xref: /openbmc/linux/net/sctp/input.c (revision 12eb4683)
1 /* SCTP kernel implementation
2  * Copyright (c) 1999-2000 Cisco, Inc.
3  * Copyright (c) 1999-2001 Motorola, Inc.
4  * Copyright (c) 2001-2003 International Business Machines, Corp.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions handle all input from the IP layer into SCTP.
12  *
13  * This SCTP implementation is free software;
14  * you can redistribute it and/or modify it under the terms of
15  * the GNU General Public License as published by
16  * the Free Software Foundation; either version 2, or (at your option)
17  * any later version.
18  *
19  * This SCTP implementation is distributed in the hope that it
20  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
21  *                 ************************
22  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
23  * See the GNU General Public License for more details.
24  *
25  * You should have received a copy of the GNU General Public License
26  * along with GNU CC; see the file COPYING.  If not, write to
27  * the Free Software Foundation, 59 Temple Place - Suite 330,
28  * Boston, MA 02111-1307, USA.
29  *
30  * Please send any bug reports or fixes you make to the
31  * email address(es):
32  *    lksctp developers <linux-sctp@vger.kernel.org>
33  *
34  * Written or modified by:
35  *    La Monte H.P. Yarroll <piggy@acm.org>
36  *    Karl Knutson <karl@athena.chicago.il.us>
37  *    Xingang Guo <xingang.guo@intel.com>
38  *    Jon Grimm <jgrimm@us.ibm.com>
39  *    Hui Huang <hui.huang@nokia.com>
40  *    Daisy Chang <daisyc@us.ibm.com>
41  *    Sridhar Samudrala <sri@us.ibm.com>
42  *    Ardelle Fan <ardelle.fan@intel.com>
43  */
44 
45 #include <linux/types.h>
46 #include <linux/list.h> /* For struct list_head */
47 #include <linux/socket.h>
48 #include <linux/ip.h>
49 #include <linux/time.h> /* For struct timeval */
50 #include <linux/slab.h>
51 #include <net/ip.h>
52 #include <net/icmp.h>
53 #include <net/snmp.h>
54 #include <net/sock.h>
55 #include <net/xfrm.h>
56 #include <net/sctp/sctp.h>
57 #include <net/sctp/sm.h>
58 #include <net/sctp/checksum.h>
59 #include <net/net_namespace.h>
60 
61 /* Forward declarations for internal helpers. */
62 static int sctp_rcv_ootb(struct sk_buff *);
63 static struct sctp_association *__sctp_rcv_lookup(struct net *net,
64 				      struct sk_buff *skb,
65 				      const union sctp_addr *paddr,
66 				      const union sctp_addr *laddr,
67 				      struct sctp_transport **transportp);
68 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net,
69 						const union sctp_addr *laddr);
70 static struct sctp_association *__sctp_lookup_association(
71 					struct net *net,
72 					const union sctp_addr *local,
73 					const union sctp_addr *peer,
74 					struct sctp_transport **pt);
75 
76 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb);
77 
78 
79 /* Calculate the SCTP checksum of an SCTP packet.  */
80 static inline int sctp_rcv_checksum(struct net *net, struct sk_buff *skb)
81 {
82 	struct sctphdr *sh = sctp_hdr(skb);
83 	__le32 cmp = sh->checksum;
84 	__le32 val = sctp_compute_cksum(skb, 0);
85 
86 	if (val != cmp) {
87 		/* CRC failure, dump it. */
88 		SCTP_INC_STATS_BH(net, SCTP_MIB_CHECKSUMERRORS);
89 		return -1;
90 	}
91 	return 0;
92 }
93 
94 struct sctp_input_cb {
95 	union {
96 		struct inet_skb_parm	h4;
97 #if IS_ENABLED(CONFIG_IPV6)
98 		struct inet6_skb_parm	h6;
99 #endif
100 	} header;
101 	struct sctp_chunk *chunk;
102 };
103 #define SCTP_INPUT_CB(__skb)	((struct sctp_input_cb *)&((__skb)->cb[0]))
104 
105 /*
106  * This is the routine which IP calls when receiving an SCTP packet.
107  */
108 int sctp_rcv(struct sk_buff *skb)
109 {
110 	struct sock *sk;
111 	struct sctp_association *asoc;
112 	struct sctp_endpoint *ep = NULL;
113 	struct sctp_ep_common *rcvr;
114 	struct sctp_transport *transport = NULL;
115 	struct sctp_chunk *chunk;
116 	struct sctphdr *sh;
117 	union sctp_addr src;
118 	union sctp_addr dest;
119 	int family;
120 	struct sctp_af *af;
121 	struct net *net = dev_net(skb->dev);
122 
123 	if (skb->pkt_type!=PACKET_HOST)
124 		goto discard_it;
125 
126 	SCTP_INC_STATS_BH(net, SCTP_MIB_INSCTPPACKS);
127 
128 	if (skb_linearize(skb))
129 		goto discard_it;
130 
131 	sh = sctp_hdr(skb);
132 
133 	/* Pull up the IP and SCTP headers. */
134 	__skb_pull(skb, skb_transport_offset(skb));
135 	if (skb->len < sizeof(struct sctphdr))
136 		goto discard_it;
137 	if (!sctp_checksum_disable && !skb_csum_unnecessary(skb) &&
138 		  sctp_rcv_checksum(net, skb) < 0)
139 		goto discard_it;
140 
141 	skb_pull(skb, sizeof(struct sctphdr));
142 
143 	/* Make sure we at least have chunk headers worth of data left. */
144 	if (skb->len < sizeof(struct sctp_chunkhdr))
145 		goto discard_it;
146 
147 	family = ipver2af(ip_hdr(skb)->version);
148 	af = sctp_get_af_specific(family);
149 	if (unlikely(!af))
150 		goto discard_it;
151 
152 	/* Initialize local addresses for lookups. */
153 	af->from_skb(&src, skb, 1);
154 	af->from_skb(&dest, skb, 0);
155 
156 	/* If the packet is to or from a non-unicast address,
157 	 * silently discard the packet.
158 	 *
159 	 * This is not clearly defined in the RFC except in section
160 	 * 8.4 - OOTB handling.  However, based on the book "Stream Control
161 	 * Transmission Protocol" 2.1, "It is important to note that the
162 	 * IP address of an SCTP transport address must be a routable
163 	 * unicast address.  In other words, IP multicast addresses and
164 	 * IP broadcast addresses cannot be used in an SCTP transport
165 	 * address."
166 	 */
167 	if (!af->addr_valid(&src, NULL, skb) ||
168 	    !af->addr_valid(&dest, NULL, skb))
169 		goto discard_it;
170 
171 	asoc = __sctp_rcv_lookup(net, skb, &src, &dest, &transport);
172 
173 	if (!asoc)
174 		ep = __sctp_rcv_lookup_endpoint(net, &dest);
175 
176 	/* Retrieve the common input handling substructure. */
177 	rcvr = asoc ? &asoc->base : &ep->base;
178 	sk = rcvr->sk;
179 
180 	/*
181 	 * If a frame arrives on an interface and the receiving socket is
182 	 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB
183 	 */
184 	if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb)))
185 	{
186 		if (asoc) {
187 			sctp_association_put(asoc);
188 			asoc = NULL;
189 		} else {
190 			sctp_endpoint_put(ep);
191 			ep = NULL;
192 		}
193 		sk = net->sctp.ctl_sock;
194 		ep = sctp_sk(sk)->ep;
195 		sctp_endpoint_hold(ep);
196 		rcvr = &ep->base;
197 	}
198 
199 	/*
200 	 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
201 	 * An SCTP packet is called an "out of the blue" (OOTB)
202 	 * packet if it is correctly formed, i.e., passed the
203 	 * receiver's checksum check, but the receiver is not
204 	 * able to identify the association to which this
205 	 * packet belongs.
206 	 */
207 	if (!asoc) {
208 		if (sctp_rcv_ootb(skb)) {
209 			SCTP_INC_STATS_BH(net, SCTP_MIB_OUTOFBLUES);
210 			goto discard_release;
211 		}
212 	}
213 
214 	if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family))
215 		goto discard_release;
216 	nf_reset(skb);
217 
218 	if (sk_filter(sk, skb))
219 		goto discard_release;
220 
221 	/* Create an SCTP packet structure. */
222 	chunk = sctp_chunkify(skb, asoc, sk);
223 	if (!chunk)
224 		goto discard_release;
225 	SCTP_INPUT_CB(skb)->chunk = chunk;
226 
227 	/* Remember what endpoint is to handle this packet. */
228 	chunk->rcvr = rcvr;
229 
230 	/* Remember the SCTP header. */
231 	chunk->sctp_hdr = sh;
232 
233 	/* Set the source and destination addresses of the incoming chunk.  */
234 	sctp_init_addrs(chunk, &src, &dest);
235 
236 	/* Remember where we came from.  */
237 	chunk->transport = transport;
238 
239 	/* Acquire access to the sock lock. Note: We are safe from other
240 	 * bottom halves on this lock, but a user may be in the lock too,
241 	 * so check if it is busy.
242 	 */
243 	sctp_bh_lock_sock(sk);
244 
245 	if (sk != rcvr->sk) {
246 		/* Our cached sk is different from the rcvr->sk.  This is
247 		 * because migrate()/accept() may have moved the association
248 		 * to a new socket and released all the sockets.  So now we
249 		 * are holding a lock on the old socket while the user may
250 		 * be doing something with the new socket.  Switch our veiw
251 		 * of the current sk.
252 		 */
253 		sctp_bh_unlock_sock(sk);
254 		sk = rcvr->sk;
255 		sctp_bh_lock_sock(sk);
256 	}
257 
258 	if (sock_owned_by_user(sk)) {
259 		if (sctp_add_backlog(sk, skb)) {
260 			sctp_bh_unlock_sock(sk);
261 			sctp_chunk_free(chunk);
262 			skb = NULL; /* sctp_chunk_free already freed the skb */
263 			goto discard_release;
264 		}
265 		SCTP_INC_STATS_BH(net, SCTP_MIB_IN_PKT_BACKLOG);
266 	} else {
267 		SCTP_INC_STATS_BH(net, SCTP_MIB_IN_PKT_SOFTIRQ);
268 		sctp_inq_push(&chunk->rcvr->inqueue, chunk);
269 	}
270 
271 	sctp_bh_unlock_sock(sk);
272 
273 	/* Release the asoc/ep ref we took in the lookup calls. */
274 	if (asoc)
275 		sctp_association_put(asoc);
276 	else
277 		sctp_endpoint_put(ep);
278 
279 	return 0;
280 
281 discard_it:
282 	SCTP_INC_STATS_BH(net, SCTP_MIB_IN_PKT_DISCARDS);
283 	kfree_skb(skb);
284 	return 0;
285 
286 discard_release:
287 	/* Release the asoc/ep ref we took in the lookup calls. */
288 	if (asoc)
289 		sctp_association_put(asoc);
290 	else
291 		sctp_endpoint_put(ep);
292 
293 	goto discard_it;
294 }
295 
296 /* Process the backlog queue of the socket.  Every skb on
297  * the backlog holds a ref on an association or endpoint.
298  * We hold this ref throughout the state machine to make
299  * sure that the structure we need is still around.
300  */
301 int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
302 {
303 	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
304 	struct sctp_inq *inqueue = &chunk->rcvr->inqueue;
305 	struct sctp_ep_common *rcvr = NULL;
306 	int backloged = 0;
307 
308 	rcvr = chunk->rcvr;
309 
310 	/* If the rcvr is dead then the association or endpoint
311 	 * has been deleted and we can safely drop the chunk
312 	 * and refs that we are holding.
313 	 */
314 	if (rcvr->dead) {
315 		sctp_chunk_free(chunk);
316 		goto done;
317 	}
318 
319 	if (unlikely(rcvr->sk != sk)) {
320 		/* In this case, the association moved from one socket to
321 		 * another.  We are currently sitting on the backlog of the
322 		 * old socket, so we need to move.
323 		 * However, since we are here in the process context we
324 		 * need to take make sure that the user doesn't own
325 		 * the new socket when we process the packet.
326 		 * If the new socket is user-owned, queue the chunk to the
327 		 * backlog of the new socket without dropping any refs.
328 		 * Otherwise, we can safely push the chunk on the inqueue.
329 		 */
330 
331 		sk = rcvr->sk;
332 		sctp_bh_lock_sock(sk);
333 
334 		if (sock_owned_by_user(sk)) {
335 			if (sk_add_backlog(sk, skb, sk->sk_rcvbuf))
336 				sctp_chunk_free(chunk);
337 			else
338 				backloged = 1;
339 		} else
340 			sctp_inq_push(inqueue, chunk);
341 
342 		sctp_bh_unlock_sock(sk);
343 
344 		/* If the chunk was backloged again, don't drop refs */
345 		if (backloged)
346 			return 0;
347 	} else {
348 		sctp_inq_push(inqueue, chunk);
349 	}
350 
351 done:
352 	/* Release the refs we took in sctp_add_backlog */
353 	if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
354 		sctp_association_put(sctp_assoc(rcvr));
355 	else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
356 		sctp_endpoint_put(sctp_ep(rcvr));
357 	else
358 		BUG();
359 
360 	return 0;
361 }
362 
363 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb)
364 {
365 	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
366 	struct sctp_ep_common *rcvr = chunk->rcvr;
367 	int ret;
368 
369 	ret = sk_add_backlog(sk, skb, sk->sk_rcvbuf);
370 	if (!ret) {
371 		/* Hold the assoc/ep while hanging on the backlog queue.
372 		 * This way, we know structures we need will not disappear
373 		 * from us
374 		 */
375 		if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
376 			sctp_association_hold(sctp_assoc(rcvr));
377 		else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
378 			sctp_endpoint_hold(sctp_ep(rcvr));
379 		else
380 			BUG();
381 	}
382 	return ret;
383 
384 }
385 
386 /* Handle icmp frag needed error. */
387 void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
388 			   struct sctp_transport *t, __u32 pmtu)
389 {
390 	if (!t || (t->pathmtu <= pmtu))
391 		return;
392 
393 	if (sock_owned_by_user(sk)) {
394 		asoc->pmtu_pending = 1;
395 		t->pmtu_pending = 1;
396 		return;
397 	}
398 
399 	if (t->param_flags & SPP_PMTUD_ENABLE) {
400 		/* Update transports view of the MTU */
401 		sctp_transport_update_pmtu(sk, t, pmtu);
402 
403 		/* Update association pmtu. */
404 		sctp_assoc_sync_pmtu(sk, asoc);
405 	}
406 
407 	/* Retransmit with the new pmtu setting.
408 	 * Normally, if PMTU discovery is disabled, an ICMP Fragmentation
409 	 * Needed will never be sent, but if a message was sent before
410 	 * PMTU discovery was disabled that was larger than the PMTU, it
411 	 * would not be fragmented, so it must be re-transmitted fragmented.
412 	 */
413 	sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD);
414 }
415 
416 void sctp_icmp_redirect(struct sock *sk, struct sctp_transport *t,
417 			struct sk_buff *skb)
418 {
419 	struct dst_entry *dst;
420 
421 	if (!t)
422 		return;
423 	dst = sctp_transport_dst_check(t);
424 	if (dst)
425 		dst->ops->redirect(dst, sk, skb);
426 }
427 
428 /*
429  * SCTP Implementer's Guide, 2.37 ICMP handling procedures
430  *
431  * ICMP8) If the ICMP code is a "Unrecognized next header type encountered"
432  *        or a "Protocol Unreachable" treat this message as an abort
433  *        with the T bit set.
434  *
435  * This function sends an event to the state machine, which will abort the
436  * association.
437  *
438  */
439 void sctp_icmp_proto_unreachable(struct sock *sk,
440 			   struct sctp_association *asoc,
441 			   struct sctp_transport *t)
442 {
443 	if (sock_owned_by_user(sk)) {
444 		if (timer_pending(&t->proto_unreach_timer))
445 			return;
446 		else {
447 			if (!mod_timer(&t->proto_unreach_timer,
448 						jiffies + (HZ/20)))
449 				sctp_association_hold(asoc);
450 		}
451 	} else {
452 		struct net *net = sock_net(sk);
453 
454 		pr_debug("%s: unrecognized next header type "
455 			 "encountered!\n", __func__);
456 
457 		if (del_timer(&t->proto_unreach_timer))
458 			sctp_association_put(asoc);
459 
460 		sctp_do_sm(net, SCTP_EVENT_T_OTHER,
461 			   SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
462 			   asoc->state, asoc->ep, asoc, t,
463 			   GFP_ATOMIC);
464 	}
465 }
466 
467 /* Common lookup code for icmp/icmpv6 error handler. */
468 struct sock *sctp_err_lookup(struct net *net, int family, struct sk_buff *skb,
469 			     struct sctphdr *sctphdr,
470 			     struct sctp_association **app,
471 			     struct sctp_transport **tpp)
472 {
473 	union sctp_addr saddr;
474 	union sctp_addr daddr;
475 	struct sctp_af *af;
476 	struct sock *sk = NULL;
477 	struct sctp_association *asoc;
478 	struct sctp_transport *transport = NULL;
479 	struct sctp_init_chunk *chunkhdr;
480 	__u32 vtag = ntohl(sctphdr->vtag);
481 	int len = skb->len - ((void *)sctphdr - (void *)skb->data);
482 
483 	*app = NULL; *tpp = NULL;
484 
485 	af = sctp_get_af_specific(family);
486 	if (unlikely(!af)) {
487 		return NULL;
488 	}
489 
490 	/* Initialize local addresses for lookups. */
491 	af->from_skb(&saddr, skb, 1);
492 	af->from_skb(&daddr, skb, 0);
493 
494 	/* Look for an association that matches the incoming ICMP error
495 	 * packet.
496 	 */
497 	asoc = __sctp_lookup_association(net, &saddr, &daddr, &transport);
498 	if (!asoc)
499 		return NULL;
500 
501 	sk = asoc->base.sk;
502 
503 	/* RFC 4960, Appendix C. ICMP Handling
504 	 *
505 	 * ICMP6) An implementation MUST validate that the Verification Tag
506 	 * contained in the ICMP message matches the Verification Tag of
507 	 * the peer.  If the Verification Tag is not 0 and does NOT
508 	 * match, discard the ICMP message.  If it is 0 and the ICMP
509 	 * message contains enough bytes to verify that the chunk type is
510 	 * an INIT chunk and that the Initiate Tag matches the tag of the
511 	 * peer, continue with ICMP7.  If the ICMP message is too short
512 	 * or the chunk type or the Initiate Tag does not match, silently
513 	 * discard the packet.
514 	 */
515 	if (vtag == 0) {
516 		chunkhdr = (void *)sctphdr + sizeof(struct sctphdr);
517 		if (len < sizeof(struct sctphdr) + sizeof(sctp_chunkhdr_t)
518 			  + sizeof(__be32) ||
519 		    chunkhdr->chunk_hdr.type != SCTP_CID_INIT ||
520 		    ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag) {
521 			goto out;
522 		}
523 	} else if (vtag != asoc->c.peer_vtag) {
524 		goto out;
525 	}
526 
527 	sctp_bh_lock_sock(sk);
528 
529 	/* If too many ICMPs get dropped on busy
530 	 * servers this needs to be solved differently.
531 	 */
532 	if (sock_owned_by_user(sk))
533 		NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
534 
535 	*app = asoc;
536 	*tpp = transport;
537 	return sk;
538 
539 out:
540 	if (asoc)
541 		sctp_association_put(asoc);
542 	return NULL;
543 }
544 
545 /* Common cleanup code for icmp/icmpv6 error handler. */
546 void sctp_err_finish(struct sock *sk, struct sctp_association *asoc)
547 {
548 	sctp_bh_unlock_sock(sk);
549 	if (asoc)
550 		sctp_association_put(asoc);
551 }
552 
553 /*
554  * This routine is called by the ICMP module when it gets some
555  * sort of error condition.  If err < 0 then the socket should
556  * be closed and the error returned to the user.  If err > 0
557  * it's just the icmp type << 8 | icmp code.  After adjustment
558  * header points to the first 8 bytes of the sctp header.  We need
559  * to find the appropriate port.
560  *
561  * The locking strategy used here is very "optimistic". When
562  * someone else accesses the socket the ICMP is just dropped
563  * and for some paths there is no check at all.
564  * A more general error queue to queue errors for later handling
565  * is probably better.
566  *
567  */
568 void sctp_v4_err(struct sk_buff *skb, __u32 info)
569 {
570 	const struct iphdr *iph = (const struct iphdr *)skb->data;
571 	const int ihlen = iph->ihl * 4;
572 	const int type = icmp_hdr(skb)->type;
573 	const int code = icmp_hdr(skb)->code;
574 	struct sock *sk;
575 	struct sctp_association *asoc = NULL;
576 	struct sctp_transport *transport;
577 	struct inet_sock *inet;
578 	__u16 saveip, savesctp;
579 	int err;
580 	struct net *net = dev_net(skb->dev);
581 
582 	if (skb->len < ihlen + 8) {
583 		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
584 		return;
585 	}
586 
587 	/* Fix up skb to look at the embedded net header. */
588 	saveip = skb->network_header;
589 	savesctp = skb->transport_header;
590 	skb_reset_network_header(skb);
591 	skb_set_transport_header(skb, ihlen);
592 	sk = sctp_err_lookup(net, AF_INET, skb, sctp_hdr(skb), &asoc, &transport);
593 	/* Put back, the original values. */
594 	skb->network_header = saveip;
595 	skb->transport_header = savesctp;
596 	if (!sk) {
597 		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
598 		return;
599 	}
600 	/* Warning:  The sock lock is held.  Remember to call
601 	 * sctp_err_finish!
602 	 */
603 
604 	switch (type) {
605 	case ICMP_PARAMETERPROB:
606 		err = EPROTO;
607 		break;
608 	case ICMP_DEST_UNREACH:
609 		if (code > NR_ICMP_UNREACH)
610 			goto out_unlock;
611 
612 		/* PMTU discovery (RFC1191) */
613 		if (ICMP_FRAG_NEEDED == code) {
614 			sctp_icmp_frag_needed(sk, asoc, transport, info);
615 			goto out_unlock;
616 		}
617 		else {
618 			if (ICMP_PROT_UNREACH == code) {
619 				sctp_icmp_proto_unreachable(sk, asoc,
620 							    transport);
621 				goto out_unlock;
622 			}
623 		}
624 		err = icmp_err_convert[code].errno;
625 		break;
626 	case ICMP_TIME_EXCEEDED:
627 		/* Ignore any time exceeded errors due to fragment reassembly
628 		 * timeouts.
629 		 */
630 		if (ICMP_EXC_FRAGTIME == code)
631 			goto out_unlock;
632 
633 		err = EHOSTUNREACH;
634 		break;
635 	case ICMP_REDIRECT:
636 		sctp_icmp_redirect(sk, transport, skb);
637 		/* Fall through to out_unlock. */
638 	default:
639 		goto out_unlock;
640 	}
641 
642 	inet = inet_sk(sk);
643 	if (!sock_owned_by_user(sk) && inet->recverr) {
644 		sk->sk_err = err;
645 		sk->sk_error_report(sk);
646 	} else {  /* Only an error on timeout */
647 		sk->sk_err_soft = err;
648 	}
649 
650 out_unlock:
651 	sctp_err_finish(sk, asoc);
652 }
653 
654 /*
655  * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
656  *
657  * This function scans all the chunks in the OOTB packet to determine if
658  * the packet should be discarded right away.  If a response might be needed
659  * for this packet, or, if further processing is possible, the packet will
660  * be queued to a proper inqueue for the next phase of handling.
661  *
662  * Output:
663  * Return 0 - If further processing is needed.
664  * Return 1 - If the packet can be discarded right away.
665  */
666 static int sctp_rcv_ootb(struct sk_buff *skb)
667 {
668 	sctp_chunkhdr_t *ch;
669 	__u8 *ch_end;
670 
671 	ch = (sctp_chunkhdr_t *) skb->data;
672 
673 	/* Scan through all the chunks in the packet.  */
674 	do {
675 		/* Break out if chunk length is less then minimal. */
676 		if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t))
677 			break;
678 
679 		ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length));
680 		if (ch_end > skb_tail_pointer(skb))
681 			break;
682 
683 		/* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the
684 		 * receiver MUST silently discard the OOTB packet and take no
685 		 * further action.
686 		 */
687 		if (SCTP_CID_ABORT == ch->type)
688 			goto discard;
689 
690 		/* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE
691 		 * chunk, the receiver should silently discard the packet
692 		 * and take no further action.
693 		 */
694 		if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type)
695 			goto discard;
696 
697 		/* RFC 4460, 2.11.2
698 		 * This will discard packets with INIT chunk bundled as
699 		 * subsequent chunks in the packet.  When INIT is first,
700 		 * the normal INIT processing will discard the chunk.
701 		 */
702 		if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data)
703 			goto discard;
704 
705 		ch = (sctp_chunkhdr_t *) ch_end;
706 	} while (ch_end < skb_tail_pointer(skb));
707 
708 	return 0;
709 
710 discard:
711 	return 1;
712 }
713 
714 /* Insert endpoint into the hash table.  */
715 static void __sctp_hash_endpoint(struct sctp_endpoint *ep)
716 {
717 	struct net *net = sock_net(ep->base.sk);
718 	struct sctp_ep_common *epb;
719 	struct sctp_hashbucket *head;
720 
721 	epb = &ep->base;
722 
723 	epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port);
724 	head = &sctp_ep_hashtable[epb->hashent];
725 
726 	sctp_write_lock(&head->lock);
727 	hlist_add_head(&epb->node, &head->chain);
728 	sctp_write_unlock(&head->lock);
729 }
730 
731 /* Add an endpoint to the hash. Local BH-safe. */
732 void sctp_hash_endpoint(struct sctp_endpoint *ep)
733 {
734 	sctp_local_bh_disable();
735 	__sctp_hash_endpoint(ep);
736 	sctp_local_bh_enable();
737 }
738 
739 /* Remove endpoint from the hash table.  */
740 static void __sctp_unhash_endpoint(struct sctp_endpoint *ep)
741 {
742 	struct net *net = sock_net(ep->base.sk);
743 	struct sctp_hashbucket *head;
744 	struct sctp_ep_common *epb;
745 
746 	epb = &ep->base;
747 
748 	epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port);
749 
750 	head = &sctp_ep_hashtable[epb->hashent];
751 
752 	sctp_write_lock(&head->lock);
753 	hlist_del_init(&epb->node);
754 	sctp_write_unlock(&head->lock);
755 }
756 
757 /* Remove endpoint from the hash.  Local BH-safe. */
758 void sctp_unhash_endpoint(struct sctp_endpoint *ep)
759 {
760 	sctp_local_bh_disable();
761 	__sctp_unhash_endpoint(ep);
762 	sctp_local_bh_enable();
763 }
764 
765 /* Look up an endpoint. */
766 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net,
767 						const union sctp_addr *laddr)
768 {
769 	struct sctp_hashbucket *head;
770 	struct sctp_ep_common *epb;
771 	struct sctp_endpoint *ep;
772 	int hash;
773 
774 	hash = sctp_ep_hashfn(net, ntohs(laddr->v4.sin_port));
775 	head = &sctp_ep_hashtable[hash];
776 	read_lock(&head->lock);
777 	sctp_for_each_hentry(epb, &head->chain) {
778 		ep = sctp_ep(epb);
779 		if (sctp_endpoint_is_match(ep, net, laddr))
780 			goto hit;
781 	}
782 
783 	ep = sctp_sk(net->sctp.ctl_sock)->ep;
784 
785 hit:
786 	sctp_endpoint_hold(ep);
787 	read_unlock(&head->lock);
788 	return ep;
789 }
790 
791 /* Insert association into the hash table.  */
792 static void __sctp_hash_established(struct sctp_association *asoc)
793 {
794 	struct net *net = sock_net(asoc->base.sk);
795 	struct sctp_ep_common *epb;
796 	struct sctp_hashbucket *head;
797 
798 	epb = &asoc->base;
799 
800 	/* Calculate which chain this entry will belong to. */
801 	epb->hashent = sctp_assoc_hashfn(net, epb->bind_addr.port,
802 					 asoc->peer.port);
803 
804 	head = &sctp_assoc_hashtable[epb->hashent];
805 
806 	sctp_write_lock(&head->lock);
807 	hlist_add_head(&epb->node, &head->chain);
808 	sctp_write_unlock(&head->lock);
809 }
810 
811 /* Add an association to the hash. Local BH-safe. */
812 void sctp_hash_established(struct sctp_association *asoc)
813 {
814 	if (asoc->temp)
815 		return;
816 
817 	sctp_local_bh_disable();
818 	__sctp_hash_established(asoc);
819 	sctp_local_bh_enable();
820 }
821 
822 /* Remove association from the hash table.  */
823 static void __sctp_unhash_established(struct sctp_association *asoc)
824 {
825 	struct net *net = sock_net(asoc->base.sk);
826 	struct sctp_hashbucket *head;
827 	struct sctp_ep_common *epb;
828 
829 	epb = &asoc->base;
830 
831 	epb->hashent = sctp_assoc_hashfn(net, epb->bind_addr.port,
832 					 asoc->peer.port);
833 
834 	head = &sctp_assoc_hashtable[epb->hashent];
835 
836 	sctp_write_lock(&head->lock);
837 	hlist_del_init(&epb->node);
838 	sctp_write_unlock(&head->lock);
839 }
840 
841 /* Remove association from the hash table.  Local BH-safe. */
842 void sctp_unhash_established(struct sctp_association *asoc)
843 {
844 	if (asoc->temp)
845 		return;
846 
847 	sctp_local_bh_disable();
848 	__sctp_unhash_established(asoc);
849 	sctp_local_bh_enable();
850 }
851 
852 /* Look up an association. */
853 static struct sctp_association *__sctp_lookup_association(
854 					struct net *net,
855 					const union sctp_addr *local,
856 					const union sctp_addr *peer,
857 					struct sctp_transport **pt)
858 {
859 	struct sctp_hashbucket *head;
860 	struct sctp_ep_common *epb;
861 	struct sctp_association *asoc;
862 	struct sctp_transport *transport;
863 	int hash;
864 
865 	/* Optimize here for direct hit, only listening connections can
866 	 * have wildcards anyways.
867 	 */
868 	hash = sctp_assoc_hashfn(net, ntohs(local->v4.sin_port),
869 				 ntohs(peer->v4.sin_port));
870 	head = &sctp_assoc_hashtable[hash];
871 	read_lock(&head->lock);
872 	sctp_for_each_hentry(epb, &head->chain) {
873 		asoc = sctp_assoc(epb);
874 		transport = sctp_assoc_is_match(asoc, net, local, peer);
875 		if (transport)
876 			goto hit;
877 	}
878 
879 	read_unlock(&head->lock);
880 
881 	return NULL;
882 
883 hit:
884 	*pt = transport;
885 	sctp_association_hold(asoc);
886 	read_unlock(&head->lock);
887 	return asoc;
888 }
889 
890 /* Look up an association. BH-safe. */
891 static
892 struct sctp_association *sctp_lookup_association(struct net *net,
893 						 const union sctp_addr *laddr,
894 						 const union sctp_addr *paddr,
895 						 struct sctp_transport **transportp)
896 {
897 	struct sctp_association *asoc;
898 
899 	sctp_local_bh_disable();
900 	asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
901 	sctp_local_bh_enable();
902 
903 	return asoc;
904 }
905 
906 /* Is there an association matching the given local and peer addresses? */
907 int sctp_has_association(struct net *net,
908 			 const union sctp_addr *laddr,
909 			 const union sctp_addr *paddr)
910 {
911 	struct sctp_association *asoc;
912 	struct sctp_transport *transport;
913 
914 	if ((asoc = sctp_lookup_association(net, laddr, paddr, &transport))) {
915 		sctp_association_put(asoc);
916 		return 1;
917 	}
918 
919 	return 0;
920 }
921 
922 /*
923  * SCTP Implementors Guide, 2.18 Handling of address
924  * parameters within the INIT or INIT-ACK.
925  *
926  * D) When searching for a matching TCB upon reception of an INIT
927  *    or INIT-ACK chunk the receiver SHOULD use not only the
928  *    source address of the packet (containing the INIT or
929  *    INIT-ACK) but the receiver SHOULD also use all valid
930  *    address parameters contained within the chunk.
931  *
932  * 2.18.3 Solution description
933  *
934  * This new text clearly specifies to an implementor the need
935  * to look within the INIT or INIT-ACK. Any implementation that
936  * does not do this, may not be able to establish associations
937  * in certain circumstances.
938  *
939  */
940 static struct sctp_association *__sctp_rcv_init_lookup(struct net *net,
941 	struct sk_buff *skb,
942 	const union sctp_addr *laddr, struct sctp_transport **transportp)
943 {
944 	struct sctp_association *asoc;
945 	union sctp_addr addr;
946 	union sctp_addr *paddr = &addr;
947 	struct sctphdr *sh = sctp_hdr(skb);
948 	union sctp_params params;
949 	sctp_init_chunk_t *init;
950 	struct sctp_transport *transport;
951 	struct sctp_af *af;
952 
953 	/*
954 	 * This code will NOT touch anything inside the chunk--it is
955 	 * strictly READ-ONLY.
956 	 *
957 	 * RFC 2960 3  SCTP packet Format
958 	 *
959 	 * Multiple chunks can be bundled into one SCTP packet up to
960 	 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN
961 	 * COMPLETE chunks.  These chunks MUST NOT be bundled with any
962 	 * other chunk in a packet.  See Section 6.10 for more details
963 	 * on chunk bundling.
964 	 */
965 
966 	/* Find the start of the TLVs and the end of the chunk.  This is
967 	 * the region we search for address parameters.
968 	 */
969 	init = (sctp_init_chunk_t *)skb->data;
970 
971 	/* Walk the parameters looking for embedded addresses. */
972 	sctp_walk_params(params, init, init_hdr.params) {
973 
974 		/* Note: Ignoring hostname addresses. */
975 		af = sctp_get_af_specific(param_type2af(params.p->type));
976 		if (!af)
977 			continue;
978 
979 		af->from_addr_param(paddr, params.addr, sh->source, 0);
980 
981 		asoc = __sctp_lookup_association(net, laddr, paddr, &transport);
982 		if (asoc)
983 			return asoc;
984 	}
985 
986 	return NULL;
987 }
988 
989 /* ADD-IP, Section 5.2
990  * When an endpoint receives an ASCONF Chunk from the remote peer
991  * special procedures may be needed to identify the association the
992  * ASCONF Chunk is associated with. To properly find the association
993  * the following procedures SHOULD be followed:
994  *
995  * D2) If the association is not found, use the address found in the
996  * Address Parameter TLV combined with the port number found in the
997  * SCTP common header. If found proceed to rule D4.
998  *
999  * D2-ext) If more than one ASCONF Chunks are packed together, use the
1000  * address found in the ASCONF Address Parameter TLV of each of the
1001  * subsequent ASCONF Chunks. If found, proceed to rule D4.
1002  */
1003 static struct sctp_association *__sctp_rcv_asconf_lookup(
1004 					struct net *net,
1005 					sctp_chunkhdr_t *ch,
1006 					const union sctp_addr *laddr,
1007 					__be16 peer_port,
1008 					struct sctp_transport **transportp)
1009 {
1010 	sctp_addip_chunk_t *asconf = (struct sctp_addip_chunk *)ch;
1011 	struct sctp_af *af;
1012 	union sctp_addr_param *param;
1013 	union sctp_addr paddr;
1014 
1015 	/* Skip over the ADDIP header and find the Address parameter */
1016 	param = (union sctp_addr_param *)(asconf + 1);
1017 
1018 	af = sctp_get_af_specific(param_type2af(param->p.type));
1019 	if (unlikely(!af))
1020 		return NULL;
1021 
1022 	af->from_addr_param(&paddr, param, peer_port, 0);
1023 
1024 	return __sctp_lookup_association(net, laddr, &paddr, transportp);
1025 }
1026 
1027 
1028 /* SCTP-AUTH, Section 6.3:
1029 *    If the receiver does not find a STCB for a packet containing an AUTH
1030 *    chunk as the first chunk and not a COOKIE-ECHO chunk as the second
1031 *    chunk, it MUST use the chunks after the AUTH chunk to look up an existing
1032 *    association.
1033 *
1034 * This means that any chunks that can help us identify the association need
1035 * to be looked at to find this association.
1036 */
1037 static struct sctp_association *__sctp_rcv_walk_lookup(struct net *net,
1038 				      struct sk_buff *skb,
1039 				      const union sctp_addr *laddr,
1040 				      struct sctp_transport **transportp)
1041 {
1042 	struct sctp_association *asoc = NULL;
1043 	sctp_chunkhdr_t *ch;
1044 	int have_auth = 0;
1045 	unsigned int chunk_num = 1;
1046 	__u8 *ch_end;
1047 
1048 	/* Walk through the chunks looking for AUTH or ASCONF chunks
1049 	 * to help us find the association.
1050 	 */
1051 	ch = (sctp_chunkhdr_t *) skb->data;
1052 	do {
1053 		/* Break out if chunk length is less then minimal. */
1054 		if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t))
1055 			break;
1056 
1057 		ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length));
1058 		if (ch_end > skb_tail_pointer(skb))
1059 			break;
1060 
1061 		switch(ch->type) {
1062 		    case SCTP_CID_AUTH:
1063 			    have_auth = chunk_num;
1064 			    break;
1065 
1066 		    case SCTP_CID_COOKIE_ECHO:
1067 			    /* If a packet arrives containing an AUTH chunk as
1068 			     * a first chunk, a COOKIE-ECHO chunk as the second
1069 			     * chunk, and possibly more chunks after them, and
1070 			     * the receiver does not have an STCB for that
1071 			     * packet, then authentication is based on
1072 			     * the contents of the COOKIE- ECHO chunk.
1073 			     */
1074 			    if (have_auth == 1 && chunk_num == 2)
1075 				    return NULL;
1076 			    break;
1077 
1078 		    case SCTP_CID_ASCONF:
1079 			    if (have_auth || net->sctp.addip_noauth)
1080 				    asoc = __sctp_rcv_asconf_lookup(
1081 							net, ch, laddr,
1082 							sctp_hdr(skb)->source,
1083 							transportp);
1084 		    default:
1085 			    break;
1086 		}
1087 
1088 		if (asoc)
1089 			break;
1090 
1091 		ch = (sctp_chunkhdr_t *) ch_end;
1092 		chunk_num++;
1093 	} while (ch_end < skb_tail_pointer(skb));
1094 
1095 	return asoc;
1096 }
1097 
1098 /*
1099  * There are circumstances when we need to look inside the SCTP packet
1100  * for information to help us find the association.   Examples
1101  * include looking inside of INIT/INIT-ACK chunks or after the AUTH
1102  * chunks.
1103  */
1104 static struct sctp_association *__sctp_rcv_lookup_harder(struct net *net,
1105 				      struct sk_buff *skb,
1106 				      const union sctp_addr *laddr,
1107 				      struct sctp_transport **transportp)
1108 {
1109 	sctp_chunkhdr_t *ch;
1110 
1111 	ch = (sctp_chunkhdr_t *) skb->data;
1112 
1113 	/* The code below will attempt to walk the chunk and extract
1114 	 * parameter information.  Before we do that, we need to verify
1115 	 * that the chunk length doesn't cause overflow.  Otherwise, we'll
1116 	 * walk off the end.
1117 	 */
1118 	if (WORD_ROUND(ntohs(ch->length)) > skb->len)
1119 		return NULL;
1120 
1121 	/* If this is INIT/INIT-ACK look inside the chunk too. */
1122 	switch (ch->type) {
1123 	case SCTP_CID_INIT:
1124 	case SCTP_CID_INIT_ACK:
1125 		return __sctp_rcv_init_lookup(net, skb, laddr, transportp);
1126 		break;
1127 
1128 	default:
1129 		return __sctp_rcv_walk_lookup(net, skb, laddr, transportp);
1130 		break;
1131 	}
1132 
1133 
1134 	return NULL;
1135 }
1136 
1137 /* Lookup an association for an inbound skb. */
1138 static struct sctp_association *__sctp_rcv_lookup(struct net *net,
1139 				      struct sk_buff *skb,
1140 				      const union sctp_addr *paddr,
1141 				      const union sctp_addr *laddr,
1142 				      struct sctp_transport **transportp)
1143 {
1144 	struct sctp_association *asoc;
1145 
1146 	asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1147 
1148 	/* Further lookup for INIT/INIT-ACK packets.
1149 	 * SCTP Implementors Guide, 2.18 Handling of address
1150 	 * parameters within the INIT or INIT-ACK.
1151 	 */
1152 	if (!asoc)
1153 		asoc = __sctp_rcv_lookup_harder(net, skb, laddr, transportp);
1154 
1155 	return asoc;
1156 }
1157