xref: /openbmc/linux/net/sctp/input.c (revision 1ccd4b7b)
1 /* SCTP kernel implementation
2  * Copyright (c) 1999-2000 Cisco, Inc.
3  * Copyright (c) 1999-2001 Motorola, Inc.
4  * Copyright (c) 2001-2003 International Business Machines, Corp.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions handle all input from the IP layer into SCTP.
12  *
13  * This SCTP implementation is free software;
14  * you can redistribute it and/or modify it under the terms of
15  * the GNU General Public License as published by
16  * the Free Software Foundation; either version 2, or (at your option)
17  * any later version.
18  *
19  * This SCTP implementation is distributed in the hope that it
20  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
21  *                 ************************
22  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
23  * See the GNU General Public License for more details.
24  *
25  * You should have received a copy of the GNU General Public License
26  * along with GNU CC; see the file COPYING.  If not, write to
27  * the Free Software Foundation, 59 Temple Place - Suite 330,
28  * Boston, MA 02111-1307, USA.
29  *
30  * Please send any bug reports or fixes you make to the
31  * email address(es):
32  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
33  *
34  * Or submit a bug report through the following website:
35  *    http://www.sf.net/projects/lksctp
36  *
37  * Written or modified by:
38  *    La Monte H.P. Yarroll <piggy@acm.org>
39  *    Karl Knutson <karl@athena.chicago.il.us>
40  *    Xingang Guo <xingang.guo@intel.com>
41  *    Jon Grimm <jgrimm@us.ibm.com>
42  *    Hui Huang <hui.huang@nokia.com>
43  *    Daisy Chang <daisyc@us.ibm.com>
44  *    Sridhar Samudrala <sri@us.ibm.com>
45  *    Ardelle Fan <ardelle.fan@intel.com>
46  *
47  * Any bugs reported given to us we will try to fix... any fixes shared will
48  * be incorporated into the next SCTP release.
49  */
50 
51 #include <linux/types.h>
52 #include <linux/list.h> /* For struct list_head */
53 #include <linux/socket.h>
54 #include <linux/ip.h>
55 #include <linux/time.h> /* For struct timeval */
56 #include <linux/slab.h>
57 #include <net/ip.h>
58 #include <net/icmp.h>
59 #include <net/snmp.h>
60 #include <net/sock.h>
61 #include <net/xfrm.h>
62 #include <net/sctp/sctp.h>
63 #include <net/sctp/sm.h>
64 #include <net/sctp/checksum.h>
65 #include <net/net_namespace.h>
66 
67 /* Forward declarations for internal helpers. */
68 static int sctp_rcv_ootb(struct sk_buff *);
69 static struct sctp_association *__sctp_rcv_lookup(struct sk_buff *skb,
70 				      const union sctp_addr *laddr,
71 				      const union sctp_addr *paddr,
72 				      struct sctp_transport **transportp);
73 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(const union sctp_addr *laddr);
74 static struct sctp_association *__sctp_lookup_association(
75 					const union sctp_addr *local,
76 					const union sctp_addr *peer,
77 					struct sctp_transport **pt);
78 
79 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb);
80 
81 
82 /* Calculate the SCTP checksum of an SCTP packet.  */
83 static inline int sctp_rcv_checksum(struct sk_buff *skb)
84 {
85 	struct sctphdr *sh = sctp_hdr(skb);
86 	__le32 cmp = sh->checksum;
87 	struct sk_buff *list;
88 	__le32 val;
89 	__u32 tmp = sctp_start_cksum((__u8 *)sh, skb_headlen(skb));
90 
91 	skb_walk_frags(skb, list)
92 		tmp = sctp_update_cksum((__u8 *)list->data, skb_headlen(list),
93 					tmp);
94 
95 	val = sctp_end_cksum(tmp);
96 
97 	if (val != cmp) {
98 		/* CRC failure, dump it. */
99 		SCTP_INC_STATS_BH(SCTP_MIB_CHECKSUMERRORS);
100 		return -1;
101 	}
102 	return 0;
103 }
104 
105 struct sctp_input_cb {
106 	union {
107 		struct inet_skb_parm	h4;
108 #if defined(CONFIG_IPV6) || defined (CONFIG_IPV6_MODULE)
109 		struct inet6_skb_parm	h6;
110 #endif
111 	} header;
112 	struct sctp_chunk *chunk;
113 };
114 #define SCTP_INPUT_CB(__skb)	((struct sctp_input_cb *)&((__skb)->cb[0]))
115 
116 /*
117  * This is the routine which IP calls when receiving an SCTP packet.
118  */
119 int sctp_rcv(struct sk_buff *skb)
120 {
121 	struct sock *sk;
122 	struct sctp_association *asoc;
123 	struct sctp_endpoint *ep = NULL;
124 	struct sctp_ep_common *rcvr;
125 	struct sctp_transport *transport = NULL;
126 	struct sctp_chunk *chunk;
127 	struct sctphdr *sh;
128 	union sctp_addr src;
129 	union sctp_addr dest;
130 	int family;
131 	struct sctp_af *af;
132 
133 	if (skb->pkt_type!=PACKET_HOST)
134 		goto discard_it;
135 
136 	SCTP_INC_STATS_BH(SCTP_MIB_INSCTPPACKS);
137 
138 	if (skb_linearize(skb))
139 		goto discard_it;
140 
141 	sh = sctp_hdr(skb);
142 
143 	/* Pull up the IP and SCTP headers. */
144 	__skb_pull(skb, skb_transport_offset(skb));
145 	if (skb->len < sizeof(struct sctphdr))
146 		goto discard_it;
147 	if (!sctp_checksum_disable && !skb_csum_unnecessary(skb) &&
148 		  sctp_rcv_checksum(skb) < 0)
149 		goto discard_it;
150 
151 	skb_pull(skb, sizeof(struct sctphdr));
152 
153 	/* Make sure we at least have chunk headers worth of data left. */
154 	if (skb->len < sizeof(struct sctp_chunkhdr))
155 		goto discard_it;
156 
157 	family = ipver2af(ip_hdr(skb)->version);
158 	af = sctp_get_af_specific(family);
159 	if (unlikely(!af))
160 		goto discard_it;
161 
162 	/* Initialize local addresses for lookups. */
163 	af->from_skb(&src, skb, 1);
164 	af->from_skb(&dest, skb, 0);
165 
166 	/* If the packet is to or from a non-unicast address,
167 	 * silently discard the packet.
168 	 *
169 	 * This is not clearly defined in the RFC except in section
170 	 * 8.4 - OOTB handling.  However, based on the book "Stream Control
171 	 * Transmission Protocol" 2.1, "It is important to note that the
172 	 * IP address of an SCTP transport address must be a routable
173 	 * unicast address.  In other words, IP multicast addresses and
174 	 * IP broadcast addresses cannot be used in an SCTP transport
175 	 * address."
176 	 */
177 	if (!af->addr_valid(&src, NULL, skb) ||
178 	    !af->addr_valid(&dest, NULL, skb))
179 		goto discard_it;
180 
181 	asoc = __sctp_rcv_lookup(skb, &src, &dest, &transport);
182 
183 	if (!asoc)
184 		ep = __sctp_rcv_lookup_endpoint(&dest);
185 
186 	/* Retrieve the common input handling substructure. */
187 	rcvr = asoc ? &asoc->base : &ep->base;
188 	sk = rcvr->sk;
189 
190 	/*
191 	 * If a frame arrives on an interface and the receiving socket is
192 	 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB
193 	 */
194 	if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb)))
195 	{
196 		if (asoc) {
197 			sctp_association_put(asoc);
198 			asoc = NULL;
199 		} else {
200 			sctp_endpoint_put(ep);
201 			ep = NULL;
202 		}
203 		sk = sctp_get_ctl_sock();
204 		ep = sctp_sk(sk)->ep;
205 		sctp_endpoint_hold(ep);
206 		rcvr = &ep->base;
207 	}
208 
209 	/*
210 	 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
211 	 * An SCTP packet is called an "out of the blue" (OOTB)
212 	 * packet if it is correctly formed, i.e., passed the
213 	 * receiver's checksum check, but the receiver is not
214 	 * able to identify the association to which this
215 	 * packet belongs.
216 	 */
217 	if (!asoc) {
218 		if (sctp_rcv_ootb(skb)) {
219 			SCTP_INC_STATS_BH(SCTP_MIB_OUTOFBLUES);
220 			goto discard_release;
221 		}
222 	}
223 
224 	if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family))
225 		goto discard_release;
226 	nf_reset(skb);
227 
228 	if (sk_filter(sk, skb))
229 		goto discard_release;
230 
231 	/* Create an SCTP packet structure. */
232 	chunk = sctp_chunkify(skb, asoc, sk);
233 	if (!chunk)
234 		goto discard_release;
235 	SCTP_INPUT_CB(skb)->chunk = chunk;
236 
237 	/* Remember what endpoint is to handle this packet. */
238 	chunk->rcvr = rcvr;
239 
240 	/* Remember the SCTP header. */
241 	chunk->sctp_hdr = sh;
242 
243 	/* Set the source and destination addresses of the incoming chunk.  */
244 	sctp_init_addrs(chunk, &src, &dest);
245 
246 	/* Remember where we came from.  */
247 	chunk->transport = transport;
248 
249 	/* Acquire access to the sock lock. Note: We are safe from other
250 	 * bottom halves on this lock, but a user may be in the lock too,
251 	 * so check if it is busy.
252 	 */
253 	sctp_bh_lock_sock(sk);
254 
255 	if (sk != rcvr->sk) {
256 		/* Our cached sk is different from the rcvr->sk.  This is
257 		 * because migrate()/accept() may have moved the association
258 		 * to a new socket and released all the sockets.  So now we
259 		 * are holding a lock on the old socket while the user may
260 		 * be doing something with the new socket.  Switch our veiw
261 		 * of the current sk.
262 		 */
263 		sctp_bh_unlock_sock(sk);
264 		sk = rcvr->sk;
265 		sctp_bh_lock_sock(sk);
266 	}
267 
268 	if (sock_owned_by_user(sk)) {
269 		if (sctp_add_backlog(sk, skb)) {
270 			sctp_bh_unlock_sock(sk);
271 			sctp_chunk_free(chunk);
272 			skb = NULL; /* sctp_chunk_free already freed the skb */
273 			goto discard_release;
274 		}
275 		SCTP_INC_STATS_BH(SCTP_MIB_IN_PKT_BACKLOG);
276 	} else {
277 		SCTP_INC_STATS_BH(SCTP_MIB_IN_PKT_SOFTIRQ);
278 		sctp_inq_push(&chunk->rcvr->inqueue, chunk);
279 	}
280 
281 	sctp_bh_unlock_sock(sk);
282 
283 	/* Release the asoc/ep ref we took in the lookup calls. */
284 	if (asoc)
285 		sctp_association_put(asoc);
286 	else
287 		sctp_endpoint_put(ep);
288 
289 	return 0;
290 
291 discard_it:
292 	SCTP_INC_STATS_BH(SCTP_MIB_IN_PKT_DISCARDS);
293 	kfree_skb(skb);
294 	return 0;
295 
296 discard_release:
297 	/* Release the asoc/ep ref we took in the lookup calls. */
298 	if (asoc)
299 		sctp_association_put(asoc);
300 	else
301 		sctp_endpoint_put(ep);
302 
303 	goto discard_it;
304 }
305 
306 /* Process the backlog queue of the socket.  Every skb on
307  * the backlog holds a ref on an association or endpoint.
308  * We hold this ref throughout the state machine to make
309  * sure that the structure we need is still around.
310  */
311 int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
312 {
313 	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
314 	struct sctp_inq *inqueue = &chunk->rcvr->inqueue;
315 	struct sctp_ep_common *rcvr = NULL;
316 	int backloged = 0;
317 
318 	rcvr = chunk->rcvr;
319 
320 	/* If the rcvr is dead then the association or endpoint
321 	 * has been deleted and we can safely drop the chunk
322 	 * and refs that we are holding.
323 	 */
324 	if (rcvr->dead) {
325 		sctp_chunk_free(chunk);
326 		goto done;
327 	}
328 
329 	if (unlikely(rcvr->sk != sk)) {
330 		/* In this case, the association moved from one socket to
331 		 * another.  We are currently sitting on the backlog of the
332 		 * old socket, so we need to move.
333 		 * However, since we are here in the process context we
334 		 * need to take make sure that the user doesn't own
335 		 * the new socket when we process the packet.
336 		 * If the new socket is user-owned, queue the chunk to the
337 		 * backlog of the new socket without dropping any refs.
338 		 * Otherwise, we can safely push the chunk on the inqueue.
339 		 */
340 
341 		sk = rcvr->sk;
342 		sctp_bh_lock_sock(sk);
343 
344 		if (sock_owned_by_user(sk)) {
345 			if (sk_add_backlog(sk, skb))
346 				sctp_chunk_free(chunk);
347 			else
348 				backloged = 1;
349 		} else
350 			sctp_inq_push(inqueue, chunk);
351 
352 		sctp_bh_unlock_sock(sk);
353 
354 		/* If the chunk was backloged again, don't drop refs */
355 		if (backloged)
356 			return 0;
357 	} else {
358 		sctp_inq_push(inqueue, chunk);
359 	}
360 
361 done:
362 	/* Release the refs we took in sctp_add_backlog */
363 	if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
364 		sctp_association_put(sctp_assoc(rcvr));
365 	else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
366 		sctp_endpoint_put(sctp_ep(rcvr));
367 	else
368 		BUG();
369 
370 	return 0;
371 }
372 
373 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb)
374 {
375 	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
376 	struct sctp_ep_common *rcvr = chunk->rcvr;
377 	int ret;
378 
379 	ret = sk_add_backlog(sk, skb);
380 	if (!ret) {
381 		/* Hold the assoc/ep while hanging on the backlog queue.
382 		 * This way, we know structures we need will not disappear
383 		 * from us
384 		 */
385 		if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
386 			sctp_association_hold(sctp_assoc(rcvr));
387 		else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
388 			sctp_endpoint_hold(sctp_ep(rcvr));
389 		else
390 			BUG();
391 	}
392 	return ret;
393 
394 }
395 
396 /* Handle icmp frag needed error. */
397 void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
398 			   struct sctp_transport *t, __u32 pmtu)
399 {
400 	if (!t || (t->pathmtu <= pmtu))
401 		return;
402 
403 	if (sock_owned_by_user(sk)) {
404 		asoc->pmtu_pending = 1;
405 		t->pmtu_pending = 1;
406 		return;
407 	}
408 
409 	if (t->param_flags & SPP_PMTUD_ENABLE) {
410 		/* Update transports view of the MTU */
411 		sctp_transport_update_pmtu(t, pmtu);
412 
413 		/* Update association pmtu. */
414 		sctp_assoc_sync_pmtu(asoc);
415 	}
416 
417 	/* Retransmit with the new pmtu setting.
418 	 * Normally, if PMTU discovery is disabled, an ICMP Fragmentation
419 	 * Needed will never be sent, but if a message was sent before
420 	 * PMTU discovery was disabled that was larger than the PMTU, it
421 	 * would not be fragmented, so it must be re-transmitted fragmented.
422 	 */
423 	sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD);
424 }
425 
426 /*
427  * SCTP Implementer's Guide, 2.37 ICMP handling procedures
428  *
429  * ICMP8) If the ICMP code is a "Unrecognized next header type encountered"
430  *        or a "Protocol Unreachable" treat this message as an abort
431  *        with the T bit set.
432  *
433  * This function sends an event to the state machine, which will abort the
434  * association.
435  *
436  */
437 void sctp_icmp_proto_unreachable(struct sock *sk,
438 			   struct sctp_association *asoc,
439 			   struct sctp_transport *t)
440 {
441 	SCTP_DEBUG_PRINTK("%s\n",  __func__);
442 
443 	if (sock_owned_by_user(sk)) {
444 		if (timer_pending(&t->proto_unreach_timer))
445 			return;
446 		else {
447 			if (!mod_timer(&t->proto_unreach_timer,
448 						jiffies + (HZ/20)))
449 				sctp_association_hold(asoc);
450 		}
451 
452 	} else {
453 		if (timer_pending(&t->proto_unreach_timer) &&
454 		    del_timer(&t->proto_unreach_timer))
455 			sctp_association_put(asoc);
456 
457 		sctp_do_sm(SCTP_EVENT_T_OTHER,
458 			   SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
459 			   asoc->state, asoc->ep, asoc, t,
460 			   GFP_ATOMIC);
461 	}
462 }
463 
464 /* Common lookup code for icmp/icmpv6 error handler. */
465 struct sock *sctp_err_lookup(int family, struct sk_buff *skb,
466 			     struct sctphdr *sctphdr,
467 			     struct sctp_association **app,
468 			     struct sctp_transport **tpp)
469 {
470 	union sctp_addr saddr;
471 	union sctp_addr daddr;
472 	struct sctp_af *af;
473 	struct sock *sk = NULL;
474 	struct sctp_association *asoc;
475 	struct sctp_transport *transport = NULL;
476 	struct sctp_init_chunk *chunkhdr;
477 	__u32 vtag = ntohl(sctphdr->vtag);
478 	int len = skb->len - ((void *)sctphdr - (void *)skb->data);
479 
480 	*app = NULL; *tpp = NULL;
481 
482 	af = sctp_get_af_specific(family);
483 	if (unlikely(!af)) {
484 		return NULL;
485 	}
486 
487 	/* Initialize local addresses for lookups. */
488 	af->from_skb(&saddr, skb, 1);
489 	af->from_skb(&daddr, skb, 0);
490 
491 	/* Look for an association that matches the incoming ICMP error
492 	 * packet.
493 	 */
494 	asoc = __sctp_lookup_association(&saddr, &daddr, &transport);
495 	if (!asoc)
496 		return NULL;
497 
498 	sk = asoc->base.sk;
499 
500 	/* RFC 4960, Appendix C. ICMP Handling
501 	 *
502 	 * ICMP6) An implementation MUST validate that the Verification Tag
503 	 * contained in the ICMP message matches the Verification Tag of
504 	 * the peer.  If the Verification Tag is not 0 and does NOT
505 	 * match, discard the ICMP message.  If it is 0 and the ICMP
506 	 * message contains enough bytes to verify that the chunk type is
507 	 * an INIT chunk and that the Initiate Tag matches the tag of the
508 	 * peer, continue with ICMP7.  If the ICMP message is too short
509 	 * or the chunk type or the Initiate Tag does not match, silently
510 	 * discard the packet.
511 	 */
512 	if (vtag == 0) {
513 		chunkhdr = (void *)sctphdr + sizeof(struct sctphdr);
514 		if (len < sizeof(struct sctphdr) + sizeof(sctp_chunkhdr_t)
515 			  + sizeof(__be32) ||
516 		    chunkhdr->chunk_hdr.type != SCTP_CID_INIT ||
517 		    ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag) {
518 			goto out;
519 		}
520 	} else if (vtag != asoc->c.peer_vtag) {
521 		goto out;
522 	}
523 
524 	sctp_bh_lock_sock(sk);
525 
526 	/* If too many ICMPs get dropped on busy
527 	 * servers this needs to be solved differently.
528 	 */
529 	if (sock_owned_by_user(sk))
530 		NET_INC_STATS_BH(&init_net, LINUX_MIB_LOCKDROPPEDICMPS);
531 
532 	*app = asoc;
533 	*tpp = transport;
534 	return sk;
535 
536 out:
537 	if (asoc)
538 		sctp_association_put(asoc);
539 	return NULL;
540 }
541 
542 /* Common cleanup code for icmp/icmpv6 error handler. */
543 void sctp_err_finish(struct sock *sk, struct sctp_association *asoc)
544 {
545 	sctp_bh_unlock_sock(sk);
546 	if (asoc)
547 		sctp_association_put(asoc);
548 }
549 
550 /*
551  * This routine is called by the ICMP module when it gets some
552  * sort of error condition.  If err < 0 then the socket should
553  * be closed and the error returned to the user.  If err > 0
554  * it's just the icmp type << 8 | icmp code.  After adjustment
555  * header points to the first 8 bytes of the sctp header.  We need
556  * to find the appropriate port.
557  *
558  * The locking strategy used here is very "optimistic". When
559  * someone else accesses the socket the ICMP is just dropped
560  * and for some paths there is no check at all.
561  * A more general error queue to queue errors for later handling
562  * is probably better.
563  *
564  */
565 void sctp_v4_err(struct sk_buff *skb, __u32 info)
566 {
567 	const struct iphdr *iph = (const struct iphdr *)skb->data;
568 	const int ihlen = iph->ihl * 4;
569 	const int type = icmp_hdr(skb)->type;
570 	const int code = icmp_hdr(skb)->code;
571 	struct sock *sk;
572 	struct sctp_association *asoc = NULL;
573 	struct sctp_transport *transport;
574 	struct inet_sock *inet;
575 	sk_buff_data_t saveip, savesctp;
576 	int err;
577 
578 	if (skb->len < ihlen + 8) {
579 		ICMP_INC_STATS_BH(&init_net, ICMP_MIB_INERRORS);
580 		return;
581 	}
582 
583 	/* Fix up skb to look at the embedded net header. */
584 	saveip = skb->network_header;
585 	savesctp = skb->transport_header;
586 	skb_reset_network_header(skb);
587 	skb_set_transport_header(skb, ihlen);
588 	sk = sctp_err_lookup(AF_INET, skb, sctp_hdr(skb), &asoc, &transport);
589 	/* Put back, the original values. */
590 	skb->network_header = saveip;
591 	skb->transport_header = savesctp;
592 	if (!sk) {
593 		ICMP_INC_STATS_BH(&init_net, ICMP_MIB_INERRORS);
594 		return;
595 	}
596 	/* Warning:  The sock lock is held.  Remember to call
597 	 * sctp_err_finish!
598 	 */
599 
600 	switch (type) {
601 	case ICMP_PARAMETERPROB:
602 		err = EPROTO;
603 		break;
604 	case ICMP_DEST_UNREACH:
605 		if (code > NR_ICMP_UNREACH)
606 			goto out_unlock;
607 
608 		/* PMTU discovery (RFC1191) */
609 		if (ICMP_FRAG_NEEDED == code) {
610 			sctp_icmp_frag_needed(sk, asoc, transport, info);
611 			goto out_unlock;
612 		}
613 		else {
614 			if (ICMP_PROT_UNREACH == code) {
615 				sctp_icmp_proto_unreachable(sk, asoc,
616 							    transport);
617 				goto out_unlock;
618 			}
619 		}
620 		err = icmp_err_convert[code].errno;
621 		break;
622 	case ICMP_TIME_EXCEEDED:
623 		/* Ignore any time exceeded errors due to fragment reassembly
624 		 * timeouts.
625 		 */
626 		if (ICMP_EXC_FRAGTIME == code)
627 			goto out_unlock;
628 
629 		err = EHOSTUNREACH;
630 		break;
631 	default:
632 		goto out_unlock;
633 	}
634 
635 	inet = inet_sk(sk);
636 	if (!sock_owned_by_user(sk) && inet->recverr) {
637 		sk->sk_err = err;
638 		sk->sk_error_report(sk);
639 	} else {  /* Only an error on timeout */
640 		sk->sk_err_soft = err;
641 	}
642 
643 out_unlock:
644 	sctp_err_finish(sk, asoc);
645 }
646 
647 /*
648  * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
649  *
650  * This function scans all the chunks in the OOTB packet to determine if
651  * the packet should be discarded right away.  If a response might be needed
652  * for this packet, or, if further processing is possible, the packet will
653  * be queued to a proper inqueue for the next phase of handling.
654  *
655  * Output:
656  * Return 0 - If further processing is needed.
657  * Return 1 - If the packet can be discarded right away.
658  */
659 static int sctp_rcv_ootb(struct sk_buff *skb)
660 {
661 	sctp_chunkhdr_t *ch;
662 	__u8 *ch_end;
663 
664 	ch = (sctp_chunkhdr_t *) skb->data;
665 
666 	/* Scan through all the chunks in the packet.  */
667 	do {
668 		/* Break out if chunk length is less then minimal. */
669 		if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t))
670 			break;
671 
672 		ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length));
673 		if (ch_end > skb_tail_pointer(skb))
674 			break;
675 
676 		/* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the
677 		 * receiver MUST silently discard the OOTB packet and take no
678 		 * further action.
679 		 */
680 		if (SCTP_CID_ABORT == ch->type)
681 			goto discard;
682 
683 		/* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE
684 		 * chunk, the receiver should silently discard the packet
685 		 * and take no further action.
686 		 */
687 		if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type)
688 			goto discard;
689 
690 		/* RFC 4460, 2.11.2
691 		 * This will discard packets with INIT chunk bundled as
692 		 * subsequent chunks in the packet.  When INIT is first,
693 		 * the normal INIT processing will discard the chunk.
694 		 */
695 		if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data)
696 			goto discard;
697 
698 		ch = (sctp_chunkhdr_t *) ch_end;
699 	} while (ch_end < skb_tail_pointer(skb));
700 
701 	return 0;
702 
703 discard:
704 	return 1;
705 }
706 
707 /* Insert endpoint into the hash table.  */
708 static void __sctp_hash_endpoint(struct sctp_endpoint *ep)
709 {
710 	struct sctp_ep_common *epb;
711 	struct sctp_hashbucket *head;
712 
713 	epb = &ep->base;
714 
715 	epb->hashent = sctp_ep_hashfn(epb->bind_addr.port);
716 	head = &sctp_ep_hashtable[epb->hashent];
717 
718 	sctp_write_lock(&head->lock);
719 	hlist_add_head(&epb->node, &head->chain);
720 	sctp_write_unlock(&head->lock);
721 }
722 
723 /* Add an endpoint to the hash. Local BH-safe. */
724 void sctp_hash_endpoint(struct sctp_endpoint *ep)
725 {
726 	sctp_local_bh_disable();
727 	__sctp_hash_endpoint(ep);
728 	sctp_local_bh_enable();
729 }
730 
731 /* Remove endpoint from the hash table.  */
732 static void __sctp_unhash_endpoint(struct sctp_endpoint *ep)
733 {
734 	struct sctp_hashbucket *head;
735 	struct sctp_ep_common *epb;
736 
737 	epb = &ep->base;
738 
739 	if (hlist_unhashed(&epb->node))
740 		return;
741 
742 	epb->hashent = sctp_ep_hashfn(epb->bind_addr.port);
743 
744 	head = &sctp_ep_hashtable[epb->hashent];
745 
746 	sctp_write_lock(&head->lock);
747 	__hlist_del(&epb->node);
748 	sctp_write_unlock(&head->lock);
749 }
750 
751 /* Remove endpoint from the hash.  Local BH-safe. */
752 void sctp_unhash_endpoint(struct sctp_endpoint *ep)
753 {
754 	sctp_local_bh_disable();
755 	__sctp_unhash_endpoint(ep);
756 	sctp_local_bh_enable();
757 }
758 
759 /* Look up an endpoint. */
760 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(const union sctp_addr *laddr)
761 {
762 	struct sctp_hashbucket *head;
763 	struct sctp_ep_common *epb;
764 	struct sctp_endpoint *ep;
765 	struct hlist_node *node;
766 	int hash;
767 
768 	hash = sctp_ep_hashfn(ntohs(laddr->v4.sin_port));
769 	head = &sctp_ep_hashtable[hash];
770 	read_lock(&head->lock);
771 	sctp_for_each_hentry(epb, node, &head->chain) {
772 		ep = sctp_ep(epb);
773 		if (sctp_endpoint_is_match(ep, laddr))
774 			goto hit;
775 	}
776 
777 	ep = sctp_sk((sctp_get_ctl_sock()))->ep;
778 
779 hit:
780 	sctp_endpoint_hold(ep);
781 	read_unlock(&head->lock);
782 	return ep;
783 }
784 
785 /* Insert association into the hash table.  */
786 static void __sctp_hash_established(struct sctp_association *asoc)
787 {
788 	struct sctp_ep_common *epb;
789 	struct sctp_hashbucket *head;
790 
791 	epb = &asoc->base;
792 
793 	/* Calculate which chain this entry will belong to. */
794 	epb->hashent = sctp_assoc_hashfn(epb->bind_addr.port, asoc->peer.port);
795 
796 	head = &sctp_assoc_hashtable[epb->hashent];
797 
798 	sctp_write_lock(&head->lock);
799 	hlist_add_head(&epb->node, &head->chain);
800 	sctp_write_unlock(&head->lock);
801 }
802 
803 /* Add an association to the hash. Local BH-safe. */
804 void sctp_hash_established(struct sctp_association *asoc)
805 {
806 	if (asoc->temp)
807 		return;
808 
809 	sctp_local_bh_disable();
810 	__sctp_hash_established(asoc);
811 	sctp_local_bh_enable();
812 }
813 
814 /* Remove association from the hash table.  */
815 static void __sctp_unhash_established(struct sctp_association *asoc)
816 {
817 	struct sctp_hashbucket *head;
818 	struct sctp_ep_common *epb;
819 
820 	epb = &asoc->base;
821 
822 	epb->hashent = sctp_assoc_hashfn(epb->bind_addr.port,
823 					 asoc->peer.port);
824 
825 	head = &sctp_assoc_hashtable[epb->hashent];
826 
827 	sctp_write_lock(&head->lock);
828 	__hlist_del(&epb->node);
829 	sctp_write_unlock(&head->lock);
830 }
831 
832 /* Remove association from the hash table.  Local BH-safe. */
833 void sctp_unhash_established(struct sctp_association *asoc)
834 {
835 	if (asoc->temp)
836 		return;
837 
838 	sctp_local_bh_disable();
839 	__sctp_unhash_established(asoc);
840 	sctp_local_bh_enable();
841 }
842 
843 /* Look up an association. */
844 static struct sctp_association *__sctp_lookup_association(
845 					const union sctp_addr *local,
846 					const union sctp_addr *peer,
847 					struct sctp_transport **pt)
848 {
849 	struct sctp_hashbucket *head;
850 	struct sctp_ep_common *epb;
851 	struct sctp_association *asoc;
852 	struct sctp_transport *transport;
853 	struct hlist_node *node;
854 	int hash;
855 
856 	/* Optimize here for direct hit, only listening connections can
857 	 * have wildcards anyways.
858 	 */
859 	hash = sctp_assoc_hashfn(ntohs(local->v4.sin_port), ntohs(peer->v4.sin_port));
860 	head = &sctp_assoc_hashtable[hash];
861 	read_lock(&head->lock);
862 	sctp_for_each_hentry(epb, node, &head->chain) {
863 		asoc = sctp_assoc(epb);
864 		transport = sctp_assoc_is_match(asoc, local, peer);
865 		if (transport)
866 			goto hit;
867 	}
868 
869 	read_unlock(&head->lock);
870 
871 	return NULL;
872 
873 hit:
874 	*pt = transport;
875 	sctp_association_hold(asoc);
876 	read_unlock(&head->lock);
877 	return asoc;
878 }
879 
880 /* Look up an association. BH-safe. */
881 SCTP_STATIC
882 struct sctp_association *sctp_lookup_association(const union sctp_addr *laddr,
883 						 const union sctp_addr *paddr,
884 					    struct sctp_transport **transportp)
885 {
886 	struct sctp_association *asoc;
887 
888 	sctp_local_bh_disable();
889 	asoc = __sctp_lookup_association(laddr, paddr, transportp);
890 	sctp_local_bh_enable();
891 
892 	return asoc;
893 }
894 
895 /* Is there an association matching the given local and peer addresses? */
896 int sctp_has_association(const union sctp_addr *laddr,
897 			 const union sctp_addr *paddr)
898 {
899 	struct sctp_association *asoc;
900 	struct sctp_transport *transport;
901 
902 	if ((asoc = sctp_lookup_association(laddr, paddr, &transport))) {
903 		sctp_association_put(asoc);
904 		return 1;
905 	}
906 
907 	return 0;
908 }
909 
910 /*
911  * SCTP Implementors Guide, 2.18 Handling of address
912  * parameters within the INIT or INIT-ACK.
913  *
914  * D) When searching for a matching TCB upon reception of an INIT
915  *    or INIT-ACK chunk the receiver SHOULD use not only the
916  *    source address of the packet (containing the INIT or
917  *    INIT-ACK) but the receiver SHOULD also use all valid
918  *    address parameters contained within the chunk.
919  *
920  * 2.18.3 Solution description
921  *
922  * This new text clearly specifies to an implementor the need
923  * to look within the INIT or INIT-ACK. Any implementation that
924  * does not do this, may not be able to establish associations
925  * in certain circumstances.
926  *
927  */
928 static struct sctp_association *__sctp_rcv_init_lookup(struct sk_buff *skb,
929 	const union sctp_addr *laddr, struct sctp_transport **transportp)
930 {
931 	struct sctp_association *asoc;
932 	union sctp_addr addr;
933 	union sctp_addr *paddr = &addr;
934 	struct sctphdr *sh = sctp_hdr(skb);
935 	union sctp_params params;
936 	sctp_init_chunk_t *init;
937 	struct sctp_transport *transport;
938 	struct sctp_af *af;
939 
940 	/*
941 	 * This code will NOT touch anything inside the chunk--it is
942 	 * strictly READ-ONLY.
943 	 *
944 	 * RFC 2960 3  SCTP packet Format
945 	 *
946 	 * Multiple chunks can be bundled into one SCTP packet up to
947 	 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN
948 	 * COMPLETE chunks.  These chunks MUST NOT be bundled with any
949 	 * other chunk in a packet.  See Section 6.10 for more details
950 	 * on chunk bundling.
951 	 */
952 
953 	/* Find the start of the TLVs and the end of the chunk.  This is
954 	 * the region we search for address parameters.
955 	 */
956 	init = (sctp_init_chunk_t *)skb->data;
957 
958 	/* Walk the parameters looking for embedded addresses. */
959 	sctp_walk_params(params, init, init_hdr.params) {
960 
961 		/* Note: Ignoring hostname addresses. */
962 		af = sctp_get_af_specific(param_type2af(params.p->type));
963 		if (!af)
964 			continue;
965 
966 		af->from_addr_param(paddr, params.addr, sh->source, 0);
967 
968 		asoc = __sctp_lookup_association(laddr, paddr, &transport);
969 		if (asoc)
970 			return asoc;
971 	}
972 
973 	return NULL;
974 }
975 
976 /* ADD-IP, Section 5.2
977  * When an endpoint receives an ASCONF Chunk from the remote peer
978  * special procedures may be needed to identify the association the
979  * ASCONF Chunk is associated with. To properly find the association
980  * the following procedures SHOULD be followed:
981  *
982  * D2) If the association is not found, use the address found in the
983  * Address Parameter TLV combined with the port number found in the
984  * SCTP common header. If found proceed to rule D4.
985  *
986  * D2-ext) If more than one ASCONF Chunks are packed together, use the
987  * address found in the ASCONF Address Parameter TLV of each of the
988  * subsequent ASCONF Chunks. If found, proceed to rule D4.
989  */
990 static struct sctp_association *__sctp_rcv_asconf_lookup(
991 					sctp_chunkhdr_t *ch,
992 					const union sctp_addr *laddr,
993 					__be16 peer_port,
994 					struct sctp_transport **transportp)
995 {
996 	sctp_addip_chunk_t *asconf = (struct sctp_addip_chunk *)ch;
997 	struct sctp_af *af;
998 	union sctp_addr_param *param;
999 	union sctp_addr paddr;
1000 
1001 	/* Skip over the ADDIP header and find the Address parameter */
1002 	param = (union sctp_addr_param *)(asconf + 1);
1003 
1004 	af = sctp_get_af_specific(param_type2af(param->p.type));
1005 	if (unlikely(!af))
1006 		return NULL;
1007 
1008 	af->from_addr_param(&paddr, param, peer_port, 0);
1009 
1010 	return __sctp_lookup_association(laddr, &paddr, transportp);
1011 }
1012 
1013 
1014 /* SCTP-AUTH, Section 6.3:
1015 *    If the receiver does not find a STCB for a packet containing an AUTH
1016 *    chunk as the first chunk and not a COOKIE-ECHO chunk as the second
1017 *    chunk, it MUST use the chunks after the AUTH chunk to look up an existing
1018 *    association.
1019 *
1020 * This means that any chunks that can help us identify the association need
1021 * to be looked at to find this association.
1022 */
1023 static struct sctp_association *__sctp_rcv_walk_lookup(struct sk_buff *skb,
1024 				      const union sctp_addr *laddr,
1025 				      struct sctp_transport **transportp)
1026 {
1027 	struct sctp_association *asoc = NULL;
1028 	sctp_chunkhdr_t *ch;
1029 	int have_auth = 0;
1030 	unsigned int chunk_num = 1;
1031 	__u8 *ch_end;
1032 
1033 	/* Walk through the chunks looking for AUTH or ASCONF chunks
1034 	 * to help us find the association.
1035 	 */
1036 	ch = (sctp_chunkhdr_t *) skb->data;
1037 	do {
1038 		/* Break out if chunk length is less then minimal. */
1039 		if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t))
1040 			break;
1041 
1042 		ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length));
1043 		if (ch_end > skb_tail_pointer(skb))
1044 			break;
1045 
1046 		switch(ch->type) {
1047 		    case SCTP_CID_AUTH:
1048 			    have_auth = chunk_num;
1049 			    break;
1050 
1051 		    case SCTP_CID_COOKIE_ECHO:
1052 			    /* If a packet arrives containing an AUTH chunk as
1053 			     * a first chunk, a COOKIE-ECHO chunk as the second
1054 			     * chunk, and possibly more chunks after them, and
1055 			     * the receiver does not have an STCB for that
1056 			     * packet, then authentication is based on
1057 			     * the contents of the COOKIE- ECHO chunk.
1058 			     */
1059 			    if (have_auth == 1 && chunk_num == 2)
1060 				    return NULL;
1061 			    break;
1062 
1063 		    case SCTP_CID_ASCONF:
1064 			    if (have_auth || sctp_addip_noauth)
1065 				    asoc = __sctp_rcv_asconf_lookup(ch, laddr,
1066 							sctp_hdr(skb)->source,
1067 							transportp);
1068 		    default:
1069 			    break;
1070 		}
1071 
1072 		if (asoc)
1073 			break;
1074 
1075 		ch = (sctp_chunkhdr_t *) ch_end;
1076 		chunk_num++;
1077 	} while (ch_end < skb_tail_pointer(skb));
1078 
1079 	return asoc;
1080 }
1081 
1082 /*
1083  * There are circumstances when we need to look inside the SCTP packet
1084  * for information to help us find the association.   Examples
1085  * include looking inside of INIT/INIT-ACK chunks or after the AUTH
1086  * chunks.
1087  */
1088 static struct sctp_association *__sctp_rcv_lookup_harder(struct sk_buff *skb,
1089 				      const union sctp_addr *laddr,
1090 				      struct sctp_transport **transportp)
1091 {
1092 	sctp_chunkhdr_t *ch;
1093 
1094 	ch = (sctp_chunkhdr_t *) skb->data;
1095 
1096 	/* The code below will attempt to walk the chunk and extract
1097 	 * parameter information.  Before we do that, we need to verify
1098 	 * that the chunk length doesn't cause overflow.  Otherwise, we'll
1099 	 * walk off the end.
1100 	 */
1101 	if (WORD_ROUND(ntohs(ch->length)) > skb->len)
1102 		return NULL;
1103 
1104 	/* If this is INIT/INIT-ACK look inside the chunk too. */
1105 	switch (ch->type) {
1106 	case SCTP_CID_INIT:
1107 	case SCTP_CID_INIT_ACK:
1108 		return __sctp_rcv_init_lookup(skb, laddr, transportp);
1109 		break;
1110 
1111 	default:
1112 		return __sctp_rcv_walk_lookup(skb, laddr, transportp);
1113 		break;
1114 	}
1115 
1116 
1117 	return NULL;
1118 }
1119 
1120 /* Lookup an association for an inbound skb. */
1121 static struct sctp_association *__sctp_rcv_lookup(struct sk_buff *skb,
1122 				      const union sctp_addr *paddr,
1123 				      const union sctp_addr *laddr,
1124 				      struct sctp_transport **transportp)
1125 {
1126 	struct sctp_association *asoc;
1127 
1128 	asoc = __sctp_lookup_association(laddr, paddr, transportp);
1129 
1130 	/* Further lookup for INIT/INIT-ACK packets.
1131 	 * SCTP Implementors Guide, 2.18 Handling of address
1132 	 * parameters within the INIT or INIT-ACK.
1133 	 */
1134 	if (!asoc)
1135 		asoc = __sctp_rcv_lookup_harder(skb, laddr, transportp);
1136 
1137 	return asoc;
1138 }
1139