1 /* SCTP kernel implementation 2 * (C) Copyright 2007 Hewlett-Packard Development Company, L.P. 3 * 4 * This file is part of the SCTP kernel implementation 5 * 6 * This SCTP implementation is free software; 7 * you can redistribute it and/or modify it under the terms of 8 * the GNU General Public License as published by 9 * the Free Software Foundation; either version 2, or (at your option) 10 * any later version. 11 * 12 * This SCTP implementation is distributed in the hope that it 13 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 14 * ************************ 15 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 16 * See the GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with GNU CC; see the file COPYING. If not, see 20 * <http://www.gnu.org/licenses/>. 21 * 22 * Please send any bug reports or fixes you make to the 23 * email address(es): 24 * lksctp developers <linux-sctp@vger.kernel.org> 25 * 26 * Written or modified by: 27 * Vlad Yasevich <vladislav.yasevich@hp.com> 28 */ 29 30 #include <crypto/hash.h> 31 #include <linux/slab.h> 32 #include <linux/types.h> 33 #include <linux/scatterlist.h> 34 #include <net/sctp/sctp.h> 35 #include <net/sctp/auth.h> 36 37 static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = { 38 { 39 /* id 0 is reserved. as all 0 */ 40 .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0, 41 }, 42 { 43 .hmac_id = SCTP_AUTH_HMAC_ID_SHA1, 44 .hmac_name = "hmac(sha1)", 45 .hmac_len = SCTP_SHA1_SIG_SIZE, 46 }, 47 { 48 /* id 2 is reserved as well */ 49 .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2, 50 }, 51 #if IS_ENABLED(CONFIG_CRYPTO_SHA256) 52 { 53 .hmac_id = SCTP_AUTH_HMAC_ID_SHA256, 54 .hmac_name = "hmac(sha256)", 55 .hmac_len = SCTP_SHA256_SIG_SIZE, 56 } 57 #endif 58 }; 59 60 61 void sctp_auth_key_put(struct sctp_auth_bytes *key) 62 { 63 if (!key) 64 return; 65 66 if (refcount_dec_and_test(&key->refcnt)) { 67 kzfree(key); 68 SCTP_DBG_OBJCNT_DEC(keys); 69 } 70 } 71 72 /* Create a new key structure of a given length */ 73 static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp) 74 { 75 struct sctp_auth_bytes *key; 76 77 /* Verify that we are not going to overflow INT_MAX */ 78 if (key_len > (INT_MAX - sizeof(struct sctp_auth_bytes))) 79 return NULL; 80 81 /* Allocate the shared key */ 82 key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp); 83 if (!key) 84 return NULL; 85 86 key->len = key_len; 87 refcount_set(&key->refcnt, 1); 88 SCTP_DBG_OBJCNT_INC(keys); 89 90 return key; 91 } 92 93 /* Create a new shared key container with a give key id */ 94 struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp) 95 { 96 struct sctp_shared_key *new; 97 98 /* Allocate the shared key container */ 99 new = kzalloc(sizeof(struct sctp_shared_key), gfp); 100 if (!new) 101 return NULL; 102 103 INIT_LIST_HEAD(&new->key_list); 104 refcount_set(&new->refcnt, 1); 105 new->key_id = key_id; 106 107 return new; 108 } 109 110 /* Free the shared key structure */ 111 static void sctp_auth_shkey_destroy(struct sctp_shared_key *sh_key) 112 { 113 BUG_ON(!list_empty(&sh_key->key_list)); 114 sctp_auth_key_put(sh_key->key); 115 sh_key->key = NULL; 116 kfree(sh_key); 117 } 118 119 void sctp_auth_shkey_release(struct sctp_shared_key *sh_key) 120 { 121 if (refcount_dec_and_test(&sh_key->refcnt)) 122 sctp_auth_shkey_destroy(sh_key); 123 } 124 125 void sctp_auth_shkey_hold(struct sctp_shared_key *sh_key) 126 { 127 refcount_inc(&sh_key->refcnt); 128 } 129 130 /* Destroy the entire key list. This is done during the 131 * associon and endpoint free process. 132 */ 133 void sctp_auth_destroy_keys(struct list_head *keys) 134 { 135 struct sctp_shared_key *ep_key; 136 struct sctp_shared_key *tmp; 137 138 if (list_empty(keys)) 139 return; 140 141 key_for_each_safe(ep_key, tmp, keys) { 142 list_del_init(&ep_key->key_list); 143 sctp_auth_shkey_release(ep_key); 144 } 145 } 146 147 /* Compare two byte vectors as numbers. Return values 148 * are: 149 * 0 - vectors are equal 150 * < 0 - vector 1 is smaller than vector2 151 * > 0 - vector 1 is greater than vector2 152 * 153 * Algorithm is: 154 * This is performed by selecting the numerically smaller key vector... 155 * If the key vectors are equal as numbers but differ in length ... 156 * the shorter vector is considered smaller 157 * 158 * Examples (with small values): 159 * 000123456789 > 123456789 (first number is longer) 160 * 000123456789 < 234567891 (second number is larger numerically) 161 * 123456789 > 2345678 (first number is both larger & longer) 162 */ 163 static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1, 164 struct sctp_auth_bytes *vector2) 165 { 166 int diff; 167 int i; 168 const __u8 *longer; 169 170 diff = vector1->len - vector2->len; 171 if (diff) { 172 longer = (diff > 0) ? vector1->data : vector2->data; 173 174 /* Check to see if the longer number is 175 * lead-zero padded. If it is not, it 176 * is automatically larger numerically. 177 */ 178 for (i = 0; i < abs(diff); i++) { 179 if (longer[i] != 0) 180 return diff; 181 } 182 } 183 184 /* lengths are the same, compare numbers */ 185 return memcmp(vector1->data, vector2->data, vector1->len); 186 } 187 188 /* 189 * Create a key vector as described in SCTP-AUTH, Section 6.1 190 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO 191 * parameter sent by each endpoint are concatenated as byte vectors. 192 * These parameters include the parameter type, parameter length, and 193 * the parameter value, but padding is omitted; all padding MUST be 194 * removed from this concatenation before proceeding with further 195 * computation of keys. Parameters which were not sent are simply 196 * omitted from the concatenation process. The resulting two vectors 197 * are called the two key vectors. 198 */ 199 static struct sctp_auth_bytes *sctp_auth_make_key_vector( 200 struct sctp_random_param *random, 201 struct sctp_chunks_param *chunks, 202 struct sctp_hmac_algo_param *hmacs, 203 gfp_t gfp) 204 { 205 struct sctp_auth_bytes *new; 206 __u32 len; 207 __u32 offset = 0; 208 __u16 random_len, hmacs_len, chunks_len = 0; 209 210 random_len = ntohs(random->param_hdr.length); 211 hmacs_len = ntohs(hmacs->param_hdr.length); 212 if (chunks) 213 chunks_len = ntohs(chunks->param_hdr.length); 214 215 len = random_len + hmacs_len + chunks_len; 216 217 new = sctp_auth_create_key(len, gfp); 218 if (!new) 219 return NULL; 220 221 memcpy(new->data, random, random_len); 222 offset += random_len; 223 224 if (chunks) { 225 memcpy(new->data + offset, chunks, chunks_len); 226 offset += chunks_len; 227 } 228 229 memcpy(new->data + offset, hmacs, hmacs_len); 230 231 return new; 232 } 233 234 235 /* Make a key vector based on our local parameters */ 236 static struct sctp_auth_bytes *sctp_auth_make_local_vector( 237 const struct sctp_association *asoc, 238 gfp_t gfp) 239 { 240 return sctp_auth_make_key_vector( 241 (struct sctp_random_param *)asoc->c.auth_random, 242 (struct sctp_chunks_param *)asoc->c.auth_chunks, 243 (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs, gfp); 244 } 245 246 /* Make a key vector based on peer's parameters */ 247 static struct sctp_auth_bytes *sctp_auth_make_peer_vector( 248 const struct sctp_association *asoc, 249 gfp_t gfp) 250 { 251 return sctp_auth_make_key_vector(asoc->peer.peer_random, 252 asoc->peer.peer_chunks, 253 asoc->peer.peer_hmacs, 254 gfp); 255 } 256 257 258 /* Set the value of the association shared key base on the parameters 259 * given. The algorithm is: 260 * From the endpoint pair shared keys and the key vectors the 261 * association shared keys are computed. This is performed by selecting 262 * the numerically smaller key vector and concatenating it to the 263 * endpoint pair shared key, and then concatenating the numerically 264 * larger key vector to that. The result of the concatenation is the 265 * association shared key. 266 */ 267 static struct sctp_auth_bytes *sctp_auth_asoc_set_secret( 268 struct sctp_shared_key *ep_key, 269 struct sctp_auth_bytes *first_vector, 270 struct sctp_auth_bytes *last_vector, 271 gfp_t gfp) 272 { 273 struct sctp_auth_bytes *secret; 274 __u32 offset = 0; 275 __u32 auth_len; 276 277 auth_len = first_vector->len + last_vector->len; 278 if (ep_key->key) 279 auth_len += ep_key->key->len; 280 281 secret = sctp_auth_create_key(auth_len, gfp); 282 if (!secret) 283 return NULL; 284 285 if (ep_key->key) { 286 memcpy(secret->data, ep_key->key->data, ep_key->key->len); 287 offset += ep_key->key->len; 288 } 289 290 memcpy(secret->data + offset, first_vector->data, first_vector->len); 291 offset += first_vector->len; 292 293 memcpy(secret->data + offset, last_vector->data, last_vector->len); 294 295 return secret; 296 } 297 298 /* Create an association shared key. Follow the algorithm 299 * described in SCTP-AUTH, Section 6.1 300 */ 301 static struct sctp_auth_bytes *sctp_auth_asoc_create_secret( 302 const struct sctp_association *asoc, 303 struct sctp_shared_key *ep_key, 304 gfp_t gfp) 305 { 306 struct sctp_auth_bytes *local_key_vector; 307 struct sctp_auth_bytes *peer_key_vector; 308 struct sctp_auth_bytes *first_vector, 309 *last_vector; 310 struct sctp_auth_bytes *secret = NULL; 311 int cmp; 312 313 314 /* Now we need to build the key vectors 315 * SCTP-AUTH , Section 6.1 316 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO 317 * parameter sent by each endpoint are concatenated as byte vectors. 318 * These parameters include the parameter type, parameter length, and 319 * the parameter value, but padding is omitted; all padding MUST be 320 * removed from this concatenation before proceeding with further 321 * computation of keys. Parameters which were not sent are simply 322 * omitted from the concatenation process. The resulting two vectors 323 * are called the two key vectors. 324 */ 325 326 local_key_vector = sctp_auth_make_local_vector(asoc, gfp); 327 peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp); 328 329 if (!peer_key_vector || !local_key_vector) 330 goto out; 331 332 /* Figure out the order in which the key_vectors will be 333 * added to the endpoint shared key. 334 * SCTP-AUTH, Section 6.1: 335 * This is performed by selecting the numerically smaller key 336 * vector and concatenating it to the endpoint pair shared 337 * key, and then concatenating the numerically larger key 338 * vector to that. If the key vectors are equal as numbers 339 * but differ in length, then the concatenation order is the 340 * endpoint shared key, followed by the shorter key vector, 341 * followed by the longer key vector. Otherwise, the key 342 * vectors are identical, and may be concatenated to the 343 * endpoint pair key in any order. 344 */ 345 cmp = sctp_auth_compare_vectors(local_key_vector, 346 peer_key_vector); 347 if (cmp < 0) { 348 first_vector = local_key_vector; 349 last_vector = peer_key_vector; 350 } else { 351 first_vector = peer_key_vector; 352 last_vector = local_key_vector; 353 } 354 355 secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector, 356 gfp); 357 out: 358 sctp_auth_key_put(local_key_vector); 359 sctp_auth_key_put(peer_key_vector); 360 361 return secret; 362 } 363 364 /* 365 * Populate the association overlay list with the list 366 * from the endpoint. 367 */ 368 int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep, 369 struct sctp_association *asoc, 370 gfp_t gfp) 371 { 372 struct sctp_shared_key *sh_key; 373 struct sctp_shared_key *new; 374 375 BUG_ON(!list_empty(&asoc->endpoint_shared_keys)); 376 377 key_for_each(sh_key, &ep->endpoint_shared_keys) { 378 new = sctp_auth_shkey_create(sh_key->key_id, gfp); 379 if (!new) 380 goto nomem; 381 382 new->key = sh_key->key; 383 sctp_auth_key_hold(new->key); 384 list_add(&new->key_list, &asoc->endpoint_shared_keys); 385 } 386 387 return 0; 388 389 nomem: 390 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys); 391 return -ENOMEM; 392 } 393 394 395 /* Public interface to create the association shared key. 396 * See code above for the algorithm. 397 */ 398 int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp) 399 { 400 struct sctp_auth_bytes *secret; 401 struct sctp_shared_key *ep_key; 402 struct sctp_chunk *chunk; 403 404 /* If we don't support AUTH, or peer is not capable 405 * we don't need to do anything. 406 */ 407 if (!asoc->ep->auth_enable || !asoc->peer.auth_capable) 408 return 0; 409 410 /* If the key_id is non-zero and we couldn't find an 411 * endpoint pair shared key, we can't compute the 412 * secret. 413 * For key_id 0, endpoint pair shared key is a NULL key. 414 */ 415 ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id); 416 BUG_ON(!ep_key); 417 418 secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp); 419 if (!secret) 420 return -ENOMEM; 421 422 sctp_auth_key_put(asoc->asoc_shared_key); 423 asoc->asoc_shared_key = secret; 424 asoc->shkey = ep_key; 425 426 /* Update send queue in case any chunk already in there now 427 * needs authenticating 428 */ 429 list_for_each_entry(chunk, &asoc->outqueue.out_chunk_list, list) { 430 if (sctp_auth_send_cid(chunk->chunk_hdr->type, asoc)) { 431 chunk->auth = 1; 432 if (!chunk->shkey) { 433 chunk->shkey = asoc->shkey; 434 sctp_auth_shkey_hold(chunk->shkey); 435 } 436 } 437 } 438 439 return 0; 440 } 441 442 443 /* Find the endpoint pair shared key based on the key_id */ 444 struct sctp_shared_key *sctp_auth_get_shkey( 445 const struct sctp_association *asoc, 446 __u16 key_id) 447 { 448 struct sctp_shared_key *key; 449 450 /* First search associations set of endpoint pair shared keys */ 451 key_for_each(key, &asoc->endpoint_shared_keys) { 452 if (key->key_id == key_id) { 453 if (!key->deactivated) 454 return key; 455 break; 456 } 457 } 458 459 return NULL; 460 } 461 462 /* 463 * Initialize all the possible digest transforms that we can use. Right now 464 * now, the supported digests are SHA1 and SHA256. We do this here once 465 * because of the restrictiong that transforms may only be allocated in 466 * user context. This forces us to pre-allocated all possible transforms 467 * at the endpoint init time. 468 */ 469 int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp) 470 { 471 struct crypto_shash *tfm = NULL; 472 __u16 id; 473 474 /* If AUTH extension is disabled, we are done */ 475 if (!ep->auth_enable) { 476 ep->auth_hmacs = NULL; 477 return 0; 478 } 479 480 /* If the transforms are already allocated, we are done */ 481 if (ep->auth_hmacs) 482 return 0; 483 484 /* Allocated the array of pointers to transorms */ 485 ep->auth_hmacs = kcalloc(SCTP_AUTH_NUM_HMACS, 486 sizeof(struct crypto_shash *), 487 gfp); 488 if (!ep->auth_hmacs) 489 return -ENOMEM; 490 491 for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) { 492 493 /* See is we support the id. Supported IDs have name and 494 * length fields set, so that we can allocated and use 495 * them. We can safely just check for name, for without the 496 * name, we can't allocate the TFM. 497 */ 498 if (!sctp_hmac_list[id].hmac_name) 499 continue; 500 501 /* If this TFM has been allocated, we are all set */ 502 if (ep->auth_hmacs[id]) 503 continue; 504 505 /* Allocate the ID */ 506 tfm = crypto_alloc_shash(sctp_hmac_list[id].hmac_name, 0, 0); 507 if (IS_ERR(tfm)) 508 goto out_err; 509 510 ep->auth_hmacs[id] = tfm; 511 } 512 513 return 0; 514 515 out_err: 516 /* Clean up any successful allocations */ 517 sctp_auth_destroy_hmacs(ep->auth_hmacs); 518 return -ENOMEM; 519 } 520 521 /* Destroy the hmac tfm array */ 522 void sctp_auth_destroy_hmacs(struct crypto_shash *auth_hmacs[]) 523 { 524 int i; 525 526 if (!auth_hmacs) 527 return; 528 529 for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++) { 530 crypto_free_shash(auth_hmacs[i]); 531 } 532 kfree(auth_hmacs); 533 } 534 535 536 struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id) 537 { 538 return &sctp_hmac_list[hmac_id]; 539 } 540 541 /* Get an hmac description information that we can use to build 542 * the AUTH chunk 543 */ 544 struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc) 545 { 546 struct sctp_hmac_algo_param *hmacs; 547 __u16 n_elt; 548 __u16 id = 0; 549 int i; 550 551 /* If we have a default entry, use it */ 552 if (asoc->default_hmac_id) 553 return &sctp_hmac_list[asoc->default_hmac_id]; 554 555 /* Since we do not have a default entry, find the first entry 556 * we support and return that. Do not cache that id. 557 */ 558 hmacs = asoc->peer.peer_hmacs; 559 if (!hmacs) 560 return NULL; 561 562 n_elt = (ntohs(hmacs->param_hdr.length) - 563 sizeof(struct sctp_paramhdr)) >> 1; 564 for (i = 0; i < n_elt; i++) { 565 id = ntohs(hmacs->hmac_ids[i]); 566 567 /* Check the id is in the supported range. And 568 * see if we support the id. Supported IDs have name and 569 * length fields set, so that we can allocate and use 570 * them. We can safely just check for name, for without the 571 * name, we can't allocate the TFM. 572 */ 573 if (id > SCTP_AUTH_HMAC_ID_MAX || 574 !sctp_hmac_list[id].hmac_name) { 575 id = 0; 576 continue; 577 } 578 579 break; 580 } 581 582 if (id == 0) 583 return NULL; 584 585 return &sctp_hmac_list[id]; 586 } 587 588 static int __sctp_auth_find_hmacid(__be16 *hmacs, int n_elts, __be16 hmac_id) 589 { 590 int found = 0; 591 int i; 592 593 for (i = 0; i < n_elts; i++) { 594 if (hmac_id == hmacs[i]) { 595 found = 1; 596 break; 597 } 598 } 599 600 return found; 601 } 602 603 /* See if the HMAC_ID is one that we claim as supported */ 604 int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc, 605 __be16 hmac_id) 606 { 607 struct sctp_hmac_algo_param *hmacs; 608 __u16 n_elt; 609 610 if (!asoc) 611 return 0; 612 613 hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs; 614 n_elt = (ntohs(hmacs->param_hdr.length) - 615 sizeof(struct sctp_paramhdr)) >> 1; 616 617 return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id); 618 } 619 620 621 /* Cache the default HMAC id. This to follow this text from SCTP-AUTH: 622 * Section 6.1: 623 * The receiver of a HMAC-ALGO parameter SHOULD use the first listed 624 * algorithm it supports. 625 */ 626 void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc, 627 struct sctp_hmac_algo_param *hmacs) 628 { 629 struct sctp_endpoint *ep; 630 __u16 id; 631 int i; 632 int n_params; 633 634 /* if the default id is already set, use it */ 635 if (asoc->default_hmac_id) 636 return; 637 638 n_params = (ntohs(hmacs->param_hdr.length) - 639 sizeof(struct sctp_paramhdr)) >> 1; 640 ep = asoc->ep; 641 for (i = 0; i < n_params; i++) { 642 id = ntohs(hmacs->hmac_ids[i]); 643 644 /* Check the id is in the supported range */ 645 if (id > SCTP_AUTH_HMAC_ID_MAX) 646 continue; 647 648 /* If this TFM has been allocated, use this id */ 649 if (ep->auth_hmacs[id]) { 650 asoc->default_hmac_id = id; 651 break; 652 } 653 } 654 } 655 656 657 /* Check to see if the given chunk is supposed to be authenticated */ 658 static int __sctp_auth_cid(enum sctp_cid chunk, struct sctp_chunks_param *param) 659 { 660 unsigned short len; 661 int found = 0; 662 int i; 663 664 if (!param || param->param_hdr.length == 0) 665 return 0; 666 667 len = ntohs(param->param_hdr.length) - sizeof(struct sctp_paramhdr); 668 669 /* SCTP-AUTH, Section 3.2 670 * The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH 671 * chunks MUST NOT be listed in the CHUNKS parameter. However, if 672 * a CHUNKS parameter is received then the types for INIT, INIT-ACK, 673 * SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored. 674 */ 675 for (i = 0; !found && i < len; i++) { 676 switch (param->chunks[i]) { 677 case SCTP_CID_INIT: 678 case SCTP_CID_INIT_ACK: 679 case SCTP_CID_SHUTDOWN_COMPLETE: 680 case SCTP_CID_AUTH: 681 break; 682 683 default: 684 if (param->chunks[i] == chunk) 685 found = 1; 686 break; 687 } 688 } 689 690 return found; 691 } 692 693 /* Check if peer requested that this chunk is authenticated */ 694 int sctp_auth_send_cid(enum sctp_cid chunk, const struct sctp_association *asoc) 695 { 696 if (!asoc) 697 return 0; 698 699 if (!asoc->ep->auth_enable || !asoc->peer.auth_capable) 700 return 0; 701 702 return __sctp_auth_cid(chunk, asoc->peer.peer_chunks); 703 } 704 705 /* Check if we requested that peer authenticate this chunk. */ 706 int sctp_auth_recv_cid(enum sctp_cid chunk, const struct sctp_association *asoc) 707 { 708 if (!asoc) 709 return 0; 710 711 if (!asoc->ep->auth_enable) 712 return 0; 713 714 return __sctp_auth_cid(chunk, 715 (struct sctp_chunks_param *)asoc->c.auth_chunks); 716 } 717 718 /* SCTP-AUTH: Section 6.2: 719 * The sender MUST calculate the MAC as described in RFC2104 [2] using 720 * the hash function H as described by the MAC Identifier and the shared 721 * association key K based on the endpoint pair shared key described by 722 * the shared key identifier. The 'data' used for the computation of 723 * the AUTH-chunk is given by the AUTH chunk with its HMAC field set to 724 * zero (as shown in Figure 6) followed by all chunks that are placed 725 * after the AUTH chunk in the SCTP packet. 726 */ 727 void sctp_auth_calculate_hmac(const struct sctp_association *asoc, 728 struct sk_buff *skb, struct sctp_auth_chunk *auth, 729 struct sctp_shared_key *ep_key, gfp_t gfp) 730 { 731 struct sctp_auth_bytes *asoc_key; 732 struct crypto_shash *tfm; 733 __u16 key_id, hmac_id; 734 unsigned char *end; 735 int free_key = 0; 736 __u8 *digest; 737 738 /* Extract the info we need: 739 * - hmac id 740 * - key id 741 */ 742 key_id = ntohs(auth->auth_hdr.shkey_id); 743 hmac_id = ntohs(auth->auth_hdr.hmac_id); 744 745 if (key_id == asoc->active_key_id) 746 asoc_key = asoc->asoc_shared_key; 747 else { 748 /* ep_key can't be NULL here */ 749 asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp); 750 if (!asoc_key) 751 return; 752 753 free_key = 1; 754 } 755 756 /* set up scatter list */ 757 end = skb_tail_pointer(skb); 758 759 tfm = asoc->ep->auth_hmacs[hmac_id]; 760 761 digest = auth->auth_hdr.hmac; 762 if (crypto_shash_setkey(tfm, &asoc_key->data[0], asoc_key->len)) 763 goto free; 764 765 { 766 SHASH_DESC_ON_STACK(desc, tfm); 767 768 desc->tfm = tfm; 769 desc->flags = 0; 770 crypto_shash_digest(desc, (u8 *)auth, 771 end - (unsigned char *)auth, digest); 772 shash_desc_zero(desc); 773 } 774 775 free: 776 if (free_key) 777 sctp_auth_key_put(asoc_key); 778 } 779 780 /* API Helpers */ 781 782 /* Add a chunk to the endpoint authenticated chunk list */ 783 int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id) 784 { 785 struct sctp_chunks_param *p = ep->auth_chunk_list; 786 __u16 nchunks; 787 __u16 param_len; 788 789 /* If this chunk is already specified, we are done */ 790 if (__sctp_auth_cid(chunk_id, p)) 791 return 0; 792 793 /* Check if we can add this chunk to the array */ 794 param_len = ntohs(p->param_hdr.length); 795 nchunks = param_len - sizeof(struct sctp_paramhdr); 796 if (nchunks == SCTP_NUM_CHUNK_TYPES) 797 return -EINVAL; 798 799 p->chunks[nchunks] = chunk_id; 800 p->param_hdr.length = htons(param_len + 1); 801 return 0; 802 } 803 804 /* Add hmac identifires to the endpoint list of supported hmac ids */ 805 int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep, 806 struct sctp_hmacalgo *hmacs) 807 { 808 int has_sha1 = 0; 809 __u16 id; 810 int i; 811 812 /* Scan the list looking for unsupported id. Also make sure that 813 * SHA1 is specified. 814 */ 815 for (i = 0; i < hmacs->shmac_num_idents; i++) { 816 id = hmacs->shmac_idents[i]; 817 818 if (id > SCTP_AUTH_HMAC_ID_MAX) 819 return -EOPNOTSUPP; 820 821 if (SCTP_AUTH_HMAC_ID_SHA1 == id) 822 has_sha1 = 1; 823 824 if (!sctp_hmac_list[id].hmac_name) 825 return -EOPNOTSUPP; 826 } 827 828 if (!has_sha1) 829 return -EINVAL; 830 831 for (i = 0; i < hmacs->shmac_num_idents; i++) 832 ep->auth_hmacs_list->hmac_ids[i] = 833 htons(hmacs->shmac_idents[i]); 834 ep->auth_hmacs_list->param_hdr.length = 835 htons(sizeof(struct sctp_paramhdr) + 836 hmacs->shmac_num_idents * sizeof(__u16)); 837 return 0; 838 } 839 840 /* Set a new shared key on either endpoint or association. If the 841 * the key with a same ID already exists, replace the key (remove the 842 * old key and add a new one). 843 */ 844 int sctp_auth_set_key(struct sctp_endpoint *ep, 845 struct sctp_association *asoc, 846 struct sctp_authkey *auth_key) 847 { 848 struct sctp_shared_key *cur_key, *shkey; 849 struct sctp_auth_bytes *key; 850 struct list_head *sh_keys; 851 int replace = 0; 852 853 /* Try to find the given key id to see if 854 * we are doing a replace, or adding a new key 855 */ 856 if (asoc) 857 sh_keys = &asoc->endpoint_shared_keys; 858 else 859 sh_keys = &ep->endpoint_shared_keys; 860 861 key_for_each(shkey, sh_keys) { 862 if (shkey->key_id == auth_key->sca_keynumber) { 863 replace = 1; 864 break; 865 } 866 } 867 868 cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber, GFP_KERNEL); 869 if (!cur_key) 870 return -ENOMEM; 871 872 /* Create a new key data based on the info passed in */ 873 key = sctp_auth_create_key(auth_key->sca_keylength, GFP_KERNEL); 874 if (!key) { 875 kfree(cur_key); 876 return -ENOMEM; 877 } 878 879 memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylength); 880 cur_key->key = key; 881 882 if (replace) { 883 list_del_init(&shkey->key_list); 884 sctp_auth_shkey_release(shkey); 885 } 886 list_add(&cur_key->key_list, sh_keys); 887 888 return 0; 889 } 890 891 int sctp_auth_set_active_key(struct sctp_endpoint *ep, 892 struct sctp_association *asoc, 893 __u16 key_id) 894 { 895 struct sctp_shared_key *key; 896 struct list_head *sh_keys; 897 int found = 0; 898 899 /* The key identifier MUST correst to an existing key */ 900 if (asoc) 901 sh_keys = &asoc->endpoint_shared_keys; 902 else 903 sh_keys = &ep->endpoint_shared_keys; 904 905 key_for_each(key, sh_keys) { 906 if (key->key_id == key_id) { 907 found = 1; 908 break; 909 } 910 } 911 912 if (!found || key->deactivated) 913 return -EINVAL; 914 915 if (asoc) { 916 asoc->active_key_id = key_id; 917 sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL); 918 } else 919 ep->active_key_id = key_id; 920 921 return 0; 922 } 923 924 int sctp_auth_del_key_id(struct sctp_endpoint *ep, 925 struct sctp_association *asoc, 926 __u16 key_id) 927 { 928 struct sctp_shared_key *key; 929 struct list_head *sh_keys; 930 int found = 0; 931 932 /* The key identifier MUST NOT be the current active key 933 * The key identifier MUST correst to an existing key 934 */ 935 if (asoc) { 936 if (asoc->active_key_id == key_id) 937 return -EINVAL; 938 939 sh_keys = &asoc->endpoint_shared_keys; 940 } else { 941 if (ep->active_key_id == key_id) 942 return -EINVAL; 943 944 sh_keys = &ep->endpoint_shared_keys; 945 } 946 947 key_for_each(key, sh_keys) { 948 if (key->key_id == key_id) { 949 found = 1; 950 break; 951 } 952 } 953 954 if (!found) 955 return -EINVAL; 956 957 /* Delete the shared key */ 958 list_del_init(&key->key_list); 959 sctp_auth_shkey_release(key); 960 961 return 0; 962 } 963 964 int sctp_auth_deact_key_id(struct sctp_endpoint *ep, 965 struct sctp_association *asoc, __u16 key_id) 966 { 967 struct sctp_shared_key *key; 968 struct list_head *sh_keys; 969 int found = 0; 970 971 /* The key identifier MUST NOT be the current active key 972 * The key identifier MUST correst to an existing key 973 */ 974 if (asoc) { 975 if (asoc->active_key_id == key_id) 976 return -EINVAL; 977 978 sh_keys = &asoc->endpoint_shared_keys; 979 } else { 980 if (ep->active_key_id == key_id) 981 return -EINVAL; 982 983 sh_keys = &ep->endpoint_shared_keys; 984 } 985 986 key_for_each(key, sh_keys) { 987 if (key->key_id == key_id) { 988 found = 1; 989 break; 990 } 991 } 992 993 if (!found) 994 return -EINVAL; 995 996 /* refcnt == 1 and !list_empty mean it's not being used anywhere 997 * and deactivated will be set, so it's time to notify userland 998 * that this shkey can be freed. 999 */ 1000 if (asoc && !list_empty(&key->key_list) && 1001 refcount_read(&key->refcnt) == 1) { 1002 struct sctp_ulpevent *ev; 1003 1004 ev = sctp_ulpevent_make_authkey(asoc, key->key_id, 1005 SCTP_AUTH_FREE_KEY, GFP_KERNEL); 1006 if (ev) 1007 asoc->stream.si->enqueue_event(&asoc->ulpq, ev); 1008 } 1009 1010 key->deactivated = 1; 1011 1012 return 0; 1013 } 1014