1 /* SCTP kernel implementation 2 * (C) Copyright 2007 Hewlett-Packard Development Company, L.P. 3 * 4 * This file is part of the SCTP kernel implementation 5 * 6 * This SCTP implementation is free software; 7 * you can redistribute it and/or modify it under the terms of 8 * the GNU General Public License as published by 9 * the Free Software Foundation; either version 2, or (at your option) 10 * any later version. 11 * 12 * This SCTP implementation is distributed in the hope that it 13 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 14 * ************************ 15 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 16 * See the GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with GNU CC; see the file COPYING. If not, write to 20 * the Free Software Foundation, 59 Temple Place - Suite 330, 21 * Boston, MA 02111-1307, USA. 22 * 23 * Please send any bug reports or fixes you make to the 24 * email address(es): 25 * lksctp developers <linux-sctp@vger.kernel.org> 26 * 27 * Written or modified by: 28 * Vlad Yasevich <vladislav.yasevich@hp.com> 29 */ 30 31 #include <linux/slab.h> 32 #include <linux/types.h> 33 #include <linux/crypto.h> 34 #include <linux/scatterlist.h> 35 #include <net/sctp/sctp.h> 36 #include <net/sctp/auth.h> 37 38 static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = { 39 { 40 /* id 0 is reserved. as all 0 */ 41 .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0, 42 }, 43 { 44 .hmac_id = SCTP_AUTH_HMAC_ID_SHA1, 45 .hmac_name="hmac(sha1)", 46 .hmac_len = SCTP_SHA1_SIG_SIZE, 47 }, 48 { 49 /* id 2 is reserved as well */ 50 .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2, 51 }, 52 #if defined (CONFIG_CRYPTO_SHA256) || defined (CONFIG_CRYPTO_SHA256_MODULE) 53 { 54 .hmac_id = SCTP_AUTH_HMAC_ID_SHA256, 55 .hmac_name="hmac(sha256)", 56 .hmac_len = SCTP_SHA256_SIG_SIZE, 57 } 58 #endif 59 }; 60 61 62 void sctp_auth_key_put(struct sctp_auth_bytes *key) 63 { 64 if (!key) 65 return; 66 67 if (atomic_dec_and_test(&key->refcnt)) { 68 kzfree(key); 69 SCTP_DBG_OBJCNT_DEC(keys); 70 } 71 } 72 73 /* Create a new key structure of a given length */ 74 static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp) 75 { 76 struct sctp_auth_bytes *key; 77 78 /* Verify that we are not going to overflow INT_MAX */ 79 if (key_len > (INT_MAX - sizeof(struct sctp_auth_bytes))) 80 return NULL; 81 82 /* Allocate the shared key */ 83 key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp); 84 if (!key) 85 return NULL; 86 87 key->len = key_len; 88 atomic_set(&key->refcnt, 1); 89 SCTP_DBG_OBJCNT_INC(keys); 90 91 return key; 92 } 93 94 /* Create a new shared key container with a give key id */ 95 struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp) 96 { 97 struct sctp_shared_key *new; 98 99 /* Allocate the shared key container */ 100 new = kzalloc(sizeof(struct sctp_shared_key), gfp); 101 if (!new) 102 return NULL; 103 104 INIT_LIST_HEAD(&new->key_list); 105 new->key_id = key_id; 106 107 return new; 108 } 109 110 /* Free the shared key structure */ 111 static void sctp_auth_shkey_free(struct sctp_shared_key *sh_key) 112 { 113 BUG_ON(!list_empty(&sh_key->key_list)); 114 sctp_auth_key_put(sh_key->key); 115 sh_key->key = NULL; 116 kfree(sh_key); 117 } 118 119 /* Destroy the entire key list. This is done during the 120 * associon and endpoint free process. 121 */ 122 void sctp_auth_destroy_keys(struct list_head *keys) 123 { 124 struct sctp_shared_key *ep_key; 125 struct sctp_shared_key *tmp; 126 127 if (list_empty(keys)) 128 return; 129 130 key_for_each_safe(ep_key, tmp, keys) { 131 list_del_init(&ep_key->key_list); 132 sctp_auth_shkey_free(ep_key); 133 } 134 } 135 136 /* Compare two byte vectors as numbers. Return values 137 * are: 138 * 0 - vectors are equal 139 * < 0 - vector 1 is smaller than vector2 140 * > 0 - vector 1 is greater than vector2 141 * 142 * Algorithm is: 143 * This is performed by selecting the numerically smaller key vector... 144 * If the key vectors are equal as numbers but differ in length ... 145 * the shorter vector is considered smaller 146 * 147 * Examples (with small values): 148 * 000123456789 > 123456789 (first number is longer) 149 * 000123456789 < 234567891 (second number is larger numerically) 150 * 123456789 > 2345678 (first number is both larger & longer) 151 */ 152 static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1, 153 struct sctp_auth_bytes *vector2) 154 { 155 int diff; 156 int i; 157 const __u8 *longer; 158 159 diff = vector1->len - vector2->len; 160 if (diff) { 161 longer = (diff > 0) ? vector1->data : vector2->data; 162 163 /* Check to see if the longer number is 164 * lead-zero padded. If it is not, it 165 * is automatically larger numerically. 166 */ 167 for (i = 0; i < abs(diff); i++ ) { 168 if (longer[i] != 0) 169 return diff; 170 } 171 } 172 173 /* lengths are the same, compare numbers */ 174 return memcmp(vector1->data, vector2->data, vector1->len); 175 } 176 177 /* 178 * Create a key vector as described in SCTP-AUTH, Section 6.1 179 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO 180 * parameter sent by each endpoint are concatenated as byte vectors. 181 * These parameters include the parameter type, parameter length, and 182 * the parameter value, but padding is omitted; all padding MUST be 183 * removed from this concatenation before proceeding with further 184 * computation of keys. Parameters which were not sent are simply 185 * omitted from the concatenation process. The resulting two vectors 186 * are called the two key vectors. 187 */ 188 static struct sctp_auth_bytes *sctp_auth_make_key_vector( 189 sctp_random_param_t *random, 190 sctp_chunks_param_t *chunks, 191 sctp_hmac_algo_param_t *hmacs, 192 gfp_t gfp) 193 { 194 struct sctp_auth_bytes *new; 195 __u32 len; 196 __u32 offset = 0; 197 __u16 random_len, hmacs_len, chunks_len = 0; 198 199 random_len = ntohs(random->param_hdr.length); 200 hmacs_len = ntohs(hmacs->param_hdr.length); 201 if (chunks) 202 chunks_len = ntohs(chunks->param_hdr.length); 203 204 len = random_len + hmacs_len + chunks_len; 205 206 new = sctp_auth_create_key(len, gfp); 207 if (!new) 208 return NULL; 209 210 memcpy(new->data, random, random_len); 211 offset += random_len; 212 213 if (chunks) { 214 memcpy(new->data + offset, chunks, chunks_len); 215 offset += chunks_len; 216 } 217 218 memcpy(new->data + offset, hmacs, hmacs_len); 219 220 return new; 221 } 222 223 224 /* Make a key vector based on our local parameters */ 225 static struct sctp_auth_bytes *sctp_auth_make_local_vector( 226 const struct sctp_association *asoc, 227 gfp_t gfp) 228 { 229 return sctp_auth_make_key_vector( 230 (sctp_random_param_t*)asoc->c.auth_random, 231 (sctp_chunks_param_t*)asoc->c.auth_chunks, 232 (sctp_hmac_algo_param_t*)asoc->c.auth_hmacs, 233 gfp); 234 } 235 236 /* Make a key vector based on peer's parameters */ 237 static struct sctp_auth_bytes *sctp_auth_make_peer_vector( 238 const struct sctp_association *asoc, 239 gfp_t gfp) 240 { 241 return sctp_auth_make_key_vector(asoc->peer.peer_random, 242 asoc->peer.peer_chunks, 243 asoc->peer.peer_hmacs, 244 gfp); 245 } 246 247 248 /* Set the value of the association shared key base on the parameters 249 * given. The algorithm is: 250 * From the endpoint pair shared keys and the key vectors the 251 * association shared keys are computed. This is performed by selecting 252 * the numerically smaller key vector and concatenating it to the 253 * endpoint pair shared key, and then concatenating the numerically 254 * larger key vector to that. The result of the concatenation is the 255 * association shared key. 256 */ 257 static struct sctp_auth_bytes *sctp_auth_asoc_set_secret( 258 struct sctp_shared_key *ep_key, 259 struct sctp_auth_bytes *first_vector, 260 struct sctp_auth_bytes *last_vector, 261 gfp_t gfp) 262 { 263 struct sctp_auth_bytes *secret; 264 __u32 offset = 0; 265 __u32 auth_len; 266 267 auth_len = first_vector->len + last_vector->len; 268 if (ep_key->key) 269 auth_len += ep_key->key->len; 270 271 secret = sctp_auth_create_key(auth_len, gfp); 272 if (!secret) 273 return NULL; 274 275 if (ep_key->key) { 276 memcpy(secret->data, ep_key->key->data, ep_key->key->len); 277 offset += ep_key->key->len; 278 } 279 280 memcpy(secret->data + offset, first_vector->data, first_vector->len); 281 offset += first_vector->len; 282 283 memcpy(secret->data + offset, last_vector->data, last_vector->len); 284 285 return secret; 286 } 287 288 /* Create an association shared key. Follow the algorithm 289 * described in SCTP-AUTH, Section 6.1 290 */ 291 static struct sctp_auth_bytes *sctp_auth_asoc_create_secret( 292 const struct sctp_association *asoc, 293 struct sctp_shared_key *ep_key, 294 gfp_t gfp) 295 { 296 struct sctp_auth_bytes *local_key_vector; 297 struct sctp_auth_bytes *peer_key_vector; 298 struct sctp_auth_bytes *first_vector, 299 *last_vector; 300 struct sctp_auth_bytes *secret = NULL; 301 int cmp; 302 303 304 /* Now we need to build the key vectors 305 * SCTP-AUTH , Section 6.1 306 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO 307 * parameter sent by each endpoint are concatenated as byte vectors. 308 * These parameters include the parameter type, parameter length, and 309 * the parameter value, but padding is omitted; all padding MUST be 310 * removed from this concatenation before proceeding with further 311 * computation of keys. Parameters which were not sent are simply 312 * omitted from the concatenation process. The resulting two vectors 313 * are called the two key vectors. 314 */ 315 316 local_key_vector = sctp_auth_make_local_vector(asoc, gfp); 317 peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp); 318 319 if (!peer_key_vector || !local_key_vector) 320 goto out; 321 322 /* Figure out the order in which the key_vectors will be 323 * added to the endpoint shared key. 324 * SCTP-AUTH, Section 6.1: 325 * This is performed by selecting the numerically smaller key 326 * vector and concatenating it to the endpoint pair shared 327 * key, and then concatenating the numerically larger key 328 * vector to that. If the key vectors are equal as numbers 329 * but differ in length, then the concatenation order is the 330 * endpoint shared key, followed by the shorter key vector, 331 * followed by the longer key vector. Otherwise, the key 332 * vectors are identical, and may be concatenated to the 333 * endpoint pair key in any order. 334 */ 335 cmp = sctp_auth_compare_vectors(local_key_vector, 336 peer_key_vector); 337 if (cmp < 0) { 338 first_vector = local_key_vector; 339 last_vector = peer_key_vector; 340 } else { 341 first_vector = peer_key_vector; 342 last_vector = local_key_vector; 343 } 344 345 secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector, 346 gfp); 347 out: 348 sctp_auth_key_put(local_key_vector); 349 sctp_auth_key_put(peer_key_vector); 350 351 return secret; 352 } 353 354 /* 355 * Populate the association overlay list with the list 356 * from the endpoint. 357 */ 358 int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep, 359 struct sctp_association *asoc, 360 gfp_t gfp) 361 { 362 struct sctp_shared_key *sh_key; 363 struct sctp_shared_key *new; 364 365 BUG_ON(!list_empty(&asoc->endpoint_shared_keys)); 366 367 key_for_each(sh_key, &ep->endpoint_shared_keys) { 368 new = sctp_auth_shkey_create(sh_key->key_id, gfp); 369 if (!new) 370 goto nomem; 371 372 new->key = sh_key->key; 373 sctp_auth_key_hold(new->key); 374 list_add(&new->key_list, &asoc->endpoint_shared_keys); 375 } 376 377 return 0; 378 379 nomem: 380 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys); 381 return -ENOMEM; 382 } 383 384 385 /* Public interface to creat the association shared key. 386 * See code above for the algorithm. 387 */ 388 int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp) 389 { 390 struct net *net = sock_net(asoc->base.sk); 391 struct sctp_auth_bytes *secret; 392 struct sctp_shared_key *ep_key; 393 394 /* If we don't support AUTH, or peer is not capable 395 * we don't need to do anything. 396 */ 397 if (!net->sctp.auth_enable || !asoc->peer.auth_capable) 398 return 0; 399 400 /* If the key_id is non-zero and we couldn't find an 401 * endpoint pair shared key, we can't compute the 402 * secret. 403 * For key_id 0, endpoint pair shared key is a NULL key. 404 */ 405 ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id); 406 BUG_ON(!ep_key); 407 408 secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp); 409 if (!secret) 410 return -ENOMEM; 411 412 sctp_auth_key_put(asoc->asoc_shared_key); 413 asoc->asoc_shared_key = secret; 414 415 return 0; 416 } 417 418 419 /* Find the endpoint pair shared key based on the key_id */ 420 struct sctp_shared_key *sctp_auth_get_shkey( 421 const struct sctp_association *asoc, 422 __u16 key_id) 423 { 424 struct sctp_shared_key *key; 425 426 /* First search associations set of endpoint pair shared keys */ 427 key_for_each(key, &asoc->endpoint_shared_keys) { 428 if (key->key_id == key_id) 429 return key; 430 } 431 432 return NULL; 433 } 434 435 /* 436 * Initialize all the possible digest transforms that we can use. Right now 437 * now, the supported digests are SHA1 and SHA256. We do this here once 438 * because of the restrictiong that transforms may only be allocated in 439 * user context. This forces us to pre-allocated all possible transforms 440 * at the endpoint init time. 441 */ 442 int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp) 443 { 444 struct net *net = sock_net(ep->base.sk); 445 struct crypto_hash *tfm = NULL; 446 __u16 id; 447 448 /* if the transforms are already allocted, we are done */ 449 if (!net->sctp.auth_enable) { 450 ep->auth_hmacs = NULL; 451 return 0; 452 } 453 454 if (ep->auth_hmacs) 455 return 0; 456 457 /* Allocated the array of pointers to transorms */ 458 ep->auth_hmacs = kzalloc( 459 sizeof(struct crypto_hash *) * SCTP_AUTH_NUM_HMACS, 460 gfp); 461 if (!ep->auth_hmacs) 462 return -ENOMEM; 463 464 for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) { 465 466 /* See is we support the id. Supported IDs have name and 467 * length fields set, so that we can allocated and use 468 * them. We can safely just check for name, for without the 469 * name, we can't allocate the TFM. 470 */ 471 if (!sctp_hmac_list[id].hmac_name) 472 continue; 473 474 /* If this TFM has been allocated, we are all set */ 475 if (ep->auth_hmacs[id]) 476 continue; 477 478 /* Allocate the ID */ 479 tfm = crypto_alloc_hash(sctp_hmac_list[id].hmac_name, 0, 480 CRYPTO_ALG_ASYNC); 481 if (IS_ERR(tfm)) 482 goto out_err; 483 484 ep->auth_hmacs[id] = tfm; 485 } 486 487 return 0; 488 489 out_err: 490 /* Clean up any successful allocations */ 491 sctp_auth_destroy_hmacs(ep->auth_hmacs); 492 return -ENOMEM; 493 } 494 495 /* Destroy the hmac tfm array */ 496 void sctp_auth_destroy_hmacs(struct crypto_hash *auth_hmacs[]) 497 { 498 int i; 499 500 if (!auth_hmacs) 501 return; 502 503 for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++) 504 { 505 if (auth_hmacs[i]) 506 crypto_free_hash(auth_hmacs[i]); 507 } 508 kfree(auth_hmacs); 509 } 510 511 512 struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id) 513 { 514 return &sctp_hmac_list[hmac_id]; 515 } 516 517 /* Get an hmac description information that we can use to build 518 * the AUTH chunk 519 */ 520 struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc) 521 { 522 struct sctp_hmac_algo_param *hmacs; 523 __u16 n_elt; 524 __u16 id = 0; 525 int i; 526 527 /* If we have a default entry, use it */ 528 if (asoc->default_hmac_id) 529 return &sctp_hmac_list[asoc->default_hmac_id]; 530 531 /* Since we do not have a default entry, find the first entry 532 * we support and return that. Do not cache that id. 533 */ 534 hmacs = asoc->peer.peer_hmacs; 535 if (!hmacs) 536 return NULL; 537 538 n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1; 539 for (i = 0; i < n_elt; i++) { 540 id = ntohs(hmacs->hmac_ids[i]); 541 542 /* Check the id is in the supported range. And 543 * see if we support the id. Supported IDs have name and 544 * length fields set, so that we can allocate and use 545 * them. We can safely just check for name, for without the 546 * name, we can't allocate the TFM. 547 */ 548 if (id > SCTP_AUTH_HMAC_ID_MAX || 549 !sctp_hmac_list[id].hmac_name) { 550 id = 0; 551 continue; 552 } 553 554 break; 555 } 556 557 if (id == 0) 558 return NULL; 559 560 return &sctp_hmac_list[id]; 561 } 562 563 static int __sctp_auth_find_hmacid(__be16 *hmacs, int n_elts, __be16 hmac_id) 564 { 565 int found = 0; 566 int i; 567 568 for (i = 0; i < n_elts; i++) { 569 if (hmac_id == hmacs[i]) { 570 found = 1; 571 break; 572 } 573 } 574 575 return found; 576 } 577 578 /* See if the HMAC_ID is one that we claim as supported */ 579 int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc, 580 __be16 hmac_id) 581 { 582 struct sctp_hmac_algo_param *hmacs; 583 __u16 n_elt; 584 585 if (!asoc) 586 return 0; 587 588 hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs; 589 n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1; 590 591 return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id); 592 } 593 594 595 /* Cache the default HMAC id. This to follow this text from SCTP-AUTH: 596 * Section 6.1: 597 * The receiver of a HMAC-ALGO parameter SHOULD use the first listed 598 * algorithm it supports. 599 */ 600 void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc, 601 struct sctp_hmac_algo_param *hmacs) 602 { 603 struct sctp_endpoint *ep; 604 __u16 id; 605 int i; 606 int n_params; 607 608 /* if the default id is already set, use it */ 609 if (asoc->default_hmac_id) 610 return; 611 612 n_params = (ntohs(hmacs->param_hdr.length) 613 - sizeof(sctp_paramhdr_t)) >> 1; 614 ep = asoc->ep; 615 for (i = 0; i < n_params; i++) { 616 id = ntohs(hmacs->hmac_ids[i]); 617 618 /* Check the id is in the supported range */ 619 if (id > SCTP_AUTH_HMAC_ID_MAX) 620 continue; 621 622 /* If this TFM has been allocated, use this id */ 623 if (ep->auth_hmacs[id]) { 624 asoc->default_hmac_id = id; 625 break; 626 } 627 } 628 } 629 630 631 /* Check to see if the given chunk is supposed to be authenticated */ 632 static int __sctp_auth_cid(sctp_cid_t chunk, struct sctp_chunks_param *param) 633 { 634 unsigned short len; 635 int found = 0; 636 int i; 637 638 if (!param || param->param_hdr.length == 0) 639 return 0; 640 641 len = ntohs(param->param_hdr.length) - sizeof(sctp_paramhdr_t); 642 643 /* SCTP-AUTH, Section 3.2 644 * The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH 645 * chunks MUST NOT be listed in the CHUNKS parameter. However, if 646 * a CHUNKS parameter is received then the types for INIT, INIT-ACK, 647 * SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored. 648 */ 649 for (i = 0; !found && i < len; i++) { 650 switch (param->chunks[i]) { 651 case SCTP_CID_INIT: 652 case SCTP_CID_INIT_ACK: 653 case SCTP_CID_SHUTDOWN_COMPLETE: 654 case SCTP_CID_AUTH: 655 break; 656 657 default: 658 if (param->chunks[i] == chunk) 659 found = 1; 660 break; 661 } 662 } 663 664 return found; 665 } 666 667 /* Check if peer requested that this chunk is authenticated */ 668 int sctp_auth_send_cid(sctp_cid_t chunk, const struct sctp_association *asoc) 669 { 670 struct net *net; 671 if (!asoc) 672 return 0; 673 674 net = sock_net(asoc->base.sk); 675 if (!net->sctp.auth_enable || !asoc->peer.auth_capable) 676 return 0; 677 678 return __sctp_auth_cid(chunk, asoc->peer.peer_chunks); 679 } 680 681 /* Check if we requested that peer authenticate this chunk. */ 682 int sctp_auth_recv_cid(sctp_cid_t chunk, const struct sctp_association *asoc) 683 { 684 struct net *net; 685 if (!asoc) 686 return 0; 687 688 net = sock_net(asoc->base.sk); 689 if (!net->sctp.auth_enable) 690 return 0; 691 692 return __sctp_auth_cid(chunk, 693 (struct sctp_chunks_param *)asoc->c.auth_chunks); 694 } 695 696 /* SCTP-AUTH: Section 6.2: 697 * The sender MUST calculate the MAC as described in RFC2104 [2] using 698 * the hash function H as described by the MAC Identifier and the shared 699 * association key K based on the endpoint pair shared key described by 700 * the shared key identifier. The 'data' used for the computation of 701 * the AUTH-chunk is given by the AUTH chunk with its HMAC field set to 702 * zero (as shown in Figure 6) followed by all chunks that are placed 703 * after the AUTH chunk in the SCTP packet. 704 */ 705 void sctp_auth_calculate_hmac(const struct sctp_association *asoc, 706 struct sk_buff *skb, 707 struct sctp_auth_chunk *auth, 708 gfp_t gfp) 709 { 710 struct scatterlist sg; 711 struct hash_desc desc; 712 struct sctp_auth_bytes *asoc_key; 713 __u16 key_id, hmac_id; 714 __u8 *digest; 715 unsigned char *end; 716 int free_key = 0; 717 718 /* Extract the info we need: 719 * - hmac id 720 * - key id 721 */ 722 key_id = ntohs(auth->auth_hdr.shkey_id); 723 hmac_id = ntohs(auth->auth_hdr.hmac_id); 724 725 if (key_id == asoc->active_key_id) 726 asoc_key = asoc->asoc_shared_key; 727 else { 728 struct sctp_shared_key *ep_key; 729 730 ep_key = sctp_auth_get_shkey(asoc, key_id); 731 if (!ep_key) 732 return; 733 734 asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp); 735 if (!asoc_key) 736 return; 737 738 free_key = 1; 739 } 740 741 /* set up scatter list */ 742 end = skb_tail_pointer(skb); 743 sg_init_one(&sg, auth, end - (unsigned char *)auth); 744 745 desc.tfm = asoc->ep->auth_hmacs[hmac_id]; 746 desc.flags = 0; 747 748 digest = auth->auth_hdr.hmac; 749 if (crypto_hash_setkey(desc.tfm, &asoc_key->data[0], asoc_key->len)) 750 goto free; 751 752 crypto_hash_digest(&desc, &sg, sg.length, digest); 753 754 free: 755 if (free_key) 756 sctp_auth_key_put(asoc_key); 757 } 758 759 /* API Helpers */ 760 761 /* Add a chunk to the endpoint authenticated chunk list */ 762 int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id) 763 { 764 struct sctp_chunks_param *p = ep->auth_chunk_list; 765 __u16 nchunks; 766 __u16 param_len; 767 768 /* If this chunk is already specified, we are done */ 769 if (__sctp_auth_cid(chunk_id, p)) 770 return 0; 771 772 /* Check if we can add this chunk to the array */ 773 param_len = ntohs(p->param_hdr.length); 774 nchunks = param_len - sizeof(sctp_paramhdr_t); 775 if (nchunks == SCTP_NUM_CHUNK_TYPES) 776 return -EINVAL; 777 778 p->chunks[nchunks] = chunk_id; 779 p->param_hdr.length = htons(param_len + 1); 780 return 0; 781 } 782 783 /* Add hmac identifires to the endpoint list of supported hmac ids */ 784 int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep, 785 struct sctp_hmacalgo *hmacs) 786 { 787 int has_sha1 = 0; 788 __u16 id; 789 int i; 790 791 /* Scan the list looking for unsupported id. Also make sure that 792 * SHA1 is specified. 793 */ 794 for (i = 0; i < hmacs->shmac_num_idents; i++) { 795 id = hmacs->shmac_idents[i]; 796 797 if (id > SCTP_AUTH_HMAC_ID_MAX) 798 return -EOPNOTSUPP; 799 800 if (SCTP_AUTH_HMAC_ID_SHA1 == id) 801 has_sha1 = 1; 802 803 if (!sctp_hmac_list[id].hmac_name) 804 return -EOPNOTSUPP; 805 } 806 807 if (!has_sha1) 808 return -EINVAL; 809 810 memcpy(ep->auth_hmacs_list->hmac_ids, &hmacs->shmac_idents[0], 811 hmacs->shmac_num_idents * sizeof(__u16)); 812 ep->auth_hmacs_list->param_hdr.length = htons(sizeof(sctp_paramhdr_t) + 813 hmacs->shmac_num_idents * sizeof(__u16)); 814 return 0; 815 } 816 817 /* Set a new shared key on either endpoint or association. If the 818 * the key with a same ID already exists, replace the key (remove the 819 * old key and add a new one). 820 */ 821 int sctp_auth_set_key(struct sctp_endpoint *ep, 822 struct sctp_association *asoc, 823 struct sctp_authkey *auth_key) 824 { 825 struct sctp_shared_key *cur_key = NULL; 826 struct sctp_auth_bytes *key; 827 struct list_head *sh_keys; 828 int replace = 0; 829 830 /* Try to find the given key id to see if 831 * we are doing a replace, or adding a new key 832 */ 833 if (asoc) 834 sh_keys = &asoc->endpoint_shared_keys; 835 else 836 sh_keys = &ep->endpoint_shared_keys; 837 838 key_for_each(cur_key, sh_keys) { 839 if (cur_key->key_id == auth_key->sca_keynumber) { 840 replace = 1; 841 break; 842 } 843 } 844 845 /* If we are not replacing a key id, we need to allocate 846 * a shared key. 847 */ 848 if (!replace) { 849 cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber, 850 GFP_KERNEL); 851 if (!cur_key) 852 return -ENOMEM; 853 } 854 855 /* Create a new key data based on the info passed in */ 856 key = sctp_auth_create_key(auth_key->sca_keylength, GFP_KERNEL); 857 if (!key) 858 goto nomem; 859 860 memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylength); 861 862 /* If we are replacing, remove the old keys data from the 863 * key id. If we are adding new key id, add it to the 864 * list. 865 */ 866 if (replace) 867 sctp_auth_key_put(cur_key->key); 868 else 869 list_add(&cur_key->key_list, sh_keys); 870 871 cur_key->key = key; 872 sctp_auth_key_hold(key); 873 874 return 0; 875 nomem: 876 if (!replace) 877 sctp_auth_shkey_free(cur_key); 878 879 return -ENOMEM; 880 } 881 882 int sctp_auth_set_active_key(struct sctp_endpoint *ep, 883 struct sctp_association *asoc, 884 __u16 key_id) 885 { 886 struct sctp_shared_key *key; 887 struct list_head *sh_keys; 888 int found = 0; 889 890 /* The key identifier MUST correst to an existing key */ 891 if (asoc) 892 sh_keys = &asoc->endpoint_shared_keys; 893 else 894 sh_keys = &ep->endpoint_shared_keys; 895 896 key_for_each(key, sh_keys) { 897 if (key->key_id == key_id) { 898 found = 1; 899 break; 900 } 901 } 902 903 if (!found) 904 return -EINVAL; 905 906 if (asoc) { 907 asoc->active_key_id = key_id; 908 sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL); 909 } else 910 ep->active_key_id = key_id; 911 912 return 0; 913 } 914 915 int sctp_auth_del_key_id(struct sctp_endpoint *ep, 916 struct sctp_association *asoc, 917 __u16 key_id) 918 { 919 struct sctp_shared_key *key; 920 struct list_head *sh_keys; 921 int found = 0; 922 923 /* The key identifier MUST NOT be the current active key 924 * The key identifier MUST correst to an existing key 925 */ 926 if (asoc) { 927 if (asoc->active_key_id == key_id) 928 return -EINVAL; 929 930 sh_keys = &asoc->endpoint_shared_keys; 931 } else { 932 if (ep->active_key_id == key_id) 933 return -EINVAL; 934 935 sh_keys = &ep->endpoint_shared_keys; 936 } 937 938 key_for_each(key, sh_keys) { 939 if (key->key_id == key_id) { 940 found = 1; 941 break; 942 } 943 } 944 945 if (!found) 946 return -EINVAL; 947 948 /* Delete the shared key */ 949 list_del_init(&key->key_list); 950 sctp_auth_shkey_free(key); 951 952 return 0; 953 } 954