xref: /openbmc/linux/net/sctp/auth.c (revision e58e871b)
1 /* SCTP kernel implementation
2  * (C) Copyright 2007 Hewlett-Packard Development Company, L.P.
3  *
4  * This file is part of the SCTP kernel implementation
5  *
6  * This SCTP implementation is free software;
7  * you can redistribute it and/or modify it under the terms of
8  * the GNU General Public License as published by
9  * the Free Software Foundation; either version 2, or (at your option)
10  * any later version.
11  *
12  * This SCTP implementation is distributed in the hope that it
13  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
14  *                 ************************
15  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
16  * See the GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with GNU CC; see the file COPYING.  If not, see
20  * <http://www.gnu.org/licenses/>.
21  *
22  * Please send any bug reports or fixes you make to the
23  * email address(es):
24  *    lksctp developers <linux-sctp@vger.kernel.org>
25  *
26  * Written or modified by:
27  *   Vlad Yasevich     <vladislav.yasevich@hp.com>
28  */
29 
30 #include <crypto/hash.h>
31 #include <linux/slab.h>
32 #include <linux/types.h>
33 #include <linux/scatterlist.h>
34 #include <net/sctp/sctp.h>
35 #include <net/sctp/auth.h>
36 
37 static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = {
38 	{
39 		/* id 0 is reserved.  as all 0 */
40 		.hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0,
41 	},
42 	{
43 		.hmac_id = SCTP_AUTH_HMAC_ID_SHA1,
44 		.hmac_name = "hmac(sha1)",
45 		.hmac_len = SCTP_SHA1_SIG_SIZE,
46 	},
47 	{
48 		/* id 2 is reserved as well */
49 		.hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2,
50 	},
51 #if IS_ENABLED(CONFIG_CRYPTO_SHA256)
52 	{
53 		.hmac_id = SCTP_AUTH_HMAC_ID_SHA256,
54 		.hmac_name = "hmac(sha256)",
55 		.hmac_len = SCTP_SHA256_SIG_SIZE,
56 	}
57 #endif
58 };
59 
60 
61 void sctp_auth_key_put(struct sctp_auth_bytes *key)
62 {
63 	if (!key)
64 		return;
65 
66 	if (atomic_dec_and_test(&key->refcnt)) {
67 		kzfree(key);
68 		SCTP_DBG_OBJCNT_DEC(keys);
69 	}
70 }
71 
72 /* Create a new key structure of a given length */
73 static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp)
74 {
75 	struct sctp_auth_bytes *key;
76 
77 	/* Verify that we are not going to overflow INT_MAX */
78 	if (key_len > (INT_MAX - sizeof(struct sctp_auth_bytes)))
79 		return NULL;
80 
81 	/* Allocate the shared key */
82 	key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp);
83 	if (!key)
84 		return NULL;
85 
86 	key->len = key_len;
87 	atomic_set(&key->refcnt, 1);
88 	SCTP_DBG_OBJCNT_INC(keys);
89 
90 	return key;
91 }
92 
93 /* Create a new shared key container with a give key id */
94 struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp)
95 {
96 	struct sctp_shared_key *new;
97 
98 	/* Allocate the shared key container */
99 	new = kzalloc(sizeof(struct sctp_shared_key), gfp);
100 	if (!new)
101 		return NULL;
102 
103 	INIT_LIST_HEAD(&new->key_list);
104 	new->key_id = key_id;
105 
106 	return new;
107 }
108 
109 /* Free the shared key structure */
110 static void sctp_auth_shkey_free(struct sctp_shared_key *sh_key)
111 {
112 	BUG_ON(!list_empty(&sh_key->key_list));
113 	sctp_auth_key_put(sh_key->key);
114 	sh_key->key = NULL;
115 	kfree(sh_key);
116 }
117 
118 /* Destroy the entire key list.  This is done during the
119  * associon and endpoint free process.
120  */
121 void sctp_auth_destroy_keys(struct list_head *keys)
122 {
123 	struct sctp_shared_key *ep_key;
124 	struct sctp_shared_key *tmp;
125 
126 	if (list_empty(keys))
127 		return;
128 
129 	key_for_each_safe(ep_key, tmp, keys) {
130 		list_del_init(&ep_key->key_list);
131 		sctp_auth_shkey_free(ep_key);
132 	}
133 }
134 
135 /* Compare two byte vectors as numbers.  Return values
136  * are:
137  * 	  0 - vectors are equal
138  * 	< 0 - vector 1 is smaller than vector2
139  * 	> 0 - vector 1 is greater than vector2
140  *
141  * Algorithm is:
142  * 	This is performed by selecting the numerically smaller key vector...
143  *	If the key vectors are equal as numbers but differ in length ...
144  *	the shorter vector is considered smaller
145  *
146  * Examples (with small values):
147  * 	000123456789 > 123456789 (first number is longer)
148  * 	000123456789 < 234567891 (second number is larger numerically)
149  * 	123456789 > 2345678 	 (first number is both larger & longer)
150  */
151 static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1,
152 			      struct sctp_auth_bytes *vector2)
153 {
154 	int diff;
155 	int i;
156 	const __u8 *longer;
157 
158 	diff = vector1->len - vector2->len;
159 	if (diff) {
160 		longer = (diff > 0) ? vector1->data : vector2->data;
161 
162 		/* Check to see if the longer number is
163 		 * lead-zero padded.  If it is not, it
164 		 * is automatically larger numerically.
165 		 */
166 		for (i = 0; i < abs(diff); i++) {
167 			if (longer[i] != 0)
168 				return diff;
169 		}
170 	}
171 
172 	/* lengths are the same, compare numbers */
173 	return memcmp(vector1->data, vector2->data, vector1->len);
174 }
175 
176 /*
177  * Create a key vector as described in SCTP-AUTH, Section 6.1
178  *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
179  *    parameter sent by each endpoint are concatenated as byte vectors.
180  *    These parameters include the parameter type, parameter length, and
181  *    the parameter value, but padding is omitted; all padding MUST be
182  *    removed from this concatenation before proceeding with further
183  *    computation of keys.  Parameters which were not sent are simply
184  *    omitted from the concatenation process.  The resulting two vectors
185  *    are called the two key vectors.
186  */
187 static struct sctp_auth_bytes *sctp_auth_make_key_vector(
188 			sctp_random_param_t *random,
189 			sctp_chunks_param_t *chunks,
190 			sctp_hmac_algo_param_t *hmacs,
191 			gfp_t gfp)
192 {
193 	struct sctp_auth_bytes *new;
194 	__u32	len;
195 	__u32	offset = 0;
196 	__u16	random_len, hmacs_len, chunks_len = 0;
197 
198 	random_len = ntohs(random->param_hdr.length);
199 	hmacs_len = ntohs(hmacs->param_hdr.length);
200 	if (chunks)
201 		chunks_len = ntohs(chunks->param_hdr.length);
202 
203 	len = random_len + hmacs_len + chunks_len;
204 
205 	new = sctp_auth_create_key(len, gfp);
206 	if (!new)
207 		return NULL;
208 
209 	memcpy(new->data, random, random_len);
210 	offset += random_len;
211 
212 	if (chunks) {
213 		memcpy(new->data + offset, chunks, chunks_len);
214 		offset += chunks_len;
215 	}
216 
217 	memcpy(new->data + offset, hmacs, hmacs_len);
218 
219 	return new;
220 }
221 
222 
223 /* Make a key vector based on our local parameters */
224 static struct sctp_auth_bytes *sctp_auth_make_local_vector(
225 				    const struct sctp_association *asoc,
226 				    gfp_t gfp)
227 {
228 	return sctp_auth_make_key_vector(
229 				    (sctp_random_param_t *)asoc->c.auth_random,
230 				    (sctp_chunks_param_t *)asoc->c.auth_chunks,
231 				    (sctp_hmac_algo_param_t *)asoc->c.auth_hmacs,
232 				    gfp);
233 }
234 
235 /* Make a key vector based on peer's parameters */
236 static struct sctp_auth_bytes *sctp_auth_make_peer_vector(
237 				    const struct sctp_association *asoc,
238 				    gfp_t gfp)
239 {
240 	return sctp_auth_make_key_vector(asoc->peer.peer_random,
241 					 asoc->peer.peer_chunks,
242 					 asoc->peer.peer_hmacs,
243 					 gfp);
244 }
245 
246 
247 /* Set the value of the association shared key base on the parameters
248  * given.  The algorithm is:
249  *    From the endpoint pair shared keys and the key vectors the
250  *    association shared keys are computed.  This is performed by selecting
251  *    the numerically smaller key vector and concatenating it to the
252  *    endpoint pair shared key, and then concatenating the numerically
253  *    larger key vector to that.  The result of the concatenation is the
254  *    association shared key.
255  */
256 static struct sctp_auth_bytes *sctp_auth_asoc_set_secret(
257 			struct sctp_shared_key *ep_key,
258 			struct sctp_auth_bytes *first_vector,
259 			struct sctp_auth_bytes *last_vector,
260 			gfp_t gfp)
261 {
262 	struct sctp_auth_bytes *secret;
263 	__u32 offset = 0;
264 	__u32 auth_len;
265 
266 	auth_len = first_vector->len + last_vector->len;
267 	if (ep_key->key)
268 		auth_len += ep_key->key->len;
269 
270 	secret = sctp_auth_create_key(auth_len, gfp);
271 	if (!secret)
272 		return NULL;
273 
274 	if (ep_key->key) {
275 		memcpy(secret->data, ep_key->key->data, ep_key->key->len);
276 		offset += ep_key->key->len;
277 	}
278 
279 	memcpy(secret->data + offset, first_vector->data, first_vector->len);
280 	offset += first_vector->len;
281 
282 	memcpy(secret->data + offset, last_vector->data, last_vector->len);
283 
284 	return secret;
285 }
286 
287 /* Create an association shared key.  Follow the algorithm
288  * described in SCTP-AUTH, Section 6.1
289  */
290 static struct sctp_auth_bytes *sctp_auth_asoc_create_secret(
291 				 const struct sctp_association *asoc,
292 				 struct sctp_shared_key *ep_key,
293 				 gfp_t gfp)
294 {
295 	struct sctp_auth_bytes *local_key_vector;
296 	struct sctp_auth_bytes *peer_key_vector;
297 	struct sctp_auth_bytes	*first_vector,
298 				*last_vector;
299 	struct sctp_auth_bytes	*secret = NULL;
300 	int	cmp;
301 
302 
303 	/* Now we need to build the key vectors
304 	 * SCTP-AUTH , Section 6.1
305 	 *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
306 	 *    parameter sent by each endpoint are concatenated as byte vectors.
307 	 *    These parameters include the parameter type, parameter length, and
308 	 *    the parameter value, but padding is omitted; all padding MUST be
309 	 *    removed from this concatenation before proceeding with further
310 	 *    computation of keys.  Parameters which were not sent are simply
311 	 *    omitted from the concatenation process.  The resulting two vectors
312 	 *    are called the two key vectors.
313 	 */
314 
315 	local_key_vector = sctp_auth_make_local_vector(asoc, gfp);
316 	peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp);
317 
318 	if (!peer_key_vector || !local_key_vector)
319 		goto out;
320 
321 	/* Figure out the order in which the key_vectors will be
322 	 * added to the endpoint shared key.
323 	 * SCTP-AUTH, Section 6.1:
324 	 *   This is performed by selecting the numerically smaller key
325 	 *   vector and concatenating it to the endpoint pair shared
326 	 *   key, and then concatenating the numerically larger key
327 	 *   vector to that.  If the key vectors are equal as numbers
328 	 *   but differ in length, then the concatenation order is the
329 	 *   endpoint shared key, followed by the shorter key vector,
330 	 *   followed by the longer key vector.  Otherwise, the key
331 	 *   vectors are identical, and may be concatenated to the
332 	 *   endpoint pair key in any order.
333 	 */
334 	cmp = sctp_auth_compare_vectors(local_key_vector,
335 					peer_key_vector);
336 	if (cmp < 0) {
337 		first_vector = local_key_vector;
338 		last_vector = peer_key_vector;
339 	} else {
340 		first_vector = peer_key_vector;
341 		last_vector = local_key_vector;
342 	}
343 
344 	secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector,
345 					    gfp);
346 out:
347 	sctp_auth_key_put(local_key_vector);
348 	sctp_auth_key_put(peer_key_vector);
349 
350 	return secret;
351 }
352 
353 /*
354  * Populate the association overlay list with the list
355  * from the endpoint.
356  */
357 int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep,
358 				struct sctp_association *asoc,
359 				gfp_t gfp)
360 {
361 	struct sctp_shared_key *sh_key;
362 	struct sctp_shared_key *new;
363 
364 	BUG_ON(!list_empty(&asoc->endpoint_shared_keys));
365 
366 	key_for_each(sh_key, &ep->endpoint_shared_keys) {
367 		new = sctp_auth_shkey_create(sh_key->key_id, gfp);
368 		if (!new)
369 			goto nomem;
370 
371 		new->key = sh_key->key;
372 		sctp_auth_key_hold(new->key);
373 		list_add(&new->key_list, &asoc->endpoint_shared_keys);
374 	}
375 
376 	return 0;
377 
378 nomem:
379 	sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
380 	return -ENOMEM;
381 }
382 
383 
384 /* Public interface to create the association shared key.
385  * See code above for the algorithm.
386  */
387 int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp)
388 {
389 	struct sctp_auth_bytes	*secret;
390 	struct sctp_shared_key *ep_key;
391 	struct sctp_chunk *chunk;
392 
393 	/* If we don't support AUTH, or peer is not capable
394 	 * we don't need to do anything.
395 	 */
396 	if (!asoc->ep->auth_enable || !asoc->peer.auth_capable)
397 		return 0;
398 
399 	/* If the key_id is non-zero and we couldn't find an
400 	 * endpoint pair shared key, we can't compute the
401 	 * secret.
402 	 * For key_id 0, endpoint pair shared key is a NULL key.
403 	 */
404 	ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id);
405 	BUG_ON(!ep_key);
406 
407 	secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
408 	if (!secret)
409 		return -ENOMEM;
410 
411 	sctp_auth_key_put(asoc->asoc_shared_key);
412 	asoc->asoc_shared_key = secret;
413 
414 	/* Update send queue in case any chunk already in there now
415 	 * needs authenticating
416 	 */
417 	list_for_each_entry(chunk, &asoc->outqueue.out_chunk_list, list) {
418 		if (sctp_auth_send_cid(chunk->chunk_hdr->type, asoc))
419 			chunk->auth = 1;
420 	}
421 
422 	return 0;
423 }
424 
425 
426 /* Find the endpoint pair shared key based on the key_id */
427 struct sctp_shared_key *sctp_auth_get_shkey(
428 				const struct sctp_association *asoc,
429 				__u16 key_id)
430 {
431 	struct sctp_shared_key *key;
432 
433 	/* First search associations set of endpoint pair shared keys */
434 	key_for_each(key, &asoc->endpoint_shared_keys) {
435 		if (key->key_id == key_id)
436 			return key;
437 	}
438 
439 	return NULL;
440 }
441 
442 /*
443  * Initialize all the possible digest transforms that we can use.  Right now
444  * now, the supported digests are SHA1 and SHA256.  We do this here once
445  * because of the restrictiong that transforms may only be allocated in
446  * user context.  This forces us to pre-allocated all possible transforms
447  * at the endpoint init time.
448  */
449 int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp)
450 {
451 	struct crypto_shash *tfm = NULL;
452 	__u16   id;
453 
454 	/* If AUTH extension is disabled, we are done */
455 	if (!ep->auth_enable) {
456 		ep->auth_hmacs = NULL;
457 		return 0;
458 	}
459 
460 	/* If the transforms are already allocated, we are done */
461 	if (ep->auth_hmacs)
462 		return 0;
463 
464 	/* Allocated the array of pointers to transorms */
465 	ep->auth_hmacs = kzalloc(sizeof(struct crypto_shash *) *
466 				 SCTP_AUTH_NUM_HMACS, gfp);
467 	if (!ep->auth_hmacs)
468 		return -ENOMEM;
469 
470 	for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) {
471 
472 		/* See is we support the id.  Supported IDs have name and
473 		 * length fields set, so that we can allocated and use
474 		 * them.  We can safely just check for name, for without the
475 		 * name, we can't allocate the TFM.
476 		 */
477 		if (!sctp_hmac_list[id].hmac_name)
478 			continue;
479 
480 		/* If this TFM has been allocated, we are all set */
481 		if (ep->auth_hmacs[id])
482 			continue;
483 
484 		/* Allocate the ID */
485 		tfm = crypto_alloc_shash(sctp_hmac_list[id].hmac_name, 0, 0);
486 		if (IS_ERR(tfm))
487 			goto out_err;
488 
489 		ep->auth_hmacs[id] = tfm;
490 	}
491 
492 	return 0;
493 
494 out_err:
495 	/* Clean up any successful allocations */
496 	sctp_auth_destroy_hmacs(ep->auth_hmacs);
497 	return -ENOMEM;
498 }
499 
500 /* Destroy the hmac tfm array */
501 void sctp_auth_destroy_hmacs(struct crypto_shash *auth_hmacs[])
502 {
503 	int i;
504 
505 	if (!auth_hmacs)
506 		return;
507 
508 	for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++) {
509 		crypto_free_shash(auth_hmacs[i]);
510 	}
511 	kfree(auth_hmacs);
512 }
513 
514 
515 struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id)
516 {
517 	return &sctp_hmac_list[hmac_id];
518 }
519 
520 /* Get an hmac description information that we can use to build
521  * the AUTH chunk
522  */
523 struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc)
524 {
525 	struct sctp_hmac_algo_param *hmacs;
526 	__u16 n_elt;
527 	__u16 id = 0;
528 	int i;
529 
530 	/* If we have a default entry, use it */
531 	if (asoc->default_hmac_id)
532 		return &sctp_hmac_list[asoc->default_hmac_id];
533 
534 	/* Since we do not have a default entry, find the first entry
535 	 * we support and return that.  Do not cache that id.
536 	 */
537 	hmacs = asoc->peer.peer_hmacs;
538 	if (!hmacs)
539 		return NULL;
540 
541 	n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
542 	for (i = 0; i < n_elt; i++) {
543 		id = ntohs(hmacs->hmac_ids[i]);
544 
545 		/* Check the id is in the supported range. And
546 		 * see if we support the id.  Supported IDs have name and
547 		 * length fields set, so that we can allocate and use
548 		 * them.  We can safely just check for name, for without the
549 		 * name, we can't allocate the TFM.
550 		 */
551 		if (id > SCTP_AUTH_HMAC_ID_MAX ||
552 		    !sctp_hmac_list[id].hmac_name) {
553 			id = 0;
554 			continue;
555 		}
556 
557 		break;
558 	}
559 
560 	if (id == 0)
561 		return NULL;
562 
563 	return &sctp_hmac_list[id];
564 }
565 
566 static int __sctp_auth_find_hmacid(__be16 *hmacs, int n_elts, __be16 hmac_id)
567 {
568 	int  found = 0;
569 	int  i;
570 
571 	for (i = 0; i < n_elts; i++) {
572 		if (hmac_id == hmacs[i]) {
573 			found = 1;
574 			break;
575 		}
576 	}
577 
578 	return found;
579 }
580 
581 /* See if the HMAC_ID is one that we claim as supported */
582 int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc,
583 				    __be16 hmac_id)
584 {
585 	struct sctp_hmac_algo_param *hmacs;
586 	__u16 n_elt;
587 
588 	if (!asoc)
589 		return 0;
590 
591 	hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs;
592 	n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
593 
594 	return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id);
595 }
596 
597 
598 /* Cache the default HMAC id.  This to follow this text from SCTP-AUTH:
599  * Section 6.1:
600  *   The receiver of a HMAC-ALGO parameter SHOULD use the first listed
601  *   algorithm it supports.
602  */
603 void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc,
604 				     struct sctp_hmac_algo_param *hmacs)
605 {
606 	struct sctp_endpoint *ep;
607 	__u16   id;
608 	int	i;
609 	int	n_params;
610 
611 	/* if the default id is already set, use it */
612 	if (asoc->default_hmac_id)
613 		return;
614 
615 	n_params = (ntohs(hmacs->param_hdr.length)
616 				- sizeof(sctp_paramhdr_t)) >> 1;
617 	ep = asoc->ep;
618 	for (i = 0; i < n_params; i++) {
619 		id = ntohs(hmacs->hmac_ids[i]);
620 
621 		/* Check the id is in the supported range */
622 		if (id > SCTP_AUTH_HMAC_ID_MAX)
623 			continue;
624 
625 		/* If this TFM has been allocated, use this id */
626 		if (ep->auth_hmacs[id]) {
627 			asoc->default_hmac_id = id;
628 			break;
629 		}
630 	}
631 }
632 
633 
634 /* Check to see if the given chunk is supposed to be authenticated */
635 static int __sctp_auth_cid(sctp_cid_t chunk, struct sctp_chunks_param *param)
636 {
637 	unsigned short len;
638 	int found = 0;
639 	int i;
640 
641 	if (!param || param->param_hdr.length == 0)
642 		return 0;
643 
644 	len = ntohs(param->param_hdr.length) - sizeof(sctp_paramhdr_t);
645 
646 	/* SCTP-AUTH, Section 3.2
647 	 *    The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH
648 	 *    chunks MUST NOT be listed in the CHUNKS parameter.  However, if
649 	 *    a CHUNKS parameter is received then the types for INIT, INIT-ACK,
650 	 *    SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored.
651 	 */
652 	for (i = 0; !found && i < len; i++) {
653 		switch (param->chunks[i]) {
654 		case SCTP_CID_INIT:
655 		case SCTP_CID_INIT_ACK:
656 		case SCTP_CID_SHUTDOWN_COMPLETE:
657 		case SCTP_CID_AUTH:
658 			break;
659 
660 		default:
661 			if (param->chunks[i] == chunk)
662 				found = 1;
663 			break;
664 		}
665 	}
666 
667 	return found;
668 }
669 
670 /* Check if peer requested that this chunk is authenticated */
671 int sctp_auth_send_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
672 {
673 	if (!asoc)
674 		return 0;
675 
676 	if (!asoc->ep->auth_enable || !asoc->peer.auth_capable)
677 		return 0;
678 
679 	return __sctp_auth_cid(chunk, asoc->peer.peer_chunks);
680 }
681 
682 /* Check if we requested that peer authenticate this chunk. */
683 int sctp_auth_recv_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
684 {
685 	if (!asoc)
686 		return 0;
687 
688 	if (!asoc->ep->auth_enable)
689 		return 0;
690 
691 	return __sctp_auth_cid(chunk,
692 			      (struct sctp_chunks_param *)asoc->c.auth_chunks);
693 }
694 
695 /* SCTP-AUTH: Section 6.2:
696  *    The sender MUST calculate the MAC as described in RFC2104 [2] using
697  *    the hash function H as described by the MAC Identifier and the shared
698  *    association key K based on the endpoint pair shared key described by
699  *    the shared key identifier.  The 'data' used for the computation of
700  *    the AUTH-chunk is given by the AUTH chunk with its HMAC field set to
701  *    zero (as shown in Figure 6) followed by all chunks that are placed
702  *    after the AUTH chunk in the SCTP packet.
703  */
704 void sctp_auth_calculate_hmac(const struct sctp_association *asoc,
705 			      struct sk_buff *skb,
706 			      struct sctp_auth_chunk *auth,
707 			      gfp_t gfp)
708 {
709 	struct crypto_shash *tfm;
710 	struct sctp_auth_bytes *asoc_key;
711 	__u16 key_id, hmac_id;
712 	__u8 *digest;
713 	unsigned char *end;
714 	int free_key = 0;
715 
716 	/* Extract the info we need:
717 	 * - hmac id
718 	 * - key id
719 	 */
720 	key_id = ntohs(auth->auth_hdr.shkey_id);
721 	hmac_id = ntohs(auth->auth_hdr.hmac_id);
722 
723 	if (key_id == asoc->active_key_id)
724 		asoc_key = asoc->asoc_shared_key;
725 	else {
726 		struct sctp_shared_key *ep_key;
727 
728 		ep_key = sctp_auth_get_shkey(asoc, key_id);
729 		if (!ep_key)
730 			return;
731 
732 		asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
733 		if (!asoc_key)
734 			return;
735 
736 		free_key = 1;
737 	}
738 
739 	/* set up scatter list */
740 	end = skb_tail_pointer(skb);
741 
742 	tfm = asoc->ep->auth_hmacs[hmac_id];
743 
744 	digest = auth->auth_hdr.hmac;
745 	if (crypto_shash_setkey(tfm, &asoc_key->data[0], asoc_key->len))
746 		goto free;
747 
748 	{
749 		SHASH_DESC_ON_STACK(desc, tfm);
750 
751 		desc->tfm = tfm;
752 		desc->flags = 0;
753 		crypto_shash_digest(desc, (u8 *)auth,
754 				    end - (unsigned char *)auth, digest);
755 		shash_desc_zero(desc);
756 	}
757 
758 free:
759 	if (free_key)
760 		sctp_auth_key_put(asoc_key);
761 }
762 
763 /* API Helpers */
764 
765 /* Add a chunk to the endpoint authenticated chunk list */
766 int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id)
767 {
768 	struct sctp_chunks_param *p = ep->auth_chunk_list;
769 	__u16 nchunks;
770 	__u16 param_len;
771 
772 	/* If this chunk is already specified, we are done */
773 	if (__sctp_auth_cid(chunk_id, p))
774 		return 0;
775 
776 	/* Check if we can add this chunk to the array */
777 	param_len = ntohs(p->param_hdr.length);
778 	nchunks = param_len - sizeof(sctp_paramhdr_t);
779 	if (nchunks == SCTP_NUM_CHUNK_TYPES)
780 		return -EINVAL;
781 
782 	p->chunks[nchunks] = chunk_id;
783 	p->param_hdr.length = htons(param_len + 1);
784 	return 0;
785 }
786 
787 /* Add hmac identifires to the endpoint list of supported hmac ids */
788 int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep,
789 			   struct sctp_hmacalgo *hmacs)
790 {
791 	int has_sha1 = 0;
792 	__u16 id;
793 	int i;
794 
795 	/* Scan the list looking for unsupported id.  Also make sure that
796 	 * SHA1 is specified.
797 	 */
798 	for (i = 0; i < hmacs->shmac_num_idents; i++) {
799 		id = hmacs->shmac_idents[i];
800 
801 		if (id > SCTP_AUTH_HMAC_ID_MAX)
802 			return -EOPNOTSUPP;
803 
804 		if (SCTP_AUTH_HMAC_ID_SHA1 == id)
805 			has_sha1 = 1;
806 
807 		if (!sctp_hmac_list[id].hmac_name)
808 			return -EOPNOTSUPP;
809 	}
810 
811 	if (!has_sha1)
812 		return -EINVAL;
813 
814 	for (i = 0; i < hmacs->shmac_num_idents; i++)
815 		ep->auth_hmacs_list->hmac_ids[i] = htons(hmacs->shmac_idents[i]);
816 	ep->auth_hmacs_list->param_hdr.length = htons(sizeof(sctp_paramhdr_t) +
817 				hmacs->shmac_num_idents * sizeof(__u16));
818 	return 0;
819 }
820 
821 /* Set a new shared key on either endpoint or association.  If the
822  * the key with a same ID already exists, replace the key (remove the
823  * old key and add a new one).
824  */
825 int sctp_auth_set_key(struct sctp_endpoint *ep,
826 		      struct sctp_association *asoc,
827 		      struct sctp_authkey *auth_key)
828 {
829 	struct sctp_shared_key *cur_key = NULL;
830 	struct sctp_auth_bytes *key;
831 	struct list_head *sh_keys;
832 	int replace = 0;
833 
834 	/* Try to find the given key id to see if
835 	 * we are doing a replace, or adding a new key
836 	 */
837 	if (asoc)
838 		sh_keys = &asoc->endpoint_shared_keys;
839 	else
840 		sh_keys = &ep->endpoint_shared_keys;
841 
842 	key_for_each(cur_key, sh_keys) {
843 		if (cur_key->key_id == auth_key->sca_keynumber) {
844 			replace = 1;
845 			break;
846 		}
847 	}
848 
849 	/* If we are not replacing a key id, we need to allocate
850 	 * a shared key.
851 	 */
852 	if (!replace) {
853 		cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber,
854 						 GFP_KERNEL);
855 		if (!cur_key)
856 			return -ENOMEM;
857 	}
858 
859 	/* Create a new key data based on the info passed in */
860 	key = sctp_auth_create_key(auth_key->sca_keylength, GFP_KERNEL);
861 	if (!key)
862 		goto nomem;
863 
864 	memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylength);
865 
866 	/* If we are replacing, remove the old keys data from the
867 	 * key id.  If we are adding new key id, add it to the
868 	 * list.
869 	 */
870 	if (replace)
871 		sctp_auth_key_put(cur_key->key);
872 	else
873 		list_add(&cur_key->key_list, sh_keys);
874 
875 	cur_key->key = key;
876 	return 0;
877 nomem:
878 	if (!replace)
879 		sctp_auth_shkey_free(cur_key);
880 
881 	return -ENOMEM;
882 }
883 
884 int sctp_auth_set_active_key(struct sctp_endpoint *ep,
885 			     struct sctp_association *asoc,
886 			     __u16  key_id)
887 {
888 	struct sctp_shared_key *key;
889 	struct list_head *sh_keys;
890 	int found = 0;
891 
892 	/* The key identifier MUST correst to an existing key */
893 	if (asoc)
894 		sh_keys = &asoc->endpoint_shared_keys;
895 	else
896 		sh_keys = &ep->endpoint_shared_keys;
897 
898 	key_for_each(key, sh_keys) {
899 		if (key->key_id == key_id) {
900 			found = 1;
901 			break;
902 		}
903 	}
904 
905 	if (!found)
906 		return -EINVAL;
907 
908 	if (asoc) {
909 		asoc->active_key_id = key_id;
910 		sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL);
911 	} else
912 		ep->active_key_id = key_id;
913 
914 	return 0;
915 }
916 
917 int sctp_auth_del_key_id(struct sctp_endpoint *ep,
918 			 struct sctp_association *asoc,
919 			 __u16  key_id)
920 {
921 	struct sctp_shared_key *key;
922 	struct list_head *sh_keys;
923 	int found = 0;
924 
925 	/* The key identifier MUST NOT be the current active key
926 	 * The key identifier MUST correst to an existing key
927 	 */
928 	if (asoc) {
929 		if (asoc->active_key_id == key_id)
930 			return -EINVAL;
931 
932 		sh_keys = &asoc->endpoint_shared_keys;
933 	} else {
934 		if (ep->active_key_id == key_id)
935 			return -EINVAL;
936 
937 		sh_keys = &ep->endpoint_shared_keys;
938 	}
939 
940 	key_for_each(key, sh_keys) {
941 		if (key->key_id == key_id) {
942 			found = 1;
943 			break;
944 		}
945 	}
946 
947 	if (!found)
948 		return -EINVAL;
949 
950 	/* Delete the shared key */
951 	list_del_init(&key->key_list);
952 	sctp_auth_shkey_free(key);
953 
954 	return 0;
955 }
956