xref: /openbmc/linux/net/sctp/auth.c (revision c4c11dd1)
1 /* SCTP kernel implementation
2  * (C) Copyright 2007 Hewlett-Packard Development Company, L.P.
3  *
4  * This file is part of the SCTP kernel implementation
5  *
6  * This SCTP implementation is free software;
7  * you can redistribute it and/or modify it under the terms of
8  * the GNU General Public License as published by
9  * the Free Software Foundation; either version 2, or (at your option)
10  * any later version.
11  *
12  * This SCTP implementation is distributed in the hope that it
13  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
14  *                 ************************
15  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
16  * See the GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with GNU CC; see the file COPYING.  If not, write to
20  * the Free Software Foundation, 59 Temple Place - Suite 330,
21  * Boston, MA 02111-1307, USA.
22  *
23  * Please send any bug reports or fixes you make to the
24  * email address(es):
25  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
26  *
27  * Or submit a bug report through the following website:
28  *    http://www.sf.net/projects/lksctp
29  *
30  * Written or modified by:
31  *   Vlad Yasevich     <vladislav.yasevich@hp.com>
32  *
33  * Any bugs reported given to us we will try to fix... any fixes shared will
34  * be incorporated into the next SCTP release.
35  */
36 
37 #include <linux/slab.h>
38 #include <linux/types.h>
39 #include <linux/crypto.h>
40 #include <linux/scatterlist.h>
41 #include <net/sctp/sctp.h>
42 #include <net/sctp/auth.h>
43 
44 static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = {
45 	{
46 		/* id 0 is reserved.  as all 0 */
47 		.hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0,
48 	},
49 	{
50 		.hmac_id = SCTP_AUTH_HMAC_ID_SHA1,
51 		.hmac_name="hmac(sha1)",
52 		.hmac_len = SCTP_SHA1_SIG_SIZE,
53 	},
54 	{
55 		/* id 2 is reserved as well */
56 		.hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2,
57 	},
58 #if defined (CONFIG_CRYPTO_SHA256) || defined (CONFIG_CRYPTO_SHA256_MODULE)
59 	{
60 		.hmac_id = SCTP_AUTH_HMAC_ID_SHA256,
61 		.hmac_name="hmac(sha256)",
62 		.hmac_len = SCTP_SHA256_SIG_SIZE,
63 	}
64 #endif
65 };
66 
67 
68 void sctp_auth_key_put(struct sctp_auth_bytes *key)
69 {
70 	if (!key)
71 		return;
72 
73 	if (atomic_dec_and_test(&key->refcnt)) {
74 		kzfree(key);
75 		SCTP_DBG_OBJCNT_DEC(keys);
76 	}
77 }
78 
79 /* Create a new key structure of a given length */
80 static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp)
81 {
82 	struct sctp_auth_bytes *key;
83 
84 	/* Verify that we are not going to overflow INT_MAX */
85 	if (key_len > (INT_MAX - sizeof(struct sctp_auth_bytes)))
86 		return NULL;
87 
88 	/* Allocate the shared key */
89 	key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp);
90 	if (!key)
91 		return NULL;
92 
93 	key->len = key_len;
94 	atomic_set(&key->refcnt, 1);
95 	SCTP_DBG_OBJCNT_INC(keys);
96 
97 	return key;
98 }
99 
100 /* Create a new shared key container with a give key id */
101 struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp)
102 {
103 	struct sctp_shared_key *new;
104 
105 	/* Allocate the shared key container */
106 	new = kzalloc(sizeof(struct sctp_shared_key), gfp);
107 	if (!new)
108 		return NULL;
109 
110 	INIT_LIST_HEAD(&new->key_list);
111 	new->key_id = key_id;
112 
113 	return new;
114 }
115 
116 /* Free the shared key structure */
117 static void sctp_auth_shkey_free(struct sctp_shared_key *sh_key)
118 {
119 	BUG_ON(!list_empty(&sh_key->key_list));
120 	sctp_auth_key_put(sh_key->key);
121 	sh_key->key = NULL;
122 	kfree(sh_key);
123 }
124 
125 /* Destroy the entire key list.  This is done during the
126  * associon and endpoint free process.
127  */
128 void sctp_auth_destroy_keys(struct list_head *keys)
129 {
130 	struct sctp_shared_key *ep_key;
131 	struct sctp_shared_key *tmp;
132 
133 	if (list_empty(keys))
134 		return;
135 
136 	key_for_each_safe(ep_key, tmp, keys) {
137 		list_del_init(&ep_key->key_list);
138 		sctp_auth_shkey_free(ep_key);
139 	}
140 }
141 
142 /* Compare two byte vectors as numbers.  Return values
143  * are:
144  * 	  0 - vectors are equal
145  * 	< 0 - vector 1 is smaller than vector2
146  * 	> 0 - vector 1 is greater than vector2
147  *
148  * Algorithm is:
149  * 	This is performed by selecting the numerically smaller key vector...
150  *	If the key vectors are equal as numbers but differ in length ...
151  *	the shorter vector is considered smaller
152  *
153  * Examples (with small values):
154  * 	000123456789 > 123456789 (first number is longer)
155  * 	000123456789 < 234567891 (second number is larger numerically)
156  * 	123456789 > 2345678 	 (first number is both larger & longer)
157  */
158 static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1,
159 			      struct sctp_auth_bytes *vector2)
160 {
161 	int diff;
162 	int i;
163 	const __u8 *longer;
164 
165 	diff = vector1->len - vector2->len;
166 	if (diff) {
167 		longer = (diff > 0) ? vector1->data : vector2->data;
168 
169 		/* Check to see if the longer number is
170 		 * lead-zero padded.  If it is not, it
171 		 * is automatically larger numerically.
172 		 */
173 		for (i = 0; i < abs(diff); i++ ) {
174 			if (longer[i] != 0)
175 				return diff;
176 		}
177 	}
178 
179 	/* lengths are the same, compare numbers */
180 	return memcmp(vector1->data, vector2->data, vector1->len);
181 }
182 
183 /*
184  * Create a key vector as described in SCTP-AUTH, Section 6.1
185  *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
186  *    parameter sent by each endpoint are concatenated as byte vectors.
187  *    These parameters include the parameter type, parameter length, and
188  *    the parameter value, but padding is omitted; all padding MUST be
189  *    removed from this concatenation before proceeding with further
190  *    computation of keys.  Parameters which were not sent are simply
191  *    omitted from the concatenation process.  The resulting two vectors
192  *    are called the two key vectors.
193  */
194 static struct sctp_auth_bytes *sctp_auth_make_key_vector(
195 			sctp_random_param_t *random,
196 			sctp_chunks_param_t *chunks,
197 			sctp_hmac_algo_param_t *hmacs,
198 			gfp_t gfp)
199 {
200 	struct sctp_auth_bytes *new;
201 	__u32	len;
202 	__u32	offset = 0;
203 	__u16	random_len, hmacs_len, chunks_len = 0;
204 
205 	random_len = ntohs(random->param_hdr.length);
206 	hmacs_len = ntohs(hmacs->param_hdr.length);
207 	if (chunks)
208 		chunks_len = ntohs(chunks->param_hdr.length);
209 
210 	len = random_len + hmacs_len + chunks_len;
211 
212 	new = sctp_auth_create_key(len, gfp);
213 	if (!new)
214 		return NULL;
215 
216 	memcpy(new->data, random, random_len);
217 	offset += random_len;
218 
219 	if (chunks) {
220 		memcpy(new->data + offset, chunks, chunks_len);
221 		offset += chunks_len;
222 	}
223 
224 	memcpy(new->data + offset, hmacs, hmacs_len);
225 
226 	return new;
227 }
228 
229 
230 /* Make a key vector based on our local parameters */
231 static struct sctp_auth_bytes *sctp_auth_make_local_vector(
232 				    const struct sctp_association *asoc,
233 				    gfp_t gfp)
234 {
235 	return sctp_auth_make_key_vector(
236 				    (sctp_random_param_t*)asoc->c.auth_random,
237 				    (sctp_chunks_param_t*)asoc->c.auth_chunks,
238 				    (sctp_hmac_algo_param_t*)asoc->c.auth_hmacs,
239 				    gfp);
240 }
241 
242 /* Make a key vector based on peer's parameters */
243 static struct sctp_auth_bytes *sctp_auth_make_peer_vector(
244 				    const struct sctp_association *asoc,
245 				    gfp_t gfp)
246 {
247 	return sctp_auth_make_key_vector(asoc->peer.peer_random,
248 					 asoc->peer.peer_chunks,
249 					 asoc->peer.peer_hmacs,
250 					 gfp);
251 }
252 
253 
254 /* Set the value of the association shared key base on the parameters
255  * given.  The algorithm is:
256  *    From the endpoint pair shared keys and the key vectors the
257  *    association shared keys are computed.  This is performed by selecting
258  *    the numerically smaller key vector and concatenating it to the
259  *    endpoint pair shared key, and then concatenating the numerically
260  *    larger key vector to that.  The result of the concatenation is the
261  *    association shared key.
262  */
263 static struct sctp_auth_bytes *sctp_auth_asoc_set_secret(
264 			struct sctp_shared_key *ep_key,
265 			struct sctp_auth_bytes *first_vector,
266 			struct sctp_auth_bytes *last_vector,
267 			gfp_t gfp)
268 {
269 	struct sctp_auth_bytes *secret;
270 	__u32 offset = 0;
271 	__u32 auth_len;
272 
273 	auth_len = first_vector->len + last_vector->len;
274 	if (ep_key->key)
275 		auth_len += ep_key->key->len;
276 
277 	secret = sctp_auth_create_key(auth_len, gfp);
278 	if (!secret)
279 		return NULL;
280 
281 	if (ep_key->key) {
282 		memcpy(secret->data, ep_key->key->data, ep_key->key->len);
283 		offset += ep_key->key->len;
284 	}
285 
286 	memcpy(secret->data + offset, first_vector->data, first_vector->len);
287 	offset += first_vector->len;
288 
289 	memcpy(secret->data + offset, last_vector->data, last_vector->len);
290 
291 	return secret;
292 }
293 
294 /* Create an association shared key.  Follow the algorithm
295  * described in SCTP-AUTH, Section 6.1
296  */
297 static struct sctp_auth_bytes *sctp_auth_asoc_create_secret(
298 				 const struct sctp_association *asoc,
299 				 struct sctp_shared_key *ep_key,
300 				 gfp_t gfp)
301 {
302 	struct sctp_auth_bytes *local_key_vector;
303 	struct sctp_auth_bytes *peer_key_vector;
304 	struct sctp_auth_bytes	*first_vector,
305 				*last_vector;
306 	struct sctp_auth_bytes	*secret = NULL;
307 	int	cmp;
308 
309 
310 	/* Now we need to build the key vectors
311 	 * SCTP-AUTH , Section 6.1
312 	 *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
313 	 *    parameter sent by each endpoint are concatenated as byte vectors.
314 	 *    These parameters include the parameter type, parameter length, and
315 	 *    the parameter value, but padding is omitted; all padding MUST be
316 	 *    removed from this concatenation before proceeding with further
317 	 *    computation of keys.  Parameters which were not sent are simply
318 	 *    omitted from the concatenation process.  The resulting two vectors
319 	 *    are called the two key vectors.
320 	 */
321 
322 	local_key_vector = sctp_auth_make_local_vector(asoc, gfp);
323 	peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp);
324 
325 	if (!peer_key_vector || !local_key_vector)
326 		goto out;
327 
328 	/* Figure out the order in which the key_vectors will be
329 	 * added to the endpoint shared key.
330 	 * SCTP-AUTH, Section 6.1:
331 	 *   This is performed by selecting the numerically smaller key
332 	 *   vector and concatenating it to the endpoint pair shared
333 	 *   key, and then concatenating the numerically larger key
334 	 *   vector to that.  If the key vectors are equal as numbers
335 	 *   but differ in length, then the concatenation order is the
336 	 *   endpoint shared key, followed by the shorter key vector,
337 	 *   followed by the longer key vector.  Otherwise, the key
338 	 *   vectors are identical, and may be concatenated to the
339 	 *   endpoint pair key in any order.
340 	 */
341 	cmp = sctp_auth_compare_vectors(local_key_vector,
342 					peer_key_vector);
343 	if (cmp < 0) {
344 		first_vector = local_key_vector;
345 		last_vector = peer_key_vector;
346 	} else {
347 		first_vector = peer_key_vector;
348 		last_vector = local_key_vector;
349 	}
350 
351 	secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector,
352 					    gfp);
353 out:
354 	sctp_auth_key_put(local_key_vector);
355 	sctp_auth_key_put(peer_key_vector);
356 
357 	return secret;
358 }
359 
360 /*
361  * Populate the association overlay list with the list
362  * from the endpoint.
363  */
364 int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep,
365 				struct sctp_association *asoc,
366 				gfp_t gfp)
367 {
368 	struct sctp_shared_key *sh_key;
369 	struct sctp_shared_key *new;
370 
371 	BUG_ON(!list_empty(&asoc->endpoint_shared_keys));
372 
373 	key_for_each(sh_key, &ep->endpoint_shared_keys) {
374 		new = sctp_auth_shkey_create(sh_key->key_id, gfp);
375 		if (!new)
376 			goto nomem;
377 
378 		new->key = sh_key->key;
379 		sctp_auth_key_hold(new->key);
380 		list_add(&new->key_list, &asoc->endpoint_shared_keys);
381 	}
382 
383 	return 0;
384 
385 nomem:
386 	sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
387 	return -ENOMEM;
388 }
389 
390 
391 /* Public interface to creat the association shared key.
392  * See code above for the algorithm.
393  */
394 int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp)
395 {
396 	struct net *net = sock_net(asoc->base.sk);
397 	struct sctp_auth_bytes	*secret;
398 	struct sctp_shared_key *ep_key;
399 
400 	/* If we don't support AUTH, or peer is not capable
401 	 * we don't need to do anything.
402 	 */
403 	if (!net->sctp.auth_enable || !asoc->peer.auth_capable)
404 		return 0;
405 
406 	/* If the key_id is non-zero and we couldn't find an
407 	 * endpoint pair shared key, we can't compute the
408 	 * secret.
409 	 * For key_id 0, endpoint pair shared key is a NULL key.
410 	 */
411 	ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id);
412 	BUG_ON(!ep_key);
413 
414 	secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
415 	if (!secret)
416 		return -ENOMEM;
417 
418 	sctp_auth_key_put(asoc->asoc_shared_key);
419 	asoc->asoc_shared_key = secret;
420 
421 	return 0;
422 }
423 
424 
425 /* Find the endpoint pair shared key based on the key_id */
426 struct sctp_shared_key *sctp_auth_get_shkey(
427 				const struct sctp_association *asoc,
428 				__u16 key_id)
429 {
430 	struct sctp_shared_key *key;
431 
432 	/* First search associations set of endpoint pair shared keys */
433 	key_for_each(key, &asoc->endpoint_shared_keys) {
434 		if (key->key_id == key_id)
435 			return key;
436 	}
437 
438 	return NULL;
439 }
440 
441 /*
442  * Initialize all the possible digest transforms that we can use.  Right now
443  * now, the supported digests are SHA1 and SHA256.  We do this here once
444  * because of the restrictiong that transforms may only be allocated in
445  * user context.  This forces us to pre-allocated all possible transforms
446  * at the endpoint init time.
447  */
448 int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp)
449 {
450 	struct net *net = sock_net(ep->base.sk);
451 	struct crypto_hash *tfm = NULL;
452 	__u16   id;
453 
454 	/* if the transforms are already allocted, we are done */
455 	if (!net->sctp.auth_enable) {
456 		ep->auth_hmacs = NULL;
457 		return 0;
458 	}
459 
460 	if (ep->auth_hmacs)
461 		return 0;
462 
463 	/* Allocated the array of pointers to transorms */
464 	ep->auth_hmacs = kzalloc(
465 			    sizeof(struct crypto_hash *) * SCTP_AUTH_NUM_HMACS,
466 			    gfp);
467 	if (!ep->auth_hmacs)
468 		return -ENOMEM;
469 
470 	for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) {
471 
472 		/* See is we support the id.  Supported IDs have name and
473 		 * length fields set, so that we can allocated and use
474 		 * them.  We can safely just check for name, for without the
475 		 * name, we can't allocate the TFM.
476 		 */
477 		if (!sctp_hmac_list[id].hmac_name)
478 			continue;
479 
480 		/* If this TFM has been allocated, we are all set */
481 		if (ep->auth_hmacs[id])
482 			continue;
483 
484 		/* Allocate the ID */
485 		tfm = crypto_alloc_hash(sctp_hmac_list[id].hmac_name, 0,
486 					CRYPTO_ALG_ASYNC);
487 		if (IS_ERR(tfm))
488 			goto out_err;
489 
490 		ep->auth_hmacs[id] = tfm;
491 	}
492 
493 	return 0;
494 
495 out_err:
496 	/* Clean up any successful allocations */
497 	sctp_auth_destroy_hmacs(ep->auth_hmacs);
498 	return -ENOMEM;
499 }
500 
501 /* Destroy the hmac tfm array */
502 void sctp_auth_destroy_hmacs(struct crypto_hash *auth_hmacs[])
503 {
504 	int i;
505 
506 	if (!auth_hmacs)
507 		return;
508 
509 	for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++)
510 	{
511 		if (auth_hmacs[i])
512 			crypto_free_hash(auth_hmacs[i]);
513 	}
514 	kfree(auth_hmacs);
515 }
516 
517 
518 struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id)
519 {
520 	return &sctp_hmac_list[hmac_id];
521 }
522 
523 /* Get an hmac description information that we can use to build
524  * the AUTH chunk
525  */
526 struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc)
527 {
528 	struct sctp_hmac_algo_param *hmacs;
529 	__u16 n_elt;
530 	__u16 id = 0;
531 	int i;
532 
533 	/* If we have a default entry, use it */
534 	if (asoc->default_hmac_id)
535 		return &sctp_hmac_list[asoc->default_hmac_id];
536 
537 	/* Since we do not have a default entry, find the first entry
538 	 * we support and return that.  Do not cache that id.
539 	 */
540 	hmacs = asoc->peer.peer_hmacs;
541 	if (!hmacs)
542 		return NULL;
543 
544 	n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
545 	for (i = 0; i < n_elt; i++) {
546 		id = ntohs(hmacs->hmac_ids[i]);
547 
548 		/* Check the id is in the supported range */
549 		if (id > SCTP_AUTH_HMAC_ID_MAX) {
550 			id = 0;
551 			continue;
552 		}
553 
554 		/* See is we support the id.  Supported IDs have name and
555 		 * length fields set, so that we can allocated and use
556 		 * them.  We can safely just check for name, for without the
557 		 * name, we can't allocate the TFM.
558 		 */
559 		if (!sctp_hmac_list[id].hmac_name) {
560 			id = 0;
561 			continue;
562 		}
563 
564 		break;
565 	}
566 
567 	if (id == 0)
568 		return NULL;
569 
570 	return &sctp_hmac_list[id];
571 }
572 
573 static int __sctp_auth_find_hmacid(__be16 *hmacs, int n_elts, __be16 hmac_id)
574 {
575 	int  found = 0;
576 	int  i;
577 
578 	for (i = 0; i < n_elts; i++) {
579 		if (hmac_id == hmacs[i]) {
580 			found = 1;
581 			break;
582 		}
583 	}
584 
585 	return found;
586 }
587 
588 /* See if the HMAC_ID is one that we claim as supported */
589 int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc,
590 				    __be16 hmac_id)
591 {
592 	struct sctp_hmac_algo_param *hmacs;
593 	__u16 n_elt;
594 
595 	if (!asoc)
596 		return 0;
597 
598 	hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs;
599 	n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
600 
601 	return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id);
602 }
603 
604 
605 /* Cache the default HMAC id.  This to follow this text from SCTP-AUTH:
606  * Section 6.1:
607  *   The receiver of a HMAC-ALGO parameter SHOULD use the first listed
608  *   algorithm it supports.
609  */
610 void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc,
611 				     struct sctp_hmac_algo_param *hmacs)
612 {
613 	struct sctp_endpoint *ep;
614 	__u16   id;
615 	int	i;
616 	int	n_params;
617 
618 	/* if the default id is already set, use it */
619 	if (asoc->default_hmac_id)
620 		return;
621 
622 	n_params = (ntohs(hmacs->param_hdr.length)
623 				- sizeof(sctp_paramhdr_t)) >> 1;
624 	ep = asoc->ep;
625 	for (i = 0; i < n_params; i++) {
626 		id = ntohs(hmacs->hmac_ids[i]);
627 
628 		/* Check the id is in the supported range */
629 		if (id > SCTP_AUTH_HMAC_ID_MAX)
630 			continue;
631 
632 		/* If this TFM has been allocated, use this id */
633 		if (ep->auth_hmacs[id]) {
634 			asoc->default_hmac_id = id;
635 			break;
636 		}
637 	}
638 }
639 
640 
641 /* Check to see if the given chunk is supposed to be authenticated */
642 static int __sctp_auth_cid(sctp_cid_t chunk, struct sctp_chunks_param *param)
643 {
644 	unsigned short len;
645 	int found = 0;
646 	int i;
647 
648 	if (!param || param->param_hdr.length == 0)
649 		return 0;
650 
651 	len = ntohs(param->param_hdr.length) - sizeof(sctp_paramhdr_t);
652 
653 	/* SCTP-AUTH, Section 3.2
654 	 *    The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH
655 	 *    chunks MUST NOT be listed in the CHUNKS parameter.  However, if
656 	 *    a CHUNKS parameter is received then the types for INIT, INIT-ACK,
657 	 *    SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored.
658 	 */
659 	for (i = 0; !found && i < len; i++) {
660 		switch (param->chunks[i]) {
661 		    case SCTP_CID_INIT:
662 		    case SCTP_CID_INIT_ACK:
663 		    case SCTP_CID_SHUTDOWN_COMPLETE:
664 		    case SCTP_CID_AUTH:
665 			break;
666 
667 		    default:
668 			if (param->chunks[i] == chunk)
669 			    found = 1;
670 			break;
671 		}
672 	}
673 
674 	return found;
675 }
676 
677 /* Check if peer requested that this chunk is authenticated */
678 int sctp_auth_send_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
679 {
680 	struct net  *net;
681 	if (!asoc)
682 		return 0;
683 
684 	net = sock_net(asoc->base.sk);
685 	if (!net->sctp.auth_enable || !asoc->peer.auth_capable)
686 		return 0;
687 
688 	return __sctp_auth_cid(chunk, asoc->peer.peer_chunks);
689 }
690 
691 /* Check if we requested that peer authenticate this chunk. */
692 int sctp_auth_recv_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
693 {
694 	struct net *net;
695 	if (!asoc)
696 		return 0;
697 
698 	net = sock_net(asoc->base.sk);
699 	if (!net->sctp.auth_enable)
700 		return 0;
701 
702 	return __sctp_auth_cid(chunk,
703 			      (struct sctp_chunks_param *)asoc->c.auth_chunks);
704 }
705 
706 /* SCTP-AUTH: Section 6.2:
707  *    The sender MUST calculate the MAC as described in RFC2104 [2] using
708  *    the hash function H as described by the MAC Identifier and the shared
709  *    association key K based on the endpoint pair shared key described by
710  *    the shared key identifier.  The 'data' used for the computation of
711  *    the AUTH-chunk is given by the AUTH chunk with its HMAC field set to
712  *    zero (as shown in Figure 6) followed by all chunks that are placed
713  *    after the AUTH chunk in the SCTP packet.
714  */
715 void sctp_auth_calculate_hmac(const struct sctp_association *asoc,
716 			      struct sk_buff *skb,
717 			      struct sctp_auth_chunk *auth,
718 			      gfp_t gfp)
719 {
720 	struct scatterlist sg;
721 	struct hash_desc desc;
722 	struct sctp_auth_bytes *asoc_key;
723 	__u16 key_id, hmac_id;
724 	__u8 *digest;
725 	unsigned char *end;
726 	int free_key = 0;
727 
728 	/* Extract the info we need:
729 	 * - hmac id
730 	 * - key id
731 	 */
732 	key_id = ntohs(auth->auth_hdr.shkey_id);
733 	hmac_id = ntohs(auth->auth_hdr.hmac_id);
734 
735 	if (key_id == asoc->active_key_id)
736 		asoc_key = asoc->asoc_shared_key;
737 	else {
738 		struct sctp_shared_key *ep_key;
739 
740 		ep_key = sctp_auth_get_shkey(asoc, key_id);
741 		if (!ep_key)
742 			return;
743 
744 		asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
745 		if (!asoc_key)
746 			return;
747 
748 		free_key = 1;
749 	}
750 
751 	/* set up scatter list */
752 	end = skb_tail_pointer(skb);
753 	sg_init_one(&sg, auth, end - (unsigned char *)auth);
754 
755 	desc.tfm = asoc->ep->auth_hmacs[hmac_id];
756 	desc.flags = 0;
757 
758 	digest = auth->auth_hdr.hmac;
759 	if (crypto_hash_setkey(desc.tfm, &asoc_key->data[0], asoc_key->len))
760 		goto free;
761 
762 	crypto_hash_digest(&desc, &sg, sg.length, digest);
763 
764 free:
765 	if (free_key)
766 		sctp_auth_key_put(asoc_key);
767 }
768 
769 /* API Helpers */
770 
771 /* Add a chunk to the endpoint authenticated chunk list */
772 int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id)
773 {
774 	struct sctp_chunks_param *p = ep->auth_chunk_list;
775 	__u16 nchunks;
776 	__u16 param_len;
777 
778 	/* If this chunk is already specified, we are done */
779 	if (__sctp_auth_cid(chunk_id, p))
780 		return 0;
781 
782 	/* Check if we can add this chunk to the array */
783 	param_len = ntohs(p->param_hdr.length);
784 	nchunks = param_len - sizeof(sctp_paramhdr_t);
785 	if (nchunks == SCTP_NUM_CHUNK_TYPES)
786 		return -EINVAL;
787 
788 	p->chunks[nchunks] = chunk_id;
789 	p->param_hdr.length = htons(param_len + 1);
790 	return 0;
791 }
792 
793 /* Add hmac identifires to the endpoint list of supported hmac ids */
794 int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep,
795 			   struct sctp_hmacalgo *hmacs)
796 {
797 	int has_sha1 = 0;
798 	__u16 id;
799 	int i;
800 
801 	/* Scan the list looking for unsupported id.  Also make sure that
802 	 * SHA1 is specified.
803 	 */
804 	for (i = 0; i < hmacs->shmac_num_idents; i++) {
805 		id = hmacs->shmac_idents[i];
806 
807 		if (id > SCTP_AUTH_HMAC_ID_MAX)
808 			return -EOPNOTSUPP;
809 
810 		if (SCTP_AUTH_HMAC_ID_SHA1 == id)
811 			has_sha1 = 1;
812 
813 		if (!sctp_hmac_list[id].hmac_name)
814 			return -EOPNOTSUPP;
815 	}
816 
817 	if (!has_sha1)
818 		return -EINVAL;
819 
820 	memcpy(ep->auth_hmacs_list->hmac_ids, &hmacs->shmac_idents[0],
821 		hmacs->shmac_num_idents * sizeof(__u16));
822 	ep->auth_hmacs_list->param_hdr.length = htons(sizeof(sctp_paramhdr_t) +
823 				hmacs->shmac_num_idents * sizeof(__u16));
824 	return 0;
825 }
826 
827 /* Set a new shared key on either endpoint or association.  If the
828  * the key with a same ID already exists, replace the key (remove the
829  * old key and add a new one).
830  */
831 int sctp_auth_set_key(struct sctp_endpoint *ep,
832 		      struct sctp_association *asoc,
833 		      struct sctp_authkey *auth_key)
834 {
835 	struct sctp_shared_key *cur_key = NULL;
836 	struct sctp_auth_bytes *key;
837 	struct list_head *sh_keys;
838 	int replace = 0;
839 
840 	/* Try to find the given key id to see if
841 	 * we are doing a replace, or adding a new key
842 	 */
843 	if (asoc)
844 		sh_keys = &asoc->endpoint_shared_keys;
845 	else
846 		sh_keys = &ep->endpoint_shared_keys;
847 
848 	key_for_each(cur_key, sh_keys) {
849 		if (cur_key->key_id == auth_key->sca_keynumber) {
850 			replace = 1;
851 			break;
852 		}
853 	}
854 
855 	/* If we are not replacing a key id, we need to allocate
856 	 * a shared key.
857 	 */
858 	if (!replace) {
859 		cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber,
860 						 GFP_KERNEL);
861 		if (!cur_key)
862 			return -ENOMEM;
863 	}
864 
865 	/* Create a new key data based on the info passed in */
866 	key = sctp_auth_create_key(auth_key->sca_keylength, GFP_KERNEL);
867 	if (!key)
868 		goto nomem;
869 
870 	memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylength);
871 
872 	/* If we are replacing, remove the old keys data from the
873 	 * key id.  If we are adding new key id, add it to the
874 	 * list.
875 	 */
876 	if (replace)
877 		sctp_auth_key_put(cur_key->key);
878 	else
879 		list_add(&cur_key->key_list, sh_keys);
880 
881 	cur_key->key = key;
882 	sctp_auth_key_hold(key);
883 
884 	return 0;
885 nomem:
886 	if (!replace)
887 		sctp_auth_shkey_free(cur_key);
888 
889 	return -ENOMEM;
890 }
891 
892 int sctp_auth_set_active_key(struct sctp_endpoint *ep,
893 			     struct sctp_association *asoc,
894 			     __u16  key_id)
895 {
896 	struct sctp_shared_key *key;
897 	struct list_head *sh_keys;
898 	int found = 0;
899 
900 	/* The key identifier MUST correst to an existing key */
901 	if (asoc)
902 		sh_keys = &asoc->endpoint_shared_keys;
903 	else
904 		sh_keys = &ep->endpoint_shared_keys;
905 
906 	key_for_each(key, sh_keys) {
907 		if (key->key_id == key_id) {
908 			found = 1;
909 			break;
910 		}
911 	}
912 
913 	if (!found)
914 		return -EINVAL;
915 
916 	if (asoc) {
917 		asoc->active_key_id = key_id;
918 		sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL);
919 	} else
920 		ep->active_key_id = key_id;
921 
922 	return 0;
923 }
924 
925 int sctp_auth_del_key_id(struct sctp_endpoint *ep,
926 			 struct sctp_association *asoc,
927 			 __u16  key_id)
928 {
929 	struct sctp_shared_key *key;
930 	struct list_head *sh_keys;
931 	int found = 0;
932 
933 	/* The key identifier MUST NOT be the current active key
934 	 * The key identifier MUST correst to an existing key
935 	 */
936 	if (asoc) {
937 		if (asoc->active_key_id == key_id)
938 			return -EINVAL;
939 
940 		sh_keys = &asoc->endpoint_shared_keys;
941 	} else {
942 		if (ep->active_key_id == key_id)
943 			return -EINVAL;
944 
945 		sh_keys = &ep->endpoint_shared_keys;
946 	}
947 
948 	key_for_each(key, sh_keys) {
949 		if (key->key_id == key_id) {
950 			found = 1;
951 			break;
952 		}
953 	}
954 
955 	if (!found)
956 		return -EINVAL;
957 
958 	/* Delete the shared key */
959 	list_del_init(&key->key_list);
960 	sctp_auth_shkey_free(key);
961 
962 	return 0;
963 }
964