		default:
1075 			break;
1076 		}
1077 
1078 		if (asoc)
1079 			break;
1080 
1081 		ch = (sctp_chunkhdr_t *) ch_end;
1082 		chunk_num++;
1083 	} while (ch_end < skb_tail_pointer(skb));
1084 
1085 	return asoc;
1086 }
1087 
1088 /*
1089  * There are circumstances when we need to look inside the SCTP packet
1090  * for information to help us find the association.   Examples
1091  * include looking inside of INIT/INIT-ACK chunks or after the AUTH
1092  * chunks.
1093  */
1094 static struct sctp_association *__sctp_rcv_lookup_harder(struct net *net,
1095 				      struct sk_buff *skb,
1096 				      const union sctp_addr *laddr,
1097 				      struct sctp_transport **transportp)
1098 {
1099 	sctp_chunkhdr_t *ch;
1100 
1101 	ch = (sctp_chunkhdr_t *) skb->data;
1102 
1103 	/* The code below will attempt to walk the chunk and extract
1104 	 * parameter information.  Before we do that, we need to verify
1105 	 * that the chunk length doesn't cause overflow.  Otherwise, we'll
1106 	 * walk off the end.
1107 	 */
1108 	if (WORD_ROUND(ntohs(ch->length)) > skb->len)
1109 		return NULL;
1110 
1111 	/* If this is INIT/INIT-ACK look inside the chunk too. */
1112 	if (ch->type == SCTP_CID_INIT || ch->type == SCTP_CID_INIT_ACK)
1113 		return __sctp_rcv_init_lookup(net, skb, laddr, transportp);
1114 
1115 	return __sctp_rcv_walk_lookup(net, skb, laddr, transportp);
1116 }
1117 
1118 /* Lookup an association for an inbound skb. */
1119 static struct sctp_association *__sctp_rcv_lookup(struct net *net,
1120 				      struct sk_buff *skb,
1121 				      const union sctp_addr *paddr,
1122 				      const union sctp_addr *laddr,
1123 				      struct sctp_transport **transportp)
1124 {
1125 	struct sctp_association *asoc;
1126 
1127 	asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1128 
1129 	/* Further lookup for INIT/INIT-ACK packets.
1130 	 * SCTP Implementors Guide, 2.18 Handling of address
1131 	 * parameters within the INIT or INIT-ACK.
1132 	 */
1133 	if (!asoc)
1134 		asoc = __sctp_rcv_lookup_harder(net, skb, laddr, transportp);
1135 
1136 	return asoc;
1137 }
1138