1 /* SCTP kernel implementation 2 * (C) Copyright 2007 Hewlett-Packard Development Company, L.P. 3 * 4 * This file is part of the SCTP kernel implementation 5 * 6 * This SCTP implementation is free software; 7 * you can redistribute it and/or modify it under the terms of 8 * the GNU General Public License as published by 9 * the Free Software Foundation; either version 2, or (at your option) 10 * any later version. 11 * 12 * This SCTP implementation is distributed in the hope that it 13 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 14 * ************************ 15 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 16 * See the GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with GNU CC; see the file COPYING. If not, write to 20 * the Free Software Foundation, 59 Temple Place - Suite 330, 21 * Boston, MA 02111-1307, USA. 22 * 23 * Please send any bug reports or fixes you make to the 24 * email address(es): 25 * lksctp developers <lksctp-developers@lists.sourceforge.net> 26 * 27 * Or submit a bug report through the following website: 28 * http://www.sf.net/projects/lksctp 29 * 30 * Written or modified by: 31 * Vlad Yasevich <vladislav.yasevich@hp.com> 32 * 33 * Any bugs reported given to us we will try to fix... any fixes shared will 34 * be incorporated into the next SCTP release. 35 */ 36 37 #include <linux/slab.h> 38 #include <linux/types.h> 39 #include <linux/crypto.h> 40 #include <linux/scatterlist.h> 41 #include <net/sctp/sctp.h> 42 #include <net/sctp/auth.h> 43 44 static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = { 45 { 46 /* id 0 is reserved. as all 0 */ 47 .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0, 48 }, 49 { 50 .hmac_id = SCTP_AUTH_HMAC_ID_SHA1, 51 .hmac_name="hmac(sha1)", 52 .hmac_len = SCTP_SHA1_SIG_SIZE, 53 }, 54 { 55 /* id 2 is reserved as well */ 56 .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2, 57 }, 58 #if defined (CONFIG_CRYPTO_SHA256) || defined (CONFIG_CRYPTO_SHA256_MODULE) 59 { 60 .hmac_id = SCTP_AUTH_HMAC_ID_SHA256, 61 .hmac_name="hmac(sha256)", 62 .hmac_len = SCTP_SHA256_SIG_SIZE, 63 } 64 #endif 65 }; 66 67 68 void sctp_auth_key_put(struct sctp_auth_bytes *key) 69 { 70 if (!key) 71 return; 72 73 if (atomic_dec_and_test(&key->refcnt)) { 74 kzfree(key); 75 SCTP_DBG_OBJCNT_DEC(keys); 76 } 77 } 78 79 /* Create a new key structure of a given length */ 80 static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp) 81 { 82 struct sctp_auth_bytes *key; 83 84 /* Verify that we are not going to overflow INT_MAX */ 85 if (key_len > (INT_MAX - sizeof(struct sctp_auth_bytes))) 86 return NULL; 87 88 /* Allocate the shared key */ 89 key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp); 90 if (!key) 91 return NULL; 92 93 key->len = key_len; 94 atomic_set(&key->refcnt, 1); 95 SCTP_DBG_OBJCNT_INC(keys); 96 97 return key; 98 } 99 100 /* Create a new shared key container with a give key id */ 101 struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp) 102 { 103 struct sctp_shared_key *new; 104 105 /* Allocate the shared key container */ 106 new = kzalloc(sizeof(struct sctp_shared_key), gfp); 107 if (!new) 108 return NULL; 109 110 INIT_LIST_HEAD(&new->key_list); 111 new->key_id = key_id; 112 113 return new; 114 } 115 116 /* Free the shared key structure */ 117 static void sctp_auth_shkey_free(struct sctp_shared_key *sh_key) 118 { 119 BUG_ON(!list_empty(&sh_key->key_list)); 120 sctp_auth_key_put(sh_key->key); 121 sh_key->key = NULL; 122 kfree(sh_key); 123 } 124 125 /* Destroy the entire key list. This is done during the 126 * associon and endpoint free process. 127 */ 128 void sctp_auth_destroy_keys(struct list_head *keys) 129 { 130 struct sctp_shared_key *ep_key; 131 struct sctp_shared_key *tmp; 132 133 if (list_empty(keys)) 134 return; 135 136 key_for_each_safe(ep_key, tmp, keys) { 137 list_del_init(&ep_key->key_list); 138 sctp_auth_shkey_free(ep_key); 139 } 140 } 141 142 /* Compare two byte vectors as numbers. Return values 143 * are: 144 * 0 - vectors are equal 145 * < 0 - vector 1 is smaller than vector2 146 * > 0 - vector 1 is greater than vector2 147 * 148 * Algorithm is: 149 * This is performed by selecting the numerically smaller key vector... 150 * If the key vectors are equal as numbers but differ in length ... 151 * the shorter vector is considered smaller 152 * 153 * Examples (with small values): 154 * 000123456789 > 123456789 (first number is longer) 155 * 000123456789 < 234567891 (second number is larger numerically) 156 * 123456789 > 2345678 (first number is both larger & longer) 157 */ 158 static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1, 159 struct sctp_auth_bytes *vector2) 160 { 161 int diff; 162 int i; 163 const __u8 *longer; 164 165 diff = vector1->len - vector2->len; 166 if (diff) { 167 longer = (diff > 0) ? vector1->data : vector2->data; 168 169 /* Check to see if the longer number is 170 * lead-zero padded. If it is not, it 171 * is automatically larger numerically. 172 */ 173 for (i = 0; i < abs(diff); i++ ) { 174 if (longer[i] != 0) 175 return diff; 176 } 177 } 178 179 /* lengths are the same, compare numbers */ 180 return memcmp(vector1->data, vector2->data, vector1->len); 181 } 182 183 /* 184 * Create a key vector as described in SCTP-AUTH, Section 6.1 185 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO 186 * parameter sent by each endpoint are concatenated as byte vectors. 187 * These parameters include the parameter type, parameter length, and 188 * the parameter value, but padding is omitted; all padding MUST be 189 * removed from this concatenation before proceeding with further 190 * computation of keys. Parameters which were not sent are simply 191 * omitted from the concatenation process. The resulting two vectors 192 * are called the two key vectors. 193 */ 194 static struct sctp_auth_bytes *sctp_auth_make_key_vector( 195 sctp_random_param_t *random, 196 sctp_chunks_param_t *chunks, 197 sctp_hmac_algo_param_t *hmacs, 198 gfp_t gfp) 199 { 200 struct sctp_auth_bytes *new; 201 __u32 len; 202 __u32 offset = 0; 203 __u16 random_len, hmacs_len, chunks_len = 0; 204 205 random_len = ntohs(random->param_hdr.length); 206 hmacs_len = ntohs(hmacs->param_hdr.length); 207 if (chunks) 208 chunks_len = ntohs(chunks->param_hdr.length); 209 210 len = random_len + hmacs_len + chunks_len; 211 212 new = sctp_auth_create_key(len, gfp); 213 if (!new) 214 return NULL; 215 216 memcpy(new->data, random, random_len); 217 offset += random_len; 218 219 if (chunks) { 220 memcpy(new->data + offset, chunks, chunks_len); 221 offset += chunks_len; 222 } 223 224 memcpy(new->data + offset, hmacs, hmacs_len); 225 226 return new; 227 } 228 229 230 /* Make a key vector based on our local parameters */ 231 static struct sctp_auth_bytes *sctp_auth_make_local_vector( 232 const struct sctp_association *asoc, 233 gfp_t gfp) 234 { 235 return sctp_auth_make_key_vector( 236 (sctp_random_param_t*)asoc->c.auth_random, 237 (sctp_chunks_param_t*)asoc->c.auth_chunks, 238 (sctp_hmac_algo_param_t*)asoc->c.auth_hmacs, 239 gfp); 240 } 241 242 /* Make a key vector based on peer's parameters */ 243 static struct sctp_auth_bytes *sctp_auth_make_peer_vector( 244 const struct sctp_association *asoc, 245 gfp_t gfp) 246 { 247 return sctp_auth_make_key_vector(asoc->peer.peer_random, 248 asoc->peer.peer_chunks, 249 asoc->peer.peer_hmacs, 250 gfp); 251 } 252 253 254 /* Set the value of the association shared key base on the parameters 255 * given. The algorithm is: 256 * From the endpoint pair shared keys and the key vectors the 257 * association shared keys are computed. This is performed by selecting 258 * the numerically smaller key vector and concatenating it to the 259 * endpoint pair shared key, and then concatenating the numerically 260 * larger key vector to that. The result of the concatenation is the 261 * association shared key. 262 */ 263 static struct sctp_auth_bytes *sctp_auth_asoc_set_secret( 264 struct sctp_shared_key *ep_key, 265 struct sctp_auth_bytes *first_vector, 266 struct sctp_auth_bytes *last_vector, 267 gfp_t gfp) 268 { 269 struct sctp_auth_bytes *secret; 270 __u32 offset = 0; 271 __u32 auth_len; 272 273 auth_len = first_vector->len + last_vector->len; 274 if (ep_key->key) 275 auth_len += ep_key->key->len; 276 277 secret = sctp_auth_create_key(auth_len, gfp); 278 if (!secret) 279 return NULL; 280 281 if (ep_key->key) { 282 memcpy(secret->data, ep_key->key->data, ep_key->key->len); 283 offset += ep_key->key->len; 284 } 285 286 memcpy(secret->data + offset, first_vector->data, first_vector->len); 287 offset += first_vector->len; 288 289 memcpy(secret->data + offset, last_vector->data, last_vector->len); 290 291 return secret; 292 } 293 294 /* Create an association shared key. Follow the algorithm 295 * described in SCTP-AUTH, Section 6.1 296 */ 297 static struct sctp_auth_bytes *sctp_auth_asoc_create_secret( 298 const struct sctp_association *asoc, 299 struct sctp_shared_key *ep_key, 300 gfp_t gfp) 301 { 302 struct sctp_auth_bytes *local_key_vector; 303 struct sctp_auth_bytes *peer_key_vector; 304 struct sctp_auth_bytes *first_vector, 305 *last_vector; 306 struct sctp_auth_bytes *secret = NULL; 307 int cmp; 308 309 310 /* Now we need to build the key vectors 311 * SCTP-AUTH , Section 6.1 312 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO 313 * parameter sent by each endpoint are concatenated as byte vectors. 314 * These parameters include the parameter type, parameter length, and 315 * the parameter value, but padding is omitted; all padding MUST be 316 * removed from this concatenation before proceeding with further 317 * computation of keys. Parameters which were not sent are simply 318 * omitted from the concatenation process. The resulting two vectors 319 * are called the two key vectors. 320 */ 321 322 local_key_vector = sctp_auth_make_local_vector(asoc, gfp); 323 peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp); 324 325 if (!peer_key_vector || !local_key_vector) 326 goto out; 327 328 /* Figure out the order in which the key_vectors will be 329 * added to the endpoint shared key. 330 * SCTP-AUTH, Section 6.1: 331 * This is performed by selecting the numerically smaller key 332 * vector and concatenating it to the endpoint pair shared 333 * key, and then concatenating the numerically larger key 334 * vector to that. If the key vectors are equal as numbers 335 * but differ in length, then the concatenation order is the 336 * endpoint shared key, followed by the shorter key vector, 337 * followed by the longer key vector. Otherwise, the key 338 * vectors are identical, and may be concatenated to the 339 * endpoint pair key in any order. 340 */ 341 cmp = sctp_auth_compare_vectors(local_key_vector, 342 peer_key_vector); 343 if (cmp < 0) { 344 first_vector = local_key_vector; 345 last_vector = peer_key_vector; 346 } else { 347 first_vector = peer_key_vector; 348 last_vector = local_key_vector; 349 } 350 351 secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector, 352 gfp); 353 out: 354 sctp_auth_key_put(local_key_vector); 355 sctp_auth_key_put(peer_key_vector); 356 357 return secret; 358 } 359 360 /* 361 * Populate the association overlay list with the list 362 * from the endpoint. 363 */ 364 int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep, 365 struct sctp_association *asoc, 366 gfp_t gfp) 367 { 368 struct sctp_shared_key *sh_key; 369 struct sctp_shared_key *new; 370 371 BUG_ON(!list_empty(&asoc->endpoint_shared_keys)); 372 373 key_for_each(sh_key, &ep->endpoint_shared_keys) { 374 new = sctp_auth_shkey_create(sh_key->key_id, gfp); 375 if (!new) 376 goto nomem; 377 378 new->key = sh_key->key; 379 sctp_auth_key_hold(new->key); 380 list_add(&new->key_list, &asoc->endpoint_shared_keys); 381 } 382 383 return 0; 384 385 nomem: 386 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys); 387 return -ENOMEM; 388 } 389 390 391 /* Public interface to creat the association shared key. 392 * See code above for the algorithm. 393 */ 394 int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp) 395 { 396 struct net *net = sock_net(asoc->base.sk); 397 struct sctp_auth_bytes *secret; 398 struct sctp_shared_key *ep_key; 399 400 /* If we don't support AUTH, or peer is not capable 401 * we don't need to do anything. 402 */ 403 if (!net->sctp.auth_enable || !asoc->peer.auth_capable) 404 return 0; 405 406 /* If the key_id is non-zero and we couldn't find an 407 * endpoint pair shared key, we can't compute the 408 * secret. 409 * For key_id 0, endpoint pair shared key is a NULL key. 410 */ 411 ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id); 412 BUG_ON(!ep_key); 413 414 secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp); 415 if (!secret) 416 return -ENOMEM; 417 418 sctp_auth_key_put(asoc->asoc_shared_key); 419 asoc->asoc_shared_key = secret; 420 421 return 0; 422 } 423 424 425 /* Find the endpoint pair shared key based on the key_id */ 426 struct sctp_shared_key *sctp_auth_get_shkey( 427 const struct sctp_association *asoc, 428 __u16 key_id) 429 { 430 struct sctp_shared_key *key; 431 432 /* First search associations set of endpoint pair shared keys */ 433 key_for_each(key, &asoc->endpoint_shared_keys) { 434 if (key->key_id == key_id) 435 return key; 436 } 437 438 return NULL; 439 } 440 441 /* 442 * Initialize all the possible digest transforms that we can use. Right now 443 * now, the supported digests are SHA1 and SHA256. We do this here once 444 * because of the restrictiong that transforms may only be allocated in 445 * user context. This forces us to pre-allocated all possible transforms 446 * at the endpoint init time. 447 */ 448 int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp) 449 { 450 struct net *net = sock_net(ep->base.sk); 451 struct crypto_hash *tfm = NULL; 452 __u16 id; 453 454 /* if the transforms are already allocted, we are done */ 455 if (!net->sctp.auth_enable) { 456 ep->auth_hmacs = NULL; 457 return 0; 458 } 459 460 if (ep->auth_hmacs) 461 return 0; 462 463 /* Allocated the array of pointers to transorms */ 464 ep->auth_hmacs = kzalloc( 465 sizeof(struct crypto_hash *) * SCTP_AUTH_NUM_HMACS, 466 gfp); 467 if (!ep->auth_hmacs) 468 return -ENOMEM; 469 470 for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) { 471 472 /* See is we support the id. Supported IDs have name and 473 * length fields set, so that we can allocated and use 474 * them. We can safely just check for name, for without the 475 * name, we can't allocate the TFM. 476 */ 477 if (!sctp_hmac_list[id].hmac_name) 478 continue; 479 480 /* If this TFM has been allocated, we are all set */ 481 if (ep->auth_hmacs[id]) 482 continue; 483 484 /* Allocate the ID */ 485 tfm = crypto_alloc_hash(sctp_hmac_list[id].hmac_name, 0, 486 CRYPTO_ALG_ASYNC); 487 if (IS_ERR(tfm)) 488 goto out_err; 489 490 ep->auth_hmacs[id] = tfm; 491 } 492 493 return 0; 494 495 out_err: 496 /* Clean up any successful allocations */ 497 sctp_auth_destroy_hmacs(ep->auth_hmacs); 498 return -ENOMEM; 499 } 500 501 /* Destroy the hmac tfm array */ 502 void sctp_auth_destroy_hmacs(struct crypto_hash *auth_hmacs[]) 503 { 504 int i; 505 506 if (!auth_hmacs) 507 return; 508 509 for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++) 510 { 511 if (auth_hmacs[i]) 512 crypto_free_hash(auth_hmacs[i]); 513 } 514 kfree(auth_hmacs); 515 } 516 517 518 struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id) 519 { 520 return &sctp_hmac_list[hmac_id]; 521 } 522 523 /* Get an hmac description information that we can use to build 524 * the AUTH chunk 525 */ 526 struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc) 527 { 528 struct sctp_hmac_algo_param *hmacs; 529 __u16 n_elt; 530 __u16 id = 0; 531 int i; 532 533 /* If we have a default entry, use it */ 534 if (asoc->default_hmac_id) 535 return &sctp_hmac_list[asoc->default_hmac_id]; 536 537 /* Since we do not have a default entry, find the first entry 538 * we support and return that. Do not cache that id. 539 */ 540 hmacs = asoc->peer.peer_hmacs; 541 if (!hmacs) 542 return NULL; 543 544 n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1; 545 for (i = 0; i < n_elt; i++) { 546 id = ntohs(hmacs->hmac_ids[i]); 547 548 /* Check the id is in the supported range */ 549 if (id > SCTP_AUTH_HMAC_ID_MAX) { 550 id = 0; 551 continue; 552 } 553 554 /* See is we support the id. Supported IDs have name and 555 * length fields set, so that we can allocated and use 556 * them. We can safely just check for name, for without the 557 * name, we can't allocate the TFM. 558 */ 559 if (!sctp_hmac_list[id].hmac_name) { 560 id = 0; 561 continue; 562 } 563 564 break; 565 } 566 567 if (id == 0) 568 return NULL; 569 570 return &sctp_hmac_list[id]; 571 } 572 573 static int __sctp_auth_find_hmacid(__be16 *hmacs, int n_elts, __be16 hmac_id) 574 { 575 int found = 0; 576 int i; 577 578 for (i = 0; i < n_elts; i++) { 579 if (hmac_id == hmacs[i]) { 580 found = 1; 581 break; 582 } 583 } 584 585 return found; 586 } 587 588 /* See if the HMAC_ID is one that we claim as supported */ 589 int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc, 590 __be16 hmac_id) 591 { 592 struct sctp_hmac_algo_param *hmacs; 593 __u16 n_elt; 594 595 if (!asoc) 596 return 0; 597 598 hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs; 599 n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1; 600 601 return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id); 602 } 603 604 605 /* Cache the default HMAC id. This to follow this text from SCTP-AUTH: 606 * Section 6.1: 607 * The receiver of a HMAC-ALGO parameter SHOULD use the first listed 608 * algorithm it supports. 609 */ 610 void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc, 611 struct sctp_hmac_algo_param *hmacs) 612 { 613 struct sctp_endpoint *ep; 614 __u16 id; 615 int i; 616 int n_params; 617 618 /* if the default id is already set, use it */ 619 if (asoc->default_hmac_id) 620 return; 621 622 n_params = (ntohs(hmacs->param_hdr.length) 623 - sizeof(sctp_paramhdr_t)) >> 1; 624 ep = asoc->ep; 625 for (i = 0; i < n_params; i++) { 626 id = ntohs(hmacs->hmac_ids[i]); 627 628 /* Check the id is in the supported range */ 629 if (id > SCTP_AUTH_HMAC_ID_MAX) 630 continue; 631 632 /* If this TFM has been allocated, use this id */ 633 if (ep->auth_hmacs[id]) { 634 asoc->default_hmac_id = id; 635 break; 636 } 637 } 638 } 639 640 641 /* Check to see if the given chunk is supposed to be authenticated */ 642 static int __sctp_auth_cid(sctp_cid_t chunk, struct sctp_chunks_param *param) 643 { 644 unsigned short len; 645 int found = 0; 646 int i; 647 648 if (!param || param->param_hdr.length == 0) 649 return 0; 650 651 len = ntohs(param->param_hdr.length) - sizeof(sctp_paramhdr_t); 652 653 /* SCTP-AUTH, Section 3.2 654 * The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH 655 * chunks MUST NOT be listed in the CHUNKS parameter. However, if 656 * a CHUNKS parameter is received then the types for INIT, INIT-ACK, 657 * SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored. 658 */ 659 for (i = 0; !found && i < len; i++) { 660 switch (param->chunks[i]) { 661 case SCTP_CID_INIT: 662 case SCTP_CID_INIT_ACK: 663 case SCTP_CID_SHUTDOWN_COMPLETE: 664 case SCTP_CID_AUTH: 665 break; 666 667 default: 668 if (param->chunks[i] == chunk) 669 found = 1; 670 break; 671 } 672 } 673 674 return found; 675 } 676 677 /* Check if peer requested that this chunk is authenticated */ 678 int sctp_auth_send_cid(sctp_cid_t chunk, const struct sctp_association *asoc) 679 { 680 struct net *net; 681 if (!asoc) 682 return 0; 683 684 net = sock_net(asoc->base.sk); 685 if (!net->sctp.auth_enable || !asoc->peer.auth_capable) 686 return 0; 687 688 return __sctp_auth_cid(chunk, asoc->peer.peer_chunks); 689 } 690 691 /* Check if we requested that peer authenticate this chunk. */ 692 int sctp_auth_recv_cid(sctp_cid_t chunk, const struct sctp_association *asoc) 693 { 694 struct net *net; 695 if (!asoc) 696 return 0; 697 698 net = sock_net(asoc->base.sk); 699 if (!net->sctp.auth_enable) 700 return 0; 701 702 return __sctp_auth_cid(chunk, 703 (struct sctp_chunks_param *)asoc->c.auth_chunks); 704 } 705 706 /* SCTP-AUTH: Section 6.2: 707 * The sender MUST calculate the MAC as described in RFC2104 [2] using 708 * the hash function H as described by the MAC Identifier and the shared 709 * association key K based on the endpoint pair shared key described by 710 * the shared key identifier. The 'data' used for the computation of 711 * the AUTH-chunk is given by the AUTH chunk with its HMAC field set to 712 * zero (as shown in Figure 6) followed by all chunks that are placed 713 * after the AUTH chunk in the SCTP packet. 714 */ 715 void sctp_auth_calculate_hmac(const struct sctp_association *asoc, 716 struct sk_buff *skb, 717 struct sctp_auth_chunk *auth, 718 gfp_t gfp) 719 { 720 struct scatterlist sg; 721 struct hash_desc desc; 722 struct sctp_auth_bytes *asoc_key; 723 __u16 key_id, hmac_id; 724 __u8 *digest; 725 unsigned char *end; 726 int free_key = 0; 727 728 /* Extract the info we need: 729 * - hmac id 730 * - key id 731 */ 732 key_id = ntohs(auth->auth_hdr.shkey_id); 733 hmac_id = ntohs(auth->auth_hdr.hmac_id); 734 735 if (key_id == asoc->active_key_id) 736 asoc_key = asoc->asoc_shared_key; 737 else { 738 struct sctp_shared_key *ep_key; 739 740 ep_key = sctp_auth_get_shkey(asoc, key_id); 741 if (!ep_key) 742 return; 743 744 asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp); 745 if (!asoc_key) 746 return; 747 748 free_key = 1; 749 } 750 751 /* set up scatter list */ 752 end = skb_tail_pointer(skb); 753 sg_init_one(&sg, auth, end - (unsigned char *)auth); 754 755 desc.tfm = asoc->ep->auth_hmacs[hmac_id]; 756 desc.flags = 0; 757 758 digest = auth->auth_hdr.hmac; 759 if (crypto_hash_setkey(desc.tfm, &asoc_key->data[0], asoc_key->len)) 760 goto free; 761 762 crypto_hash_digest(&desc, &sg, sg.length, digest); 763 764 free: 765 if (free_key) 766 sctp_auth_key_put(asoc_key); 767 } 768 769 /* API Helpers */ 770 771 /* Add a chunk to the endpoint authenticated chunk list */ 772 int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id) 773 { 774 struct sctp_chunks_param *p = ep->auth_chunk_list; 775 __u16 nchunks; 776 __u16 param_len; 777 778 /* If this chunk is already specified, we are done */ 779 if (__sctp_auth_cid(chunk_id, p)) 780 return 0; 781 782 /* Check if we can add this chunk to the array */ 783 param_len = ntohs(p->param_hdr.length); 784 nchunks = param_len - sizeof(sctp_paramhdr_t); 785 if (nchunks == SCTP_NUM_CHUNK_TYPES) 786 return -EINVAL; 787 788 p->chunks[nchunks] = chunk_id; 789 p->param_hdr.length = htons(param_len + 1); 790 return 0; 791 } 792 793 /* Add hmac identifires to the endpoint list of supported hmac ids */ 794 int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep, 795 struct sctp_hmacalgo *hmacs) 796 { 797 int has_sha1 = 0; 798 __u16 id; 799 int i; 800 801 /* Scan the list looking for unsupported id. Also make sure that 802 * SHA1 is specified. 803 */ 804 for (i = 0; i < hmacs->shmac_num_idents; i++) { 805 id = hmacs->shmac_idents[i]; 806 807 if (id > SCTP_AUTH_HMAC_ID_MAX) 808 return -EOPNOTSUPP; 809 810 if (SCTP_AUTH_HMAC_ID_SHA1 == id) 811 has_sha1 = 1; 812 813 if (!sctp_hmac_list[id].hmac_name) 814 return -EOPNOTSUPP; 815 } 816 817 if (!has_sha1) 818 return -EINVAL; 819 820 memcpy(ep->auth_hmacs_list->hmac_ids, &hmacs->shmac_idents[0], 821 hmacs->shmac_num_idents * sizeof(__u16)); 822 ep->auth_hmacs_list->param_hdr.length = htons(sizeof(sctp_paramhdr_t) + 823 hmacs->shmac_num_idents * sizeof(__u16)); 824 return 0; 825 } 826 827 /* Set a new shared key on either endpoint or association. If the 828 * the key with a same ID already exists, replace the key (remove the 829 * old key and add a new one). 830 */ 831 int sctp_auth_set_key(struct sctp_endpoint *ep, 832 struct sctp_association *asoc, 833 struct sctp_authkey *auth_key) 834 { 835 struct sctp_shared_key *cur_key = NULL; 836 struct sctp_auth_bytes *key; 837 struct list_head *sh_keys; 838 int replace = 0; 839 840 /* Try to find the given key id to see if 841 * we are doing a replace, or adding a new key 842 */ 843 if (asoc) 844 sh_keys = &asoc->endpoint_shared_keys; 845 else 846 sh_keys = &ep->endpoint_shared_keys; 847 848 key_for_each(cur_key, sh_keys) { 849 if (cur_key->key_id == auth_key->sca_keynumber) { 850 replace = 1; 851 break; 852 } 853 } 854 855 /* If we are not replacing a key id, we need to allocate 856 * a shared key. 857 */ 858 if (!replace) { 859 cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber, 860 GFP_KERNEL); 861 if (!cur_key) 862 return -ENOMEM; 863 } 864 865 /* Create a new key data based on the info passed in */ 866 key = sctp_auth_create_key(auth_key->sca_keylength, GFP_KERNEL); 867 if (!key) 868 goto nomem; 869 870 memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylength); 871 872 /* If we are replacing, remove the old keys data from the 873 * key id. If we are adding new key id, add it to the 874 * list. 875 */ 876 if (replace) 877 sctp_auth_key_put(cur_key->key); 878 else 879 list_add(&cur_key->key_list, sh_keys); 880 881 cur_key->key = key; 882 sctp_auth_key_hold(key); 883 884 return 0; 885 nomem: 886 if (!replace) 887 sctp_auth_shkey_free(cur_key); 888 889 return -ENOMEM; 890 } 891 892 int sctp_auth_set_active_key(struct sctp_endpoint *ep, 893 struct sctp_association *asoc, 894 __u16 key_id) 895 { 896 struct sctp_shared_key *key; 897 struct list_head *sh_keys; 898 int found = 0; 899 900 /* The key identifier MUST correst to an existing key */ 901 if (asoc) 902 sh_keys = &asoc->endpoint_shared_keys; 903 else 904 sh_keys = &ep->endpoint_shared_keys; 905 906 key_for_each(key, sh_keys) { 907 if (key->key_id == key_id) { 908 found = 1; 909 break; 910 } 911 } 912 913 if (!found) 914 return -EINVAL; 915 916 if (asoc) { 917 asoc->active_key_id = key_id; 918 sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL); 919 } else 920 ep->active_key_id = key_id; 921 922 return 0; 923 } 924 925 int sctp_auth_del_key_id(struct sctp_endpoint *ep, 926 struct sctp_association *asoc, 927 __u16 key_id) 928 { 929 struct sctp_shared_key *key; 930 struct list_head *sh_keys; 931 int found = 0; 932 933 /* The key identifier MUST NOT be the current active key 934 * The key identifier MUST correst to an existing key 935 */ 936 if (asoc) { 937 if (asoc->active_key_id == key_id) 938 return -EINVAL; 939 940 sh_keys = &asoc->endpoint_shared_keys; 941 } else { 942 if (ep->active_key_id == key_id) 943 return -EINVAL; 944 945 sh_keys = &ep->endpoint_shared_keys; 946 } 947 948 key_for_each(key, sh_keys) { 949 if (key->key_id == key_id) { 950 found = 1; 951 break; 952 } 953 } 954 955 if (!found) 956 return -EINVAL; 957 958 /* Delete the shared key */ 959 list_del_init(&key->key_list); 960 sctp_auth_shkey_free(key); 961 962 return 0; 963 } 964