1 /* SCTP kernel implementation 2 * (C) Copyright 2007 Hewlett-Packard Development Company, L.P. 3 * 4 * This file is part of the SCTP kernel implementation 5 * 6 * This SCTP implementation is free software; 7 * you can redistribute it and/or modify it under the terms of 8 * the GNU General Public License as published by 9 * the Free Software Foundation; either version 2, or (at your option) 10 * any later version. 11 * 12 * This SCTP implementation is distributed in the hope that it 13 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 14 * ************************ 15 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 16 * See the GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with GNU CC; see the file COPYING. If not, write to 20 * the Free Software Foundation, 59 Temple Place - Suite 330, 21 * Boston, MA 02111-1307, USA. 22 * 23 * Please send any bug reports or fixes you make to the 24 * email address(es): 25 * lksctp developers <linux-sctp@vger.kernel.org> 26 * 27 * Written or modified by: 28 * Vlad Yasevich <vladislav.yasevich@hp.com> 29 */ 30 31 #include <linux/slab.h> 32 #include <linux/types.h> 33 #include <linux/crypto.h> 34 #include <linux/scatterlist.h> 35 #include <net/sctp/sctp.h> 36 #include <net/sctp/auth.h> 37 38 static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = { 39 { 40 /* id 0 is reserved. as all 0 */ 41 .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0, 42 }, 43 { 44 .hmac_id = SCTP_AUTH_HMAC_ID_SHA1, 45 .hmac_name="hmac(sha1)", 46 .hmac_len = SCTP_SHA1_SIG_SIZE, 47 }, 48 { 49 /* id 2 is reserved as well */ 50 .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2, 51 }, 52 #if defined (CONFIG_CRYPTO_SHA256) || defined (CONFIG_CRYPTO_SHA256_MODULE) 53 { 54 .hmac_id = SCTP_AUTH_HMAC_ID_SHA256, 55 .hmac_name="hmac(sha256)", 56 .hmac_len = SCTP_SHA256_SIG_SIZE, 57 } 58 #endif 59 }; 60 61 62 void sctp_auth_key_put(struct sctp_auth_bytes *key) 63 { 64 if (!key) 65 return; 66 67 if (atomic_dec_and_test(&key->refcnt)) { 68 kzfree(key); 69 SCTP_DBG_OBJCNT_DEC(keys); 70 } 71 } 72 73 /* Create a new key structure of a given length */ 74 static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp) 75 { 76 struct sctp_auth_bytes *key; 77 78 /* Verify that we are not going to overflow INT_MAX */ 79 if (key_len > (INT_MAX - sizeof(struct sctp_auth_bytes))) 80 return NULL; 81 82 /* Allocate the shared key */ 83 key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp); 84 if (!key) 85 return NULL; 86 87 key->len = key_len; 88 atomic_set(&key->refcnt, 1); 89 SCTP_DBG_OBJCNT_INC(keys); 90 91 return key; 92 } 93 94 /* Create a new shared key container with a give key id */ 95 struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp) 96 { 97 struct sctp_shared_key *new; 98 99 /* Allocate the shared key container */ 100 new = kzalloc(sizeof(struct sctp_shared_key), gfp); 101 if (!new) 102 return NULL; 103 104 INIT_LIST_HEAD(&new->key_list); 105 new->key_id = key_id; 106 107 return new; 108 } 109 110 /* Free the shared key structure */ 111 static void sctp_auth_shkey_free(struct sctp_shared_key *sh_key) 112 { 113 BUG_ON(!list_empty(&sh_key->key_list)); 114 sctp_auth_key_put(sh_key->key); 115 sh_key->key = NULL; 116 kfree(sh_key); 117 } 118 119 /* Destroy the entire key list. This is done during the 120 * associon and endpoint free process. 121 */ 122 void sctp_auth_destroy_keys(struct list_head *keys) 123 { 124 struct sctp_shared_key *ep_key; 125 struct sctp_shared_key *tmp; 126 127 if (list_empty(keys)) 128 return; 129 130 key_for_each_safe(ep_key, tmp, keys) { 131 list_del_init(&ep_key->key_list); 132 sctp_auth_shkey_free(ep_key); 133 } 134 } 135 136 /* Compare two byte vectors as numbers. Return values 137 * are: 138 * 0 - vectors are equal 139 * < 0 - vector 1 is smaller than vector2 140 * > 0 - vector 1 is greater than vector2 141 * 142 * Algorithm is: 143 * This is performed by selecting the numerically smaller key vector... 144 * If the key vectors are equal as numbers but differ in length ... 145 * the shorter vector is considered smaller 146 * 147 * Examples (with small values): 148 * 000123456789 > 123456789 (first number is longer) 149 * 000123456789 < 234567891 (second number is larger numerically) 150 * 123456789 > 2345678 (first number is both larger & longer) 151 */ 152 static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1, 153 struct sctp_auth_bytes *vector2) 154 { 155 int diff; 156 int i; 157 const __u8 *longer; 158 159 diff = vector1->len - vector2->len; 160 if (diff) { 161 longer = (diff > 0) ? vector1->data : vector2->data; 162 163 /* Check to see if the longer number is 164 * lead-zero padded. If it is not, it 165 * is automatically larger numerically. 166 */ 167 for (i = 0; i < abs(diff); i++ ) { 168 if (longer[i] != 0) 169 return diff; 170 } 171 } 172 173 /* lengths are the same, compare numbers */ 174 return memcmp(vector1->data, vector2->data, vector1->len); 175 } 176 177 /* 178 * Create a key vector as described in SCTP-AUTH, Section 6.1 179 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO 180 * parameter sent by each endpoint are concatenated as byte vectors. 181 * These parameters include the parameter type, parameter length, and 182 * the parameter value, but padding is omitted; all padding MUST be 183 * removed from this concatenation before proceeding with further 184 * computation of keys. Parameters which were not sent are simply 185 * omitted from the concatenation process. The resulting two vectors 186 * are called the two key vectors. 187 */ 188 static struct sctp_auth_bytes *sctp_auth_make_key_vector( 189 sctp_random_param_t *random, 190 sctp_chunks_param_t *chunks, 191 sctp_hmac_algo_param_t *hmacs, 192 gfp_t gfp) 193 { 194 struct sctp_auth_bytes *new; 195 __u32 len; 196 __u32 offset = 0; 197 __u16 random_len, hmacs_len, chunks_len = 0; 198 199 random_len = ntohs(random->param_hdr.length); 200 hmacs_len = ntohs(hmacs->param_hdr.length); 201 if (chunks) 202 chunks_len = ntohs(chunks->param_hdr.length); 203 204 len = random_len + hmacs_len + chunks_len; 205 206 new = sctp_auth_create_key(len, gfp); 207 if (!new) 208 return NULL; 209 210 memcpy(new->data, random, random_len); 211 offset += random_len; 212 213 if (chunks) { 214 memcpy(new->data + offset, chunks, chunks_len); 215 offset += chunks_len; 216 } 217 218 memcpy(new->data + offset, hmacs, hmacs_len); 219 220 return new; 221 } 222 223 224 /* Make a key vector based on our local parameters */ 225 static struct sctp_auth_bytes *sctp_auth_make_local_vector( 226 const struct sctp_association *asoc, 227 gfp_t gfp) 228 { 229 return sctp_auth_make_key_vector( 230 (sctp_random_param_t*)asoc->c.auth_random, 231 (sctp_chunks_param_t*)asoc->c.auth_chunks, 232 (sctp_hmac_algo_param_t*)asoc->c.auth_hmacs, 233 gfp); 234 } 235 236 /* Make a key vector based on peer's parameters */ 237 static struct sctp_auth_bytes *sctp_auth_make_peer_vector( 238 const struct sctp_association *asoc, 239 gfp_t gfp) 240 { 241 return sctp_auth_make_key_vector(asoc->peer.peer_random, 242 asoc->peer.peer_chunks, 243 asoc->peer.peer_hmacs, 244 gfp); 245 } 246 247 248 /* Set the value of the association shared key base on the parameters 249 * given. The algorithm is: 250 * From the endpoint pair shared keys and the key vectors the 251 * association shared keys are computed. This is performed by selecting 252 * the numerically smaller key vector and concatenating it to the 253 * endpoint pair shared key, and then concatenating the numerically 254 * larger key vector to that. The result of the concatenation is the 255 * association shared key. 256 */ 257 static struct sctp_auth_bytes *sctp_auth_asoc_set_secret( 258 struct sctp_shared_key *ep_key, 259 struct sctp_auth_bytes *first_vector, 260 struct sctp_auth_bytes *last_vector, 261 gfp_t gfp) 262 { 263 struct sctp_auth_bytes *secret; 264 __u32 offset = 0; 265 __u32 auth_len; 266 267 auth_len = first_vector->len + last_vector->len; 268 if (ep_key->key) 269 auth_len += ep_key->key->len; 270 271 secret = sctp_auth_create_key(auth_len, gfp); 272 if (!secret) 273 return NULL; 274 275 if (ep_key->key) { 276 memcpy(secret->data, ep_key->key->data, ep_key->key->len); 277 offset += ep_key->key->len; 278 } 279 280 memcpy(secret->data + offset, first_vector->data, first_vector->len); 281 offset += first_vector->len; 282 283 memcpy(secret->data + offset, last_vector->data, last_vector->len); 284 285 return secret; 286 } 287 288 /* Create an association shared key. Follow the algorithm 289 * described in SCTP-AUTH, Section 6.1 290 */ 291 static struct sctp_auth_bytes *sctp_auth_asoc_create_secret( 292 const struct sctp_association *asoc, 293 struct sctp_shared_key *ep_key, 294 gfp_t gfp) 295 { 296 struct sctp_auth_bytes *local_key_vector; 297 struct sctp_auth_bytes *peer_key_vector; 298 struct sctp_auth_bytes *first_vector, 299 *last_vector; 300 struct sctp_auth_bytes *secret = NULL; 301 int cmp; 302 303 304 /* Now we need to build the key vectors 305 * SCTP-AUTH , Section 6.1 306 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO 307 * parameter sent by each endpoint are concatenated as byte vectors. 308 * These parameters include the parameter type, parameter length, and 309 * the parameter value, but padding is omitted; all padding MUST be 310 * removed from this concatenation before proceeding with further 311 * computation of keys. Parameters which were not sent are simply 312 * omitted from the concatenation process. The resulting two vectors 313 * are called the two key vectors. 314 */ 315 316 local_key_vector = sctp_auth_make_local_vector(asoc, gfp); 317 peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp); 318 319 if (!peer_key_vector || !local_key_vector) 320 goto out; 321 322 /* Figure out the order in which the key_vectors will be 323 * added to the endpoint shared key. 324 * SCTP-AUTH, Section 6.1: 325 * This is performed by selecting the numerically smaller key 326 * vector and concatenating it to the endpoint pair shared 327 * key, and then concatenating the numerically larger key 328 * vector to that. If the key vectors are equal as numbers 329 * but differ in length, then the concatenation order is the 330 * endpoint shared key, followed by the shorter key vector, 331 * followed by the longer key vector. Otherwise, the key 332 * vectors are identical, and may be concatenated to the 333 * endpoint pair key in any order. 334 */ 335 cmp = sctp_auth_compare_vectors(local_key_vector, 336 peer_key_vector); 337 if (cmp < 0) { 338 first_vector = local_key_vector; 339 last_vector = peer_key_vector; 340 } else { 341 first_vector = peer_key_vector; 342 last_vector = local_key_vector; 343 } 344 345 secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector, 346 gfp); 347 out: 348 sctp_auth_key_put(local_key_vector); 349 sctp_auth_key_put(peer_key_vector); 350 351 return secret; 352 } 353 354 /* 355 * Populate the association overlay list with the list 356 * from the endpoint. 357 */ 358 int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep, 359 struct sctp_association *asoc, 360 gfp_t gfp) 361 { 362 struct sctp_shared_key *sh_key; 363 struct sctp_shared_key *new; 364 365 BUG_ON(!list_empty(&asoc->endpoint_shared_keys)); 366 367 key_for_each(sh_key, &ep->endpoint_shared_keys) { 368 new = sctp_auth_shkey_create(sh_key->key_id, gfp); 369 if (!new) 370 goto nomem; 371 372 new->key = sh_key->key; 373 sctp_auth_key_hold(new->key); 374 list_add(&new->key_list, &asoc->endpoint_shared_keys); 375 } 376 377 return 0; 378 379 nomem: 380 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys); 381 return -ENOMEM; 382 } 383 384 385 /* Public interface to creat the association shared key. 386 * See code above for the algorithm. 387 */ 388 int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp) 389 { 390 struct net *net = sock_net(asoc->base.sk); 391 struct sctp_auth_bytes *secret; 392 struct sctp_shared_key *ep_key; 393 394 /* If we don't support AUTH, or peer is not capable 395 * we don't need to do anything. 396 */ 397 if (!net->sctp.auth_enable || !asoc->peer.auth_capable) 398 return 0; 399 400 /* If the key_id is non-zero and we couldn't find an 401 * endpoint pair shared key, we can't compute the 402 * secret. 403 * For key_id 0, endpoint pair shared key is a NULL key. 404 */ 405 ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id); 406 BUG_ON(!ep_key); 407 408 secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp); 409 if (!secret) 410 return -ENOMEM; 411 412 sctp_auth_key_put(asoc->asoc_shared_key); 413 asoc->asoc_shared_key = secret; 414 415 return 0; 416 } 417 418 419 /* Find the endpoint pair shared key based on the key_id */ 420 struct sctp_shared_key *sctp_auth_get_shkey( 421 const struct sctp_association *asoc, 422 __u16 key_id) 423 { 424 struct sctp_shared_key *key; 425 426 /* First search associations set of endpoint pair shared keys */ 427 key_for_each(key, &asoc->endpoint_shared_keys) { 428 if (key->key_id == key_id) 429 return key; 430 } 431 432 return NULL; 433 } 434 435 /* 436 * Initialize all the possible digest transforms that we can use. Right now 437 * now, the supported digests are SHA1 and SHA256. We do this here once 438 * because of the restrictiong that transforms may only be allocated in 439 * user context. This forces us to pre-allocated all possible transforms 440 * at the endpoint init time. 441 */ 442 int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp) 443 { 444 struct net *net = sock_net(ep->base.sk); 445 struct crypto_hash *tfm = NULL; 446 __u16 id; 447 448 /* if the transforms are already allocted, we are done */ 449 if (!net->sctp.auth_enable) { 450 ep->auth_hmacs = NULL; 451 return 0; 452 } 453 454 if (ep->auth_hmacs) 455 return 0; 456 457 /* Allocated the array of pointers to transorms */ 458 ep->auth_hmacs = kzalloc( 459 sizeof(struct crypto_hash *) * SCTP_AUTH_NUM_HMACS, 460 gfp); 461 if (!ep->auth_hmacs) 462 return -ENOMEM; 463 464 for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) { 465 466 /* See is we support the id. Supported IDs have name and 467 * length fields set, so that we can allocated and use 468 * them. We can safely just check for name, for without the 469 * name, we can't allocate the TFM. 470 */ 471 if (!sctp_hmac_list[id].hmac_name) 472 continue; 473 474 /* If this TFM has been allocated, we are all set */ 475 if (ep->auth_hmacs[id]) 476 continue; 477 478 /* Allocate the ID */ 479 tfm = crypto_alloc_hash(sctp_hmac_list[id].hmac_name, 0, 480 CRYPTO_ALG_ASYNC); 481 if (IS_ERR(tfm)) 482 goto out_err; 483 484 ep->auth_hmacs[id] = tfm; 485 } 486 487 return 0; 488 489 out_err: 490 /* Clean up any successful allocations */ 491 sctp_auth_destroy_hmacs(ep->auth_hmacs); 492 return -ENOMEM; 493 } 494 495 /* Destroy the hmac tfm array */ 496 void sctp_auth_destroy_hmacs(struct crypto_hash *auth_hmacs[]) 497 { 498 int i; 499 500 if (!auth_hmacs) 501 return; 502 503 for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++) 504 { 505 if (auth_hmacs[i]) 506 crypto_free_hash(auth_hmacs[i]); 507 } 508 kfree(auth_hmacs); 509 } 510 511 512 struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id) 513 { 514 return &sctp_hmac_list[hmac_id]; 515 } 516 517 /* Get an hmac description information that we can use to build 518 * the AUTH chunk 519 */ 520 struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc) 521 { 522 struct sctp_hmac_algo_param *hmacs; 523 __u16 n_elt; 524 __u16 id = 0; 525 int i; 526 527 /* If we have a default entry, use it */ 528 if (asoc->default_hmac_id) 529 return &sctp_hmac_list[asoc->default_hmac_id]; 530 531 /* Since we do not have a default entry, find the first entry 532 * we support and return that. Do not cache that id. 533 */ 534 hmacs = asoc->peer.peer_hmacs; 535 if (!hmacs) 536 return NULL; 537 538 n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1; 539 for (i = 0; i < n_elt; i++) { 540 id = ntohs(hmacs->hmac_ids[i]); 541 542 /* Check the id is in the supported range */ 543 if (id > SCTP_AUTH_HMAC_ID_MAX) { 544 id = 0; 545 continue; 546 } 547 548 /* See is we support the id. Supported IDs have name and 549 * length fields set, so that we can allocated and use 550 * them. We can safely just check for name, for without the 551 * name, we can't allocate the TFM. 552 */ 553 if (!sctp_hmac_list[id].hmac_name) { 554 id = 0; 555 continue; 556 } 557 558 break; 559 } 560 561 if (id == 0) 562 return NULL; 563 564 return &sctp_hmac_list[id]; 565 } 566 567 static int __sctp_auth_find_hmacid(__be16 *hmacs, int n_elts, __be16 hmac_id) 568 { 569 int found = 0; 570 int i; 571 572 for (i = 0; i < n_elts; i++) { 573 if (hmac_id == hmacs[i]) { 574 found = 1; 575 break; 576 } 577 } 578 579 return found; 580 } 581 582 /* See if the HMAC_ID is one that we claim as supported */ 583 int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc, 584 __be16 hmac_id) 585 { 586 struct sctp_hmac_algo_param *hmacs; 587 __u16 n_elt; 588 589 if (!asoc) 590 return 0; 591 592 hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs; 593 n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1; 594 595 return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id); 596 } 597 598 599 /* Cache the default HMAC id. This to follow this text from SCTP-AUTH: 600 * Section 6.1: 601 * The receiver of a HMAC-ALGO parameter SHOULD use the first listed 602 * algorithm it supports. 603 */ 604 void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc, 605 struct sctp_hmac_algo_param *hmacs) 606 { 607 struct sctp_endpoint *ep; 608 __u16 id; 609 int i; 610 int n_params; 611 612 /* if the default id is already set, use it */ 613 if (asoc->default_hmac_id) 614 return; 615 616 n_params = (ntohs(hmacs->param_hdr.length) 617 - sizeof(sctp_paramhdr_t)) >> 1; 618 ep = asoc->ep; 619 for (i = 0; i < n_params; i++) { 620 id = ntohs(hmacs->hmac_ids[i]); 621 622 /* Check the id is in the supported range */ 623 if (id > SCTP_AUTH_HMAC_ID_MAX) 624 continue; 625 626 /* If this TFM has been allocated, use this id */ 627 if (ep->auth_hmacs[id]) { 628 asoc->default_hmac_id = id; 629 break; 630 } 631 } 632 } 633 634 635 /* Check to see if the given chunk is supposed to be authenticated */ 636 static int __sctp_auth_cid(sctp_cid_t chunk, struct sctp_chunks_param *param) 637 { 638 unsigned short len; 639 int found = 0; 640 int i; 641 642 if (!param || param->param_hdr.length == 0) 643 return 0; 644 645 len = ntohs(param->param_hdr.length) - sizeof(sctp_paramhdr_t); 646 647 /* SCTP-AUTH, Section 3.2 648 * The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH 649 * chunks MUST NOT be listed in the CHUNKS parameter. However, if 650 * a CHUNKS parameter is received then the types for INIT, INIT-ACK, 651 * SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored. 652 */ 653 for (i = 0; !found && i < len; i++) { 654 switch (param->chunks[i]) { 655 case SCTP_CID_INIT: 656 case SCTP_CID_INIT_ACK: 657 case SCTP_CID_SHUTDOWN_COMPLETE: 658 case SCTP_CID_AUTH: 659 break; 660 661 default: 662 if (param->chunks[i] == chunk) 663 found = 1; 664 break; 665 } 666 } 667 668 return found; 669 } 670 671 /* Check if peer requested that this chunk is authenticated */ 672 int sctp_auth_send_cid(sctp_cid_t chunk, const struct sctp_association *asoc) 673 { 674 struct net *net; 675 if (!asoc) 676 return 0; 677 678 net = sock_net(asoc->base.sk); 679 if (!net->sctp.auth_enable || !asoc->peer.auth_capable) 680 return 0; 681 682 return __sctp_auth_cid(chunk, asoc->peer.peer_chunks); 683 } 684 685 /* Check if we requested that peer authenticate this chunk. */ 686 int sctp_auth_recv_cid(sctp_cid_t chunk, const struct sctp_association *asoc) 687 { 688 struct net *net; 689 if (!asoc) 690 return 0; 691 692 net = sock_net(asoc->base.sk); 693 if (!net->sctp.auth_enable) 694 return 0; 695 696 return __sctp_auth_cid(chunk, 697 (struct sctp_chunks_param *)asoc->c.auth_chunks); 698 } 699 700 /* SCTP-AUTH: Section 6.2: 701 * The sender MUST calculate the MAC as described in RFC2104 [2] using 702 * the hash function H as described by the MAC Identifier and the shared 703 * association key K based on the endpoint pair shared key described by 704 * the shared key identifier. The 'data' used for the computation of 705 * the AUTH-chunk is given by the AUTH chunk with its HMAC field set to 706 * zero (as shown in Figure 6) followed by all chunks that are placed 707 * after the AUTH chunk in the SCTP packet. 708 */ 709 void sctp_auth_calculate_hmac(const struct sctp_association *asoc, 710 struct sk_buff *skb, 711 struct sctp_auth_chunk *auth, 712 gfp_t gfp) 713 { 714 struct scatterlist sg; 715 struct hash_desc desc; 716 struct sctp_auth_bytes *asoc_key; 717 __u16 key_id, hmac_id; 718 __u8 *digest; 719 unsigned char *end; 720 int free_key = 0; 721 722 /* Extract the info we need: 723 * - hmac id 724 * - key id 725 */ 726 key_id = ntohs(auth->auth_hdr.shkey_id); 727 hmac_id = ntohs(auth->auth_hdr.hmac_id); 728 729 if (key_id == asoc->active_key_id) 730 asoc_key = asoc->asoc_shared_key; 731 else { 732 struct sctp_shared_key *ep_key; 733 734 ep_key = sctp_auth_get_shkey(asoc, key_id); 735 if (!ep_key) 736 return; 737 738 asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp); 739 if (!asoc_key) 740 return; 741 742 free_key = 1; 743 } 744 745 /* set up scatter list */ 746 end = skb_tail_pointer(skb); 747 sg_init_one(&sg, auth, end - (unsigned char *)auth); 748 749 desc.tfm = asoc->ep->auth_hmacs[hmac_id]; 750 desc.flags = 0; 751 752 digest = auth->auth_hdr.hmac; 753 if (crypto_hash_setkey(desc.tfm, &asoc_key->data[0], asoc_key->len)) 754 goto free; 755 756 crypto_hash_digest(&desc, &sg, sg.length, digest); 757 758 free: 759 if (free_key) 760 sctp_auth_key_put(asoc_key); 761 } 762 763 /* API Helpers */ 764 765 /* Add a chunk to the endpoint authenticated chunk list */ 766 int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id) 767 { 768 struct sctp_chunks_param *p = ep->auth_chunk_list; 769 __u16 nchunks; 770 __u16 param_len; 771 772 /* If this chunk is already specified, we are done */ 773 if (__sctp_auth_cid(chunk_id, p)) 774 return 0; 775 776 /* Check if we can add this chunk to the array */ 777 param_len = ntohs(p->param_hdr.length); 778 nchunks = param_len - sizeof(sctp_paramhdr_t); 779 if (nchunks == SCTP_NUM_CHUNK_TYPES) 780 return -EINVAL; 781 782 p->chunks[nchunks] = chunk_id; 783 p->param_hdr.length = htons(param_len + 1); 784 return 0; 785 } 786 787 /* Add hmac identifires to the endpoint list of supported hmac ids */ 788 int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep, 789 struct sctp_hmacalgo *hmacs) 790 { 791 int has_sha1 = 0; 792 __u16 id; 793 int i; 794 795 /* Scan the list looking for unsupported id. Also make sure that 796 * SHA1 is specified. 797 */ 798 for (i = 0; i < hmacs->shmac_num_idents; i++) { 799 id = hmacs->shmac_idents[i]; 800 801 if (id > SCTP_AUTH_HMAC_ID_MAX) 802 return -EOPNOTSUPP; 803 804 if (SCTP_AUTH_HMAC_ID_SHA1 == id) 805 has_sha1 = 1; 806 807 if (!sctp_hmac_list[id].hmac_name) 808 return -EOPNOTSUPP; 809 } 810 811 if (!has_sha1) 812 return -EINVAL; 813 814 memcpy(ep->auth_hmacs_list->hmac_ids, &hmacs->shmac_idents[0], 815 hmacs->shmac_num_idents * sizeof(__u16)); 816 ep->auth_hmacs_list->param_hdr.length = htons(sizeof(sctp_paramhdr_t) + 817 hmacs->shmac_num_idents * sizeof(__u16)); 818 return 0; 819 } 820 821 /* Set a new shared key on either endpoint or association. If the 822 * the key with a same ID already exists, replace the key (remove the 823 * old key and add a new one). 824 */ 825 int sctp_auth_set_key(struct sctp_endpoint *ep, 826 struct sctp_association *asoc, 827 struct sctp_authkey *auth_key) 828 { 829 struct sctp_shared_key *cur_key = NULL; 830 struct sctp_auth_bytes *key; 831 struct list_head *sh_keys; 832 int replace = 0; 833 834 /* Try to find the given key id to see if 835 * we are doing a replace, or adding a new key 836 */ 837 if (asoc) 838 sh_keys = &asoc->endpoint_shared_keys; 839 else 840 sh_keys = &ep->endpoint_shared_keys; 841 842 key_for_each(cur_key, sh_keys) { 843 if (cur_key->key_id == auth_key->sca_keynumber) { 844 replace = 1; 845 break; 846 } 847 } 848 849 /* If we are not replacing a key id, we need to allocate 850 * a shared key. 851 */ 852 if (!replace) { 853 cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber, 854 GFP_KERNEL); 855 if (!cur_key) 856 return -ENOMEM; 857 } 858 859 /* Create a new key data based on the info passed in */ 860 key = sctp_auth_create_key(auth_key->sca_keylength, GFP_KERNEL); 861 if (!key) 862 goto nomem; 863 864 memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylength); 865 866 /* If we are replacing, remove the old keys data from the 867 * key id. If we are adding new key id, add it to the 868 * list. 869 */ 870 if (replace) 871 sctp_auth_key_put(cur_key->key); 872 else 873 list_add(&cur_key->key_list, sh_keys); 874 875 cur_key->key = key; 876 sctp_auth_key_hold(key); 877 878 return 0; 879 nomem: 880 if (!replace) 881 sctp_auth_shkey_free(cur_key); 882 883 return -ENOMEM; 884 } 885 886 int sctp_auth_set_active_key(struct sctp_endpoint *ep, 887 struct sctp_association *asoc, 888 __u16 key_id) 889 { 890 struct sctp_shared_key *key; 891 struct list_head *sh_keys; 892 int found = 0; 893 894 /* The key identifier MUST correst to an existing key */ 895 if (asoc) 896 sh_keys = &asoc->endpoint_shared_keys; 897 else 898 sh_keys = &ep->endpoint_shared_keys; 899 900 key_for_each(key, sh_keys) { 901 if (key->key_id == key_id) { 902 found = 1; 903 break; 904 } 905 } 906 907 if (!found) 908 return -EINVAL; 909 910 if (asoc) { 911 asoc->active_key_id = key_id; 912 sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL); 913 } else 914 ep->active_key_id = key_id; 915 916 return 0; 917 } 918 919 int sctp_auth_del_key_id(struct sctp_endpoint *ep, 920 struct sctp_association *asoc, 921 __u16 key_id) 922 { 923 struct sctp_shared_key *key; 924 struct list_head *sh_keys; 925 int found = 0; 926 927 /* The key identifier MUST NOT be the current active key 928 * The key identifier MUST correst to an existing key 929 */ 930 if (asoc) { 931 if (asoc->active_key_id == key_id) 932 return -EINVAL; 933 934 sh_keys = &asoc->endpoint_shared_keys; 935 } else { 936 if (ep->active_key_id == key_id) 937 return -EINVAL; 938 939 sh_keys = &ep->endpoint_shared_keys; 940 } 941 942 key_for_each(key, sh_keys) { 943 if (key->key_id == key_id) { 944 found = 1; 945 break; 946 } 947 } 948 949 if (!found) 950 return -EINVAL; 951 952 /* Delete the shared key */ 953 list_del_init(&key->key_list); 954 sctp_auth_shkey_free(key); 955 956 return 0; 957 } 958