xref: /openbmc/linux/net/sctp/input.c (revision 1da177e4)
1 /* SCTP kernel reference Implementation
2  * Copyright (c) 1999-2000 Cisco, Inc.
3  * Copyright (c) 1999-2001 Motorola, Inc.
4  * Copyright (c) 2001-2003 International Business Machines, Corp.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel reference Implementation
10  *
11  * These functions handle all input from the IP layer into SCTP.
12  *
13  * The SCTP reference implementation is free software;
14  * you can redistribute it and/or modify it under the terms of
15  * the GNU General Public License as published by
16  * the Free Software Foundation; either version 2, or (at your option)
17  * any later version.
18  *
19  * The SCTP reference implementation is distributed in the hope that it
20  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
21  *                 ************************
22  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
23  * See the GNU General Public License for more details.
24  *
25  * You should have received a copy of the GNU General Public License
26  * along with GNU CC; see the file COPYING.  If not, write to
27  * the Free Software Foundation, 59 Temple Place - Suite 330,
28  * Boston, MA 02111-1307, USA.
29  *
30  * Please send any bug reports or fixes you make to the
31  * email address(es):
32  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
33  *
34  * Or submit a bug report through the following website:
35  *    http://www.sf.net/projects/lksctp
36  *
37  * Written or modified by:
38  *    La Monte H.P. Yarroll <piggy@acm.org>
39  *    Karl Knutson <karl@athena.chicago.il.us>
40  *    Xingang Guo <xingang.guo@intel.com>
41  *    Jon Grimm <jgrimm@us.ibm.com>
42  *    Hui Huang <hui.huang@nokia.com>
43  *    Daisy Chang <daisyc@us.ibm.com>
44  *    Sridhar Samudrala <sri@us.ibm.com>
45  *    Ardelle Fan <ardelle.fan@intel.com>
46  *
47  * Any bugs reported given to us we will try to fix... any fixes shared will
48  * be incorporated into the next SCTP release.
49  */
50 
51 #include <linux/types.h>
52 #include <linux/list.h> /* For struct list_head */
53 #include <linux/socket.h>
54 #include <linux/ip.h>
55 #include <linux/time.h> /* For struct timeval */
56 #include <net/ip.h>
57 #include <net/icmp.h>
58 #include <net/snmp.h>
59 #include <net/sock.h>
60 #include <net/xfrm.h>
61 #include <net/sctp/sctp.h>
62 #include <net/sctp/sm.h>
63 
64 /* Forward declarations for internal helpers. */
65 static int sctp_rcv_ootb(struct sk_buff *);
66 static struct sctp_association *__sctp_rcv_lookup(struct sk_buff *skb,
67 				      const union sctp_addr *laddr,
68 				      const union sctp_addr *paddr,
69 				      struct sctp_transport **transportp);
70 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(const union sctp_addr *laddr);
71 static struct sctp_association *__sctp_lookup_association(
72 					const union sctp_addr *local,
73 					const union sctp_addr *peer,
74 					struct sctp_transport **pt);
75 
76 
77 /* Calculate the SCTP checksum of an SCTP packet.  */
78 static inline int sctp_rcv_checksum(struct sk_buff *skb)
79 {
80 	struct sctphdr *sh;
81 	__u32 cmp, val;
82 	struct sk_buff *list = skb_shinfo(skb)->frag_list;
83 
84 	sh = (struct sctphdr *) skb->h.raw;
85 	cmp = ntohl(sh->checksum);
86 
87 	val = sctp_start_cksum((__u8 *)sh, skb_headlen(skb));
88 
89 	for (; list; list = list->next)
90 		val = sctp_update_cksum((__u8 *)list->data, skb_headlen(list),
91 					val);
92 
93 	val = sctp_end_cksum(val);
94 
95 	if (val != cmp) {
96 		/* CRC failure, dump it. */
97 		SCTP_INC_STATS_BH(SCTP_MIB_CHECKSUMERRORS);
98 		return -1;
99 	}
100 	return 0;
101 }
102 
103 /* The free routine for skbuffs that sctp receives */
104 static void sctp_rfree(struct sk_buff *skb)
105 {
106 	atomic_sub(sizeof(struct sctp_chunk),&skb->sk->sk_rmem_alloc);
107 	sock_rfree(skb);
108 }
109 
110 /* The ownership wrapper routine to do receive buffer accounting */
111 static void sctp_rcv_set_owner_r(struct sk_buff *skb, struct sock *sk)
112 {
113 	skb_set_owner_r(skb,sk);
114 	skb->destructor = sctp_rfree;
115 	atomic_add(sizeof(struct sctp_chunk),&sk->sk_rmem_alloc);
116 }
117 
118 /*
119  * This is the routine which IP calls when receiving an SCTP packet.
120  */
121 int sctp_rcv(struct sk_buff *skb)
122 {
123 	struct sock *sk;
124 	struct sctp_association *asoc;
125 	struct sctp_endpoint *ep = NULL;
126 	struct sctp_ep_common *rcvr;
127 	struct sctp_transport *transport = NULL;
128 	struct sctp_chunk *chunk;
129 	struct sctphdr *sh;
130 	union sctp_addr src;
131 	union sctp_addr dest;
132 	int family;
133 	struct sctp_af *af;
134 	int ret = 0;
135 
136 	if (skb->pkt_type!=PACKET_HOST)
137 		goto discard_it;
138 
139 	SCTP_INC_STATS_BH(SCTP_MIB_INSCTPPACKS);
140 
141 	sh = (struct sctphdr *) skb->h.raw;
142 
143 	/* Pull up the IP and SCTP headers. */
144 	__skb_pull(skb, skb->h.raw - skb->data);
145 	if (skb->len < sizeof(struct sctphdr))
146 		goto discard_it;
147 	if (sctp_rcv_checksum(skb) < 0)
148 		goto discard_it;
149 
150 	skb_pull(skb, sizeof(struct sctphdr));
151 
152 	/* Make sure we at least have chunk headers worth of data left. */
153 	if (skb->len < sizeof(struct sctp_chunkhdr))
154 		goto discard_it;
155 
156 	family = ipver2af(skb->nh.iph->version);
157 	af = sctp_get_af_specific(family);
158 	if (unlikely(!af))
159 		goto discard_it;
160 
161 	/* Initialize local addresses for lookups. */
162 	af->from_skb(&src, skb, 1);
163 	af->from_skb(&dest, skb, 0);
164 
165 	/* If the packet is to or from a non-unicast address,
166 	 * silently discard the packet.
167 	 *
168 	 * This is not clearly defined in the RFC except in section
169 	 * 8.4 - OOTB handling.  However, based on the book "Stream Control
170 	 * Transmission Protocol" 2.1, "It is important to note that the
171 	 * IP address of an SCTP transport address must be a routable
172 	 * unicast address.  In other words, IP multicast addresses and
173 	 * IP broadcast addresses cannot be used in an SCTP transport
174 	 * address."
175 	 */
176 	if (!af->addr_valid(&src, NULL) || !af->addr_valid(&dest, NULL))
177 		goto discard_it;
178 
179 	asoc = __sctp_rcv_lookup(skb, &src, &dest, &transport);
180 
181 	/*
182 	 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
183 	 * An SCTP packet is called an "out of the blue" (OOTB)
184 	 * packet if it is correctly formed, i.e., passed the
185 	 * receiver's checksum check, but the receiver is not
186 	 * able to identify the association to which this
187 	 * packet belongs.
188 	 */
189 	if (!asoc) {
190 		ep = __sctp_rcv_lookup_endpoint(&dest);
191 		if (sctp_rcv_ootb(skb)) {
192 			SCTP_INC_STATS_BH(SCTP_MIB_OUTOFBLUES);
193 			goto discard_release;
194 		}
195 	}
196 
197 	/* Retrieve the common input handling substructure. */
198 	rcvr = asoc ? &asoc->base : &ep->base;
199 	sk = rcvr->sk;
200 
201 	if ((sk) && (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)) {
202 		goto discard_release;
203 	}
204 
205 
206 	/* SCTP seems to always need a timestamp right now (FIXME) */
207 	if (skb->stamp.tv_sec == 0) {
208 		do_gettimeofday(&skb->stamp);
209 		sock_enable_timestamp(sk);
210 	}
211 
212 	if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family))
213 		goto discard_release;
214 
215 	ret = sk_filter(sk, skb, 1);
216 	if (ret)
217                 goto discard_release;
218 
219 	/* Create an SCTP packet structure. */
220 	chunk = sctp_chunkify(skb, asoc, sk);
221 	if (!chunk) {
222 		ret = -ENOMEM;
223 		goto discard_release;
224 	}
225 
226 	sctp_rcv_set_owner_r(skb,sk);
227 
228 	/* Remember what endpoint is to handle this packet. */
229 	chunk->rcvr = rcvr;
230 
231 	/* Remember the SCTP header. */
232 	chunk->sctp_hdr = sh;
233 
234 	/* Set the source and destination addresses of the incoming chunk.  */
235 	sctp_init_addrs(chunk, &src, &dest);
236 
237 	/* Remember where we came from.  */
238 	chunk->transport = transport;
239 
240 	/* Acquire access to the sock lock. Note: We are safe from other
241 	 * bottom halves on this lock, but a user may be in the lock too,
242 	 * so check if it is busy.
243 	 */
244 	sctp_bh_lock_sock(sk);
245 
246 	if (sock_owned_by_user(sk))
247 		sk_add_backlog(sk, (struct sk_buff *) chunk);
248 	else
249 		sctp_backlog_rcv(sk, (struct sk_buff *) chunk);
250 
251 	/* Release the sock and any reference counts we took in the
252 	 * lookup calls.
253 	 */
254 	sctp_bh_unlock_sock(sk);
255 	if (asoc)
256 		sctp_association_put(asoc);
257 	else
258 		sctp_endpoint_put(ep);
259 	sock_put(sk);
260 	return ret;
261 
262 discard_it:
263 	kfree_skb(skb);
264 	return ret;
265 
266 discard_release:
267 	/* Release any structures we may be holding. */
268 	if (asoc) {
269 		sock_put(asoc->base.sk);
270 		sctp_association_put(asoc);
271 	} else {
272 		sock_put(ep->base.sk);
273 		sctp_endpoint_put(ep);
274 	}
275 
276 	goto discard_it;
277 }
278 
279 /* Handle second half of inbound skb processing.  If the sock was busy,
280  * we may have need to delay processing until later when the sock is
281  * released (on the backlog).   If not busy, we call this routine
282  * directly from the bottom half.
283  */
284 int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
285 {
286 	struct sctp_chunk *chunk;
287 	struct sctp_inq *inqueue;
288 
289 	/* One day chunk will live inside the skb, but for
290 	 * now this works.
291 	 */
292 	chunk = (struct sctp_chunk *) skb;
293 	inqueue = &chunk->rcvr->inqueue;
294 
295 	sctp_inq_push(inqueue, chunk);
296         return 0;
297 }
298 
299 /* Handle icmp frag needed error. */
300 void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
301 			   struct sctp_transport *t, __u32 pmtu)
302 {
303 	if (unlikely(pmtu < SCTP_DEFAULT_MINSEGMENT)) {
304 		printk(KERN_WARNING "%s: Reported pmtu %d too low, "
305 		       "using default minimum of %d\n", __FUNCTION__, pmtu,
306 		       SCTP_DEFAULT_MINSEGMENT);
307 		pmtu = SCTP_DEFAULT_MINSEGMENT;
308 	}
309 
310 	if (!sock_owned_by_user(sk) && t && (t->pmtu != pmtu)) {
311 		t->pmtu = pmtu;
312 		sctp_assoc_sync_pmtu(asoc);
313 		sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD);
314 	}
315 }
316 
317 /*
318  * SCTP Implementer's Guide, 2.37 ICMP handling procedures
319  *
320  * ICMP8) If the ICMP code is a "Unrecognized next header type encountered"
321  *        or a "Protocol Unreachable" treat this message as an abort
322  *        with the T bit set.
323  *
324  * This function sends an event to the state machine, which will abort the
325  * association.
326  *
327  */
328 void sctp_icmp_proto_unreachable(struct sock *sk,
329                            struct sctp_endpoint *ep,
330                            struct sctp_association *asoc,
331                            struct sctp_transport *t)
332 {
333 	SCTP_DEBUG_PRINTK("%s\n",  __FUNCTION__);
334 
335 	sctp_do_sm(SCTP_EVENT_T_OTHER,
336 		   SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
337 		   asoc->state, asoc->ep, asoc, NULL,
338 		   GFP_ATOMIC);
339 
340 }
341 
342 /* Common lookup code for icmp/icmpv6 error handler. */
343 struct sock *sctp_err_lookup(int family, struct sk_buff *skb,
344 			     struct sctphdr *sctphdr,
345 			     struct sctp_endpoint **epp,
346 			     struct sctp_association **app,
347 			     struct sctp_transport **tpp)
348 {
349 	union sctp_addr saddr;
350 	union sctp_addr daddr;
351 	struct sctp_af *af;
352 	struct sock *sk = NULL;
353 	struct sctp_endpoint *ep = NULL;
354 	struct sctp_association *asoc = NULL;
355 	struct sctp_transport *transport = NULL;
356 
357 	*app = NULL; *epp = NULL; *tpp = NULL;
358 
359 	af = sctp_get_af_specific(family);
360 	if (unlikely(!af)) {
361 		return NULL;
362 	}
363 
364 	/* Initialize local addresses for lookups. */
365 	af->from_skb(&saddr, skb, 1);
366 	af->from_skb(&daddr, skb, 0);
367 
368 	/* Look for an association that matches the incoming ICMP error
369 	 * packet.
370 	 */
371 	asoc = __sctp_lookup_association(&saddr, &daddr, &transport);
372 	if (!asoc) {
373 		/* If there is no matching association, see if it matches any
374 		 * endpoint. This may happen for an ICMP error generated in
375 		 * response to an INIT_ACK.
376 		 */
377 		ep = __sctp_rcv_lookup_endpoint(&daddr);
378 		if (!ep) {
379 			return NULL;
380 		}
381 	}
382 
383 	if (asoc) {
384 		sk = asoc->base.sk;
385 
386 		if (ntohl(sctphdr->vtag) != asoc->c.peer_vtag) {
387 			ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
388 			goto out;
389 		}
390 	} else
391 		sk = ep->base.sk;
392 
393 	sctp_bh_lock_sock(sk);
394 
395 	/* If too many ICMPs get dropped on busy
396 	 * servers this needs to be solved differently.
397 	 */
398 	if (sock_owned_by_user(sk))
399 		NET_INC_STATS_BH(LINUX_MIB_LOCKDROPPEDICMPS);
400 
401 	*epp = ep;
402 	*app = asoc;
403 	*tpp = transport;
404 	return sk;
405 
406 out:
407 	sock_put(sk);
408 	if (asoc)
409 		sctp_association_put(asoc);
410 	if (ep)
411 		sctp_endpoint_put(ep);
412 	return NULL;
413 }
414 
415 /* Common cleanup code for icmp/icmpv6 error handler. */
416 void sctp_err_finish(struct sock *sk, struct sctp_endpoint *ep,
417 		     struct sctp_association *asoc)
418 {
419 	sctp_bh_unlock_sock(sk);
420 	sock_put(sk);
421 	if (asoc)
422 		sctp_association_put(asoc);
423 	if (ep)
424 		sctp_endpoint_put(ep);
425 }
426 
427 /*
428  * This routine is called by the ICMP module when it gets some
429  * sort of error condition.  If err < 0 then the socket should
430  * be closed and the error returned to the user.  If err > 0
431  * it's just the icmp type << 8 | icmp code.  After adjustment
432  * header points to the first 8 bytes of the sctp header.  We need
433  * to find the appropriate port.
434  *
435  * The locking strategy used here is very "optimistic". When
436  * someone else accesses the socket the ICMP is just dropped
437  * and for some paths there is no check at all.
438  * A more general error queue to queue errors for later handling
439  * is probably better.
440  *
441  */
442 void sctp_v4_err(struct sk_buff *skb, __u32 info)
443 {
444 	struct iphdr *iph = (struct iphdr *)skb->data;
445 	struct sctphdr *sh = (struct sctphdr *)(skb->data + (iph->ihl <<2));
446 	int type = skb->h.icmph->type;
447 	int code = skb->h.icmph->code;
448 	struct sock *sk;
449 	struct sctp_endpoint *ep;
450 	struct sctp_association *asoc;
451 	struct sctp_transport *transport;
452 	struct inet_sock *inet;
453 	char *saveip, *savesctp;
454 	int err;
455 
456 	if (skb->len < ((iph->ihl << 2) + 8)) {
457 		ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
458 		return;
459 	}
460 
461 	/* Fix up skb to look at the embedded net header. */
462 	saveip = skb->nh.raw;
463 	savesctp  = skb->h.raw;
464 	skb->nh.iph = iph;
465 	skb->h.raw = (char *)sh;
466 	sk = sctp_err_lookup(AF_INET, skb, sh, &ep, &asoc, &transport);
467 	/* Put back, the original pointers. */
468 	skb->nh.raw = saveip;
469 	skb->h.raw = savesctp;
470 	if (!sk) {
471 		ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
472 		return;
473 	}
474 	/* Warning:  The sock lock is held.  Remember to call
475 	 * sctp_err_finish!
476 	 */
477 
478 	switch (type) {
479 	case ICMP_PARAMETERPROB:
480 		err = EPROTO;
481 		break;
482 	case ICMP_DEST_UNREACH:
483 		if (code > NR_ICMP_UNREACH)
484 			goto out_unlock;
485 
486 		/* PMTU discovery (RFC1191) */
487 		if (ICMP_FRAG_NEEDED == code) {
488 			sctp_icmp_frag_needed(sk, asoc, transport, info);
489 			goto out_unlock;
490 		}
491 		else {
492 			if (ICMP_PROT_UNREACH == code) {
493 				sctp_icmp_proto_unreachable(sk, ep, asoc,
494 							    transport);
495 				goto out_unlock;
496 			}
497 		}
498 		err = icmp_err_convert[code].errno;
499 		break;
500 	case ICMP_TIME_EXCEEDED:
501 		/* Ignore any time exceeded errors due to fragment reassembly
502 		 * timeouts.
503 		 */
504 		if (ICMP_EXC_FRAGTIME == code)
505 			goto out_unlock;
506 
507 		err = EHOSTUNREACH;
508 		break;
509 	default:
510 		goto out_unlock;
511 	}
512 
513 	inet = inet_sk(sk);
514 	if (!sock_owned_by_user(sk) && inet->recverr) {
515 		sk->sk_err = err;
516 		sk->sk_error_report(sk);
517 	} else {  /* Only an error on timeout */
518 		sk->sk_err_soft = err;
519 	}
520 
521 out_unlock:
522 	sctp_err_finish(sk, ep, asoc);
523 }
524 
525 /*
526  * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
527  *
528  * This function scans all the chunks in the OOTB packet to determine if
529  * the packet should be discarded right away.  If a response might be needed
530  * for this packet, or, if further processing is possible, the packet will
531  * be queued to a proper inqueue for the next phase of handling.
532  *
533  * Output:
534  * Return 0 - If further processing is needed.
535  * Return 1 - If the packet can be discarded right away.
536  */
537 int sctp_rcv_ootb(struct sk_buff *skb)
538 {
539 	sctp_chunkhdr_t *ch;
540 	__u8 *ch_end;
541 	sctp_errhdr_t *err;
542 
543 	ch = (sctp_chunkhdr_t *) skb->data;
544 	ch_end = ((__u8 *) ch) + WORD_ROUND(ntohs(ch->length));
545 
546 	/* Scan through all the chunks in the packet.  */
547 	while (ch_end > (__u8 *)ch && ch_end < skb->tail) {
548 
549 		/* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the
550 		 * receiver MUST silently discard the OOTB packet and take no
551 		 * further action.
552 		 */
553 		if (SCTP_CID_ABORT == ch->type)
554 			goto discard;
555 
556 		/* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE
557 		 * chunk, the receiver should silently discard the packet
558 		 * and take no further action.
559 		 */
560 		if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type)
561 			goto discard;
562 
563 		/* RFC 8.4, 7) If the packet contains a "Stale cookie" ERROR
564 		 * or a COOKIE ACK the SCTP Packet should be silently
565 		 * discarded.
566 		 */
567 		if (SCTP_CID_COOKIE_ACK == ch->type)
568 			goto discard;
569 
570 		if (SCTP_CID_ERROR == ch->type) {
571 			sctp_walk_errors(err, ch) {
572 				if (SCTP_ERROR_STALE_COOKIE == err->cause)
573 					goto discard;
574 			}
575 		}
576 
577 		ch = (sctp_chunkhdr_t *) ch_end;
578 	        ch_end = ((__u8 *) ch) + WORD_ROUND(ntohs(ch->length));
579 	}
580 
581 	return 0;
582 
583 discard:
584 	return 1;
585 }
586 
587 /* Insert endpoint into the hash table.  */
588 static void __sctp_hash_endpoint(struct sctp_endpoint *ep)
589 {
590 	struct sctp_ep_common **epp;
591 	struct sctp_ep_common *epb;
592 	struct sctp_hashbucket *head;
593 
594 	epb = &ep->base;
595 
596 	epb->hashent = sctp_ep_hashfn(epb->bind_addr.port);
597 	head = &sctp_ep_hashtable[epb->hashent];
598 
599 	sctp_write_lock(&head->lock);
600 	epp = &head->chain;
601 	epb->next = *epp;
602 	if (epb->next)
603 		(*epp)->pprev = &epb->next;
604 	*epp = epb;
605 	epb->pprev = epp;
606 	sctp_write_unlock(&head->lock);
607 }
608 
609 /* Add an endpoint to the hash. Local BH-safe. */
610 void sctp_hash_endpoint(struct sctp_endpoint *ep)
611 {
612 	sctp_local_bh_disable();
613 	__sctp_hash_endpoint(ep);
614 	sctp_local_bh_enable();
615 }
616 
617 /* Remove endpoint from the hash table.  */
618 static void __sctp_unhash_endpoint(struct sctp_endpoint *ep)
619 {
620 	struct sctp_hashbucket *head;
621 	struct sctp_ep_common *epb;
622 
623 	epb = &ep->base;
624 
625 	epb->hashent = sctp_ep_hashfn(epb->bind_addr.port);
626 
627 	head = &sctp_ep_hashtable[epb->hashent];
628 
629 	sctp_write_lock(&head->lock);
630 
631 	if (epb->pprev) {
632 		if (epb->next)
633 			epb->next->pprev = epb->pprev;
634 		*epb->pprev = epb->next;
635 		epb->pprev = NULL;
636 	}
637 
638 	sctp_write_unlock(&head->lock);
639 }
640 
641 /* Remove endpoint from the hash.  Local BH-safe. */
642 void sctp_unhash_endpoint(struct sctp_endpoint *ep)
643 {
644 	sctp_local_bh_disable();
645 	__sctp_unhash_endpoint(ep);
646 	sctp_local_bh_enable();
647 }
648 
649 /* Look up an endpoint. */
650 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(const union sctp_addr *laddr)
651 {
652 	struct sctp_hashbucket *head;
653 	struct sctp_ep_common *epb;
654 	struct sctp_endpoint *ep;
655 	int hash;
656 
657 	hash = sctp_ep_hashfn(laddr->v4.sin_port);
658 	head = &sctp_ep_hashtable[hash];
659 	read_lock(&head->lock);
660 	for (epb = head->chain; epb; epb = epb->next) {
661 		ep = sctp_ep(epb);
662 		if (sctp_endpoint_is_match(ep, laddr))
663 			goto hit;
664 	}
665 
666 	ep = sctp_sk((sctp_get_ctl_sock()))->ep;
667 	epb = &ep->base;
668 
669 hit:
670 	sctp_endpoint_hold(ep);
671 	sock_hold(epb->sk);
672 	read_unlock(&head->lock);
673 	return ep;
674 }
675 
676 /* Insert association into the hash table.  */
677 static void __sctp_hash_established(struct sctp_association *asoc)
678 {
679 	struct sctp_ep_common **epp;
680 	struct sctp_ep_common *epb;
681 	struct sctp_hashbucket *head;
682 
683 	epb = &asoc->base;
684 
685 	/* Calculate which chain this entry will belong to. */
686 	epb->hashent = sctp_assoc_hashfn(epb->bind_addr.port, asoc->peer.port);
687 
688 	head = &sctp_assoc_hashtable[epb->hashent];
689 
690 	sctp_write_lock(&head->lock);
691 	epp = &head->chain;
692 	epb->next = *epp;
693 	if (epb->next)
694 		(*epp)->pprev = &epb->next;
695 	*epp = epb;
696 	epb->pprev = epp;
697 	sctp_write_unlock(&head->lock);
698 }
699 
700 /* Add an association to the hash. Local BH-safe. */
701 void sctp_hash_established(struct sctp_association *asoc)
702 {
703 	sctp_local_bh_disable();
704 	__sctp_hash_established(asoc);
705 	sctp_local_bh_enable();
706 }
707 
708 /* Remove association from the hash table.  */
709 static void __sctp_unhash_established(struct sctp_association *asoc)
710 {
711 	struct sctp_hashbucket *head;
712 	struct sctp_ep_common *epb;
713 
714 	epb = &asoc->base;
715 
716 	epb->hashent = sctp_assoc_hashfn(epb->bind_addr.port,
717 					 asoc->peer.port);
718 
719 	head = &sctp_assoc_hashtable[epb->hashent];
720 
721 	sctp_write_lock(&head->lock);
722 
723 	if (epb->pprev) {
724 		if (epb->next)
725 			epb->next->pprev = epb->pprev;
726 		*epb->pprev = epb->next;
727 		epb->pprev = NULL;
728 	}
729 
730 	sctp_write_unlock(&head->lock);
731 }
732 
733 /* Remove association from the hash table.  Local BH-safe. */
734 void sctp_unhash_established(struct sctp_association *asoc)
735 {
736 	sctp_local_bh_disable();
737 	__sctp_unhash_established(asoc);
738 	sctp_local_bh_enable();
739 }
740 
741 /* Look up an association. */
742 static struct sctp_association *__sctp_lookup_association(
743 					const union sctp_addr *local,
744 					const union sctp_addr *peer,
745 					struct sctp_transport **pt)
746 {
747 	struct sctp_hashbucket *head;
748 	struct sctp_ep_common *epb;
749 	struct sctp_association *asoc;
750 	struct sctp_transport *transport;
751 	int hash;
752 
753 	/* Optimize here for direct hit, only listening connections can
754 	 * have wildcards anyways.
755 	 */
756 	hash = sctp_assoc_hashfn(local->v4.sin_port, peer->v4.sin_port);
757 	head = &sctp_assoc_hashtable[hash];
758 	read_lock(&head->lock);
759 	for (epb = head->chain; epb; epb = epb->next) {
760 		asoc = sctp_assoc(epb);
761 		transport = sctp_assoc_is_match(asoc, local, peer);
762 		if (transport)
763 			goto hit;
764 	}
765 
766 	read_unlock(&head->lock);
767 
768 	return NULL;
769 
770 hit:
771 	*pt = transport;
772 	sctp_association_hold(asoc);
773 	sock_hold(epb->sk);
774 	read_unlock(&head->lock);
775 	return asoc;
776 }
777 
778 /* Look up an association. BH-safe. */
779 SCTP_STATIC
780 struct sctp_association *sctp_lookup_association(const union sctp_addr *laddr,
781 						 const union sctp_addr *paddr,
782 					    struct sctp_transport **transportp)
783 {
784 	struct sctp_association *asoc;
785 
786 	sctp_local_bh_disable();
787 	asoc = __sctp_lookup_association(laddr, paddr, transportp);
788 	sctp_local_bh_enable();
789 
790 	return asoc;
791 }
792 
793 /* Is there an association matching the given local and peer addresses? */
794 int sctp_has_association(const union sctp_addr *laddr,
795 			 const union sctp_addr *paddr)
796 {
797 	struct sctp_association *asoc;
798 	struct sctp_transport *transport;
799 
800 	if ((asoc = sctp_lookup_association(laddr, paddr, &transport))) {
801 		sock_put(asoc->base.sk);
802 		sctp_association_put(asoc);
803 		return 1;
804 	}
805 
806 	return 0;
807 }
808 
809 /*
810  * SCTP Implementors Guide, 2.18 Handling of address
811  * parameters within the INIT or INIT-ACK.
812  *
813  * D) When searching for a matching TCB upon reception of an INIT
814  *    or INIT-ACK chunk the receiver SHOULD use not only the
815  *    source address of the packet (containing the INIT or
816  *    INIT-ACK) but the receiver SHOULD also use all valid
817  *    address parameters contained within the chunk.
818  *
819  * 2.18.3 Solution description
820  *
821  * This new text clearly specifies to an implementor the need
822  * to look within the INIT or INIT-ACK. Any implementation that
823  * does not do this, may not be able to establish associations
824  * in certain circumstances.
825  *
826  */
827 static struct sctp_association *__sctp_rcv_init_lookup(struct sk_buff *skb,
828 	const union sctp_addr *laddr, struct sctp_transport **transportp)
829 {
830 	struct sctp_association *asoc;
831 	union sctp_addr addr;
832 	union sctp_addr *paddr = &addr;
833 	struct sctphdr *sh = (struct sctphdr *) skb->h.raw;
834 	sctp_chunkhdr_t *ch;
835 	union sctp_params params;
836 	sctp_init_chunk_t *init;
837 	struct sctp_transport *transport;
838 	struct sctp_af *af;
839 
840 	ch = (sctp_chunkhdr_t *) skb->data;
841 
842 	/* If this is INIT/INIT-ACK look inside the chunk too. */
843 	switch (ch->type) {
844 	case SCTP_CID_INIT:
845 	case SCTP_CID_INIT_ACK:
846 		break;
847 	default:
848 		return NULL;
849 	}
850 
851 	/* The code below will attempt to walk the chunk and extract
852 	 * parameter information.  Before we do that, we need to verify
853 	 * that the chunk length doesn't cause overflow.  Otherwise, we'll
854 	 * walk off the end.
855 	 */
856 	if (WORD_ROUND(ntohs(ch->length)) > skb->len)
857 		return NULL;
858 
859 	/*
860 	 * This code will NOT touch anything inside the chunk--it is
861 	 * strictly READ-ONLY.
862 	 *
863 	 * RFC 2960 3  SCTP packet Format
864 	 *
865 	 * Multiple chunks can be bundled into one SCTP packet up to
866 	 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN
867 	 * COMPLETE chunks.  These chunks MUST NOT be bundled with any
868 	 * other chunk in a packet.  See Section 6.10 for more details
869 	 * on chunk bundling.
870 	 */
871 
872 	/* Find the start of the TLVs and the end of the chunk.  This is
873 	 * the region we search for address parameters.
874 	 */
875 	init = (sctp_init_chunk_t *)skb->data;
876 
877 	/* Walk the parameters looking for embedded addresses. */
878 	sctp_walk_params(params, init, init_hdr.params) {
879 
880 		/* Note: Ignoring hostname addresses. */
881 		af = sctp_get_af_specific(param_type2af(params.p->type));
882 		if (!af)
883 			continue;
884 
885 		af->from_addr_param(paddr, params.addr, ntohs(sh->source), 0);
886 
887 		asoc = __sctp_lookup_association(laddr, paddr, &transport);
888 		if (asoc)
889 			return asoc;
890 	}
891 
892 	return NULL;
893 }
894 
895 /* Lookup an association for an inbound skb. */
896 static struct sctp_association *__sctp_rcv_lookup(struct sk_buff *skb,
897 				      const union sctp_addr *paddr,
898 				      const union sctp_addr *laddr,
899 				      struct sctp_transport **transportp)
900 {
901 	struct sctp_association *asoc;
902 
903 	asoc = __sctp_lookup_association(laddr, paddr, transportp);
904 
905 	/* Further lookup for INIT/INIT-ACK packets.
906 	 * SCTP Implementors Guide, 2.18 Handling of address
907 	 * parameters within the INIT or INIT-ACK.
908 	 */
909 	if (!asoc)
910 		asoc = __sctp_rcv_init_lookup(skb, laddr, transportp);
911 
912 	return asoc;
913 }
914