xref: /openbmc/linux/net/sctp/auth.c (revision f79e4d5f92a129a1159c973735007d4ddc8541f3)
1 /* SCTP kernel implementation
2  * (C) Copyright 2007 Hewlett-Packard Development Company, L.P.
3  *
4  * This file is part of the SCTP kernel implementation
5  *
6  * This SCTP implementation is free software;
7  * you can redistribute it and/or modify it under the terms of
8  * the GNU General Public License as published by
9  * the Free Software Foundation; either version 2, or (at your option)
10  * any later version.
11  *
12  * This SCTP implementation is distributed in the hope that it
13  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
14  *                 ************************
15  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
16  * See the GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with GNU CC; see the file COPYING.  If not, see
20  * <http://www.gnu.org/licenses/>.
21  *
22  * Please send any bug reports or fixes you make to the
23  * email address(es):
24  *    lksctp developers <linux-sctp@vger.kernel.org>
25  *
26  * Written or modified by:
27  *   Vlad Yasevich     <vladislav.yasevich@hp.com>
28  */
29 
30 #include <crypto/hash.h>
31 #include <linux/slab.h>
32 #include <linux/types.h>
33 #include <linux/scatterlist.h>
34 #include <net/sctp/sctp.h>
35 #include <net/sctp/auth.h>
36 
37 static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = {
38 	{
39 		/* id 0 is reserved.  as all 0 */
40 		.hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0,
41 	},
42 	{
43 		.hmac_id = SCTP_AUTH_HMAC_ID_SHA1,
44 		.hmac_name = "hmac(sha1)",
45 		.hmac_len = SCTP_SHA1_SIG_SIZE,
46 	},
47 	{
48 		/* id 2 is reserved as well */
49 		.hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2,
50 	},
51 #if IS_ENABLED(CONFIG_CRYPTO_SHA256)
52 	{
53 		.hmac_id = SCTP_AUTH_HMAC_ID_SHA256,
54 		.hmac_name = "hmac(sha256)",
55 		.hmac_len = SCTP_SHA256_SIG_SIZE,
56 	}
57 #endif
58 };
59 
60 
61 void sctp_auth_key_put(struct sctp_auth_bytes *key)
62 {
63 	if (!key)
64 		return;
65 
66 	if (refcount_dec_and_test(&key->refcnt)) {
67 		kzfree(key);
68 		SCTP_DBG_OBJCNT_DEC(keys);
69 	}
70 }
71 
72 /* Create a new key structure of a given length */
73 static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp)
74 {
75 	struct sctp_auth_bytes *key;
76 
77 	/* Verify that we are not going to overflow INT_MAX */
78 	if (key_len > (INT_MAX - sizeof(struct sctp_auth_bytes)))
79 		return NULL;
80 
81 	/* Allocate the shared key */
82 	key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp);
83 	if (!key)
84 		return NULL;
85 
86 	key->len = key_len;
87 	refcount_set(&key->refcnt, 1);
88 	SCTP_DBG_OBJCNT_INC(keys);
89 
90 	return key;
91 }
92 
93 /* Create a new shared key container with a give key id */
94 struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp)
95 {
96 	struct sctp_shared_key *new;
97 
98 	/* Allocate the shared key container */
99 	new = kzalloc(sizeof(struct sctp_shared_key), gfp);
100 	if (!new)
101 		return NULL;
102 
103 	INIT_LIST_HEAD(&new->key_list);
104 	refcount_set(&new->refcnt, 1);
105 	new->key_id = key_id;
106 
107 	return new;
108 }
109 
110 /* Free the shared key structure */
111 static void sctp_auth_shkey_destroy(struct sctp_shared_key *sh_key)
112 {
113 	BUG_ON(!list_empty(&sh_key->key_list));
114 	sctp_auth_key_put(sh_key->key);
115 	sh_key->key = NULL;
116 	kfree(sh_key);
117 }
118 
119 void sctp_auth_shkey_release(struct sctp_shared_key *sh_key)
120 {
121 	if (refcount_dec_and_test(&sh_key->refcnt))
122 		sctp_auth_shkey_destroy(sh_key);
123 }
124 
125 void sctp_auth_shkey_hold(struct sctp_shared_key *sh_key)
126 {
127 	refcount_inc(&sh_key->refcnt);
128 }
129 
130 /* Destroy the entire key list.  This is done during the
131  * associon and endpoint free process.
132  */
133 void sctp_auth_destroy_keys(struct list_head *keys)
134 {
135 	struct sctp_shared_key *ep_key;
136 	struct sctp_shared_key *tmp;
137 
138 	if (list_empty(keys))
139 		return;
140 
141 	key_for_each_safe(ep_key, tmp, keys) {
142 		list_del_init(&ep_key->key_list);
143 		sctp_auth_shkey_release(ep_key);
144 	}
145 }
146 
147 /* Compare two byte vectors as numbers.  Return values
148  * are:
149  * 	  0 - vectors are equal
150  * 	< 0 - vector 1 is smaller than vector2
151  * 	> 0 - vector 1 is greater than vector2
152  *
153  * Algorithm is:
154  * 	This is performed by selecting the numerically smaller key vector...
155  *	If the key vectors are equal as numbers but differ in length ...
156  *	the shorter vector is considered smaller
157  *
158  * Examples (with small values):
159  * 	000123456789 > 123456789 (first number is longer)
160  * 	000123456789 < 234567891 (second number is larger numerically)
161  * 	123456789 > 2345678 	 (first number is both larger & longer)
162  */
163 static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1,
164 			      struct sctp_auth_bytes *vector2)
165 {
166 	int diff;
167 	int i;
168 	const __u8 *longer;
169 
170 	diff = vector1->len - vector2->len;
171 	if (diff) {
172 		longer = (diff > 0) ? vector1->data : vector2->data;
173 
174 		/* Check to see if the longer number is
175 		 * lead-zero padded.  If it is not, it
176 		 * is automatically larger numerically.
177 		 */
178 		for (i = 0; i < abs(diff); i++) {
179 			if (longer[i] != 0)
180 				return diff;
181 		}
182 	}
183 
184 	/* lengths are the same, compare numbers */
185 	return memcmp(vector1->data, vector2->data, vector1->len);
186 }
187 
188 /*
189  * Create a key vector as described in SCTP-AUTH, Section 6.1
190  *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
191  *    parameter sent by each endpoint are concatenated as byte vectors.
192  *    These parameters include the parameter type, parameter length, and
193  *    the parameter value, but padding is omitted; all padding MUST be
194  *    removed from this concatenation before proceeding with further
195  *    computation of keys.  Parameters which were not sent are simply
196  *    omitted from the concatenation process.  The resulting two vectors
197  *    are called the two key vectors.
198  */
199 static struct sctp_auth_bytes *sctp_auth_make_key_vector(
200 			struct sctp_random_param *random,
201 			struct sctp_chunks_param *chunks,
202 			struct sctp_hmac_algo_param *hmacs,
203 			gfp_t gfp)
204 {
205 	struct sctp_auth_bytes *new;
206 	__u32	len;
207 	__u32	offset = 0;
208 	__u16	random_len, hmacs_len, chunks_len = 0;
209 
210 	random_len = ntohs(random->param_hdr.length);
211 	hmacs_len = ntohs(hmacs->param_hdr.length);
212 	if (chunks)
213 		chunks_len = ntohs(chunks->param_hdr.length);
214 
215 	len = random_len + hmacs_len + chunks_len;
216 
217 	new = sctp_auth_create_key(len, gfp);
218 	if (!new)
219 		return NULL;
220 
221 	memcpy(new->data, random, random_len);
222 	offset += random_len;
223 
224 	if (chunks) {
225 		memcpy(new->data + offset, chunks, chunks_len);
226 		offset += chunks_len;
227 	}
228 
229 	memcpy(new->data + offset, hmacs, hmacs_len);
230 
231 	return new;
232 }
233 
234 
235 /* Make a key vector based on our local parameters */
236 static struct sctp_auth_bytes *sctp_auth_make_local_vector(
237 				    const struct sctp_association *asoc,
238 				    gfp_t gfp)
239 {
240 	return sctp_auth_make_key_vector(
241 			(struct sctp_random_param *)asoc->c.auth_random,
242 			(struct sctp_chunks_param *)asoc->c.auth_chunks,
243 			(struct sctp_hmac_algo_param *)asoc->c.auth_hmacs, gfp);
244 }
245 
246 /* Make a key vector based on peer's parameters */
247 static struct sctp_auth_bytes *sctp_auth_make_peer_vector(
248 				    const struct sctp_association *asoc,
249 				    gfp_t gfp)
250 {
251 	return sctp_auth_make_key_vector(asoc->peer.peer_random,
252 					 asoc->peer.peer_chunks,
253 					 asoc->peer.peer_hmacs,
254 					 gfp);
255 }
256 
257 
258 /* Set the value of the association shared key base on the parameters
259  * given.  The algorithm is:
260  *    From the endpoint pair shared keys and the key vectors the
261  *    association shared keys are computed.  This is performed by selecting
262  *    the numerically smaller key vector and concatenating it to the
263  *    endpoint pair shared key, and then concatenating the numerically
264  *    larger key vector to that.  The result of the concatenation is the
265  *    association shared key.
266  */
267 static struct sctp_auth_bytes *sctp_auth_asoc_set_secret(
268 			struct sctp_shared_key *ep_key,
269 			struct sctp_auth_bytes *first_vector,
270 			struct sctp_auth_bytes *last_vector,
271 			gfp_t gfp)
272 {
273 	struct sctp_auth_bytes *secret;
274 	__u32 offset = 0;
275 	__u32 auth_len;
276 
277 	auth_len = first_vector->len + last_vector->len;
278 	if (ep_key->key)
279 		auth_len += ep_key->key->len;
280 
281 	secret = sctp_auth_create_key(auth_len, gfp);
282 	if (!secret)
283 		return NULL;
284 
285 	if (ep_key->key) {
286 		memcpy(secret->data, ep_key->key->data, ep_key->key->len);
287 		offset += ep_key->key->len;
288 	}
289 
290 	memcpy(secret->data + offset, first_vector->data, first_vector->len);
291 	offset += first_vector->len;
292 
293 	memcpy(secret->data + offset, last_vector->data, last_vector->len);
294 
295 	return secret;
296 }
297 
298 /* Create an association shared key.  Follow the algorithm
299  * described in SCTP-AUTH, Section 6.1
300  */
301 static struct sctp_auth_bytes *sctp_auth_asoc_create_secret(
302 				 const struct sctp_association *asoc,
303 				 struct sctp_shared_key *ep_key,
304 				 gfp_t gfp)
305 {
306 	struct sctp_auth_bytes *local_key_vector;
307 	struct sctp_auth_bytes *peer_key_vector;
308 	struct sctp_auth_bytes	*first_vector,
309 				*last_vector;
310 	struct sctp_auth_bytes	*secret = NULL;
311 	int	cmp;
312 
313 
314 	/* Now we need to build the key vectors
315 	 * SCTP-AUTH , Section 6.1
316 	 *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
317 	 *    parameter sent by each endpoint are concatenated as byte vectors.
318 	 *    These parameters include the parameter type, parameter length, and
319 	 *    the parameter value, but padding is omitted; all padding MUST be
320 	 *    removed from this concatenation before proceeding with further
321 	 *    computation of keys.  Parameters which were not sent are simply
322 	 *    omitted from the concatenation process.  The resulting two vectors
323 	 *    are called the two key vectors.
324 	 */
325 
326 	local_key_vector = sctp_auth_make_local_vector(asoc, gfp);
327 	peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp);
328 
329 	if (!peer_key_vector || !local_key_vector)
330 		goto out;
331 
332 	/* Figure out the order in which the key_vectors will be
333 	 * added to the endpoint shared key.
334 	 * SCTP-AUTH, Section 6.1:
335 	 *   This is performed by selecting the numerically smaller key
336 	 *   vector and concatenating it to the endpoint pair shared
337 	 *   key, and then concatenating the numerically larger key
338 	 *   vector to that.  If the key vectors are equal as numbers
339 	 *   but differ in length, then the concatenation order is the
340 	 *   endpoint shared key, followed by the shorter key vector,
341 	 *   followed by the longer key vector.  Otherwise, the key
342 	 *   vectors are identical, and may be concatenated to the
343 	 *   endpoint pair key in any order.
344 	 */
345 	cmp = sctp_auth_compare_vectors(local_key_vector,
346 					peer_key_vector);
347 	if (cmp < 0) {
348 		first_vector = local_key_vector;
349 		last_vector = peer_key_vector;
350 	} else {
351 		first_vector = peer_key_vector;
352 		last_vector = local_key_vector;
353 	}
354 
355 	secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector,
356 					    gfp);
357 out:
358 	sctp_auth_key_put(local_key_vector);
359 	sctp_auth_key_put(peer_key_vector);
360 
361 	return secret;
362 }
363 
364 /*
365  * Populate the association overlay list with the list
366  * from the endpoint.
367  */
368 int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep,
369 				struct sctp_association *asoc,
370 				gfp_t gfp)
371 {
372 	struct sctp_shared_key *sh_key;
373 	struct sctp_shared_key *new;
374 
375 	BUG_ON(!list_empty(&asoc->endpoint_shared_keys));
376 
377 	key_for_each(sh_key, &ep->endpoint_shared_keys) {
378 		new = sctp_auth_shkey_create(sh_key->key_id, gfp);
379 		if (!new)
380 			goto nomem;
381 
382 		new->key = sh_key->key;
383 		sctp_auth_key_hold(new->key);
384 		list_add(&new->key_list, &asoc->endpoint_shared_keys);
385 	}
386 
387 	return 0;
388 
389 nomem:
390 	sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
391 	return -ENOMEM;
392 }
393 
394 
395 /* Public interface to create the association shared key.
396  * See code above for the algorithm.
397  */
398 int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp)
399 {
400 	struct sctp_auth_bytes	*secret;
401 	struct sctp_shared_key *ep_key;
402 	struct sctp_chunk *chunk;
403 
404 	/* If we don't support AUTH, or peer is not capable
405 	 * we don't need to do anything.
406 	 */
407 	if (!asoc->ep->auth_enable || !asoc->peer.auth_capable)
408 		return 0;
409 
410 	/* If the key_id is non-zero and we couldn't find an
411 	 * endpoint pair shared key, we can't compute the
412 	 * secret.
413 	 * For key_id 0, endpoint pair shared key is a NULL key.
414 	 */
415 	ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id);
416 	BUG_ON(!ep_key);
417 
418 	secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
419 	if (!secret)
420 		return -ENOMEM;
421 
422 	sctp_auth_key_put(asoc->asoc_shared_key);
423 	asoc->asoc_shared_key = secret;
424 	asoc->shkey = ep_key;
425 
426 	/* Update send queue in case any chunk already in there now
427 	 * needs authenticating
428 	 */
429 	list_for_each_entry(chunk, &asoc->outqueue.out_chunk_list, list) {
430 		if (sctp_auth_send_cid(chunk->chunk_hdr->type, asoc)) {
431 			chunk->auth = 1;
432 			if (!chunk->shkey) {
433 				chunk->shkey = asoc->shkey;
434 				sctp_auth_shkey_hold(chunk->shkey);
435 			}
436 		}
437 	}
438 
439 	return 0;
440 }
441 
442 
443 /* Find the endpoint pair shared key based on the key_id */
444 struct sctp_shared_key *sctp_auth_get_shkey(
445 				const struct sctp_association *asoc,
446 				__u16 key_id)
447 {
448 	struct sctp_shared_key *key;
449 
450 	/* First search associations set of endpoint pair shared keys */
451 	key_for_each(key, &asoc->endpoint_shared_keys) {
452 		if (key->key_id == key_id) {
453 			if (!key->deactivated)
454 				return key;
455 			break;
456 		}
457 	}
458 
459 	return NULL;
460 }
461 
462 /*
463  * Initialize all the possible digest transforms that we can use.  Right now
464  * now, the supported digests are SHA1 and SHA256.  We do this here once
465  * because of the restrictiong that transforms may only be allocated in
466  * user context.  This forces us to pre-allocated all possible transforms
467  * at the endpoint init time.
468  */
469 int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp)
470 {
471 	struct crypto_shash *tfm = NULL;
472 	__u16   id;
473 
474 	/* If AUTH extension is disabled, we are done */
475 	if (!ep->auth_enable) {
476 		ep->auth_hmacs = NULL;
477 		return 0;
478 	}
479 
480 	/* If the transforms are already allocated, we are done */
481 	if (ep->auth_hmacs)
482 		return 0;
483 
484 	/* Allocated the array of pointers to transorms */
485 	ep->auth_hmacs = kcalloc(SCTP_AUTH_NUM_HMACS,
486 				 sizeof(struct crypto_shash *),
487 				 gfp);
488 	if (!ep->auth_hmacs)
489 		return -ENOMEM;
490 
491 	for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) {
492 
493 		/* See is we support the id.  Supported IDs have name and
494 		 * length fields set, so that we can allocated and use
495 		 * them.  We can safely just check for name, for without the
496 		 * name, we can't allocate the TFM.
497 		 */
498 		if (!sctp_hmac_list[id].hmac_name)
499 			continue;
500 
501 		/* If this TFM has been allocated, we are all set */
502 		if (ep->auth_hmacs[id])
503 			continue;
504 
505 		/* Allocate the ID */
506 		tfm = crypto_alloc_shash(sctp_hmac_list[id].hmac_name, 0, 0);
507 		if (IS_ERR(tfm))
508 			goto out_err;
509 
510 		ep->auth_hmacs[id] = tfm;
511 	}
512 
513 	return 0;
514 
515 out_err:
516 	/* Clean up any successful allocations */
517 	sctp_auth_destroy_hmacs(ep->auth_hmacs);
518 	return -ENOMEM;
519 }
520 
521 /* Destroy the hmac tfm array */
522 void sctp_auth_destroy_hmacs(struct crypto_shash *auth_hmacs[])
523 {
524 	int i;
525 
526 	if (!auth_hmacs)
527 		return;
528 
529 	for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++) {
530 		crypto_free_shash(auth_hmacs[i]);
531 	}
532 	kfree(auth_hmacs);
533 }
534 
535 
536 struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id)
537 {
538 	return &sctp_hmac_list[hmac_id];
539 }
540 
541 /* Get an hmac description information that we can use to build
542  * the AUTH chunk
543  */
544 struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc)
545 {
546 	struct sctp_hmac_algo_param *hmacs;
547 	__u16 n_elt;
548 	__u16 id = 0;
549 	int i;
550 
551 	/* If we have a default entry, use it */
552 	if (asoc->default_hmac_id)
553 		return &sctp_hmac_list[asoc->default_hmac_id];
554 
555 	/* Since we do not have a default entry, find the first entry
556 	 * we support and return that.  Do not cache that id.
557 	 */
558 	hmacs = asoc->peer.peer_hmacs;
559 	if (!hmacs)
560 		return NULL;
561 
562 	n_elt = (ntohs(hmacs->param_hdr.length) -
563 		 sizeof(struct sctp_paramhdr)) >> 1;
564 	for (i = 0; i < n_elt; i++) {
565 		id = ntohs(hmacs->hmac_ids[i]);
566 
567 		/* Check the id is in the supported range. And
568 		 * see if we support the id.  Supported IDs have name and
569 		 * length fields set, so that we can allocate and use
570 		 * them.  We can safely just check for name, for without the
571 		 * name, we can't allocate the TFM.
572 		 */
573 		if (id > SCTP_AUTH_HMAC_ID_MAX ||
574 		    !sctp_hmac_list[id].hmac_name) {
575 			id = 0;
576 			continue;
577 		}
578 
579 		break;
580 	}
581 
582 	if (id == 0)
583 		return NULL;
584 
585 	return &sctp_hmac_list[id];
586 }
587 
588 static int __sctp_auth_find_hmacid(__be16 *hmacs, int n_elts, __be16 hmac_id)
589 {
590 	int  found = 0;
591 	int  i;
592 
593 	for (i = 0; i < n_elts; i++) {
594 		if (hmac_id == hmacs[i]) {
595 			found = 1;
596 			break;
597 		}
598 	}
599 
600 	return found;
601 }
602 
603 /* See if the HMAC_ID is one that we claim as supported */
604 int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc,
605 				    __be16 hmac_id)
606 {
607 	struct sctp_hmac_algo_param *hmacs;
608 	__u16 n_elt;
609 
610 	if (!asoc)
611 		return 0;
612 
613 	hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs;
614 	n_elt = (ntohs(hmacs->param_hdr.length) -
615 		 sizeof(struct sctp_paramhdr)) >> 1;
616 
617 	return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id);
618 }
619 
620 
621 /* Cache the default HMAC id.  This to follow this text from SCTP-AUTH:
622  * Section 6.1:
623  *   The receiver of a HMAC-ALGO parameter SHOULD use the first listed
624  *   algorithm it supports.
625  */
626 void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc,
627 				     struct sctp_hmac_algo_param *hmacs)
628 {
629 	struct sctp_endpoint *ep;
630 	__u16   id;
631 	int	i;
632 	int	n_params;
633 
634 	/* if the default id is already set, use it */
635 	if (asoc->default_hmac_id)
636 		return;
637 
638 	n_params = (ntohs(hmacs->param_hdr.length) -
639 		    sizeof(struct sctp_paramhdr)) >> 1;
640 	ep = asoc->ep;
641 	for (i = 0; i < n_params; i++) {
642 		id = ntohs(hmacs->hmac_ids[i]);
643 
644 		/* Check the id is in the supported range */
645 		if (id > SCTP_AUTH_HMAC_ID_MAX)
646 			continue;
647 
648 		/* If this TFM has been allocated, use this id */
649 		if (ep->auth_hmacs[id]) {
650 			asoc->default_hmac_id = id;
651 			break;
652 		}
653 	}
654 }
655 
656 
657 /* Check to see if the given chunk is supposed to be authenticated */
658 static int __sctp_auth_cid(enum sctp_cid chunk, struct sctp_chunks_param *param)
659 {
660 	unsigned short len;
661 	int found = 0;
662 	int i;
663 
664 	if (!param || param->param_hdr.length == 0)
665 		return 0;
666 
667 	len = ntohs(param->param_hdr.length) - sizeof(struct sctp_paramhdr);
668 
669 	/* SCTP-AUTH, Section 3.2
670 	 *    The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH
671 	 *    chunks MUST NOT be listed in the CHUNKS parameter.  However, if
672 	 *    a CHUNKS parameter is received then the types for INIT, INIT-ACK,
673 	 *    SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored.
674 	 */
675 	for (i = 0; !found && i < len; i++) {
676 		switch (param->chunks[i]) {
677 		case SCTP_CID_INIT:
678 		case SCTP_CID_INIT_ACK:
679 		case SCTP_CID_SHUTDOWN_COMPLETE:
680 		case SCTP_CID_AUTH:
681 			break;
682 
683 		default:
684 			if (param->chunks[i] == chunk)
685 				found = 1;
686 			break;
687 		}
688 	}
689 
690 	return found;
691 }
692 
693 /* Check if peer requested that this chunk is authenticated */
694 int sctp_auth_send_cid(enum sctp_cid chunk, const struct sctp_association *asoc)
695 {
696 	if (!asoc)
697 		return 0;
698 
699 	if (!asoc->ep->auth_enable || !asoc->peer.auth_capable)
700 		return 0;
701 
702 	return __sctp_auth_cid(chunk, asoc->peer.peer_chunks);
703 }
704 
705 /* Check if we requested that peer authenticate this chunk. */
706 int sctp_auth_recv_cid(enum sctp_cid chunk, const struct sctp_association *asoc)
707 {
708 	if (!asoc)
709 		return 0;
710 
711 	if (!asoc->ep->auth_enable)
712 		return 0;
713 
714 	return __sctp_auth_cid(chunk,
715 			      (struct sctp_chunks_param *)asoc->c.auth_chunks);
716 }
717 
718 /* SCTP-AUTH: Section 6.2:
719  *    The sender MUST calculate the MAC as described in RFC2104 [2] using
720  *    the hash function H as described by the MAC Identifier and the shared
721  *    association key K based on the endpoint pair shared key described by
722  *    the shared key identifier.  The 'data' used for the computation of
723  *    the AUTH-chunk is given by the AUTH chunk with its HMAC field set to
724  *    zero (as shown in Figure 6) followed by all chunks that are placed
725  *    after the AUTH chunk in the SCTP packet.
726  */
727 void sctp_auth_calculate_hmac(const struct sctp_association *asoc,
728 			      struct sk_buff *skb, struct sctp_auth_chunk *auth,
729 			      struct sctp_shared_key *ep_key, gfp_t gfp)
730 {
731 	struct sctp_auth_bytes *asoc_key;
732 	struct crypto_shash *tfm;
733 	__u16 key_id, hmac_id;
734 	unsigned char *end;
735 	int free_key = 0;
736 	__u8 *digest;
737 
738 	/* Extract the info we need:
739 	 * - hmac id
740 	 * - key id
741 	 */
742 	key_id = ntohs(auth->auth_hdr.shkey_id);
743 	hmac_id = ntohs(auth->auth_hdr.hmac_id);
744 
745 	if (key_id == asoc->active_key_id)
746 		asoc_key = asoc->asoc_shared_key;
747 	else {
748 		/* ep_key can't be NULL here */
749 		asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
750 		if (!asoc_key)
751 			return;
752 
753 		free_key = 1;
754 	}
755 
756 	/* set up scatter list */
757 	end = skb_tail_pointer(skb);
758 
759 	tfm = asoc->ep->auth_hmacs[hmac_id];
760 
761 	digest = auth->auth_hdr.hmac;
762 	if (crypto_shash_setkey(tfm, &asoc_key->data[0], asoc_key->len))
763 		goto free;
764 
765 	{
766 		SHASH_DESC_ON_STACK(desc, tfm);
767 
768 		desc->tfm = tfm;
769 		desc->flags = 0;
770 		crypto_shash_digest(desc, (u8 *)auth,
771 				    end - (unsigned char *)auth, digest);
772 		shash_desc_zero(desc);
773 	}
774 
775 free:
776 	if (free_key)
777 		sctp_auth_key_put(asoc_key);
778 }
779 
780 /* API Helpers */
781 
782 /* Add a chunk to the endpoint authenticated chunk list */
783 int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id)
784 {
785 	struct sctp_chunks_param *p = ep->auth_chunk_list;
786 	__u16 nchunks;
787 	__u16 param_len;
788 
789 	/* If this chunk is already specified, we are done */
790 	if (__sctp_auth_cid(chunk_id, p))
791 		return 0;
792 
793 	/* Check if we can add this chunk to the array */
794 	param_len = ntohs(p->param_hdr.length);
795 	nchunks = param_len - sizeof(struct sctp_paramhdr);
796 	if (nchunks == SCTP_NUM_CHUNK_TYPES)
797 		return -EINVAL;
798 
799 	p->chunks[nchunks] = chunk_id;
800 	p->param_hdr.length = htons(param_len + 1);
801 	return 0;
802 }
803 
804 /* Add hmac identifires to the endpoint list of supported hmac ids */
805 int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep,
806 			   struct sctp_hmacalgo *hmacs)
807 {
808 	int has_sha1 = 0;
809 	__u16 id;
810 	int i;
811 
812 	/* Scan the list looking for unsupported id.  Also make sure that
813 	 * SHA1 is specified.
814 	 */
815 	for (i = 0; i < hmacs->shmac_num_idents; i++) {
816 		id = hmacs->shmac_idents[i];
817 
818 		if (id > SCTP_AUTH_HMAC_ID_MAX)
819 			return -EOPNOTSUPP;
820 
821 		if (SCTP_AUTH_HMAC_ID_SHA1 == id)
822 			has_sha1 = 1;
823 
824 		if (!sctp_hmac_list[id].hmac_name)
825 			return -EOPNOTSUPP;
826 	}
827 
828 	if (!has_sha1)
829 		return -EINVAL;
830 
831 	for (i = 0; i < hmacs->shmac_num_idents; i++)
832 		ep->auth_hmacs_list->hmac_ids[i] =
833 				htons(hmacs->shmac_idents[i]);
834 	ep->auth_hmacs_list->param_hdr.length =
835 			htons(sizeof(struct sctp_paramhdr) +
836 			hmacs->shmac_num_idents * sizeof(__u16));
837 	return 0;
838 }
839 
840 /* Set a new shared key on either endpoint or association.  If the
841  * the key with a same ID already exists, replace the key (remove the
842  * old key and add a new one).
843  */
844 int sctp_auth_set_key(struct sctp_endpoint *ep,
845 		      struct sctp_association *asoc,
846 		      struct sctp_authkey *auth_key)
847 {
848 	struct sctp_shared_key *cur_key, *shkey;
849 	struct sctp_auth_bytes *key;
850 	struct list_head *sh_keys;
851 	int replace = 0;
852 
853 	/* Try to find the given key id to see if
854 	 * we are doing a replace, or adding a new key
855 	 */
856 	if (asoc)
857 		sh_keys = &asoc->endpoint_shared_keys;
858 	else
859 		sh_keys = &ep->endpoint_shared_keys;
860 
861 	key_for_each(shkey, sh_keys) {
862 		if (shkey->key_id == auth_key->sca_keynumber) {
863 			replace = 1;
864 			break;
865 		}
866 	}
867 
868 	cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber, GFP_KERNEL);
869 	if (!cur_key)
870 		return -ENOMEM;
871 
872 	/* Create a new key data based on the info passed in */
873 	key = sctp_auth_create_key(auth_key->sca_keylength, GFP_KERNEL);
874 	if (!key) {
875 		kfree(cur_key);
876 		return -ENOMEM;
877 	}
878 
879 	memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylength);
880 	cur_key->key = key;
881 
882 	if (replace) {
883 		list_del_init(&shkey->key_list);
884 		sctp_auth_shkey_release(shkey);
885 	}
886 	list_add(&cur_key->key_list, sh_keys);
887 
888 	return 0;
889 }
890 
891 int sctp_auth_set_active_key(struct sctp_endpoint *ep,
892 			     struct sctp_association *asoc,
893 			     __u16  key_id)
894 {
895 	struct sctp_shared_key *key;
896 	struct list_head *sh_keys;
897 	int found = 0;
898 
899 	/* The key identifier MUST correst to an existing key */
900 	if (asoc)
901 		sh_keys = &asoc->endpoint_shared_keys;
902 	else
903 		sh_keys = &ep->endpoint_shared_keys;
904 
905 	key_for_each(key, sh_keys) {
906 		if (key->key_id == key_id) {
907 			found = 1;
908 			break;
909 		}
910 	}
911 
912 	if (!found || key->deactivated)
913 		return -EINVAL;
914 
915 	if (asoc) {
916 		asoc->active_key_id = key_id;
917 		sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL);
918 	} else
919 		ep->active_key_id = key_id;
920 
921 	return 0;
922 }
923 
924 int sctp_auth_del_key_id(struct sctp_endpoint *ep,
925 			 struct sctp_association *asoc,
926 			 __u16  key_id)
927 {
928 	struct sctp_shared_key *key;
929 	struct list_head *sh_keys;
930 	int found = 0;
931 
932 	/* The key identifier MUST NOT be the current active key
933 	 * The key identifier MUST correst to an existing key
934 	 */
935 	if (asoc) {
936 		if (asoc->active_key_id == key_id)
937 			return -EINVAL;
938 
939 		sh_keys = &asoc->endpoint_shared_keys;
940 	} else {
941 		if (ep->active_key_id == key_id)
942 			return -EINVAL;
943 
944 		sh_keys = &ep->endpoint_shared_keys;
945 	}
946 
947 	key_for_each(key, sh_keys) {
948 		if (key->key_id == key_id) {
949 			found = 1;
950 			break;
951 		}
952 	}
953 
954 	if (!found)
955 		return -EINVAL;
956 
957 	/* Delete the shared key */
958 	list_del_init(&key->key_list);
959 	sctp_auth_shkey_release(key);
960 
961 	return 0;
962 }
963 
964 int sctp_auth_deact_key_id(struct sctp_endpoint *ep,
965 			   struct sctp_association *asoc, __u16  key_id)
966 {
967 	struct sctp_shared_key *key;
968 	struct list_head *sh_keys;
969 	int found = 0;
970 
971 	/* The key identifier MUST NOT be the current active key
972 	 * The key identifier MUST correst to an existing key
973 	 */
974 	if (asoc) {
975 		if (asoc->active_key_id == key_id)
976 			return -EINVAL;
977 
978 		sh_keys = &asoc->endpoint_shared_keys;
979 	} else {
980 		if (ep->active_key_id == key_id)
981 			return -EINVAL;
982 
983 		sh_keys = &ep->endpoint_shared_keys;
984 	}
985 
986 	key_for_each(key, sh_keys) {
987 		if (key->key_id == key_id) {
988 			found = 1;
989 			break;
990 		}
991 	}
992 
993 	if (!found)
994 		return -EINVAL;
995 
996 	/* refcnt == 1 and !list_empty mean it's not being used anywhere
997 	 * and deactivated will be set, so it's time to notify userland
998 	 * that this shkey can be freed.
999 	 */
1000 	if (asoc && !list_empty(&key->key_list) &&
1001 	    refcount_read(&key->refcnt) == 1) {
1002 		struct sctp_ulpevent *ev;
1003 
1004 		ev = sctp_ulpevent_make_authkey(asoc, key->key_id,
1005 						SCTP_AUTH_FREE_KEY, GFP_KERNEL);
1006 		if (ev)
1007 			asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
1008 	}
1009 
1010 	key->deactivated = 1;
1011 
1012 	return 0;
1013 }
1014