1 /* SCTP kernel implementation 2 * Copyright (c) 1999-2000 Cisco, Inc. 3 * Copyright (c) 1999-2001 Motorola, Inc. 4 * Copyright (c) 2001-2003 International Business Machines, Corp. 5 * Copyright (c) 2001 Intel Corp. 6 * Copyright (c) 2001 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel implementation 10 * 11 * These functions handle all input from the IP layer into SCTP. 12 * 13 * This SCTP implementation is free software; 14 * you can redistribute it and/or modify it under the terms of 15 * the GNU General Public License as published by 16 * the Free Software Foundation; either version 2, or (at your option) 17 * any later version. 18 * 19 * This SCTP implementation is distributed in the hope that it 20 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 21 * ************************ 22 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 23 * See the GNU General Public License for more details. 24 * 25 * You should have received a copy of the GNU General Public License 26 * along with GNU CC; see the file COPYING. If not, see 27 * <http://www.gnu.org/licenses/>. 28 * 29 * Please send any bug reports or fixes you make to the 30 * email address(es): 31 * lksctp developers <linux-sctp@vger.kernel.org> 32 * 33 * Written or modified by: 34 * La Monte H.P. Yarroll <piggy@acm.org> 35 * Karl Knutson <karl@athena.chicago.il.us> 36 * Xingang Guo <xingang.guo@intel.com> 37 * Jon Grimm <jgrimm@us.ibm.com> 38 * Hui Huang <hui.huang@nokia.com> 39 * Daisy Chang <daisyc@us.ibm.com> 40 * Sridhar Samudrala <sri@us.ibm.com> 41 * Ardelle Fan <ardelle.fan@intel.com> 42 */ 43 44 #include <linux/types.h> 45 #include <linux/list.h> /* For struct list_head */ 46 #include <linux/socket.h> 47 #include <linux/ip.h> 48 #include <linux/time.h> /* For struct timeval */ 49 #include <linux/slab.h> 50 #include <net/ip.h> 51 #include <net/icmp.h> 52 #include <net/snmp.h> 53 #include <net/sock.h> 54 #include <net/xfrm.h> 55 #include <net/sctp/sctp.h> 56 #include <net/sctp/sm.h> 57 #include <net/sctp/checksum.h> 58 #include <net/net_namespace.h> 59 60 /* Forward declarations for internal helpers. */ 61 static int sctp_rcv_ootb(struct sk_buff *); 62 static struct sctp_association *__sctp_rcv_lookup(struct net *net, 63 struct sk_buff *skb, 64 const union sctp_addr *paddr, 65 const union sctp_addr *laddr, 66 struct sctp_transport **transportp); 67 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net, 68 const union sctp_addr *laddr); 69 static struct sctp_association *__sctp_lookup_association( 70 struct net *net, 71 const union sctp_addr *local, 72 const union sctp_addr *peer, 73 struct sctp_transport **pt); 74 75 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb); 76 77 78 /* Calculate the SCTP checksum of an SCTP packet. */ 79 static inline int sctp_rcv_checksum(struct net *net, struct sk_buff *skb) 80 { 81 struct sctphdr *sh = sctp_hdr(skb); 82 __le32 cmp = sh->checksum; 83 __le32 val = sctp_compute_cksum(skb, 0); 84 85 if (val != cmp) { 86 /* CRC failure, dump it. */ 87 SCTP_INC_STATS_BH(net, SCTP_MIB_CHECKSUMERRORS); 88 return -1; 89 } 90 return 0; 91 } 92 93 struct sctp_input_cb { 94 union { 95 struct inet_skb_parm h4; 96 #if IS_ENABLED(CONFIG_IPV6) 97 struct inet6_skb_parm h6; 98 #endif 99 } header; 100 struct sctp_chunk *chunk; 101 }; 102 #define SCTP_INPUT_CB(__skb) ((struct sctp_input_cb *)&((__skb)->cb[0])) 103 104 /* 105 * This is the routine which IP calls when receiving an SCTP packet. 106 */ 107 int sctp_rcv(struct sk_buff *skb) 108 { 109 struct sock *sk; 110 struct sctp_association *asoc; 111 struct sctp_endpoint *ep = NULL; 112 struct sctp_ep_common *rcvr; 113 struct sctp_transport *transport = NULL; 114 struct sctp_chunk *chunk; 115 struct sctphdr *sh; 116 union sctp_addr src; 117 union sctp_addr dest; 118 int family; 119 struct sctp_af *af; 120 struct net *net = dev_net(skb->dev); 121 122 if (skb->pkt_type != PACKET_HOST) 123 goto discard_it; 124 125 SCTP_INC_STATS_BH(net, SCTP_MIB_INSCTPPACKS); 126 127 if (skb_linearize(skb)) 128 goto discard_it; 129 130 sh = sctp_hdr(skb); 131 132 /* Pull up the IP and SCTP headers. */ 133 __skb_pull(skb, skb_transport_offset(skb)); 134 if (skb->len < sizeof(struct sctphdr)) 135 goto discard_it; 136 if (!sctp_checksum_disable && !skb_csum_unnecessary(skb) && 137 sctp_rcv_checksum(net, skb) < 0) 138 goto discard_it; 139 140 skb_pull(skb, sizeof(struct sctphdr)); 141 142 /* Make sure we at least have chunk headers worth of data left. */ 143 if (skb->len < sizeof(struct sctp_chunkhdr)) 144 goto discard_it; 145 146 family = ipver2af(ip_hdr(skb)->version); 147 af = sctp_get_af_specific(family); 148 if (unlikely(!af)) 149 goto discard_it; 150 151 /* Initialize local addresses for lookups. */ 152 af->from_skb(&src, skb, 1); 153 af->from_skb(&dest, skb, 0); 154 155 /* If the packet is to or from a non-unicast address, 156 * silently discard the packet. 157 * 158 * This is not clearly defined in the RFC except in section 159 * 8.4 - OOTB handling. However, based on the book "Stream Control 160 * Transmission Protocol" 2.1, "It is important to note that the 161 * IP address of an SCTP transport address must be a routable 162 * unicast address. In other words, IP multicast addresses and 163 * IP broadcast addresses cannot be used in an SCTP transport 164 * address." 165 */ 166 if (!af->addr_valid(&src, NULL, skb) || 167 !af->addr_valid(&dest, NULL, skb)) 168 goto discard_it; 169 170 asoc = __sctp_rcv_lookup(net, skb, &src, &dest, &transport); 171 172 if (!asoc) 173 ep = __sctp_rcv_lookup_endpoint(net, &dest); 174 175 /* Retrieve the common input handling substructure. */ 176 rcvr = asoc ? &asoc->base : &ep->base; 177 sk = rcvr->sk; 178 179 /* 180 * If a frame arrives on an interface and the receiving socket is 181 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB 182 */ 183 if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb))) { 184 if (asoc) { 185 sctp_association_put(asoc); 186 asoc = NULL; 187 } else { 188 sctp_endpoint_put(ep); 189 ep = NULL; 190 } 191 sk = net->sctp.ctl_sock; 192 ep = sctp_sk(sk)->ep; 193 sctp_endpoint_hold(ep); 194 rcvr = &ep->base; 195 } 196 197 /* 198 * RFC 2960, 8.4 - Handle "Out of the blue" Packets. 199 * An SCTP packet is called an "out of the blue" (OOTB) 200 * packet if it is correctly formed, i.e., passed the 201 * receiver's checksum check, but the receiver is not 202 * able to identify the association to which this 203 * packet belongs. 204 */ 205 if (!asoc) { 206 if (sctp_rcv_ootb(skb)) { 207 SCTP_INC_STATS_BH(net, SCTP_MIB_OUTOFBLUES); 208 goto discard_release; 209 } 210 } 211 212 if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family)) 213 goto discard_release; 214 nf_reset(skb); 215 216 if (sk_filter(sk, skb)) 217 goto discard_release; 218 219 /* Create an SCTP packet structure. */ 220 chunk = sctp_chunkify(skb, asoc, sk); 221 if (!chunk) 222 goto discard_release; 223 SCTP_INPUT_CB(skb)->chunk = chunk; 224 225 /* Remember what endpoint is to handle this packet. */ 226 chunk->rcvr = rcvr; 227 228 /* Remember the SCTP header. */ 229 chunk->sctp_hdr = sh; 230 231 /* Set the source and destination addresses of the incoming chunk. */ 232 sctp_init_addrs(chunk, &src, &dest); 233 234 /* Remember where we came from. */ 235 chunk->transport = transport; 236 237 /* Acquire access to the sock lock. Note: We are safe from other 238 * bottom halves on this lock, but a user may be in the lock too, 239 * so check if it is busy. 240 */ 241 bh_lock_sock(sk); 242 243 if (sk != rcvr->sk) { 244 /* Our cached sk is different from the rcvr->sk. This is 245 * because migrate()/accept() may have moved the association 246 * to a new socket and released all the sockets. So now we 247 * are holding a lock on the old socket while the user may 248 * be doing something with the new socket. Switch our veiw 249 * of the current sk. 250 */ 251 bh_unlock_sock(sk); 252 sk = rcvr->sk; 253 bh_lock_sock(sk); 254 } 255 256 if (sock_owned_by_user(sk)) { 257 if (sctp_add_backlog(sk, skb)) { 258 bh_unlock_sock(sk); 259 sctp_chunk_free(chunk); 260 skb = NULL; /* sctp_chunk_free already freed the skb */ 261 goto discard_release; 262 } 263 SCTP_INC_STATS_BH(net, SCTP_MIB_IN_PKT_BACKLOG); 264 } else { 265 SCTP_INC_STATS_BH(net, SCTP_MIB_IN_PKT_SOFTIRQ); 266 sctp_inq_push(&chunk->rcvr->inqueue, chunk); 267 } 268 269 bh_unlock_sock(sk); 270 271 /* Release the asoc/ep ref we took in the lookup calls. */ 272 if (asoc) 273 sctp_association_put(asoc); 274 else 275 sctp_endpoint_put(ep); 276 277 return 0; 278 279 discard_it: 280 SCTP_INC_STATS_BH(net, SCTP_MIB_IN_PKT_DISCARDS); 281 kfree_skb(skb); 282 return 0; 283 284 discard_release: 285 /* Release the asoc/ep ref we took in the lookup calls. */ 286 if (asoc) 287 sctp_association_put(asoc); 288 else 289 sctp_endpoint_put(ep); 290 291 goto discard_it; 292 } 293 294 /* Process the backlog queue of the socket. Every skb on 295 * the backlog holds a ref on an association or endpoint. 296 * We hold this ref throughout the state machine to make 297 * sure that the structure we need is still around. 298 */ 299 int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb) 300 { 301 struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk; 302 struct sctp_inq *inqueue = &chunk->rcvr->inqueue; 303 struct sctp_ep_common *rcvr = NULL; 304 int backloged = 0; 305 306 rcvr = chunk->rcvr; 307 308 /* If the rcvr is dead then the association or endpoint 309 * has been deleted and we can safely drop the chunk 310 * and refs that we are holding. 311 */ 312 if (rcvr->dead) { 313 sctp_chunk_free(chunk); 314 goto done; 315 } 316 317 if (unlikely(rcvr->sk != sk)) { 318 /* In this case, the association moved from one socket to 319 * another. We are currently sitting on the backlog of the 320 * old socket, so we need to move. 321 * However, since we are here in the process context we 322 * need to take make sure that the user doesn't own 323 * the new socket when we process the packet. 324 * If the new socket is user-owned, queue the chunk to the 325 * backlog of the new socket without dropping any refs. 326 * Otherwise, we can safely push the chunk on the inqueue. 327 */ 328 329 sk = rcvr->sk; 330 bh_lock_sock(sk); 331 332 if (sock_owned_by_user(sk)) { 333 if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) 334 sctp_chunk_free(chunk); 335 else 336 backloged = 1; 337 } else 338 sctp_inq_push(inqueue, chunk); 339 340 bh_unlock_sock(sk); 341 342 /* If the chunk was backloged again, don't drop refs */ 343 if (backloged) 344 return 0; 345 } else { 346 sctp_inq_push(inqueue, chunk); 347 } 348 349 done: 350 /* Release the refs we took in sctp_add_backlog */ 351 if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type) 352 sctp_association_put(sctp_assoc(rcvr)); 353 else if (SCTP_EP_TYPE_SOCKET == rcvr->type) 354 sctp_endpoint_put(sctp_ep(rcvr)); 355 else 356 BUG(); 357 358 return 0; 359 } 360 361 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb) 362 { 363 struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk; 364 struct sctp_ep_common *rcvr = chunk->rcvr; 365 int ret; 366 367 ret = sk_add_backlog(sk, skb, sk->sk_rcvbuf); 368 if (!ret) { 369 /* Hold the assoc/ep while hanging on the backlog queue. 370 * This way, we know structures we need will not disappear 371 * from us 372 */ 373 if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type) 374 sctp_association_hold(sctp_assoc(rcvr)); 375 else if (SCTP_EP_TYPE_SOCKET == rcvr->type) 376 sctp_endpoint_hold(sctp_ep(rcvr)); 377 else 378 BUG(); 379 } 380 return ret; 381 382 } 383 384 /* Handle icmp frag needed error. */ 385 void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc, 386 struct sctp_transport *t, __u32 pmtu) 387 { 388 if (!t || (t->pathmtu <= pmtu)) 389 return; 390 391 if (sock_owned_by_user(sk)) { 392 asoc->pmtu_pending = 1; 393 t->pmtu_pending = 1; 394 return; 395 } 396 397 if (t->param_flags & SPP_PMTUD_ENABLE) { 398 /* Update transports view of the MTU */ 399 sctp_transport_update_pmtu(sk, t, pmtu); 400 401 /* Update association pmtu. */ 402 sctp_assoc_sync_pmtu(sk, asoc); 403 } 404 405 /* Retransmit with the new pmtu setting. 406 * Normally, if PMTU discovery is disabled, an ICMP Fragmentation 407 * Needed will never be sent, but if a message was sent before 408 * PMTU discovery was disabled that was larger than the PMTU, it 409 * would not be fragmented, so it must be re-transmitted fragmented. 410 */ 411 sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD); 412 } 413 414 void sctp_icmp_redirect(struct sock *sk, struct sctp_transport *t, 415 struct sk_buff *skb) 416 { 417 struct dst_entry *dst; 418 419 if (!t) 420 return; 421 dst = sctp_transport_dst_check(t); 422 if (dst) 423 dst->ops->redirect(dst, sk, skb); 424 } 425 426 /* 427 * SCTP Implementer's Guide, 2.37 ICMP handling procedures 428 * 429 * ICMP8) If the ICMP code is a "Unrecognized next header type encountered" 430 * or a "Protocol Unreachable" treat this message as an abort 431 * with the T bit set. 432 * 433 * This function sends an event to the state machine, which will abort the 434 * association. 435 * 436 */ 437 void sctp_icmp_proto_unreachable(struct sock *sk, 438 struct sctp_association *asoc, 439 struct sctp_transport *t) 440 { 441 if (sock_owned_by_user(sk)) { 442 if (timer_pending(&t->proto_unreach_timer)) 443 return; 444 else { 445 if (!mod_timer(&t->proto_unreach_timer, 446 jiffies + (HZ/20))) 447 sctp_association_hold(asoc); 448 } 449 } else { 450 struct net *net = sock_net(sk); 451 452 pr_debug("%s: unrecognized next header type " 453 "encountered!\n", __func__); 454 455 if (del_timer(&t->proto_unreach_timer)) 456 sctp_association_put(asoc); 457 458 sctp_do_sm(net, SCTP_EVENT_T_OTHER, 459 SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH), 460 asoc->state, asoc->ep, asoc, t, 461 GFP_ATOMIC); 462 } 463 } 464 465 /* Common lookup code for icmp/icmpv6 error handler. */ 466 struct sock *sctp_err_lookup(struct net *net, int family, struct sk_buff *skb, 467 struct sctphdr *sctphdr, 468 struct sctp_association **app, 469 struct sctp_transport **tpp) 470 { 471 union sctp_addr saddr; 472 union sctp_addr daddr; 473 struct sctp_af *af; 474 struct sock *sk = NULL; 475 struct sctp_association *asoc; 476 struct sctp_transport *transport = NULL; 477 struct sctp_init_chunk *chunkhdr; 478 __u32 vtag = ntohl(sctphdr->vtag); 479 int len = skb->len - ((void *)sctphdr - (void *)skb->data); 480 481 *app = NULL; *tpp = NULL; 482 483 af = sctp_get_af_specific(family); 484 if (unlikely(!af)) { 485 return NULL; 486 } 487 488 /* Initialize local addresses for lookups. */ 489 af->from_skb(&saddr, skb, 1); 490 af->from_skb(&daddr, skb, 0); 491 492 /* Look for an association that matches the incoming ICMP error 493 * packet. 494 */ 495 asoc = __sctp_lookup_association(net, &saddr, &daddr, &transport); 496 if (!asoc) 497 return NULL; 498 499 sk = asoc->base.sk; 500 501 /* RFC 4960, Appendix C. ICMP Handling 502 * 503 * ICMP6) An implementation MUST validate that the Verification Tag 504 * contained in the ICMP message matches the Verification Tag of 505 * the peer. If the Verification Tag is not 0 and does NOT 506 * match, discard the ICMP message. If it is 0 and the ICMP 507 * message contains enough bytes to verify that the chunk type is 508 * an INIT chunk and that the Initiate Tag matches the tag of the 509 * peer, continue with ICMP7. If the ICMP message is too short 510 * or the chunk type or the Initiate Tag does not match, silently 511 * discard the packet. 512 */ 513 if (vtag == 0) { 514 chunkhdr = (void *)sctphdr + sizeof(struct sctphdr); 515 if (len < sizeof(struct sctphdr) + sizeof(sctp_chunkhdr_t) 516 + sizeof(__be32) || 517 chunkhdr->chunk_hdr.type != SCTP_CID_INIT || 518 ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag) { 519 goto out; 520 } 521 } else if (vtag != asoc->c.peer_vtag) { 522 goto out; 523 } 524 525 bh_lock_sock(sk); 526 527 /* If too many ICMPs get dropped on busy 528 * servers this needs to be solved differently. 529 */ 530 if (sock_owned_by_user(sk)) 531 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS); 532 533 *app = asoc; 534 *tpp = transport; 535 return sk; 536 537 out: 538 sctp_association_put(asoc); 539 return NULL; 540 } 541 542 /* Common cleanup code for icmp/icmpv6 error handler. */ 543 void sctp_err_finish(struct sock *sk, struct sctp_association *asoc) 544 { 545 bh_unlock_sock(sk); 546 sctp_association_put(asoc); 547 } 548 549 /* 550 * This routine is called by the ICMP module when it gets some 551 * sort of error condition. If err < 0 then the socket should 552 * be closed and the error returned to the user. If err > 0 553 * it's just the icmp type << 8 | icmp code. After adjustment 554 * header points to the first 8 bytes of the sctp header. We need 555 * to find the appropriate port. 556 * 557 * The locking strategy used here is very "optimistic". When 558 * someone else accesses the socket the ICMP is just dropped 559 * and for some paths there is no check at all. 560 * A more general error queue to queue errors for later handling 561 * is probably better. 562 * 563 */ 564 void sctp_v4_err(struct sk_buff *skb, __u32 info) 565 { 566 const struct iphdr *iph = (const struct iphdr *)skb->data; 567 const int ihlen = iph->ihl * 4; 568 const int type = icmp_hdr(skb)->type; 569 const int code = icmp_hdr(skb)->code; 570 struct sock *sk; 571 struct sctp_association *asoc = NULL; 572 struct sctp_transport *transport; 573 struct inet_sock *inet; 574 __u16 saveip, savesctp; 575 int err; 576 struct net *net = dev_net(skb->dev); 577 578 /* Fix up skb to look at the embedded net header. */ 579 saveip = skb->network_header; 580 savesctp = skb->transport_header; 581 skb_reset_network_header(skb); 582 skb_set_transport_header(skb, ihlen); 583 sk = sctp_err_lookup(net, AF_INET, skb, sctp_hdr(skb), &asoc, &transport); 584 /* Put back, the original values. */ 585 skb->network_header = saveip; 586 skb->transport_header = savesctp; 587 if (!sk) { 588 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS); 589 return; 590 } 591 /* Warning: The sock lock is held. Remember to call 592 * sctp_err_finish! 593 */ 594 595 switch (type) { 596 case ICMP_PARAMETERPROB: 597 err = EPROTO; 598 break; 599 case ICMP_DEST_UNREACH: 600 if (code > NR_ICMP_UNREACH) 601 goto out_unlock; 602 603 /* PMTU discovery (RFC1191) */ 604 if (ICMP_FRAG_NEEDED == code) { 605 sctp_icmp_frag_needed(sk, asoc, transport, info); 606 goto out_unlock; 607 } else { 608 if (ICMP_PROT_UNREACH == code) { 609 sctp_icmp_proto_unreachable(sk, asoc, 610 transport); 611 goto out_unlock; 612 } 613 } 614 err = icmp_err_convert[code].errno; 615 break; 616 case ICMP_TIME_EXCEEDED: 617 /* Ignore any time exceeded errors due to fragment reassembly 618 * timeouts. 619 */ 620 if (ICMP_EXC_FRAGTIME == code) 621 goto out_unlock; 622 623 err = EHOSTUNREACH; 624 break; 625 case ICMP_REDIRECT: 626 sctp_icmp_redirect(sk, transport, skb); 627 /* Fall through to out_unlock. */ 628 default: 629 goto out_unlock; 630 } 631 632 inet = inet_sk(sk); 633 if (!sock_owned_by_user(sk) && inet->recverr) { 634 sk->sk_err = err; 635 sk->sk_error_report(sk); 636 } else { /* Only an error on timeout */ 637 sk->sk_err_soft = err; 638 } 639 640 out_unlock: 641 sctp_err_finish(sk, asoc); 642 } 643 644 /* 645 * RFC 2960, 8.4 - Handle "Out of the blue" Packets. 646 * 647 * This function scans all the chunks in the OOTB packet to determine if 648 * the packet should be discarded right away. If a response might be needed 649 * for this packet, or, if further processing is possible, the packet will 650 * be queued to a proper inqueue for the next phase of handling. 651 * 652 * Output: 653 * Return 0 - If further processing is needed. 654 * Return 1 - If the packet can be discarded right away. 655 */ 656 static int sctp_rcv_ootb(struct sk_buff *skb) 657 { 658 sctp_chunkhdr_t *ch; 659 __u8 *ch_end; 660 661 ch = (sctp_chunkhdr_t *) skb->data; 662 663 /* Scan through all the chunks in the packet. */ 664 do { 665 /* Break out if chunk length is less then minimal. */ 666 if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t)) 667 break; 668 669 ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length)); 670 if (ch_end > skb_tail_pointer(skb)) 671 break; 672 673 /* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the 674 * receiver MUST silently discard the OOTB packet and take no 675 * further action. 676 */ 677 if (SCTP_CID_ABORT == ch->type) 678 goto discard; 679 680 /* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE 681 * chunk, the receiver should silently discard the packet 682 * and take no further action. 683 */ 684 if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type) 685 goto discard; 686 687 /* RFC 4460, 2.11.2 688 * This will discard packets with INIT chunk bundled as 689 * subsequent chunks in the packet. When INIT is first, 690 * the normal INIT processing will discard the chunk. 691 */ 692 if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data) 693 goto discard; 694 695 ch = (sctp_chunkhdr_t *) ch_end; 696 } while (ch_end < skb_tail_pointer(skb)); 697 698 return 0; 699 700 discard: 701 return 1; 702 } 703 704 /* Insert endpoint into the hash table. */ 705 static void __sctp_hash_endpoint(struct sctp_endpoint *ep) 706 { 707 struct net *net = sock_net(ep->base.sk); 708 struct sctp_ep_common *epb; 709 struct sctp_hashbucket *head; 710 711 epb = &ep->base; 712 713 epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port); 714 head = &sctp_ep_hashtable[epb->hashent]; 715 716 write_lock(&head->lock); 717 hlist_add_head(&epb->node, &head->chain); 718 write_unlock(&head->lock); 719 } 720 721 /* Add an endpoint to the hash. Local BH-safe. */ 722 void sctp_hash_endpoint(struct sctp_endpoint *ep) 723 { 724 local_bh_disable(); 725 __sctp_hash_endpoint(ep); 726 local_bh_enable(); 727 } 728 729 /* Remove endpoint from the hash table. */ 730 static void __sctp_unhash_endpoint(struct sctp_endpoint *ep) 731 { 732 struct net *net = sock_net(ep->base.sk); 733 struct sctp_hashbucket *head; 734 struct sctp_ep_common *epb; 735 736 epb = &ep->base; 737 738 epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port); 739 740 head = &sctp_ep_hashtable[epb->hashent]; 741 742 write_lock(&head->lock); 743 hlist_del_init(&epb->node); 744 write_unlock(&head->lock); 745 } 746 747 /* Remove endpoint from the hash. Local BH-safe. */ 748 void sctp_unhash_endpoint(struct sctp_endpoint *ep) 749 { 750 local_bh_disable(); 751 __sctp_unhash_endpoint(ep); 752 local_bh_enable(); 753 } 754 755 /* Look up an endpoint. */ 756 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net, 757 const union sctp_addr *laddr) 758 { 759 struct sctp_hashbucket *head; 760 struct sctp_ep_common *epb; 761 struct sctp_endpoint *ep; 762 int hash; 763 764 hash = sctp_ep_hashfn(net, ntohs(laddr->v4.sin_port)); 765 head = &sctp_ep_hashtable[hash]; 766 read_lock(&head->lock); 767 sctp_for_each_hentry(epb, &head->chain) { 768 ep = sctp_ep(epb); 769 if (sctp_endpoint_is_match(ep, net, laddr)) 770 goto hit; 771 } 772 773 ep = sctp_sk(net->sctp.ctl_sock)->ep; 774 775 hit: 776 sctp_endpoint_hold(ep); 777 read_unlock(&head->lock); 778 return ep; 779 } 780 781 /* Insert association into the hash table. */ 782 static void __sctp_hash_established(struct sctp_association *asoc) 783 { 784 struct net *net = sock_net(asoc->base.sk); 785 struct sctp_ep_common *epb; 786 struct sctp_hashbucket *head; 787 788 epb = &asoc->base; 789 790 /* Calculate which chain this entry will belong to. */ 791 epb->hashent = sctp_assoc_hashfn(net, epb->bind_addr.port, 792 asoc->peer.port); 793 794 head = &sctp_assoc_hashtable[epb->hashent]; 795 796 write_lock(&head->lock); 797 hlist_add_head(&epb->node, &head->chain); 798 write_unlock(&head->lock); 799 } 800 801 /* Add an association to the hash. Local BH-safe. */ 802 void sctp_hash_established(struct sctp_association *asoc) 803 { 804 if (asoc->temp) 805 return; 806 807 local_bh_disable(); 808 __sctp_hash_established(asoc); 809 local_bh_enable(); 810 } 811 812 /* Remove association from the hash table. */ 813 static void __sctp_unhash_established(struct sctp_association *asoc) 814 { 815 struct net *net = sock_net(asoc->base.sk); 816 struct sctp_hashbucket *head; 817 struct sctp_ep_common *epb; 818 819 epb = &asoc->base; 820 821 epb->hashent = sctp_assoc_hashfn(net, epb->bind_addr.port, 822 asoc->peer.port); 823 824 head = &sctp_assoc_hashtable[epb->hashent]; 825 826 write_lock(&head->lock); 827 hlist_del_init(&epb->node); 828 write_unlock(&head->lock); 829 } 830 831 /* Remove association from the hash table. Local BH-safe. */ 832 void sctp_unhash_established(struct sctp_association *asoc) 833 { 834 if (asoc->temp) 835 return; 836 837 local_bh_disable(); 838 __sctp_unhash_established(asoc); 839 local_bh_enable(); 840 } 841 842 /* Look up an association. */ 843 static struct sctp_association *__sctp_lookup_association( 844 struct net *net, 845 const union sctp_addr *local, 846 const union sctp_addr *peer, 847 struct sctp_transport **pt) 848 { 849 struct sctp_hashbucket *head; 850 struct sctp_ep_common *epb; 851 struct sctp_association *asoc; 852 struct sctp_transport *transport; 853 int hash; 854 855 /* Optimize here for direct hit, only listening connections can 856 * have wildcards anyways. 857 */ 858 hash = sctp_assoc_hashfn(net, ntohs(local->v4.sin_port), 859 ntohs(peer->v4.sin_port)); 860 head = &sctp_assoc_hashtable[hash]; 861 read_lock(&head->lock); 862 sctp_for_each_hentry(epb, &head->chain) { 863 asoc = sctp_assoc(epb); 864 transport = sctp_assoc_is_match(asoc, net, local, peer); 865 if (transport) 866 goto hit; 867 } 868 869 read_unlock(&head->lock); 870 871 return NULL; 872 873 hit: 874 *pt = transport; 875 sctp_association_hold(asoc); 876 read_unlock(&head->lock); 877 return asoc; 878 } 879 880 /* Look up an association. BH-safe. */ 881 static 882 struct sctp_association *sctp_lookup_association(struct net *net, 883 const union sctp_addr *laddr, 884 const union sctp_addr *paddr, 885 struct sctp_transport **transportp) 886 { 887 struct sctp_association *asoc; 888 889 local_bh_disable(); 890 asoc = __sctp_lookup_association(net, laddr, paddr, transportp); 891 local_bh_enable(); 892 893 return asoc; 894 } 895 896 /* Is there an association matching the given local and peer addresses? */ 897 int sctp_has_association(struct net *net, 898 const union sctp_addr *laddr, 899 const union sctp_addr *paddr) 900 { 901 struct sctp_association *asoc; 902 struct sctp_transport *transport; 903 904 if ((asoc = sctp_lookup_association(net, laddr, paddr, &transport))) { 905 sctp_association_put(asoc); 906 return 1; 907 } 908 909 return 0; 910 } 911 912 /* 913 * SCTP Implementors Guide, 2.18 Handling of address 914 * parameters within the INIT or INIT-ACK. 915 * 916 * D) When searching for a matching TCB upon reception of an INIT 917 * or INIT-ACK chunk the receiver SHOULD use not only the 918 * source address of the packet (containing the INIT or 919 * INIT-ACK) but the receiver SHOULD also use all valid 920 * address parameters contained within the chunk. 921 * 922 * 2.18.3 Solution description 923 * 924 * This new text clearly specifies to an implementor the need 925 * to look within the INIT or INIT-ACK. Any implementation that 926 * does not do this, may not be able to establish associations 927 * in certain circumstances. 928 * 929 */ 930 static struct sctp_association *__sctp_rcv_init_lookup(struct net *net, 931 struct sk_buff *skb, 932 const union sctp_addr *laddr, struct sctp_transport **transportp) 933 { 934 struct sctp_association *asoc; 935 union sctp_addr addr; 936 union sctp_addr *paddr = &addr; 937 struct sctphdr *sh = sctp_hdr(skb); 938 union sctp_params params; 939 sctp_init_chunk_t *init; 940 struct sctp_transport *transport; 941 struct sctp_af *af; 942 943 /* 944 * This code will NOT touch anything inside the chunk--it is 945 * strictly READ-ONLY. 946 * 947 * RFC 2960 3 SCTP packet Format 948 * 949 * Multiple chunks can be bundled into one SCTP packet up to 950 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN 951 * COMPLETE chunks. These chunks MUST NOT be bundled with any 952 * other chunk in a packet. See Section 6.10 for more details 953 * on chunk bundling. 954 */ 955 956 /* Find the start of the TLVs and the end of the chunk. This is 957 * the region we search for address parameters. 958 */ 959 init = (sctp_init_chunk_t *)skb->data; 960 961 /* Walk the parameters looking for embedded addresses. */ 962 sctp_walk_params(params, init, init_hdr.params) { 963 964 /* Note: Ignoring hostname addresses. */ 965 af = sctp_get_af_specific(param_type2af(params.p->type)); 966 if (!af) 967 continue; 968 969 af->from_addr_param(paddr, params.addr, sh->source, 0); 970 971 asoc = __sctp_lookup_association(net, laddr, paddr, &transport); 972 if (asoc) 973 return asoc; 974 } 975 976 return NULL; 977 } 978 979 /* ADD-IP, Section 5.2 980 * When an endpoint receives an ASCONF Chunk from the remote peer 981 * special procedures may be needed to identify the association the 982 * ASCONF Chunk is associated with. To properly find the association 983 * the following procedures SHOULD be followed: 984 * 985 * D2) If the association is not found, use the address found in the 986 * Address Parameter TLV combined with the port number found in the 987 * SCTP common header. If found proceed to rule D4. 988 * 989 * D2-ext) If more than one ASCONF Chunks are packed together, use the 990 * address found in the ASCONF Address Parameter TLV of each of the 991 * subsequent ASCONF Chunks. If found, proceed to rule D4. 992 */ 993 static struct sctp_association *__sctp_rcv_asconf_lookup( 994 struct net *net, 995 sctp_chunkhdr_t *ch, 996 const union sctp_addr *laddr, 997 __be16 peer_port, 998 struct sctp_transport **transportp) 999 { 1000 sctp_addip_chunk_t *asconf = (struct sctp_addip_chunk *)ch; 1001 struct sctp_af *af; 1002 union sctp_addr_param *param; 1003 union sctp_addr paddr; 1004 1005 /* Skip over the ADDIP header and find the Address parameter */ 1006 param = (union sctp_addr_param *)(asconf + 1); 1007 1008 af = sctp_get_af_specific(param_type2af(param->p.type)); 1009 if (unlikely(!af)) 1010 return NULL; 1011 1012 af->from_addr_param(&paddr, param, peer_port, 0); 1013 1014 return __sctp_lookup_association(net, laddr, &paddr, transportp); 1015 } 1016 1017 1018 /* SCTP-AUTH, Section 6.3: 1019 * If the receiver does not find a STCB for a packet containing an AUTH 1020 * chunk as the first chunk and not a COOKIE-ECHO chunk as the second 1021 * chunk, it MUST use the chunks after the AUTH chunk to look up an existing 1022 * association. 1023 * 1024 * This means that any chunks that can help us identify the association need 1025 * to be looked at to find this association. 1026 */ 1027 static struct sctp_association *__sctp_rcv_walk_lookup(struct net *net, 1028 struct sk_buff *skb, 1029 const union sctp_addr *laddr, 1030 struct sctp_transport **transportp) 1031 { 1032 struct sctp_association *asoc = NULL; 1033 sctp_chunkhdr_t *ch; 1034 int have_auth = 0; 1035 unsigned int chunk_num = 1; 1036 __u8 *ch_end; 1037 1038 /* Walk through the chunks looking for AUTH or ASCONF chunks 1039 * to help us find the association. 1040 */ 1041 ch = (sctp_chunkhdr_t *) skb->data; 1042 do { 1043 /* Break out if chunk length is less then minimal. */ 1044 if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t)) 1045 break; 1046 1047 ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length)); 1048 if (ch_end > skb_tail_pointer(skb)) 1049 break; 1050 1051 switch (ch->type) { 1052 case SCTP_CID_AUTH: 1053 have_auth = chunk_num; 1054 break; 1055 1056 case SCTP_CID_COOKIE_ECHO: 1057 /* If a packet arrives containing an AUTH chunk as 1058 * a first chunk, a COOKIE-ECHO chunk as the second 1059 * chunk, and possibly more chunks after them, and 1060 * the receiver does not have an STCB for that 1061 * packet, then authentication is based on 1062 * the contents of the COOKIE- ECHO chunk. 1063 */ 1064 if (have_auth == 1 && chunk_num == 2) 1065 return NULL; 1066 break; 1067 1068 case SCTP_CID_ASCONF: 1069 if (have_auth || net->sctp.addip_noauth) 1070 asoc = __sctp_rcv_asconf_lookup( 1071 net, ch, laddr, 1072 sctp_hdr(skb)->source, 1073 transportp); 1074 default: 1075 break; 1076 } 1077 1078 if (asoc) 1079 break; 1080 1081 ch = (sctp_chunkhdr_t *) ch_end; 1082 chunk_num++; 1083 } while (ch_end < skb_tail_pointer(skb)); 1084 1085 return asoc; 1086 } 1087 1088 /* 1089 * There are circumstances when we need to look inside the SCTP packet 1090 * for information to help us find the association. Examples 1091 * include looking inside of INIT/INIT-ACK chunks or after the AUTH 1092 * chunks. 1093 */ 1094 static struct sctp_association *__sctp_rcv_lookup_harder(struct net *net, 1095 struct sk_buff *skb, 1096 const union sctp_addr *laddr, 1097 struct sctp_transport **transportp) 1098 { 1099 sctp_chunkhdr_t *ch; 1100 1101 ch = (sctp_chunkhdr_t *) skb->data; 1102 1103 /* The code below will attempt to walk the chunk and extract 1104 * parameter information. Before we do that, we need to verify 1105 * that the chunk length doesn't cause overflow. Otherwise, we'll 1106 * walk off the end. 1107 */ 1108 if (WORD_ROUND(ntohs(ch->length)) > skb->len) 1109 return NULL; 1110 1111 /* If this is INIT/INIT-ACK look inside the chunk too. */ 1112 if (ch->type == SCTP_CID_INIT || ch->type == SCTP_CID_INIT_ACK) 1113 return __sctp_rcv_init_lookup(net, skb, laddr, transportp); 1114 1115 return __sctp_rcv_walk_lookup(net, skb, laddr, transportp); 1116 } 1117 1118 /* Lookup an association for an inbound skb. */ 1119 static struct sctp_association *__sctp_rcv_lookup(struct net *net, 1120 struct sk_buff *skb, 1121 const union sctp_addr *paddr, 1122 const union sctp_addr *laddr, 1123 struct sctp_transport **transportp) 1124 { 1125 struct sctp_association *asoc; 1126 1127 asoc = __sctp_lookup_association(net, laddr, paddr, transportp); 1128 1129 /* Further lookup for INIT/INIT-ACK packets. 1130 * SCTP Implementors Guide, 2.18 Handling of address 1131 * parameters within the INIT or INIT-ACK. 1132 */ 1133 if (!asoc) 1134 asoc = __sctp_rcv_lookup_harder(net, skb, laddr, transportp); 1135 1136 return asoc; 1137 } 1138