xref: /openbmc/linux/net/sctp/auth.c (revision e0f6d1a5)
1 /* SCTP kernel implementation
2  * (C) Copyright 2007 Hewlett-Packard Development Company, L.P.
3  *
4  * This file is part of the SCTP kernel implementation
5  *
6  * This SCTP implementation is free software;
7  * you can redistribute it and/or modify it under the terms of
8  * the GNU General Public License as published by
9  * the Free Software Foundation; either version 2, or (at your option)
10  * any later version.
11  *
12  * This SCTP implementation is distributed in the hope that it
13  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
14  *                 ************************
15  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
16  * See the GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with GNU CC; see the file COPYING.  If not, see
20  * <http://www.gnu.org/licenses/>.
21  *
22  * Please send any bug reports or fixes you make to the
23  * email address(es):
24  *    lksctp developers <linux-sctp@vger.kernel.org>
25  *
26  * Written or modified by:
27  *   Vlad Yasevich     <vladislav.yasevich@hp.com>
28  */
29 
30 #include <crypto/hash.h>
31 #include <linux/slab.h>
32 #include <linux/types.h>
33 #include <linux/scatterlist.h>
34 #include <net/sctp/sctp.h>
35 #include <net/sctp/auth.h>
36 
37 static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = {
38 	{
39 		/* id 0 is reserved.  as all 0 */
40 		.hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0,
41 	},
42 	{
43 		.hmac_id = SCTP_AUTH_HMAC_ID_SHA1,
44 		.hmac_name = "hmac(sha1)",
45 		.hmac_len = SCTP_SHA1_SIG_SIZE,
46 	},
47 	{
48 		/* id 2 is reserved as well */
49 		.hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2,
50 	},
51 #if IS_ENABLED(CONFIG_CRYPTO_SHA256)
52 	{
53 		.hmac_id = SCTP_AUTH_HMAC_ID_SHA256,
54 		.hmac_name = "hmac(sha256)",
55 		.hmac_len = SCTP_SHA256_SIG_SIZE,
56 	}
57 #endif
58 };
59 
60 
61 void sctp_auth_key_put(struct sctp_auth_bytes *key)
62 {
63 	if (!key)
64 		return;
65 
66 	if (refcount_dec_and_test(&key->refcnt)) {
67 		kzfree(key);
68 		SCTP_DBG_OBJCNT_DEC(keys);
69 	}
70 }
71 
72 /* Create a new key structure of a given length */
73 static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp)
74 {
75 	struct sctp_auth_bytes *key;
76 
77 	/* Verify that we are not going to overflow INT_MAX */
78 	if (key_len > (INT_MAX - sizeof(struct sctp_auth_bytes)))
79 		return NULL;
80 
81 	/* Allocate the shared key */
82 	key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp);
83 	if (!key)
84 		return NULL;
85 
86 	key->len = key_len;
87 	refcount_set(&key->refcnt, 1);
88 	SCTP_DBG_OBJCNT_INC(keys);
89 
90 	return key;
91 }
92 
93 /* Create a new shared key container with a give key id */
94 struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp)
95 {
96 	struct sctp_shared_key *new;
97 
98 	/* Allocate the shared key container */
99 	new = kzalloc(sizeof(struct sctp_shared_key), gfp);
100 	if (!new)
101 		return NULL;
102 
103 	INIT_LIST_HEAD(&new->key_list);
104 	refcount_set(&new->refcnt, 1);
105 	new->key_id = key_id;
106 
107 	return new;
108 }
109 
110 /* Free the shared key structure */
111 static void sctp_auth_shkey_destroy(struct sctp_shared_key *sh_key)
112 {
113 	BUG_ON(!list_empty(&sh_key->key_list));
114 	sctp_auth_key_put(sh_key->key);
115 	sh_key->key = NULL;
116 	kfree(sh_key);
117 }
118 
119 void sctp_auth_shkey_release(struct sctp_shared_key *sh_key)
120 {
121 	if (refcount_dec_and_test(&sh_key->refcnt))
122 		sctp_auth_shkey_destroy(sh_key);
123 }
124 
125 void sctp_auth_shkey_hold(struct sctp_shared_key *sh_key)
126 {
127 	refcount_inc(&sh_key->refcnt);
128 }
129 
130 /* Destroy the entire key list.  This is done during the
131  * associon and endpoint free process.
132  */
133 void sctp_auth_destroy_keys(struct list_head *keys)
134 {
135 	struct sctp_shared_key *ep_key;
136 	struct sctp_shared_key *tmp;
137 
138 	if (list_empty(keys))
139 		return;
140 
141 	key_for_each_safe(ep_key, tmp, keys) {
142 		list_del_init(&ep_key->key_list);
143 		sctp_auth_shkey_release(ep_key);
144 	}
145 }
146 
147 /* Compare two byte vectors as numbers.  Return values
148  * are:
149  * 	  0 - vectors are equal
150  * 	< 0 - vector 1 is smaller than vector2
151  * 	> 0 - vector 1 is greater than vector2
152  *
153  * Algorithm is:
154  * 	This is performed by selecting the numerically smaller key vector...
155  *	If the key vectors are equal as numbers but differ in length ...
156  *	the shorter vector is considered smaller
157  *
158  * Examples (with small values):
159  * 	000123456789 > 123456789 (first number is longer)
160  * 	000123456789 < 234567891 (second number is larger numerically)
161  * 	123456789 > 2345678 	 (first number is both larger & longer)
162  */
163 static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1,
164 			      struct sctp_auth_bytes *vector2)
165 {
166 	int diff;
167 	int i;
168 	const __u8 *longer;
169 
170 	diff = vector1->len - vector2->len;
171 	if (diff) {
172 		longer = (diff > 0) ? vector1->data : vector2->data;
173 
174 		/* Check to see if the longer number is
175 		 * lead-zero padded.  If it is not, it
176 		 * is automatically larger numerically.
177 		 */
178 		for (i = 0; i < abs(diff); i++) {
179 			if (longer[i] != 0)
180 				return diff;
181 		}
182 	}
183 
184 	/* lengths are the same, compare numbers */
185 	return memcmp(vector1->data, vector2->data, vector1->len);
186 }
187 
188 /*
189  * Create a key vector as described in SCTP-AUTH, Section 6.1
190  *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
191  *    parameter sent by each endpoint are concatenated as byte vectors.
192  *    These parameters include the parameter type, parameter length, and
193  *    the parameter value, but padding is omitted; all padding MUST be
194  *    removed from this concatenation before proceeding with further
195  *    computation of keys.  Parameters which were not sent are simply
196  *    omitted from the concatenation process.  The resulting two vectors
197  *    are called the two key vectors.
198  */
199 static struct sctp_auth_bytes *sctp_auth_make_key_vector(
200 			struct sctp_random_param *random,
201 			struct sctp_chunks_param *chunks,
202 			struct sctp_hmac_algo_param *hmacs,
203 			gfp_t gfp)
204 {
205 	struct sctp_auth_bytes *new;
206 	__u32	len;
207 	__u32	offset = 0;
208 	__u16	random_len, hmacs_len, chunks_len = 0;
209 
210 	random_len = ntohs(random->param_hdr.length);
211 	hmacs_len = ntohs(hmacs->param_hdr.length);
212 	if (chunks)
213 		chunks_len = ntohs(chunks->param_hdr.length);
214 
215 	len = random_len + hmacs_len + chunks_len;
216 
217 	new = sctp_auth_create_key(len, gfp);
218 	if (!new)
219 		return NULL;
220 
221 	memcpy(new->data, random, random_len);
222 	offset += random_len;
223 
224 	if (chunks) {
225 		memcpy(new->data + offset, chunks, chunks_len);
226 		offset += chunks_len;
227 	}
228 
229 	memcpy(new->data + offset, hmacs, hmacs_len);
230 
231 	return new;
232 }
233 
234 
235 /* Make a key vector based on our local parameters */
236 static struct sctp_auth_bytes *sctp_auth_make_local_vector(
237 				    const struct sctp_association *asoc,
238 				    gfp_t gfp)
239 {
240 	return sctp_auth_make_key_vector(
241 			(struct sctp_random_param *)asoc->c.auth_random,
242 			(struct sctp_chunks_param *)asoc->c.auth_chunks,
243 			(struct sctp_hmac_algo_param *)asoc->c.auth_hmacs, gfp);
244 }
245 
246 /* Make a key vector based on peer's parameters */
247 static struct sctp_auth_bytes *sctp_auth_make_peer_vector(
248 				    const struct sctp_association *asoc,
249 				    gfp_t gfp)
250 {
251 	return sctp_auth_make_key_vector(asoc->peer.peer_random,
252 					 asoc->peer.peer_chunks,
253 					 asoc->peer.peer_hmacs,
254 					 gfp);
255 }
256 
257 
258 /* Set the value of the association shared key base on the parameters
259  * given.  The algorithm is:
260  *    From the endpoint pair shared keys and the key vectors the
261  *    association shared keys are computed.  This is performed by selecting
262  *    the numerically smaller key vector and concatenating it to the
263  *    endpoint pair shared key, and then concatenating the numerically
264  *    larger key vector to that.  The result of the concatenation is the
265  *    association shared key.
266  */
267 static struct sctp_auth_bytes *sctp_auth_asoc_set_secret(
268 			struct sctp_shared_key *ep_key,
269 			struct sctp_auth_bytes *first_vector,
270 			struct sctp_auth_bytes *last_vector,
271 			gfp_t gfp)
272 {
273 	struct sctp_auth_bytes *secret;
274 	__u32 offset = 0;
275 	__u32 auth_len;
276 
277 	auth_len = first_vector->len + last_vector->len;
278 	if (ep_key->key)
279 		auth_len += ep_key->key->len;
280 
281 	secret = sctp_auth_create_key(auth_len, gfp);
282 	if (!secret)
283 		return NULL;
284 
285 	if (ep_key->key) {
286 		memcpy(secret->data, ep_key->key->data, ep_key->key->len);
287 		offset += ep_key->key->len;
288 	}
289 
290 	memcpy(secret->data + offset, first_vector->data, first_vector->len);
291 	offset += first_vector->len;
292 
293 	memcpy(secret->data + offset, last_vector->data, last_vector->len);
294 
295 	return secret;
296 }
297 
298 /* Create an association shared key.  Follow the algorithm
299  * described in SCTP-AUTH, Section 6.1
300  */
301 static struct sctp_auth_bytes *sctp_auth_asoc_create_secret(
302 				 const struct sctp_association *asoc,
303 				 struct sctp_shared_key *ep_key,
304 				 gfp_t gfp)
305 {
306 	struct sctp_auth_bytes *local_key_vector;
307 	struct sctp_auth_bytes *peer_key_vector;
308 	struct sctp_auth_bytes	*first_vector,
309 				*last_vector;
310 	struct sctp_auth_bytes	*secret = NULL;
311 	int	cmp;
312 
313 
314 	/* Now we need to build the key vectors
315 	 * SCTP-AUTH , Section 6.1
316 	 *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
317 	 *    parameter sent by each endpoint are concatenated as byte vectors.
318 	 *    These parameters include the parameter type, parameter length, and
319 	 *    the parameter value, but padding is omitted; all padding MUST be
320 	 *    removed from this concatenation before proceeding with further
321 	 *    computation of keys.  Parameters which were not sent are simply
322 	 *    omitted from the concatenation process.  The resulting two vectors
323 	 *    are called the two key vectors.
324 	 */
325 
326 	local_key_vector = sctp_auth_make_local_vector(asoc, gfp);
327 	peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp);
328 
329 	if (!peer_key_vector || !local_key_vector)
330 		goto out;
331 
332 	/* Figure out the order in which the key_vectors will be
333 	 * added to the endpoint shared key.
334 	 * SCTP-AUTH, Section 6.1:
335 	 *   This is performed by selecting the numerically smaller key
336 	 *   vector and concatenating it to the endpoint pair shared
337 	 *   key, and then concatenating the numerically larger key
338 	 *   vector to that.  If the key vectors are equal as numbers
339 	 *   but differ in length, then the concatenation order is the
340 	 *   endpoint shared key, followed by the shorter key vector,
341 	 *   followed by the longer key vector.  Otherwise, the key
342 	 *   vectors are identical, and may be concatenated to the
343 	 *   endpoint pair key in any order.
344 	 */
345 	cmp = sctp_auth_compare_vectors(local_key_vector,
346 					peer_key_vector);
347 	if (cmp < 0) {
348 		first_vector = local_key_vector;
349 		last_vector = peer_key_vector;
350 	} else {
351 		first_vector = peer_key_vector;
352 		last_vector = local_key_vector;
353 	}
354 
355 	secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector,
356 					    gfp);
357 out:
358 	sctp_auth_key_put(local_key_vector);
359 	sctp_auth_key_put(peer_key_vector);
360 
361 	return secret;
362 }
363 
364 /*
365  * Populate the association overlay list with the list
366  * from the endpoint.
367  */
368 int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep,
369 				struct sctp_association *asoc,
370 				gfp_t gfp)
371 {
372 	struct sctp_shared_key *sh_key;
373 	struct sctp_shared_key *new;
374 
375 	BUG_ON(!list_empty(&asoc->endpoint_shared_keys));
376 
377 	key_for_each(sh_key, &ep->endpoint_shared_keys) {
378 		new = sctp_auth_shkey_create(sh_key->key_id, gfp);
379 		if (!new)
380 			goto nomem;
381 
382 		new->key = sh_key->key;
383 		sctp_auth_key_hold(new->key);
384 		list_add(&new->key_list, &asoc->endpoint_shared_keys);
385 	}
386 
387 	return 0;
388 
389 nomem:
390 	sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
391 	return -ENOMEM;
392 }
393 
394 
395 /* Public interface to create the association shared key.
396  * See code above for the algorithm.
397  */
398 int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp)
399 {
400 	struct sctp_auth_bytes	*secret;
401 	struct sctp_shared_key *ep_key;
402 	struct sctp_chunk *chunk;
403 
404 	/* If we don't support AUTH, or peer is not capable
405 	 * we don't need to do anything.
406 	 */
407 	if (!asoc->ep->auth_enable || !asoc->peer.auth_capable)
408 		return 0;
409 
410 	/* If the key_id is non-zero and we couldn't find an
411 	 * endpoint pair shared key, we can't compute the
412 	 * secret.
413 	 * For key_id 0, endpoint pair shared key is a NULL key.
414 	 */
415 	ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id);
416 	BUG_ON(!ep_key);
417 
418 	secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
419 	if (!secret)
420 		return -ENOMEM;
421 
422 	sctp_auth_key_put(asoc->asoc_shared_key);
423 	asoc->asoc_shared_key = secret;
424 	asoc->shkey = ep_key;
425 
426 	/* Update send queue in case any chunk already in there now
427 	 * needs authenticating
428 	 */
429 	list_for_each_entry(chunk, &asoc->outqueue.out_chunk_list, list) {
430 		if (sctp_auth_send_cid(chunk->chunk_hdr->type, asoc)) {
431 			chunk->auth = 1;
432 			if (!chunk->shkey) {
433 				chunk->shkey = asoc->shkey;
434 				sctp_auth_shkey_hold(chunk->shkey);
435 			}
436 		}
437 	}
438 
439 	return 0;
440 }
441 
442 
443 /* Find the endpoint pair shared key based on the key_id */
444 struct sctp_shared_key *sctp_auth_get_shkey(
445 				const struct sctp_association *asoc,
446 				__u16 key_id)
447 {
448 	struct sctp_shared_key *key;
449 
450 	/* First search associations set of endpoint pair shared keys */
451 	key_for_each(key, &asoc->endpoint_shared_keys) {
452 		if (key->key_id == key_id) {
453 			if (!key->deactivated)
454 				return key;
455 			break;
456 		}
457 	}
458 
459 	return NULL;
460 }
461 
462 /*
463  * Initialize all the possible digest transforms that we can use.  Right now
464  * now, the supported digests are SHA1 and SHA256.  We do this here once
465  * because of the restrictiong that transforms may only be allocated in
466  * user context.  This forces us to pre-allocated all possible transforms
467  * at the endpoint init time.
468  */
469 int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp)
470 {
471 	struct crypto_shash *tfm = NULL;
472 	__u16   id;
473 
474 	/* If AUTH extension is disabled, we are done */
475 	if (!ep->auth_enable) {
476 		ep->auth_hmacs = NULL;
477 		return 0;
478 	}
479 
480 	/* If the transforms are already allocated, we are done */
481 	if (ep->auth_hmacs)
482 		return 0;
483 
484 	/* Allocated the array of pointers to transorms */
485 	ep->auth_hmacs = kzalloc(sizeof(struct crypto_shash *) *
486 				 SCTP_AUTH_NUM_HMACS, gfp);
487 	if (!ep->auth_hmacs)
488 		return -ENOMEM;
489 
490 	for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) {
491 
492 		/* See is we support the id.  Supported IDs have name and
493 		 * length fields set, so that we can allocated and use
494 		 * them.  We can safely just check for name, for without the
495 		 * name, we can't allocate the TFM.
496 		 */
497 		if (!sctp_hmac_list[id].hmac_name)
498 			continue;
499 
500 		/* If this TFM has been allocated, we are all set */
501 		if (ep->auth_hmacs[id])
502 			continue;
503 
504 		/* Allocate the ID */
505 		tfm = crypto_alloc_shash(sctp_hmac_list[id].hmac_name, 0, 0);
506 		if (IS_ERR(tfm))
507 			goto out_err;
508 
509 		ep->auth_hmacs[id] = tfm;
510 	}
511 
512 	return 0;
513 
514 out_err:
515 	/* Clean up any successful allocations */
516 	sctp_auth_destroy_hmacs(ep->auth_hmacs);
517 	return -ENOMEM;
518 }
519 
520 /* Destroy the hmac tfm array */
521 void sctp_auth_destroy_hmacs(struct crypto_shash *auth_hmacs[])
522 {
523 	int i;
524 
525 	if (!auth_hmacs)
526 		return;
527 
528 	for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++) {
529 		crypto_free_shash(auth_hmacs[i]);
530 	}
531 	kfree(auth_hmacs);
532 }
533 
534 
535 struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id)
536 {
537 	return &sctp_hmac_list[hmac_id];
538 }
539 
540 /* Get an hmac description information that we can use to build
541  * the AUTH chunk
542  */
543 struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc)
544 {
545 	struct sctp_hmac_algo_param *hmacs;
546 	__u16 n_elt;
547 	__u16 id = 0;
548 	int i;
549 
550 	/* If we have a default entry, use it */
551 	if (asoc->default_hmac_id)
552 		return &sctp_hmac_list[asoc->default_hmac_id];
553 
554 	/* Since we do not have a default entry, find the first entry
555 	 * we support and return that.  Do not cache that id.
556 	 */
557 	hmacs = asoc->peer.peer_hmacs;
558 	if (!hmacs)
559 		return NULL;
560 
561 	n_elt = (ntohs(hmacs->param_hdr.length) -
562 		 sizeof(struct sctp_paramhdr)) >> 1;
563 	for (i = 0; i < n_elt; i++) {
564 		id = ntohs(hmacs->hmac_ids[i]);
565 
566 		/* Check the id is in the supported range. And
567 		 * see if we support the id.  Supported IDs have name and
568 		 * length fields set, so that we can allocate and use
569 		 * them.  We can safely just check for name, for without the
570 		 * name, we can't allocate the TFM.
571 		 */
572 		if (id > SCTP_AUTH_HMAC_ID_MAX ||
573 		    !sctp_hmac_list[id].hmac_name) {
574 			id = 0;
575 			continue;
576 		}
577 
578 		break;
579 	}
580 
581 	if (id == 0)
582 		return NULL;
583 
584 	return &sctp_hmac_list[id];
585 }
586 
587 static int __sctp_auth_find_hmacid(__be16 *hmacs, int n_elts, __be16 hmac_id)
588 {
589 	int  found = 0;
590 	int  i;
591 
592 	for (i = 0; i < n_elts; i++) {
593 		if (hmac_id == hmacs[i]) {
594 			found = 1;
595 			break;
596 		}
597 	}
598 
599 	return found;
600 }
601 
602 /* See if the HMAC_ID is one that we claim as supported */
603 int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc,
604 				    __be16 hmac_id)
605 {
606 	struct sctp_hmac_algo_param *hmacs;
607 	__u16 n_elt;
608 
609 	if (!asoc)
610 		return 0;
611 
612 	hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs;
613 	n_elt = (ntohs(hmacs->param_hdr.length) -
614 		 sizeof(struct sctp_paramhdr)) >> 1;
615 
616 	return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id);
617 }
618 
619 
620 /* Cache the default HMAC id.  This to follow this text from SCTP-AUTH:
621  * Section 6.1:
622  *   The receiver of a HMAC-ALGO parameter SHOULD use the first listed
623  *   algorithm it supports.
624  */
625 void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc,
626 				     struct sctp_hmac_algo_param *hmacs)
627 {
628 	struct sctp_endpoint *ep;
629 	__u16   id;
630 	int	i;
631 	int	n_params;
632 
633 	/* if the default id is already set, use it */
634 	if (asoc->default_hmac_id)
635 		return;
636 
637 	n_params = (ntohs(hmacs->param_hdr.length) -
638 		    sizeof(struct sctp_paramhdr)) >> 1;
639 	ep = asoc->ep;
640 	for (i = 0; i < n_params; i++) {
641 		id = ntohs(hmacs->hmac_ids[i]);
642 
643 		/* Check the id is in the supported range */
644 		if (id > SCTP_AUTH_HMAC_ID_MAX)
645 			continue;
646 
647 		/* If this TFM has been allocated, use this id */
648 		if (ep->auth_hmacs[id]) {
649 			asoc->default_hmac_id = id;
650 			break;
651 		}
652 	}
653 }
654 
655 
656 /* Check to see if the given chunk is supposed to be authenticated */
657 static int __sctp_auth_cid(enum sctp_cid chunk, struct sctp_chunks_param *param)
658 {
659 	unsigned short len;
660 	int found = 0;
661 	int i;
662 
663 	if (!param || param->param_hdr.length == 0)
664 		return 0;
665 
666 	len = ntohs(param->param_hdr.length) - sizeof(struct sctp_paramhdr);
667 
668 	/* SCTP-AUTH, Section 3.2
669 	 *    The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH
670 	 *    chunks MUST NOT be listed in the CHUNKS parameter.  However, if
671 	 *    a CHUNKS parameter is received then the types for INIT, INIT-ACK,
672 	 *    SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored.
673 	 */
674 	for (i = 0; !found && i < len; i++) {
675 		switch (param->chunks[i]) {
676 		case SCTP_CID_INIT:
677 		case SCTP_CID_INIT_ACK:
678 		case SCTP_CID_SHUTDOWN_COMPLETE:
679 		case SCTP_CID_AUTH:
680 			break;
681 
682 		default:
683 			if (param->chunks[i] == chunk)
684 				found = 1;
685 			break;
686 		}
687 	}
688 
689 	return found;
690 }
691 
692 /* Check if peer requested that this chunk is authenticated */
693 int sctp_auth_send_cid(enum sctp_cid chunk, const struct sctp_association *asoc)
694 {
695 	if (!asoc)
696 		return 0;
697 
698 	if (!asoc->ep->auth_enable || !asoc->peer.auth_capable)
699 		return 0;
700 
701 	return __sctp_auth_cid(chunk, asoc->peer.peer_chunks);
702 }
703 
704 /* Check if we requested that peer authenticate this chunk. */
705 int sctp_auth_recv_cid(enum sctp_cid chunk, const struct sctp_association *asoc)
706 {
707 	if (!asoc)
708 		return 0;
709 
710 	if (!asoc->ep->auth_enable)
711 		return 0;
712 
713 	return __sctp_auth_cid(chunk,
714 			      (struct sctp_chunks_param *)asoc->c.auth_chunks);
715 }
716 
717 /* SCTP-AUTH: Section 6.2:
718  *    The sender MUST calculate the MAC as described in RFC2104 [2] using
719  *    the hash function H as described by the MAC Identifier and the shared
720  *    association key K based on the endpoint pair shared key described by
721  *    the shared key identifier.  The 'data' used for the computation of
722  *    the AUTH-chunk is given by the AUTH chunk with its HMAC field set to
723  *    zero (as shown in Figure 6) followed by all chunks that are placed
724  *    after the AUTH chunk in the SCTP packet.
725  */
726 void sctp_auth_calculate_hmac(const struct sctp_association *asoc,
727 			      struct sk_buff *skb, struct sctp_auth_chunk *auth,
728 			      struct sctp_shared_key *ep_key, gfp_t gfp)
729 {
730 	struct sctp_auth_bytes *asoc_key;
731 	struct crypto_shash *tfm;
732 	__u16 key_id, hmac_id;
733 	unsigned char *end;
734 	int free_key = 0;
735 	__u8 *digest;
736 
737 	/* Extract the info we need:
738 	 * - hmac id
739 	 * - key id
740 	 */
741 	key_id = ntohs(auth->auth_hdr.shkey_id);
742 	hmac_id = ntohs(auth->auth_hdr.hmac_id);
743 
744 	if (key_id == asoc->active_key_id)
745 		asoc_key = asoc->asoc_shared_key;
746 	else {
747 		/* ep_key can't be NULL here */
748 		asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
749 		if (!asoc_key)
750 			return;
751 
752 		free_key = 1;
753 	}
754 
755 	/* set up scatter list */
756 	end = skb_tail_pointer(skb);
757 
758 	tfm = asoc->ep->auth_hmacs[hmac_id];
759 
760 	digest = auth->auth_hdr.hmac;
761 	if (crypto_shash_setkey(tfm, &asoc_key->data[0], asoc_key->len))
762 		goto free;
763 
764 	{
765 		SHASH_DESC_ON_STACK(desc, tfm);
766 
767 		desc->tfm = tfm;
768 		desc->flags = 0;
769 		crypto_shash_digest(desc, (u8 *)auth,
770 				    end - (unsigned char *)auth, digest);
771 		shash_desc_zero(desc);
772 	}
773 
774 free:
775 	if (free_key)
776 		sctp_auth_key_put(asoc_key);
777 }
778 
779 /* API Helpers */
780 
781 /* Add a chunk to the endpoint authenticated chunk list */
782 int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id)
783 {
784 	struct sctp_chunks_param *p = ep->auth_chunk_list;
785 	__u16 nchunks;
786 	__u16 param_len;
787 
788 	/* If this chunk is already specified, we are done */
789 	if (__sctp_auth_cid(chunk_id, p))
790 		return 0;
791 
792 	/* Check if we can add this chunk to the array */
793 	param_len = ntohs(p->param_hdr.length);
794 	nchunks = param_len - sizeof(struct sctp_paramhdr);
795 	if (nchunks == SCTP_NUM_CHUNK_TYPES)
796 		return -EINVAL;
797 
798 	p->chunks[nchunks] = chunk_id;
799 	p->param_hdr.length = htons(param_len + 1);
800 	return 0;
801 }
802 
803 /* Add hmac identifires to the endpoint list of supported hmac ids */
804 int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep,
805 			   struct sctp_hmacalgo *hmacs)
806 {
807 	int has_sha1 = 0;
808 	__u16 id;
809 	int i;
810 
811 	/* Scan the list looking for unsupported id.  Also make sure that
812 	 * SHA1 is specified.
813 	 */
814 	for (i = 0; i < hmacs->shmac_num_idents; i++) {
815 		id = hmacs->shmac_idents[i];
816 
817 		if (id > SCTP_AUTH_HMAC_ID_MAX)
818 			return -EOPNOTSUPP;
819 
820 		if (SCTP_AUTH_HMAC_ID_SHA1 == id)
821 			has_sha1 = 1;
822 
823 		if (!sctp_hmac_list[id].hmac_name)
824 			return -EOPNOTSUPP;
825 	}
826 
827 	if (!has_sha1)
828 		return -EINVAL;
829 
830 	for (i = 0; i < hmacs->shmac_num_idents; i++)
831 		ep->auth_hmacs_list->hmac_ids[i] =
832 				htons(hmacs->shmac_idents[i]);
833 	ep->auth_hmacs_list->param_hdr.length =
834 			htons(sizeof(struct sctp_paramhdr) +
835 			hmacs->shmac_num_idents * sizeof(__u16));
836 	return 0;
837 }
838 
839 /* Set a new shared key on either endpoint or association.  If the
840  * the key with a same ID already exists, replace the key (remove the
841  * old key and add a new one).
842  */
843 int sctp_auth_set_key(struct sctp_endpoint *ep,
844 		      struct sctp_association *asoc,
845 		      struct sctp_authkey *auth_key)
846 {
847 	struct sctp_shared_key *cur_key, *shkey;
848 	struct sctp_auth_bytes *key;
849 	struct list_head *sh_keys;
850 	int replace = 0;
851 
852 	/* Try to find the given key id to see if
853 	 * we are doing a replace, or adding a new key
854 	 */
855 	if (asoc)
856 		sh_keys = &asoc->endpoint_shared_keys;
857 	else
858 		sh_keys = &ep->endpoint_shared_keys;
859 
860 	key_for_each(shkey, sh_keys) {
861 		if (shkey->key_id == auth_key->sca_keynumber) {
862 			replace = 1;
863 			break;
864 		}
865 	}
866 
867 	cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber, GFP_KERNEL);
868 	if (!cur_key)
869 		return -ENOMEM;
870 
871 	/* Create a new key data based on the info passed in */
872 	key = sctp_auth_create_key(auth_key->sca_keylength, GFP_KERNEL);
873 	if (!key) {
874 		kfree(cur_key);
875 		return -ENOMEM;
876 	}
877 
878 	memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylength);
879 	cur_key->key = key;
880 
881 	if (replace) {
882 		list_del_init(&shkey->key_list);
883 		sctp_auth_shkey_release(shkey);
884 	}
885 	list_add(&cur_key->key_list, sh_keys);
886 
887 	return 0;
888 }
889 
890 int sctp_auth_set_active_key(struct sctp_endpoint *ep,
891 			     struct sctp_association *asoc,
892 			     __u16  key_id)
893 {
894 	struct sctp_shared_key *key;
895 	struct list_head *sh_keys;
896 	int found = 0;
897 
898 	/* The key identifier MUST correst to an existing key */
899 	if (asoc)
900 		sh_keys = &asoc->endpoint_shared_keys;
901 	else
902 		sh_keys = &ep->endpoint_shared_keys;
903 
904 	key_for_each(key, sh_keys) {
905 		if (key->key_id == key_id) {
906 			found = 1;
907 			break;
908 		}
909 	}
910 
911 	if (!found || key->deactivated)
912 		return -EINVAL;
913 
914 	if (asoc) {
915 		asoc->active_key_id = key_id;
916 		sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL);
917 	} else
918 		ep->active_key_id = key_id;
919 
920 	return 0;
921 }
922 
923 int sctp_auth_del_key_id(struct sctp_endpoint *ep,
924 			 struct sctp_association *asoc,
925 			 __u16  key_id)
926 {
927 	struct sctp_shared_key *key;
928 	struct list_head *sh_keys;
929 	int found = 0;
930 
931 	/* The key identifier MUST NOT be the current active key
932 	 * The key identifier MUST correst to an existing key
933 	 */
934 	if (asoc) {
935 		if (asoc->active_key_id == key_id)
936 			return -EINVAL;
937 
938 		sh_keys = &asoc->endpoint_shared_keys;
939 	} else {
940 		if (ep->active_key_id == key_id)
941 			return -EINVAL;
942 
943 		sh_keys = &ep->endpoint_shared_keys;
944 	}
945 
946 	key_for_each(key, sh_keys) {
947 		if (key->key_id == key_id) {
948 			found = 1;
949 			break;
950 		}
951 	}
952 
953 	if (!found)
954 		return -EINVAL;
955 
956 	/* Delete the shared key */
957 	list_del_init(&key->key_list);
958 	sctp_auth_shkey_release(key);
959 
960 	return 0;
961 }
962 
963 int sctp_auth_deact_key_id(struct sctp_endpoint *ep,
964 			   struct sctp_association *asoc, __u16  key_id)
965 {
966 	struct sctp_shared_key *key;
967 	struct list_head *sh_keys;
968 	int found = 0;
969 
970 	/* The key identifier MUST NOT be the current active key
971 	 * The key identifier MUST correst to an existing key
972 	 */
973 	if (asoc) {
974 		if (asoc->active_key_id == key_id)
975 			return -EINVAL;
976 
977 		sh_keys = &asoc->endpoint_shared_keys;
978 	} else {
979 		if (ep->active_key_id == key_id)
980 			return -EINVAL;
981 
982 		sh_keys = &ep->endpoint_shared_keys;
983 	}
984 
985 	key_for_each(key, sh_keys) {
986 		if (key->key_id == key_id) {
987 			found = 1;
988 			break;
989 		}
990 	}
991 
992 	if (!found)
993 		return -EINVAL;
994 
995 	/* refcnt == 1 and !list_empty mean it's not being used anywhere
996 	 * and deactivated will be set, so it's time to notify userland
997 	 * that this shkey can be freed.
998 	 */
999 	if (asoc && !list_empty(&key->key_list) &&
1000 	    refcount_read(&key->refcnt) == 1) {
1001 		struct sctp_ulpevent *ev;
1002 
1003 		ev = sctp_ulpevent_make_authkey(asoc, key->key_id,
1004 						SCTP_AUTH_FREE_KEY, GFP_KERNEL);
1005 		if (ev)
1006 			asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
1007 	}
1008 
1009 	key->deactivated = 1;
1010 
1011 	return 0;
1012 }
1013