xref: /openbmc/linux/net/sctp/auth.c (revision eb3fcf00)
1 /* SCTP kernel implementation
2  * (C) Copyright 2007 Hewlett-Packard Development Company, L.P.
3  *
4  * This file is part of the SCTP kernel implementation
5  *
6  * This SCTP implementation is free software;
7  * you can redistribute it and/or modify it under the terms of
8  * the GNU General Public License as published by
9  * the Free Software Foundation; either version 2, or (at your option)
10  * any later version.
11  *
12  * This SCTP implementation is distributed in the hope that it
13  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
14  *                 ************************
15  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
16  * See the GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with GNU CC; see the file COPYING.  If not, see
20  * <http://www.gnu.org/licenses/>.
21  *
22  * Please send any bug reports or fixes you make to the
23  * email address(es):
24  *    lksctp developers <linux-sctp@vger.kernel.org>
25  *
26  * Written or modified by:
27  *   Vlad Yasevich     <vladislav.yasevich@hp.com>
28  */
29 
30 #include <linux/slab.h>
31 #include <linux/types.h>
32 #include <linux/crypto.h>
33 #include <linux/scatterlist.h>
34 #include <net/sctp/sctp.h>
35 #include <net/sctp/auth.h>
36 
37 static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = {
38 	{
39 		/* id 0 is reserved.  as all 0 */
40 		.hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0,
41 	},
42 	{
43 		.hmac_id = SCTP_AUTH_HMAC_ID_SHA1,
44 		.hmac_name = "hmac(sha1)",
45 		.hmac_len = SCTP_SHA1_SIG_SIZE,
46 	},
47 	{
48 		/* id 2 is reserved as well */
49 		.hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2,
50 	},
51 #if defined (CONFIG_CRYPTO_SHA256) || defined (CONFIG_CRYPTO_SHA256_MODULE)
52 	{
53 		.hmac_id = SCTP_AUTH_HMAC_ID_SHA256,
54 		.hmac_name = "hmac(sha256)",
55 		.hmac_len = SCTP_SHA256_SIG_SIZE,
56 	}
57 #endif
58 };
59 
60 
61 void sctp_auth_key_put(struct sctp_auth_bytes *key)
62 {
63 	if (!key)
64 		return;
65 
66 	if (atomic_dec_and_test(&key->refcnt)) {
67 		kzfree(key);
68 		SCTP_DBG_OBJCNT_DEC(keys);
69 	}
70 }
71 
72 /* Create a new key structure of a given length */
73 static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp)
74 {
75 	struct sctp_auth_bytes *key;
76 
77 	/* Verify that we are not going to overflow INT_MAX */
78 	if (key_len > (INT_MAX - sizeof(struct sctp_auth_bytes)))
79 		return NULL;
80 
81 	/* Allocate the shared key */
82 	key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp);
83 	if (!key)
84 		return NULL;
85 
86 	key->len = key_len;
87 	atomic_set(&key->refcnt, 1);
88 	SCTP_DBG_OBJCNT_INC(keys);
89 
90 	return key;
91 }
92 
93 /* Create a new shared key container with a give key id */
94 struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp)
95 {
96 	struct sctp_shared_key *new;
97 
98 	/* Allocate the shared key container */
99 	new = kzalloc(sizeof(struct sctp_shared_key), gfp);
100 	if (!new)
101 		return NULL;
102 
103 	INIT_LIST_HEAD(&new->key_list);
104 	new->key_id = key_id;
105 
106 	return new;
107 }
108 
109 /* Free the shared key structure */
110 static void sctp_auth_shkey_free(struct sctp_shared_key *sh_key)
111 {
112 	BUG_ON(!list_empty(&sh_key->key_list));
113 	sctp_auth_key_put(sh_key->key);
114 	sh_key->key = NULL;
115 	kfree(sh_key);
116 }
117 
118 /* Destroy the entire key list.  This is done during the
119  * associon and endpoint free process.
120  */
121 void sctp_auth_destroy_keys(struct list_head *keys)
122 {
123 	struct sctp_shared_key *ep_key;
124 	struct sctp_shared_key *tmp;
125 
126 	if (list_empty(keys))
127 		return;
128 
129 	key_for_each_safe(ep_key, tmp, keys) {
130 		list_del_init(&ep_key->key_list);
131 		sctp_auth_shkey_free(ep_key);
132 	}
133 }
134 
135 /* Compare two byte vectors as numbers.  Return values
136  * are:
137  * 	  0 - vectors are equal
138  * 	< 0 - vector 1 is smaller than vector2
139  * 	> 0 - vector 1 is greater than vector2
140  *
141  * Algorithm is:
142  * 	This is performed by selecting the numerically smaller key vector...
143  *	If the key vectors are equal as numbers but differ in length ...
144  *	the shorter vector is considered smaller
145  *
146  * Examples (with small values):
147  * 	000123456789 > 123456789 (first number is longer)
148  * 	000123456789 < 234567891 (second number is larger numerically)
149  * 	123456789 > 2345678 	 (first number is both larger & longer)
150  */
151 static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1,
152 			      struct sctp_auth_bytes *vector2)
153 {
154 	int diff;
155 	int i;
156 	const __u8 *longer;
157 
158 	diff = vector1->len - vector2->len;
159 	if (diff) {
160 		longer = (diff > 0) ? vector1->data : vector2->data;
161 
162 		/* Check to see if the longer number is
163 		 * lead-zero padded.  If it is not, it
164 		 * is automatically larger numerically.
165 		 */
166 		for (i = 0; i < abs(diff); i++) {
167 			if (longer[i] != 0)
168 				return diff;
169 		}
170 	}
171 
172 	/* lengths are the same, compare numbers */
173 	return memcmp(vector1->data, vector2->data, vector1->len);
174 }
175 
176 /*
177  * Create a key vector as described in SCTP-AUTH, Section 6.1
178  *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
179  *    parameter sent by each endpoint are concatenated as byte vectors.
180  *    These parameters include the parameter type, parameter length, and
181  *    the parameter value, but padding is omitted; all padding MUST be
182  *    removed from this concatenation before proceeding with further
183  *    computation of keys.  Parameters which were not sent are simply
184  *    omitted from the concatenation process.  The resulting two vectors
185  *    are called the two key vectors.
186  */
187 static struct sctp_auth_bytes *sctp_auth_make_key_vector(
188 			sctp_random_param_t *random,
189 			sctp_chunks_param_t *chunks,
190 			sctp_hmac_algo_param_t *hmacs,
191 			gfp_t gfp)
192 {
193 	struct sctp_auth_bytes *new;
194 	__u32	len;
195 	__u32	offset = 0;
196 	__u16	random_len, hmacs_len, chunks_len = 0;
197 
198 	random_len = ntohs(random->param_hdr.length);
199 	hmacs_len = ntohs(hmacs->param_hdr.length);
200 	if (chunks)
201 		chunks_len = ntohs(chunks->param_hdr.length);
202 
203 	len = random_len + hmacs_len + chunks_len;
204 
205 	new = sctp_auth_create_key(len, gfp);
206 	if (!new)
207 		return NULL;
208 
209 	memcpy(new->data, random, random_len);
210 	offset += random_len;
211 
212 	if (chunks) {
213 		memcpy(new->data + offset, chunks, chunks_len);
214 		offset += chunks_len;
215 	}
216 
217 	memcpy(new->data + offset, hmacs, hmacs_len);
218 
219 	return new;
220 }
221 
222 
223 /* Make a key vector based on our local parameters */
224 static struct sctp_auth_bytes *sctp_auth_make_local_vector(
225 				    const struct sctp_association *asoc,
226 				    gfp_t gfp)
227 {
228 	return sctp_auth_make_key_vector(
229 				    (sctp_random_param_t *)asoc->c.auth_random,
230 				    (sctp_chunks_param_t *)asoc->c.auth_chunks,
231 				    (sctp_hmac_algo_param_t *)asoc->c.auth_hmacs,
232 				    gfp);
233 }
234 
235 /* Make a key vector based on peer's parameters */
236 static struct sctp_auth_bytes *sctp_auth_make_peer_vector(
237 				    const struct sctp_association *asoc,
238 				    gfp_t gfp)
239 {
240 	return sctp_auth_make_key_vector(asoc->peer.peer_random,
241 					 asoc->peer.peer_chunks,
242 					 asoc->peer.peer_hmacs,
243 					 gfp);
244 }
245 
246 
247 /* Set the value of the association shared key base on the parameters
248  * given.  The algorithm is:
249  *    From the endpoint pair shared keys and the key vectors the
250  *    association shared keys are computed.  This is performed by selecting
251  *    the numerically smaller key vector and concatenating it to the
252  *    endpoint pair shared key, and then concatenating the numerically
253  *    larger key vector to that.  The result of the concatenation is the
254  *    association shared key.
255  */
256 static struct sctp_auth_bytes *sctp_auth_asoc_set_secret(
257 			struct sctp_shared_key *ep_key,
258 			struct sctp_auth_bytes *first_vector,
259 			struct sctp_auth_bytes *last_vector,
260 			gfp_t gfp)
261 {
262 	struct sctp_auth_bytes *secret;
263 	__u32 offset = 0;
264 	__u32 auth_len;
265 
266 	auth_len = first_vector->len + last_vector->len;
267 	if (ep_key->key)
268 		auth_len += ep_key->key->len;
269 
270 	secret = sctp_auth_create_key(auth_len, gfp);
271 	if (!secret)
272 		return NULL;
273 
274 	if (ep_key->key) {
275 		memcpy(secret->data, ep_key->key->data, ep_key->key->len);
276 		offset += ep_key->key->len;
277 	}
278 
279 	memcpy(secret->data + offset, first_vector->data, first_vector->len);
280 	offset += first_vector->len;
281 
282 	memcpy(secret->data + offset, last_vector->data, last_vector->len);
283 
284 	return secret;
285 }
286 
287 /* Create an association shared key.  Follow the algorithm
288  * described in SCTP-AUTH, Section 6.1
289  */
290 static struct sctp_auth_bytes *sctp_auth_asoc_create_secret(
291 				 const struct sctp_association *asoc,
292 				 struct sctp_shared_key *ep_key,
293 				 gfp_t gfp)
294 {
295 	struct sctp_auth_bytes *local_key_vector;
296 	struct sctp_auth_bytes *peer_key_vector;
297 	struct sctp_auth_bytes	*first_vector,
298 				*last_vector;
299 	struct sctp_auth_bytes	*secret = NULL;
300 	int	cmp;
301 
302 
303 	/* Now we need to build the key vectors
304 	 * SCTP-AUTH , Section 6.1
305 	 *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
306 	 *    parameter sent by each endpoint are concatenated as byte vectors.
307 	 *    These parameters include the parameter type, parameter length, and
308 	 *    the parameter value, but padding is omitted; all padding MUST be
309 	 *    removed from this concatenation before proceeding with further
310 	 *    computation of keys.  Parameters which were not sent are simply
311 	 *    omitted from the concatenation process.  The resulting two vectors
312 	 *    are called the two key vectors.
313 	 */
314 
315 	local_key_vector = sctp_auth_make_local_vector(asoc, gfp);
316 	peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp);
317 
318 	if (!peer_key_vector || !local_key_vector)
319 		goto out;
320 
321 	/* Figure out the order in which the key_vectors will be
322 	 * added to the endpoint shared key.
323 	 * SCTP-AUTH, Section 6.1:
324 	 *   This is performed by selecting the numerically smaller key
325 	 *   vector and concatenating it to the endpoint pair shared
326 	 *   key, and then concatenating the numerically larger key
327 	 *   vector to that.  If the key vectors are equal as numbers
328 	 *   but differ in length, then the concatenation order is the
329 	 *   endpoint shared key, followed by the shorter key vector,
330 	 *   followed by the longer key vector.  Otherwise, the key
331 	 *   vectors are identical, and may be concatenated to the
332 	 *   endpoint pair key in any order.
333 	 */
334 	cmp = sctp_auth_compare_vectors(local_key_vector,
335 					peer_key_vector);
336 	if (cmp < 0) {
337 		first_vector = local_key_vector;
338 		last_vector = peer_key_vector;
339 	} else {
340 		first_vector = peer_key_vector;
341 		last_vector = local_key_vector;
342 	}
343 
344 	secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector,
345 					    gfp);
346 out:
347 	sctp_auth_key_put(local_key_vector);
348 	sctp_auth_key_put(peer_key_vector);
349 
350 	return secret;
351 }
352 
353 /*
354  * Populate the association overlay list with the list
355  * from the endpoint.
356  */
357 int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep,
358 				struct sctp_association *asoc,
359 				gfp_t gfp)
360 {
361 	struct sctp_shared_key *sh_key;
362 	struct sctp_shared_key *new;
363 
364 	BUG_ON(!list_empty(&asoc->endpoint_shared_keys));
365 
366 	key_for_each(sh_key, &ep->endpoint_shared_keys) {
367 		new = sctp_auth_shkey_create(sh_key->key_id, gfp);
368 		if (!new)
369 			goto nomem;
370 
371 		new->key = sh_key->key;
372 		sctp_auth_key_hold(new->key);
373 		list_add(&new->key_list, &asoc->endpoint_shared_keys);
374 	}
375 
376 	return 0;
377 
378 nomem:
379 	sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
380 	return -ENOMEM;
381 }
382 
383 
384 /* Public interface to create the association shared key.
385  * See code above for the algorithm.
386  */
387 int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp)
388 {
389 	struct sctp_auth_bytes	*secret;
390 	struct sctp_shared_key *ep_key;
391 	struct sctp_chunk *chunk;
392 
393 	/* If we don't support AUTH, or peer is not capable
394 	 * we don't need to do anything.
395 	 */
396 	if (!asoc->ep->auth_enable || !asoc->peer.auth_capable)
397 		return 0;
398 
399 	/* If the key_id is non-zero and we couldn't find an
400 	 * endpoint pair shared key, we can't compute the
401 	 * secret.
402 	 * For key_id 0, endpoint pair shared key is a NULL key.
403 	 */
404 	ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id);
405 	BUG_ON(!ep_key);
406 
407 	secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
408 	if (!secret)
409 		return -ENOMEM;
410 
411 	sctp_auth_key_put(asoc->asoc_shared_key);
412 	asoc->asoc_shared_key = secret;
413 
414 	/* Update send queue in case any chunk already in there now
415 	 * needs authenticating
416 	 */
417 	list_for_each_entry(chunk, &asoc->outqueue.out_chunk_list, list) {
418 		if (sctp_auth_send_cid(chunk->chunk_hdr->type, asoc))
419 			chunk->auth = 1;
420 	}
421 
422 	return 0;
423 }
424 
425 
426 /* Find the endpoint pair shared key based on the key_id */
427 struct sctp_shared_key *sctp_auth_get_shkey(
428 				const struct sctp_association *asoc,
429 				__u16 key_id)
430 {
431 	struct sctp_shared_key *key;
432 
433 	/* First search associations set of endpoint pair shared keys */
434 	key_for_each(key, &asoc->endpoint_shared_keys) {
435 		if (key->key_id == key_id)
436 			return key;
437 	}
438 
439 	return NULL;
440 }
441 
442 /*
443  * Initialize all the possible digest transforms that we can use.  Right now
444  * now, the supported digests are SHA1 and SHA256.  We do this here once
445  * because of the restrictiong that transforms may only be allocated in
446  * user context.  This forces us to pre-allocated all possible transforms
447  * at the endpoint init time.
448  */
449 int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp)
450 {
451 	struct crypto_hash *tfm = NULL;
452 	__u16   id;
453 
454 	/* If AUTH extension is disabled, we are done */
455 	if (!ep->auth_enable) {
456 		ep->auth_hmacs = NULL;
457 		return 0;
458 	}
459 
460 	/* If the transforms are already allocated, we are done */
461 	if (ep->auth_hmacs)
462 		return 0;
463 
464 	/* Allocated the array of pointers to transorms */
465 	ep->auth_hmacs = kzalloc(
466 			    sizeof(struct crypto_hash *) * SCTP_AUTH_NUM_HMACS,
467 			    gfp);
468 	if (!ep->auth_hmacs)
469 		return -ENOMEM;
470 
471 	for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) {
472 
473 		/* See is we support the id.  Supported IDs have name and
474 		 * length fields set, so that we can allocated and use
475 		 * them.  We can safely just check for name, for without the
476 		 * name, we can't allocate the TFM.
477 		 */
478 		if (!sctp_hmac_list[id].hmac_name)
479 			continue;
480 
481 		/* If this TFM has been allocated, we are all set */
482 		if (ep->auth_hmacs[id])
483 			continue;
484 
485 		/* Allocate the ID */
486 		tfm = crypto_alloc_hash(sctp_hmac_list[id].hmac_name, 0,
487 					CRYPTO_ALG_ASYNC);
488 		if (IS_ERR(tfm))
489 			goto out_err;
490 
491 		ep->auth_hmacs[id] = tfm;
492 	}
493 
494 	return 0;
495 
496 out_err:
497 	/* Clean up any successful allocations */
498 	sctp_auth_destroy_hmacs(ep->auth_hmacs);
499 	return -ENOMEM;
500 }
501 
502 /* Destroy the hmac tfm array */
503 void sctp_auth_destroy_hmacs(struct crypto_hash *auth_hmacs[])
504 {
505 	int i;
506 
507 	if (!auth_hmacs)
508 		return;
509 
510 	for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++) {
511 		if (auth_hmacs[i])
512 			crypto_free_hash(auth_hmacs[i]);
513 	}
514 	kfree(auth_hmacs);
515 }
516 
517 
518 struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id)
519 {
520 	return &sctp_hmac_list[hmac_id];
521 }
522 
523 /* Get an hmac description information that we can use to build
524  * the AUTH chunk
525  */
526 struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc)
527 {
528 	struct sctp_hmac_algo_param *hmacs;
529 	__u16 n_elt;
530 	__u16 id = 0;
531 	int i;
532 
533 	/* If we have a default entry, use it */
534 	if (asoc->default_hmac_id)
535 		return &sctp_hmac_list[asoc->default_hmac_id];
536 
537 	/* Since we do not have a default entry, find the first entry
538 	 * we support and return that.  Do not cache that id.
539 	 */
540 	hmacs = asoc->peer.peer_hmacs;
541 	if (!hmacs)
542 		return NULL;
543 
544 	n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
545 	for (i = 0; i < n_elt; i++) {
546 		id = ntohs(hmacs->hmac_ids[i]);
547 
548 		/* Check the id is in the supported range. And
549 		 * see if we support the id.  Supported IDs have name and
550 		 * length fields set, so that we can allocate and use
551 		 * them.  We can safely just check for name, for without the
552 		 * name, we can't allocate the TFM.
553 		 */
554 		if (id > SCTP_AUTH_HMAC_ID_MAX ||
555 		    !sctp_hmac_list[id].hmac_name) {
556 			id = 0;
557 			continue;
558 		}
559 
560 		break;
561 	}
562 
563 	if (id == 0)
564 		return NULL;
565 
566 	return &sctp_hmac_list[id];
567 }
568 
569 static int __sctp_auth_find_hmacid(__be16 *hmacs, int n_elts, __be16 hmac_id)
570 {
571 	int  found = 0;
572 	int  i;
573 
574 	for (i = 0; i < n_elts; i++) {
575 		if (hmac_id == hmacs[i]) {
576 			found = 1;
577 			break;
578 		}
579 	}
580 
581 	return found;
582 }
583 
584 /* See if the HMAC_ID is one that we claim as supported */
585 int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc,
586 				    __be16 hmac_id)
587 {
588 	struct sctp_hmac_algo_param *hmacs;
589 	__u16 n_elt;
590 
591 	if (!asoc)
592 		return 0;
593 
594 	hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs;
595 	n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
596 
597 	return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id);
598 }
599 
600 
601 /* Cache the default HMAC id.  This to follow this text from SCTP-AUTH:
602  * Section 6.1:
603  *   The receiver of a HMAC-ALGO parameter SHOULD use the first listed
604  *   algorithm it supports.
605  */
606 void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc,
607 				     struct sctp_hmac_algo_param *hmacs)
608 {
609 	struct sctp_endpoint *ep;
610 	__u16   id;
611 	int	i;
612 	int	n_params;
613 
614 	/* if the default id is already set, use it */
615 	if (asoc->default_hmac_id)
616 		return;
617 
618 	n_params = (ntohs(hmacs->param_hdr.length)
619 				- sizeof(sctp_paramhdr_t)) >> 1;
620 	ep = asoc->ep;
621 	for (i = 0; i < n_params; i++) {
622 		id = ntohs(hmacs->hmac_ids[i]);
623 
624 		/* Check the id is in the supported range */
625 		if (id > SCTP_AUTH_HMAC_ID_MAX)
626 			continue;
627 
628 		/* If this TFM has been allocated, use this id */
629 		if (ep->auth_hmacs[id]) {
630 			asoc->default_hmac_id = id;
631 			break;
632 		}
633 	}
634 }
635 
636 
637 /* Check to see if the given chunk is supposed to be authenticated */
638 static int __sctp_auth_cid(sctp_cid_t chunk, struct sctp_chunks_param *param)
639 {
640 	unsigned short len;
641 	int found = 0;
642 	int i;
643 
644 	if (!param || param->param_hdr.length == 0)
645 		return 0;
646 
647 	len = ntohs(param->param_hdr.length) - sizeof(sctp_paramhdr_t);
648 
649 	/* SCTP-AUTH, Section 3.2
650 	 *    The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH
651 	 *    chunks MUST NOT be listed in the CHUNKS parameter.  However, if
652 	 *    a CHUNKS parameter is received then the types for INIT, INIT-ACK,
653 	 *    SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored.
654 	 */
655 	for (i = 0; !found && i < len; i++) {
656 		switch (param->chunks[i]) {
657 		case SCTP_CID_INIT:
658 		case SCTP_CID_INIT_ACK:
659 		case SCTP_CID_SHUTDOWN_COMPLETE:
660 		case SCTP_CID_AUTH:
661 			break;
662 
663 		default:
664 			if (param->chunks[i] == chunk)
665 				found = 1;
666 			break;
667 		}
668 	}
669 
670 	return found;
671 }
672 
673 /* Check if peer requested that this chunk is authenticated */
674 int sctp_auth_send_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
675 {
676 	if (!asoc)
677 		return 0;
678 
679 	if (!asoc->ep->auth_enable || !asoc->peer.auth_capable)
680 		return 0;
681 
682 	return __sctp_auth_cid(chunk, asoc->peer.peer_chunks);
683 }
684 
685 /* Check if we requested that peer authenticate this chunk. */
686 int sctp_auth_recv_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
687 {
688 	if (!asoc)
689 		return 0;
690 
691 	if (!asoc->ep->auth_enable)
692 		return 0;
693 
694 	return __sctp_auth_cid(chunk,
695 			      (struct sctp_chunks_param *)asoc->c.auth_chunks);
696 }
697 
698 /* SCTP-AUTH: Section 6.2:
699  *    The sender MUST calculate the MAC as described in RFC2104 [2] using
700  *    the hash function H as described by the MAC Identifier and the shared
701  *    association key K based on the endpoint pair shared key described by
702  *    the shared key identifier.  The 'data' used for the computation of
703  *    the AUTH-chunk is given by the AUTH chunk with its HMAC field set to
704  *    zero (as shown in Figure 6) followed by all chunks that are placed
705  *    after the AUTH chunk in the SCTP packet.
706  */
707 void sctp_auth_calculate_hmac(const struct sctp_association *asoc,
708 			      struct sk_buff *skb,
709 			      struct sctp_auth_chunk *auth,
710 			      gfp_t gfp)
711 {
712 	struct scatterlist sg;
713 	struct hash_desc desc;
714 	struct sctp_auth_bytes *asoc_key;
715 	__u16 key_id, hmac_id;
716 	__u8 *digest;
717 	unsigned char *end;
718 	int free_key = 0;
719 
720 	/* Extract the info we need:
721 	 * - hmac id
722 	 * - key id
723 	 */
724 	key_id = ntohs(auth->auth_hdr.shkey_id);
725 	hmac_id = ntohs(auth->auth_hdr.hmac_id);
726 
727 	if (key_id == asoc->active_key_id)
728 		asoc_key = asoc->asoc_shared_key;
729 	else {
730 		struct sctp_shared_key *ep_key;
731 
732 		ep_key = sctp_auth_get_shkey(asoc, key_id);
733 		if (!ep_key)
734 			return;
735 
736 		asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
737 		if (!asoc_key)
738 			return;
739 
740 		free_key = 1;
741 	}
742 
743 	/* set up scatter list */
744 	end = skb_tail_pointer(skb);
745 	sg_init_one(&sg, auth, end - (unsigned char *)auth);
746 
747 	desc.tfm = asoc->ep->auth_hmacs[hmac_id];
748 	desc.flags = 0;
749 
750 	digest = auth->auth_hdr.hmac;
751 	if (crypto_hash_setkey(desc.tfm, &asoc_key->data[0], asoc_key->len))
752 		goto free;
753 
754 	crypto_hash_digest(&desc, &sg, sg.length, digest);
755 
756 free:
757 	if (free_key)
758 		sctp_auth_key_put(asoc_key);
759 }
760 
761 /* API Helpers */
762 
763 /* Add a chunk to the endpoint authenticated chunk list */
764 int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id)
765 {
766 	struct sctp_chunks_param *p = ep->auth_chunk_list;
767 	__u16 nchunks;
768 	__u16 param_len;
769 
770 	/* If this chunk is already specified, we are done */
771 	if (__sctp_auth_cid(chunk_id, p))
772 		return 0;
773 
774 	/* Check if we can add this chunk to the array */
775 	param_len = ntohs(p->param_hdr.length);
776 	nchunks = param_len - sizeof(sctp_paramhdr_t);
777 	if (nchunks == SCTP_NUM_CHUNK_TYPES)
778 		return -EINVAL;
779 
780 	p->chunks[nchunks] = chunk_id;
781 	p->param_hdr.length = htons(param_len + 1);
782 	return 0;
783 }
784 
785 /* Add hmac identifires to the endpoint list of supported hmac ids */
786 int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep,
787 			   struct sctp_hmacalgo *hmacs)
788 {
789 	int has_sha1 = 0;
790 	__u16 id;
791 	int i;
792 
793 	/* Scan the list looking for unsupported id.  Also make sure that
794 	 * SHA1 is specified.
795 	 */
796 	for (i = 0; i < hmacs->shmac_num_idents; i++) {
797 		id = hmacs->shmac_idents[i];
798 
799 		if (id > SCTP_AUTH_HMAC_ID_MAX)
800 			return -EOPNOTSUPP;
801 
802 		if (SCTP_AUTH_HMAC_ID_SHA1 == id)
803 			has_sha1 = 1;
804 
805 		if (!sctp_hmac_list[id].hmac_name)
806 			return -EOPNOTSUPP;
807 	}
808 
809 	if (!has_sha1)
810 		return -EINVAL;
811 
812 	memcpy(ep->auth_hmacs_list->hmac_ids, &hmacs->shmac_idents[0],
813 		hmacs->shmac_num_idents * sizeof(__u16));
814 	ep->auth_hmacs_list->param_hdr.length = htons(sizeof(sctp_paramhdr_t) +
815 				hmacs->shmac_num_idents * sizeof(__u16));
816 	return 0;
817 }
818 
819 /* Set a new shared key on either endpoint or association.  If the
820  * the key with a same ID already exists, replace the key (remove the
821  * old key and add a new one).
822  */
823 int sctp_auth_set_key(struct sctp_endpoint *ep,
824 		      struct sctp_association *asoc,
825 		      struct sctp_authkey *auth_key)
826 {
827 	struct sctp_shared_key *cur_key = NULL;
828 	struct sctp_auth_bytes *key;
829 	struct list_head *sh_keys;
830 	int replace = 0;
831 
832 	/* Try to find the given key id to see if
833 	 * we are doing a replace, or adding a new key
834 	 */
835 	if (asoc)
836 		sh_keys = &asoc->endpoint_shared_keys;
837 	else
838 		sh_keys = &ep->endpoint_shared_keys;
839 
840 	key_for_each(cur_key, sh_keys) {
841 		if (cur_key->key_id == auth_key->sca_keynumber) {
842 			replace = 1;
843 			break;
844 		}
845 	}
846 
847 	/* If we are not replacing a key id, we need to allocate
848 	 * a shared key.
849 	 */
850 	if (!replace) {
851 		cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber,
852 						 GFP_KERNEL);
853 		if (!cur_key)
854 			return -ENOMEM;
855 	}
856 
857 	/* Create a new key data based on the info passed in */
858 	key = sctp_auth_create_key(auth_key->sca_keylength, GFP_KERNEL);
859 	if (!key)
860 		goto nomem;
861 
862 	memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylength);
863 
864 	/* If we are replacing, remove the old keys data from the
865 	 * key id.  If we are adding new key id, add it to the
866 	 * list.
867 	 */
868 	if (replace)
869 		sctp_auth_key_put(cur_key->key);
870 	else
871 		list_add(&cur_key->key_list, sh_keys);
872 
873 	cur_key->key = key;
874 	return 0;
875 nomem:
876 	if (!replace)
877 		sctp_auth_shkey_free(cur_key);
878 
879 	return -ENOMEM;
880 }
881 
882 int sctp_auth_set_active_key(struct sctp_endpoint *ep,
883 			     struct sctp_association *asoc,
884 			     __u16  key_id)
885 {
886 	struct sctp_shared_key *key;
887 	struct list_head *sh_keys;
888 	int found = 0;
889 
890 	/* The key identifier MUST correst to an existing key */
891 	if (asoc)
892 		sh_keys = &asoc->endpoint_shared_keys;
893 	else
894 		sh_keys = &ep->endpoint_shared_keys;
895 
896 	key_for_each(key, sh_keys) {
897 		if (key->key_id == key_id) {
898 			found = 1;
899 			break;
900 		}
901 	}
902 
903 	if (!found)
904 		return -EINVAL;
905 
906 	if (asoc) {
907 		asoc->active_key_id = key_id;
908 		sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL);
909 	} else
910 		ep->active_key_id = key_id;
911 
912 	return 0;
913 }
914 
915 int sctp_auth_del_key_id(struct sctp_endpoint *ep,
916 			 struct sctp_association *asoc,
917 			 __u16  key_id)
918 {
919 	struct sctp_shared_key *key;
920 	struct list_head *sh_keys;
921 	int found = 0;
922 
923 	/* The key identifier MUST NOT be the current active key
924 	 * The key identifier MUST correst to an existing key
925 	 */
926 	if (asoc) {
927 		if (asoc->active_key_id == key_id)
928 			return -EINVAL;
929 
930 		sh_keys = &asoc->endpoint_shared_keys;
931 	} else {
932 		if (ep->active_key_id == key_id)
933 			return -EINVAL;
934 
935 		sh_keys = &ep->endpoint_shared_keys;
936 	}
937 
938 	key_for_each(key, sh_keys) {
939 		if (key->key_id == key_id) {
940 			found = 1;
941 			break;
942 		}
943 	}
944 
945 	if (!found)
946 		return -EINVAL;
947 
948 	/* Delete the shared key */
949 	list_del_init(&key->key_list);
950 	sctp_auth_shkey_free(key);
951 
952 	return 0;
953 }
954