xref: /openbmc/linux/net/sctp/auth.c (revision d003d772)
1 /* SCTP kernel implementation
2  * (C) Copyright 2007 Hewlett-Packard Development Company, L.P.
3  *
4  * This file is part of the SCTP kernel implementation
5  *
6  * This SCTP implementation is free software;
7  * you can redistribute it and/or modify it under the terms of
8  * the GNU General Public License as published by
9  * the Free Software Foundation; either version 2, or (at your option)
10  * any later version.
11  *
12  * This SCTP implementation is distributed in the hope that it
13  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
14  *                 ************************
15  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
16  * See the GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with GNU CC; see the file COPYING.  If not, see
20  * <http://www.gnu.org/licenses/>.
21  *
22  * Please send any bug reports or fixes you make to the
23  * email address(es):
24  *    lksctp developers <linux-sctp@vger.kernel.org>
25  *
26  * Written or modified by:
27  *   Vlad Yasevich     <vladislav.yasevich@hp.com>
28  */
29 
30 #include <crypto/hash.h>
31 #include <linux/slab.h>
32 #include <linux/types.h>
33 #include <linux/scatterlist.h>
34 #include <net/sctp/sctp.h>
35 #include <net/sctp/auth.h>
36 
37 static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = {
38 	{
39 		/* id 0 is reserved.  as all 0 */
40 		.hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0,
41 	},
42 	{
43 		.hmac_id = SCTP_AUTH_HMAC_ID_SHA1,
44 		.hmac_name = "hmac(sha1)",
45 		.hmac_len = SCTP_SHA1_SIG_SIZE,
46 	},
47 	{
48 		/* id 2 is reserved as well */
49 		.hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2,
50 	},
51 #if IS_ENABLED(CONFIG_CRYPTO_SHA256)
52 	{
53 		.hmac_id = SCTP_AUTH_HMAC_ID_SHA256,
54 		.hmac_name = "hmac(sha256)",
55 		.hmac_len = SCTP_SHA256_SIG_SIZE,
56 	}
57 #endif
58 };
59 
60 
61 void sctp_auth_key_put(struct sctp_auth_bytes *key)
62 {
63 	if (!key)
64 		return;
65 
66 	if (refcount_dec_and_test(&key->refcnt)) {
67 		kzfree(key);
68 		SCTP_DBG_OBJCNT_DEC(keys);
69 	}
70 }
71 
72 /* Create a new key structure of a given length */
73 static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp)
74 {
75 	struct sctp_auth_bytes *key;
76 
77 	/* Verify that we are not going to overflow INT_MAX */
78 	if (key_len > (INT_MAX - sizeof(struct sctp_auth_bytes)))
79 		return NULL;
80 
81 	/* Allocate the shared key */
82 	key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp);
83 	if (!key)
84 		return NULL;
85 
86 	key->len = key_len;
87 	refcount_set(&key->refcnt, 1);
88 	SCTP_DBG_OBJCNT_INC(keys);
89 
90 	return key;
91 }
92 
93 /* Create a new shared key container with a give key id */
94 struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp)
95 {
96 	struct sctp_shared_key *new;
97 
98 	/* Allocate the shared key container */
99 	new = kzalloc(sizeof(struct sctp_shared_key), gfp);
100 	if (!new)
101 		return NULL;
102 
103 	INIT_LIST_HEAD(&new->key_list);
104 	refcount_set(&new->refcnt, 1);
105 	new->key_id = key_id;
106 
107 	return new;
108 }
109 
110 /* Free the shared key structure */
111 static void sctp_auth_shkey_destroy(struct sctp_shared_key *sh_key)
112 {
113 	BUG_ON(!list_empty(&sh_key->key_list));
114 	sctp_auth_key_put(sh_key->key);
115 	sh_key->key = NULL;
116 	kfree(sh_key);
117 }
118 
119 void sctp_auth_shkey_release(struct sctp_shared_key *sh_key)
120 {
121 	if (refcount_dec_and_test(&sh_key->refcnt))
122 		sctp_auth_shkey_destroy(sh_key);
123 }
124 
125 void sctp_auth_shkey_hold(struct sctp_shared_key *sh_key)
126 {
127 	refcount_inc(&sh_key->refcnt);
128 }
129 
130 /* Destroy the entire key list.  This is done during the
131  * associon and endpoint free process.
132  */
133 void sctp_auth_destroy_keys(struct list_head *keys)
134 {
135 	struct sctp_shared_key *ep_key;
136 	struct sctp_shared_key *tmp;
137 
138 	if (list_empty(keys))
139 		return;
140 
141 	key_for_each_safe(ep_key, tmp, keys) {
142 		list_del_init(&ep_key->key_list);
143 		sctp_auth_shkey_release(ep_key);
144 	}
145 }
146 
147 /* Compare two byte vectors as numbers.  Return values
148  * are:
149  * 	  0 - vectors are equal
150  * 	< 0 - vector 1 is smaller than vector2
151  * 	> 0 - vector 1 is greater than vector2
152  *
153  * Algorithm is:
154  * 	This is performed by selecting the numerically smaller key vector...
155  *	If the key vectors are equal as numbers but differ in length ...
156  *	the shorter vector is considered smaller
157  *
158  * Examples (with small values):
159  * 	000123456789 > 123456789 (first number is longer)
160  * 	000123456789 < 234567891 (second number is larger numerically)
161  * 	123456789 > 2345678 	 (first number is both larger & longer)
162  */
163 static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1,
164 			      struct sctp_auth_bytes *vector2)
165 {
166 	int diff;
167 	int i;
168 	const __u8 *longer;
169 
170 	diff = vector1->len - vector2->len;
171 	if (diff) {
172 		longer = (diff > 0) ? vector1->data : vector2->data;
173 
174 		/* Check to see if the longer number is
175 		 * lead-zero padded.  If it is not, it
176 		 * is automatically larger numerically.
177 		 */
178 		for (i = 0; i < abs(diff); i++) {
179 			if (longer[i] != 0)
180 				return diff;
181 		}
182 	}
183 
184 	/* lengths are the same, compare numbers */
185 	return memcmp(vector1->data, vector2->data, vector1->len);
186 }
187 
188 /*
189  * Create a key vector as described in SCTP-AUTH, Section 6.1
190  *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
191  *    parameter sent by each endpoint are concatenated as byte vectors.
192  *    These parameters include the parameter type, parameter length, and
193  *    the parameter value, but padding is omitted; all padding MUST be
194  *    removed from this concatenation before proceeding with further
195  *    computation of keys.  Parameters which were not sent are simply
196  *    omitted from the concatenation process.  The resulting two vectors
197  *    are called the two key vectors.
198  */
199 static struct sctp_auth_bytes *sctp_auth_make_key_vector(
200 			struct sctp_random_param *random,
201 			struct sctp_chunks_param *chunks,
202 			struct sctp_hmac_algo_param *hmacs,
203 			gfp_t gfp)
204 {
205 	struct sctp_auth_bytes *new;
206 	__u32	len;
207 	__u32	offset = 0;
208 	__u16	random_len, hmacs_len, chunks_len = 0;
209 
210 	random_len = ntohs(random->param_hdr.length);
211 	hmacs_len = ntohs(hmacs->param_hdr.length);
212 	if (chunks)
213 		chunks_len = ntohs(chunks->param_hdr.length);
214 
215 	len = random_len + hmacs_len + chunks_len;
216 
217 	new = sctp_auth_create_key(len, gfp);
218 	if (!new)
219 		return NULL;
220 
221 	memcpy(new->data, random, random_len);
222 	offset += random_len;
223 
224 	if (chunks) {
225 		memcpy(new->data + offset, chunks, chunks_len);
226 		offset += chunks_len;
227 	}
228 
229 	memcpy(new->data + offset, hmacs, hmacs_len);
230 
231 	return new;
232 }
233 
234 
235 /* Make a key vector based on our local parameters */
236 static struct sctp_auth_bytes *sctp_auth_make_local_vector(
237 				    const struct sctp_association *asoc,
238 				    gfp_t gfp)
239 {
240 	return sctp_auth_make_key_vector(
241 			(struct sctp_random_param *)asoc->c.auth_random,
242 			(struct sctp_chunks_param *)asoc->c.auth_chunks,
243 			(struct sctp_hmac_algo_param *)asoc->c.auth_hmacs, gfp);
244 }
245 
246 /* Make a key vector based on peer's parameters */
247 static struct sctp_auth_bytes *sctp_auth_make_peer_vector(
248 				    const struct sctp_association *asoc,
249 				    gfp_t gfp)
250 {
251 	return sctp_auth_make_key_vector(asoc->peer.peer_random,
252 					 asoc->peer.peer_chunks,
253 					 asoc->peer.peer_hmacs,
254 					 gfp);
255 }
256 
257 
258 /* Set the value of the association shared key base on the parameters
259  * given.  The algorithm is:
260  *    From the endpoint pair shared keys and the key vectors the
261  *    association shared keys are computed.  This is performed by selecting
262  *    the numerically smaller key vector and concatenating it to the
263  *    endpoint pair shared key, and then concatenating the numerically
264  *    larger key vector to that.  The result of the concatenation is the
265  *    association shared key.
266  */
267 static struct sctp_auth_bytes *sctp_auth_asoc_set_secret(
268 			struct sctp_shared_key *ep_key,
269 			struct sctp_auth_bytes *first_vector,
270 			struct sctp_auth_bytes *last_vector,
271 			gfp_t gfp)
272 {
273 	struct sctp_auth_bytes *secret;
274 	__u32 offset = 0;
275 	__u32 auth_len;
276 
277 	auth_len = first_vector->len + last_vector->len;
278 	if (ep_key->key)
279 		auth_len += ep_key->key->len;
280 
281 	secret = sctp_auth_create_key(auth_len, gfp);
282 	if (!secret)
283 		return NULL;
284 
285 	if (ep_key->key) {
286 		memcpy(secret->data, ep_key->key->data, ep_key->key->len);
287 		offset += ep_key->key->len;
288 	}
289 
290 	memcpy(secret->data + offset, first_vector->data, first_vector->len);
291 	offset += first_vector->len;
292 
293 	memcpy(secret->data + offset, last_vector->data, last_vector->len);
294 
295 	return secret;
296 }
297 
298 /* Create an association shared key.  Follow the algorithm
299  * described in SCTP-AUTH, Section 6.1
300  */
301 static struct sctp_auth_bytes *sctp_auth_asoc_create_secret(
302 				 const struct sctp_association *asoc,
303 				 struct sctp_shared_key *ep_key,
304 				 gfp_t gfp)
305 {
306 	struct sctp_auth_bytes *local_key_vector;
307 	struct sctp_auth_bytes *peer_key_vector;
308 	struct sctp_auth_bytes	*first_vector,
309 				*last_vector;
310 	struct sctp_auth_bytes	*secret = NULL;
311 	int	cmp;
312 
313 
314 	/* Now we need to build the key vectors
315 	 * SCTP-AUTH , Section 6.1
316 	 *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
317 	 *    parameter sent by each endpoint are concatenated as byte vectors.
318 	 *    These parameters include the parameter type, parameter length, and
319 	 *    the parameter value, but padding is omitted; all padding MUST be
320 	 *    removed from this concatenation before proceeding with further
321 	 *    computation of keys.  Parameters which were not sent are simply
322 	 *    omitted from the concatenation process.  The resulting two vectors
323 	 *    are called the two key vectors.
324 	 */
325 
326 	local_key_vector = sctp_auth_make_local_vector(asoc, gfp);
327 	peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp);
328 
329 	if (!peer_key_vector || !local_key_vector)
330 		goto out;
331 
332 	/* Figure out the order in which the key_vectors will be
333 	 * added to the endpoint shared key.
334 	 * SCTP-AUTH, Section 6.1:
335 	 *   This is performed by selecting the numerically smaller key
336 	 *   vector and concatenating it to the endpoint pair shared
337 	 *   key, and then concatenating the numerically larger key
338 	 *   vector to that.  If the key vectors are equal as numbers
339 	 *   but differ in length, then the concatenation order is the
340 	 *   endpoint shared key, followed by the shorter key vector,
341 	 *   followed by the longer key vector.  Otherwise, the key
342 	 *   vectors are identical, and may be concatenated to the
343 	 *   endpoint pair key in any order.
344 	 */
345 	cmp = sctp_auth_compare_vectors(local_key_vector,
346 					peer_key_vector);
347 	if (cmp < 0) {
348 		first_vector = local_key_vector;
349 		last_vector = peer_key_vector;
350 	} else {
351 		first_vector = peer_key_vector;
352 		last_vector = local_key_vector;
353 	}
354 
355 	secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector,
356 					    gfp);
357 out:
358 	sctp_auth_key_put(local_key_vector);
359 	sctp_auth_key_put(peer_key_vector);
360 
361 	return secret;
362 }
363 
364 /*
365  * Populate the association overlay list with the list
366  * from the endpoint.
367  */
368 int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep,
369 				struct sctp_association *asoc,
370 				gfp_t gfp)
371 {
372 	struct sctp_shared_key *sh_key;
373 	struct sctp_shared_key *new;
374 
375 	BUG_ON(!list_empty(&asoc->endpoint_shared_keys));
376 
377 	key_for_each(sh_key, &ep->endpoint_shared_keys) {
378 		new = sctp_auth_shkey_create(sh_key->key_id, gfp);
379 		if (!new)
380 			goto nomem;
381 
382 		new->key = sh_key->key;
383 		sctp_auth_key_hold(new->key);
384 		list_add(&new->key_list, &asoc->endpoint_shared_keys);
385 	}
386 
387 	return 0;
388 
389 nomem:
390 	sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
391 	return -ENOMEM;
392 }
393 
394 
395 /* Public interface to create the association shared key.
396  * See code above for the algorithm.
397  */
398 int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp)
399 {
400 	struct sctp_auth_bytes	*secret;
401 	struct sctp_shared_key *ep_key;
402 	struct sctp_chunk *chunk;
403 
404 	/* If we don't support AUTH, or peer is not capable
405 	 * we don't need to do anything.
406 	 */
407 	if (!asoc->ep->auth_enable || !asoc->peer.auth_capable)
408 		return 0;
409 
410 	/* If the key_id is non-zero and we couldn't find an
411 	 * endpoint pair shared key, we can't compute the
412 	 * secret.
413 	 * For key_id 0, endpoint pair shared key is a NULL key.
414 	 */
415 	ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id);
416 	BUG_ON(!ep_key);
417 
418 	secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
419 	if (!secret)
420 		return -ENOMEM;
421 
422 	sctp_auth_key_put(asoc->asoc_shared_key);
423 	asoc->asoc_shared_key = secret;
424 	asoc->shkey = ep_key;
425 
426 	/* Update send queue in case any chunk already in there now
427 	 * needs authenticating
428 	 */
429 	list_for_each_entry(chunk, &asoc->outqueue.out_chunk_list, list) {
430 		if (sctp_auth_send_cid(chunk->chunk_hdr->type, asoc)) {
431 			chunk->auth = 1;
432 			if (!chunk->shkey) {
433 				chunk->shkey = asoc->shkey;
434 				sctp_auth_shkey_hold(chunk->shkey);
435 			}
436 		}
437 	}
438 
439 	return 0;
440 }
441 
442 
443 /* Find the endpoint pair shared key based on the key_id */
444 struct sctp_shared_key *sctp_auth_get_shkey(
445 				const struct sctp_association *asoc,
446 				__u16 key_id)
447 {
448 	struct sctp_shared_key *key;
449 
450 	/* First search associations set of endpoint pair shared keys */
451 	key_for_each(key, &asoc->endpoint_shared_keys) {
452 		if (key->key_id == key_id) {
453 			if (!key->deactivated)
454 				return key;
455 			break;
456 		}
457 	}
458 
459 	return NULL;
460 }
461 
462 /*
463  * Initialize all the possible digest transforms that we can use.  Right now
464  * now, the supported digests are SHA1 and SHA256.  We do this here once
465  * because of the restrictiong that transforms may only be allocated in
466  * user context.  This forces us to pre-allocated all possible transforms
467  * at the endpoint init time.
468  */
469 int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp)
470 {
471 	struct crypto_shash *tfm = NULL;
472 	__u16   id;
473 
474 	/* If the transforms are already allocated, we are done */
475 	if (ep->auth_hmacs)
476 		return 0;
477 
478 	/* Allocated the array of pointers to transorms */
479 	ep->auth_hmacs = kcalloc(SCTP_AUTH_NUM_HMACS,
480 				 sizeof(struct crypto_shash *),
481 				 gfp);
482 	if (!ep->auth_hmacs)
483 		return -ENOMEM;
484 
485 	for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) {
486 
487 		/* See is we support the id.  Supported IDs have name and
488 		 * length fields set, so that we can allocated and use
489 		 * them.  We can safely just check for name, for without the
490 		 * name, we can't allocate the TFM.
491 		 */
492 		if (!sctp_hmac_list[id].hmac_name)
493 			continue;
494 
495 		/* If this TFM has been allocated, we are all set */
496 		if (ep->auth_hmacs[id])
497 			continue;
498 
499 		/* Allocate the ID */
500 		tfm = crypto_alloc_shash(sctp_hmac_list[id].hmac_name, 0, 0);
501 		if (IS_ERR(tfm))
502 			goto out_err;
503 
504 		ep->auth_hmacs[id] = tfm;
505 	}
506 
507 	return 0;
508 
509 out_err:
510 	/* Clean up any successful allocations */
511 	sctp_auth_destroy_hmacs(ep->auth_hmacs);
512 	return -ENOMEM;
513 }
514 
515 /* Destroy the hmac tfm array */
516 void sctp_auth_destroy_hmacs(struct crypto_shash *auth_hmacs[])
517 {
518 	int i;
519 
520 	if (!auth_hmacs)
521 		return;
522 
523 	for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++) {
524 		crypto_free_shash(auth_hmacs[i]);
525 	}
526 	kfree(auth_hmacs);
527 }
528 
529 
530 struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id)
531 {
532 	return &sctp_hmac_list[hmac_id];
533 }
534 
535 /* Get an hmac description information that we can use to build
536  * the AUTH chunk
537  */
538 struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc)
539 {
540 	struct sctp_hmac_algo_param *hmacs;
541 	__u16 n_elt;
542 	__u16 id = 0;
543 	int i;
544 
545 	/* If we have a default entry, use it */
546 	if (asoc->default_hmac_id)
547 		return &sctp_hmac_list[asoc->default_hmac_id];
548 
549 	/* Since we do not have a default entry, find the first entry
550 	 * we support and return that.  Do not cache that id.
551 	 */
552 	hmacs = asoc->peer.peer_hmacs;
553 	if (!hmacs)
554 		return NULL;
555 
556 	n_elt = (ntohs(hmacs->param_hdr.length) -
557 		 sizeof(struct sctp_paramhdr)) >> 1;
558 	for (i = 0; i < n_elt; i++) {
559 		id = ntohs(hmacs->hmac_ids[i]);
560 
561 		/* Check the id is in the supported range. And
562 		 * see if we support the id.  Supported IDs have name and
563 		 * length fields set, so that we can allocate and use
564 		 * them.  We can safely just check for name, for without the
565 		 * name, we can't allocate the TFM.
566 		 */
567 		if (id > SCTP_AUTH_HMAC_ID_MAX ||
568 		    !sctp_hmac_list[id].hmac_name) {
569 			id = 0;
570 			continue;
571 		}
572 
573 		break;
574 	}
575 
576 	if (id == 0)
577 		return NULL;
578 
579 	return &sctp_hmac_list[id];
580 }
581 
582 static int __sctp_auth_find_hmacid(__be16 *hmacs, int n_elts, __be16 hmac_id)
583 {
584 	int  found = 0;
585 	int  i;
586 
587 	for (i = 0; i < n_elts; i++) {
588 		if (hmac_id == hmacs[i]) {
589 			found = 1;
590 			break;
591 		}
592 	}
593 
594 	return found;
595 }
596 
597 /* See if the HMAC_ID is one that we claim as supported */
598 int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc,
599 				    __be16 hmac_id)
600 {
601 	struct sctp_hmac_algo_param *hmacs;
602 	__u16 n_elt;
603 
604 	if (!asoc)
605 		return 0;
606 
607 	hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs;
608 	n_elt = (ntohs(hmacs->param_hdr.length) -
609 		 sizeof(struct sctp_paramhdr)) >> 1;
610 
611 	return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id);
612 }
613 
614 
615 /* Cache the default HMAC id.  This to follow this text from SCTP-AUTH:
616  * Section 6.1:
617  *   The receiver of a HMAC-ALGO parameter SHOULD use the first listed
618  *   algorithm it supports.
619  */
620 void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc,
621 				     struct sctp_hmac_algo_param *hmacs)
622 {
623 	struct sctp_endpoint *ep;
624 	__u16   id;
625 	int	i;
626 	int	n_params;
627 
628 	/* if the default id is already set, use it */
629 	if (asoc->default_hmac_id)
630 		return;
631 
632 	n_params = (ntohs(hmacs->param_hdr.length) -
633 		    sizeof(struct sctp_paramhdr)) >> 1;
634 	ep = asoc->ep;
635 	for (i = 0; i < n_params; i++) {
636 		id = ntohs(hmacs->hmac_ids[i]);
637 
638 		/* Check the id is in the supported range */
639 		if (id > SCTP_AUTH_HMAC_ID_MAX)
640 			continue;
641 
642 		/* If this TFM has been allocated, use this id */
643 		if (ep->auth_hmacs[id]) {
644 			asoc->default_hmac_id = id;
645 			break;
646 		}
647 	}
648 }
649 
650 
651 /* Check to see if the given chunk is supposed to be authenticated */
652 static int __sctp_auth_cid(enum sctp_cid chunk, struct sctp_chunks_param *param)
653 {
654 	unsigned short len;
655 	int found = 0;
656 	int i;
657 
658 	if (!param || param->param_hdr.length == 0)
659 		return 0;
660 
661 	len = ntohs(param->param_hdr.length) - sizeof(struct sctp_paramhdr);
662 
663 	/* SCTP-AUTH, Section 3.2
664 	 *    The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH
665 	 *    chunks MUST NOT be listed in the CHUNKS parameter.  However, if
666 	 *    a CHUNKS parameter is received then the types for INIT, INIT-ACK,
667 	 *    SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored.
668 	 */
669 	for (i = 0; !found && i < len; i++) {
670 		switch (param->chunks[i]) {
671 		case SCTP_CID_INIT:
672 		case SCTP_CID_INIT_ACK:
673 		case SCTP_CID_SHUTDOWN_COMPLETE:
674 		case SCTP_CID_AUTH:
675 			break;
676 
677 		default:
678 			if (param->chunks[i] == chunk)
679 				found = 1;
680 			break;
681 		}
682 	}
683 
684 	return found;
685 }
686 
687 /* Check if peer requested that this chunk is authenticated */
688 int sctp_auth_send_cid(enum sctp_cid chunk, const struct sctp_association *asoc)
689 {
690 	if (!asoc)
691 		return 0;
692 
693 	if (!asoc->ep->auth_enable || !asoc->peer.auth_capable)
694 		return 0;
695 
696 	return __sctp_auth_cid(chunk, asoc->peer.peer_chunks);
697 }
698 
699 /* Check if we requested that peer authenticate this chunk. */
700 int sctp_auth_recv_cid(enum sctp_cid chunk, const struct sctp_association *asoc)
701 {
702 	if (!asoc)
703 		return 0;
704 
705 	if (!asoc->ep->auth_enable)
706 		return 0;
707 
708 	return __sctp_auth_cid(chunk,
709 			      (struct sctp_chunks_param *)asoc->c.auth_chunks);
710 }
711 
712 /* SCTP-AUTH: Section 6.2:
713  *    The sender MUST calculate the MAC as described in RFC2104 [2] using
714  *    the hash function H as described by the MAC Identifier and the shared
715  *    association key K based on the endpoint pair shared key described by
716  *    the shared key identifier.  The 'data' used for the computation of
717  *    the AUTH-chunk is given by the AUTH chunk with its HMAC field set to
718  *    zero (as shown in Figure 6) followed by all chunks that are placed
719  *    after the AUTH chunk in the SCTP packet.
720  */
721 void sctp_auth_calculate_hmac(const struct sctp_association *asoc,
722 			      struct sk_buff *skb, struct sctp_auth_chunk *auth,
723 			      struct sctp_shared_key *ep_key, gfp_t gfp)
724 {
725 	struct sctp_auth_bytes *asoc_key;
726 	struct crypto_shash *tfm;
727 	__u16 key_id, hmac_id;
728 	unsigned char *end;
729 	int free_key = 0;
730 	__u8 *digest;
731 
732 	/* Extract the info we need:
733 	 * - hmac id
734 	 * - key id
735 	 */
736 	key_id = ntohs(auth->auth_hdr.shkey_id);
737 	hmac_id = ntohs(auth->auth_hdr.hmac_id);
738 
739 	if (key_id == asoc->active_key_id)
740 		asoc_key = asoc->asoc_shared_key;
741 	else {
742 		/* ep_key can't be NULL here */
743 		asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
744 		if (!asoc_key)
745 			return;
746 
747 		free_key = 1;
748 	}
749 
750 	/* set up scatter list */
751 	end = skb_tail_pointer(skb);
752 
753 	tfm = asoc->ep->auth_hmacs[hmac_id];
754 
755 	digest = auth->auth_hdr.hmac;
756 	if (crypto_shash_setkey(tfm, &asoc_key->data[0], asoc_key->len))
757 		goto free;
758 
759 	{
760 		SHASH_DESC_ON_STACK(desc, tfm);
761 
762 		desc->tfm = tfm;
763 		desc->flags = 0;
764 		crypto_shash_digest(desc, (u8 *)auth,
765 				    end - (unsigned char *)auth, digest);
766 		shash_desc_zero(desc);
767 	}
768 
769 free:
770 	if (free_key)
771 		sctp_auth_key_put(asoc_key);
772 }
773 
774 /* API Helpers */
775 
776 /* Add a chunk to the endpoint authenticated chunk list */
777 int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id)
778 {
779 	struct sctp_chunks_param *p = ep->auth_chunk_list;
780 	__u16 nchunks;
781 	__u16 param_len;
782 
783 	/* If this chunk is already specified, we are done */
784 	if (__sctp_auth_cid(chunk_id, p))
785 		return 0;
786 
787 	/* Check if we can add this chunk to the array */
788 	param_len = ntohs(p->param_hdr.length);
789 	nchunks = param_len - sizeof(struct sctp_paramhdr);
790 	if (nchunks == SCTP_NUM_CHUNK_TYPES)
791 		return -EINVAL;
792 
793 	p->chunks[nchunks] = chunk_id;
794 	p->param_hdr.length = htons(param_len + 1);
795 	return 0;
796 }
797 
798 /* Add hmac identifires to the endpoint list of supported hmac ids */
799 int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep,
800 			   struct sctp_hmacalgo *hmacs)
801 {
802 	int has_sha1 = 0;
803 	__u16 id;
804 	int i;
805 
806 	/* Scan the list looking for unsupported id.  Also make sure that
807 	 * SHA1 is specified.
808 	 */
809 	for (i = 0; i < hmacs->shmac_num_idents; i++) {
810 		id = hmacs->shmac_idents[i];
811 
812 		if (id > SCTP_AUTH_HMAC_ID_MAX)
813 			return -EOPNOTSUPP;
814 
815 		if (SCTP_AUTH_HMAC_ID_SHA1 == id)
816 			has_sha1 = 1;
817 
818 		if (!sctp_hmac_list[id].hmac_name)
819 			return -EOPNOTSUPP;
820 	}
821 
822 	if (!has_sha1)
823 		return -EINVAL;
824 
825 	for (i = 0; i < hmacs->shmac_num_idents; i++)
826 		ep->auth_hmacs_list->hmac_ids[i] =
827 				htons(hmacs->shmac_idents[i]);
828 	ep->auth_hmacs_list->param_hdr.length =
829 			htons(sizeof(struct sctp_paramhdr) +
830 			hmacs->shmac_num_idents * sizeof(__u16));
831 	return 0;
832 }
833 
834 /* Set a new shared key on either endpoint or association.  If the
835  * the key with a same ID already exists, replace the key (remove the
836  * old key and add a new one).
837  */
838 int sctp_auth_set_key(struct sctp_endpoint *ep,
839 		      struct sctp_association *asoc,
840 		      struct sctp_authkey *auth_key)
841 {
842 	struct sctp_shared_key *cur_key, *shkey;
843 	struct sctp_auth_bytes *key;
844 	struct list_head *sh_keys;
845 	int replace = 0;
846 
847 	/* Try to find the given key id to see if
848 	 * we are doing a replace, or adding a new key
849 	 */
850 	if (asoc)
851 		sh_keys = &asoc->endpoint_shared_keys;
852 	else
853 		sh_keys = &ep->endpoint_shared_keys;
854 
855 	key_for_each(shkey, sh_keys) {
856 		if (shkey->key_id == auth_key->sca_keynumber) {
857 			replace = 1;
858 			break;
859 		}
860 	}
861 
862 	cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber, GFP_KERNEL);
863 	if (!cur_key)
864 		return -ENOMEM;
865 
866 	/* Create a new key data based on the info passed in */
867 	key = sctp_auth_create_key(auth_key->sca_keylength, GFP_KERNEL);
868 	if (!key) {
869 		kfree(cur_key);
870 		return -ENOMEM;
871 	}
872 
873 	memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylength);
874 	cur_key->key = key;
875 
876 	if (replace) {
877 		list_del_init(&shkey->key_list);
878 		sctp_auth_shkey_release(shkey);
879 	}
880 	list_add(&cur_key->key_list, sh_keys);
881 
882 	return 0;
883 }
884 
885 int sctp_auth_set_active_key(struct sctp_endpoint *ep,
886 			     struct sctp_association *asoc,
887 			     __u16  key_id)
888 {
889 	struct sctp_shared_key *key;
890 	struct list_head *sh_keys;
891 	int found = 0;
892 
893 	/* The key identifier MUST correst to an existing key */
894 	if (asoc)
895 		sh_keys = &asoc->endpoint_shared_keys;
896 	else
897 		sh_keys = &ep->endpoint_shared_keys;
898 
899 	key_for_each(key, sh_keys) {
900 		if (key->key_id == key_id) {
901 			found = 1;
902 			break;
903 		}
904 	}
905 
906 	if (!found || key->deactivated)
907 		return -EINVAL;
908 
909 	if (asoc) {
910 		asoc->active_key_id = key_id;
911 		sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL);
912 	} else
913 		ep->active_key_id = key_id;
914 
915 	return 0;
916 }
917 
918 int sctp_auth_del_key_id(struct sctp_endpoint *ep,
919 			 struct sctp_association *asoc,
920 			 __u16  key_id)
921 {
922 	struct sctp_shared_key *key;
923 	struct list_head *sh_keys;
924 	int found = 0;
925 
926 	/* The key identifier MUST NOT be the current active key
927 	 * The key identifier MUST correst to an existing key
928 	 */
929 	if (asoc) {
930 		if (asoc->active_key_id == key_id)
931 			return -EINVAL;
932 
933 		sh_keys = &asoc->endpoint_shared_keys;
934 	} else {
935 		if (ep->active_key_id == key_id)
936 			return -EINVAL;
937 
938 		sh_keys = &ep->endpoint_shared_keys;
939 	}
940 
941 	key_for_each(key, sh_keys) {
942 		if (key->key_id == key_id) {
943 			found = 1;
944 			break;
945 		}
946 	}
947 
948 	if (!found)
949 		return -EINVAL;
950 
951 	/* Delete the shared key */
952 	list_del_init(&key->key_list);
953 	sctp_auth_shkey_release(key);
954 
955 	return 0;
956 }
957 
958 int sctp_auth_deact_key_id(struct sctp_endpoint *ep,
959 			   struct sctp_association *asoc, __u16  key_id)
960 {
961 	struct sctp_shared_key *key;
962 	struct list_head *sh_keys;
963 	int found = 0;
964 
965 	/* The key identifier MUST NOT be the current active key
966 	 * The key identifier MUST correst to an existing key
967 	 */
968 	if (asoc) {
969 		if (asoc->active_key_id == key_id)
970 			return -EINVAL;
971 
972 		sh_keys = &asoc->endpoint_shared_keys;
973 	} else {
974 		if (ep->active_key_id == key_id)
975 			return -EINVAL;
976 
977 		sh_keys = &ep->endpoint_shared_keys;
978 	}
979 
980 	key_for_each(key, sh_keys) {
981 		if (key->key_id == key_id) {
982 			found = 1;
983 			break;
984 		}
985 	}
986 
987 	if (!found)
988 		return -EINVAL;
989 
990 	/* refcnt == 1 and !list_empty mean it's not being used anywhere
991 	 * and deactivated will be set, so it's time to notify userland
992 	 * that this shkey can be freed.
993 	 */
994 	if (asoc && !list_empty(&key->key_list) &&
995 	    refcount_read(&key->refcnt) == 1) {
996 		struct sctp_ulpevent *ev;
997 
998 		ev = sctp_ulpevent_make_authkey(asoc, key->key_id,
999 						SCTP_AUTH_FREE_KEY, GFP_KERNEL);
1000 		if (ev)
1001 			asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
1002 	}
1003 
1004 	key->deactivated = 1;
1005 
1006 	return 0;
1007 }
1008