1 /* SCTP kernel implementation 2 * (C) Copyright 2007 Hewlett-Packard Development Company, L.P. 3 * 4 * This file is part of the SCTP kernel implementation 5 * 6 * This SCTP implementation is free software; 7 * you can redistribute it and/or modify it under the terms of 8 * the GNU General Public License as published by 9 * the Free Software Foundation; either version 2, or (at your option) 10 * any later version. 11 * 12 * This SCTP implementation is distributed in the hope that it 13 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 14 * ************************ 15 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 16 * See the GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with GNU CC; see the file COPYING. If not, write to 20 * the Free Software Foundation, 59 Temple Place - Suite 330, 21 * Boston, MA 02111-1307, USA. 22 * 23 * Please send any bug reports or fixes you make to the 24 * email address(es): 25 * lksctp developers <lksctp-developers@lists.sourceforge.net> 26 * 27 * Or submit a bug report through the following website: 28 * http://www.sf.net/projects/lksctp 29 * 30 * Written or modified by: 31 * Vlad Yasevich <vladislav.yasevich@hp.com> 32 * 33 * Any bugs reported given to us we will try to fix... any fixes shared will 34 * be incorporated into the next SCTP release. 35 */ 36 37 #include <linux/types.h> 38 #include <linux/crypto.h> 39 #include <linux/scatterlist.h> 40 #include <net/sctp/sctp.h> 41 #include <net/sctp/auth.h> 42 43 static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = { 44 { 45 /* id 0 is reserved. as all 0 */ 46 .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0, 47 }, 48 { 49 .hmac_id = SCTP_AUTH_HMAC_ID_SHA1, 50 .hmac_name="hmac(sha1)", 51 .hmac_len = SCTP_SHA1_SIG_SIZE, 52 }, 53 { 54 /* id 2 is reserved as well */ 55 .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2, 56 }, 57 #if defined (CONFIG_CRYPTO_SHA256) || defined (CONFIG_CRYPTO_SHA256_MODULE) 58 { 59 .hmac_id = SCTP_AUTH_HMAC_ID_SHA256, 60 .hmac_name="hmac(sha256)", 61 .hmac_len = SCTP_SHA256_SIG_SIZE, 62 } 63 #endif 64 }; 65 66 67 void sctp_auth_key_put(struct sctp_auth_bytes *key) 68 { 69 if (!key) 70 return; 71 72 if (atomic_dec_and_test(&key->refcnt)) { 73 kfree(key); 74 SCTP_DBG_OBJCNT_DEC(keys); 75 } 76 } 77 78 /* Create a new key structure of a given length */ 79 static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp) 80 { 81 struct sctp_auth_bytes *key; 82 83 /* Allocate the shared key */ 84 key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp); 85 if (!key) 86 return NULL; 87 88 key->len = key_len; 89 atomic_set(&key->refcnt, 1); 90 SCTP_DBG_OBJCNT_INC(keys); 91 92 return key; 93 } 94 95 /* Create a new shared key container with a give key id */ 96 struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp) 97 { 98 struct sctp_shared_key *new; 99 100 /* Allocate the shared key container */ 101 new = kzalloc(sizeof(struct sctp_shared_key), gfp); 102 if (!new) 103 return NULL; 104 105 INIT_LIST_HEAD(&new->key_list); 106 new->key_id = key_id; 107 108 return new; 109 } 110 111 /* Free the shared key stucture */ 112 static void sctp_auth_shkey_free(struct sctp_shared_key *sh_key) 113 { 114 BUG_ON(!list_empty(&sh_key->key_list)); 115 sctp_auth_key_put(sh_key->key); 116 sh_key->key = NULL; 117 kfree(sh_key); 118 } 119 120 /* Destory the entire key list. This is done during the 121 * associon and endpoint free process. 122 */ 123 void sctp_auth_destroy_keys(struct list_head *keys) 124 { 125 struct sctp_shared_key *ep_key; 126 struct sctp_shared_key *tmp; 127 128 if (list_empty(keys)) 129 return; 130 131 key_for_each_safe(ep_key, tmp, keys) { 132 list_del_init(&ep_key->key_list); 133 sctp_auth_shkey_free(ep_key); 134 } 135 } 136 137 /* Compare two byte vectors as numbers. Return values 138 * are: 139 * 0 - vectors are equal 140 * < 0 - vector 1 is smaller then vector2 141 * > 0 - vector 1 is greater then vector2 142 * 143 * Algorithm is: 144 * This is performed by selecting the numerically smaller key vector... 145 * If the key vectors are equal as numbers but differ in length ... 146 * the shorter vector is considered smaller 147 * 148 * Examples (with small values): 149 * 000123456789 > 123456789 (first number is longer) 150 * 000123456789 < 234567891 (second number is larger numerically) 151 * 123456789 > 2345678 (first number is both larger & longer) 152 */ 153 static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1, 154 struct sctp_auth_bytes *vector2) 155 { 156 int diff; 157 int i; 158 const __u8 *longer; 159 160 diff = vector1->len - vector2->len; 161 if (diff) { 162 longer = (diff > 0) ? vector1->data : vector2->data; 163 164 /* Check to see if the longer number is 165 * lead-zero padded. If it is not, it 166 * is automatically larger numerically. 167 */ 168 for (i = 0; i < abs(diff); i++ ) { 169 if (longer[i] != 0) 170 return diff; 171 } 172 } 173 174 /* lengths are the same, compare numbers */ 175 return memcmp(vector1->data, vector2->data, vector1->len); 176 } 177 178 /* 179 * Create a key vector as described in SCTP-AUTH, Section 6.1 180 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO 181 * parameter sent by each endpoint are concatenated as byte vectors. 182 * These parameters include the parameter type, parameter length, and 183 * the parameter value, but padding is omitted; all padding MUST be 184 * removed from this concatenation before proceeding with further 185 * computation of keys. Parameters which were not sent are simply 186 * omitted from the concatenation process. The resulting two vectors 187 * are called the two key vectors. 188 */ 189 static struct sctp_auth_bytes *sctp_auth_make_key_vector( 190 sctp_random_param_t *random, 191 sctp_chunks_param_t *chunks, 192 sctp_hmac_algo_param_t *hmacs, 193 gfp_t gfp) 194 { 195 struct sctp_auth_bytes *new; 196 __u32 len; 197 __u32 offset = 0; 198 199 len = ntohs(random->param_hdr.length) + ntohs(hmacs->param_hdr.length); 200 if (chunks) 201 len += ntohs(chunks->param_hdr.length); 202 203 new = kmalloc(sizeof(struct sctp_auth_bytes) + len, gfp); 204 if (!new) 205 return NULL; 206 207 new->len = len; 208 209 memcpy(new->data, random, ntohs(random->param_hdr.length)); 210 offset += ntohs(random->param_hdr.length); 211 212 if (chunks) { 213 memcpy(new->data + offset, chunks, 214 ntohs(chunks->param_hdr.length)); 215 offset += ntohs(chunks->param_hdr.length); 216 } 217 218 memcpy(new->data + offset, hmacs, ntohs(hmacs->param_hdr.length)); 219 220 return new; 221 } 222 223 224 /* Make a key vector based on our local parameters */ 225 static struct sctp_auth_bytes *sctp_auth_make_local_vector( 226 const struct sctp_association *asoc, 227 gfp_t gfp) 228 { 229 return sctp_auth_make_key_vector( 230 (sctp_random_param_t*)asoc->c.auth_random, 231 (sctp_chunks_param_t*)asoc->c.auth_chunks, 232 (sctp_hmac_algo_param_t*)asoc->c.auth_hmacs, 233 gfp); 234 } 235 236 /* Make a key vector based on peer's parameters */ 237 static struct sctp_auth_bytes *sctp_auth_make_peer_vector( 238 const struct sctp_association *asoc, 239 gfp_t gfp) 240 { 241 return sctp_auth_make_key_vector(asoc->peer.peer_random, 242 asoc->peer.peer_chunks, 243 asoc->peer.peer_hmacs, 244 gfp); 245 } 246 247 248 /* Set the value of the association shared key base on the parameters 249 * given. The algorithm is: 250 * From the endpoint pair shared keys and the key vectors the 251 * association shared keys are computed. This is performed by selecting 252 * the numerically smaller key vector and concatenating it to the 253 * endpoint pair shared key, and then concatenating the numerically 254 * larger key vector to that. The result of the concatenation is the 255 * association shared key. 256 */ 257 static struct sctp_auth_bytes *sctp_auth_asoc_set_secret( 258 struct sctp_shared_key *ep_key, 259 struct sctp_auth_bytes *first_vector, 260 struct sctp_auth_bytes *last_vector, 261 gfp_t gfp) 262 { 263 struct sctp_auth_bytes *secret; 264 __u32 offset = 0; 265 __u32 auth_len; 266 267 auth_len = first_vector->len + last_vector->len; 268 if (ep_key->key) 269 auth_len += ep_key->key->len; 270 271 secret = sctp_auth_create_key(auth_len, gfp); 272 if (!secret) 273 return NULL; 274 275 if (ep_key->key) { 276 memcpy(secret->data, ep_key->key->data, ep_key->key->len); 277 offset += ep_key->key->len; 278 } 279 280 memcpy(secret->data + offset, first_vector->data, first_vector->len); 281 offset += first_vector->len; 282 283 memcpy(secret->data + offset, last_vector->data, last_vector->len); 284 285 return secret; 286 } 287 288 /* Create an association shared key. Follow the algorithm 289 * described in SCTP-AUTH, Section 6.1 290 */ 291 static struct sctp_auth_bytes *sctp_auth_asoc_create_secret( 292 const struct sctp_association *asoc, 293 struct sctp_shared_key *ep_key, 294 gfp_t gfp) 295 { 296 struct sctp_auth_bytes *local_key_vector; 297 struct sctp_auth_bytes *peer_key_vector; 298 struct sctp_auth_bytes *first_vector, 299 *last_vector; 300 struct sctp_auth_bytes *secret = NULL; 301 int cmp; 302 303 304 /* Now we need to build the key vectors 305 * SCTP-AUTH , Section 6.1 306 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO 307 * parameter sent by each endpoint are concatenated as byte vectors. 308 * These parameters include the parameter type, parameter length, and 309 * the parameter value, but padding is omitted; all padding MUST be 310 * removed from this concatenation before proceeding with further 311 * computation of keys. Parameters which were not sent are simply 312 * omitted from the concatenation process. The resulting two vectors 313 * are called the two key vectors. 314 */ 315 316 local_key_vector = sctp_auth_make_local_vector(asoc, gfp); 317 peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp); 318 319 if (!peer_key_vector || !local_key_vector) 320 goto out; 321 322 /* Figure out the order in wich the key_vectors will be 323 * added to the endpoint shared key. 324 * SCTP-AUTH, Section 6.1: 325 * This is performed by selecting the numerically smaller key 326 * vector and concatenating it to the endpoint pair shared 327 * key, and then concatenating the numerically larger key 328 * vector to that. If the key vectors are equal as numbers 329 * but differ in length, then the concatenation order is the 330 * endpoint shared key, followed by the shorter key vector, 331 * followed by the longer key vector. Otherwise, the key 332 * vectors are identical, and may be concatenated to the 333 * endpoint pair key in any order. 334 */ 335 cmp = sctp_auth_compare_vectors(local_key_vector, 336 peer_key_vector); 337 if (cmp < 0) { 338 first_vector = local_key_vector; 339 last_vector = peer_key_vector; 340 } else { 341 first_vector = peer_key_vector; 342 last_vector = local_key_vector; 343 } 344 345 secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector, 346 gfp); 347 out: 348 kfree(local_key_vector); 349 kfree(peer_key_vector); 350 351 return secret; 352 } 353 354 /* 355 * Populate the association overlay list with the list 356 * from the endpoint. 357 */ 358 int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep, 359 struct sctp_association *asoc, 360 gfp_t gfp) 361 { 362 struct sctp_shared_key *sh_key; 363 struct sctp_shared_key *new; 364 365 BUG_ON(!list_empty(&asoc->endpoint_shared_keys)); 366 367 key_for_each(sh_key, &ep->endpoint_shared_keys) { 368 new = sctp_auth_shkey_create(sh_key->key_id, gfp); 369 if (!new) 370 goto nomem; 371 372 new->key = sh_key->key; 373 sctp_auth_key_hold(new->key); 374 list_add(&new->key_list, &asoc->endpoint_shared_keys); 375 } 376 377 return 0; 378 379 nomem: 380 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys); 381 return -ENOMEM; 382 } 383 384 385 /* Public interface to creat the association shared key. 386 * See code above for the algorithm. 387 */ 388 int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp) 389 { 390 struct sctp_auth_bytes *secret; 391 struct sctp_shared_key *ep_key; 392 393 /* If we don't support AUTH, or peer is not capable 394 * we don't need to do anything. 395 */ 396 if (!sctp_auth_enable || !asoc->peer.auth_capable) 397 return 0; 398 399 /* If the key_id is non-zero and we couldn't find an 400 * endpoint pair shared key, we can't compute the 401 * secret. 402 * For key_id 0, endpoint pair shared key is a NULL key. 403 */ 404 ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id); 405 BUG_ON(!ep_key); 406 407 secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp); 408 if (!secret) 409 return -ENOMEM; 410 411 sctp_auth_key_put(asoc->asoc_shared_key); 412 asoc->asoc_shared_key = secret; 413 414 return 0; 415 } 416 417 418 /* Find the endpoint pair shared key based on the key_id */ 419 struct sctp_shared_key *sctp_auth_get_shkey( 420 const struct sctp_association *asoc, 421 __u16 key_id) 422 { 423 struct sctp_shared_key *key; 424 425 /* First search associations set of endpoint pair shared keys */ 426 key_for_each(key, &asoc->endpoint_shared_keys) { 427 if (key->key_id == key_id) 428 return key; 429 } 430 431 return NULL; 432 } 433 434 /* 435 * Initialize all the possible digest transforms that we can use. Right now 436 * now, the supported digests are SHA1 and SHA256. We do this here once 437 * because of the restrictiong that transforms may only be allocated in 438 * user context. This forces us to pre-allocated all possible transforms 439 * at the endpoint init time. 440 */ 441 int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp) 442 { 443 struct crypto_hash *tfm = NULL; 444 __u16 id; 445 446 /* if the transforms are already allocted, we are done */ 447 if (!sctp_auth_enable) { 448 ep->auth_hmacs = NULL; 449 return 0; 450 } 451 452 if (ep->auth_hmacs) 453 return 0; 454 455 /* Allocated the array of pointers to transorms */ 456 ep->auth_hmacs = kzalloc( 457 sizeof(struct crypto_hash *) * SCTP_AUTH_NUM_HMACS, 458 gfp); 459 if (!ep->auth_hmacs) 460 return -ENOMEM; 461 462 for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) { 463 464 /* See is we support the id. Supported IDs have name and 465 * length fields set, so that we can allocated and use 466 * them. We can safely just check for name, for without the 467 * name, we can't allocate the TFM. 468 */ 469 if (!sctp_hmac_list[id].hmac_name) 470 continue; 471 472 /* If this TFM has been allocated, we are all set */ 473 if (ep->auth_hmacs[id]) 474 continue; 475 476 /* Allocate the ID */ 477 tfm = crypto_alloc_hash(sctp_hmac_list[id].hmac_name, 0, 478 CRYPTO_ALG_ASYNC); 479 if (IS_ERR(tfm)) 480 goto out_err; 481 482 ep->auth_hmacs[id] = tfm; 483 } 484 485 return 0; 486 487 out_err: 488 /* Clean up any successfull allocations */ 489 sctp_auth_destroy_hmacs(ep->auth_hmacs); 490 return -ENOMEM; 491 } 492 493 /* Destroy the hmac tfm array */ 494 void sctp_auth_destroy_hmacs(struct crypto_hash *auth_hmacs[]) 495 { 496 int i; 497 498 if (!auth_hmacs) 499 return; 500 501 for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++) 502 { 503 if (auth_hmacs[i]) 504 crypto_free_hash(auth_hmacs[i]); 505 } 506 kfree(auth_hmacs); 507 } 508 509 510 struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id) 511 { 512 return &sctp_hmac_list[hmac_id]; 513 } 514 515 /* Get an hmac description information that we can use to build 516 * the AUTH chunk 517 */ 518 struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc) 519 { 520 struct sctp_hmac_algo_param *hmacs; 521 __u16 n_elt; 522 __u16 id = 0; 523 int i; 524 525 /* If we have a default entry, use it */ 526 if (asoc->default_hmac_id) 527 return &sctp_hmac_list[asoc->default_hmac_id]; 528 529 /* Since we do not have a default entry, find the first entry 530 * we support and return that. Do not cache that id. 531 */ 532 hmacs = asoc->peer.peer_hmacs; 533 if (!hmacs) 534 return NULL; 535 536 n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1; 537 for (i = 0; i < n_elt; i++) { 538 id = ntohs(hmacs->hmac_ids[i]); 539 540 /* Check the id is in the supported range */ 541 if (id > SCTP_AUTH_HMAC_ID_MAX) 542 continue; 543 544 /* See is we support the id. Supported IDs have name and 545 * length fields set, so that we can allocated and use 546 * them. We can safely just check for name, for without the 547 * name, we can't allocate the TFM. 548 */ 549 if (!sctp_hmac_list[id].hmac_name) 550 continue; 551 552 break; 553 } 554 555 if (id == 0) 556 return NULL; 557 558 return &sctp_hmac_list[id]; 559 } 560 561 static int __sctp_auth_find_hmacid(__be16 *hmacs, int n_elts, __be16 hmac_id) 562 { 563 int found = 0; 564 int i; 565 566 for (i = 0; i < n_elts; i++) { 567 if (hmac_id == hmacs[i]) { 568 found = 1; 569 break; 570 } 571 } 572 573 return found; 574 } 575 576 /* See if the HMAC_ID is one that we claim as supported */ 577 int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc, 578 __be16 hmac_id) 579 { 580 struct sctp_hmac_algo_param *hmacs; 581 __u16 n_elt; 582 583 if (!asoc) 584 return 0; 585 586 hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs; 587 n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1; 588 589 return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id); 590 } 591 592 593 /* Cache the default HMAC id. This to follow this text from SCTP-AUTH: 594 * Section 6.1: 595 * The receiver of a HMAC-ALGO parameter SHOULD use the first listed 596 * algorithm it supports. 597 */ 598 void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc, 599 struct sctp_hmac_algo_param *hmacs) 600 { 601 struct sctp_endpoint *ep; 602 __u16 id; 603 int i; 604 int n_params; 605 606 /* if the default id is already set, use it */ 607 if (asoc->default_hmac_id) 608 return; 609 610 n_params = (ntohs(hmacs->param_hdr.length) 611 - sizeof(sctp_paramhdr_t)) >> 1; 612 ep = asoc->ep; 613 for (i = 0; i < n_params; i++) { 614 id = ntohs(hmacs->hmac_ids[i]); 615 616 /* Check the id is in the supported range */ 617 if (id > SCTP_AUTH_HMAC_ID_MAX) 618 continue; 619 620 /* If this TFM has been allocated, use this id */ 621 if (ep->auth_hmacs[id]) { 622 asoc->default_hmac_id = id; 623 break; 624 } 625 } 626 } 627 628 629 /* Check to see if the given chunk is supposed to be authenticated */ 630 static int __sctp_auth_cid(sctp_cid_t chunk, struct sctp_chunks_param *param) 631 { 632 unsigned short len; 633 int found = 0; 634 int i; 635 636 if (!param || param->param_hdr.length == 0) 637 return 0; 638 639 len = ntohs(param->param_hdr.length) - sizeof(sctp_paramhdr_t); 640 641 /* SCTP-AUTH, Section 3.2 642 * The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH 643 * chunks MUST NOT be listed in the CHUNKS parameter. However, if 644 * a CHUNKS parameter is received then the types for INIT, INIT-ACK, 645 * SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored. 646 */ 647 for (i = 0; !found && i < len; i++) { 648 switch (param->chunks[i]) { 649 case SCTP_CID_INIT: 650 case SCTP_CID_INIT_ACK: 651 case SCTP_CID_SHUTDOWN_COMPLETE: 652 case SCTP_CID_AUTH: 653 break; 654 655 default: 656 if (param->chunks[i] == chunk) 657 found = 1; 658 break; 659 } 660 } 661 662 return found; 663 } 664 665 /* Check if peer requested that this chunk is authenticated */ 666 int sctp_auth_send_cid(sctp_cid_t chunk, const struct sctp_association *asoc) 667 { 668 if (!sctp_auth_enable || !asoc || !asoc->peer.auth_capable) 669 return 0; 670 671 return __sctp_auth_cid(chunk, asoc->peer.peer_chunks); 672 } 673 674 /* Check if we requested that peer authenticate this chunk. */ 675 int sctp_auth_recv_cid(sctp_cid_t chunk, const struct sctp_association *asoc) 676 { 677 if (!sctp_auth_enable || !asoc) 678 return 0; 679 680 return __sctp_auth_cid(chunk, 681 (struct sctp_chunks_param *)asoc->c.auth_chunks); 682 } 683 684 /* SCTP-AUTH: Section 6.2: 685 * The sender MUST calculate the MAC as described in RFC2104 [2] using 686 * the hash function H as described by the MAC Identifier and the shared 687 * association key K based on the endpoint pair shared key described by 688 * the shared key identifier. The 'data' used for the computation of 689 * the AUTH-chunk is given by the AUTH chunk with its HMAC field set to 690 * zero (as shown in Figure 6) followed by all chunks that are placed 691 * after the AUTH chunk in the SCTP packet. 692 */ 693 void sctp_auth_calculate_hmac(const struct sctp_association *asoc, 694 struct sk_buff *skb, 695 struct sctp_auth_chunk *auth, 696 gfp_t gfp) 697 { 698 struct scatterlist sg; 699 struct hash_desc desc; 700 struct sctp_auth_bytes *asoc_key; 701 __u16 key_id, hmac_id; 702 __u8 *digest; 703 unsigned char *end; 704 int free_key = 0; 705 706 /* Extract the info we need: 707 * - hmac id 708 * - key id 709 */ 710 key_id = ntohs(auth->auth_hdr.shkey_id); 711 hmac_id = ntohs(auth->auth_hdr.hmac_id); 712 713 if (key_id == asoc->active_key_id) 714 asoc_key = asoc->asoc_shared_key; 715 else { 716 struct sctp_shared_key *ep_key; 717 718 ep_key = sctp_auth_get_shkey(asoc, key_id); 719 if (!ep_key) 720 return; 721 722 asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp); 723 if (!asoc_key) 724 return; 725 726 free_key = 1; 727 } 728 729 /* set up scatter list */ 730 end = skb_tail_pointer(skb); 731 sg_init_one(&sg, auth, end - (unsigned char *)auth); 732 733 desc.tfm = asoc->ep->auth_hmacs[hmac_id]; 734 desc.flags = 0; 735 736 digest = auth->auth_hdr.hmac; 737 if (crypto_hash_setkey(desc.tfm, &asoc_key->data[0], asoc_key->len)) 738 goto free; 739 740 crypto_hash_digest(&desc, &sg, sg.length, digest); 741 742 free: 743 if (free_key) 744 sctp_auth_key_put(asoc_key); 745 } 746 747 /* API Helpers */ 748 749 /* Add a chunk to the endpoint authenticated chunk list */ 750 int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id) 751 { 752 struct sctp_chunks_param *p = ep->auth_chunk_list; 753 __u16 nchunks; 754 __u16 param_len; 755 756 /* If this chunk is already specified, we are done */ 757 if (__sctp_auth_cid(chunk_id, p)) 758 return 0; 759 760 /* Check if we can add this chunk to the array */ 761 param_len = ntohs(p->param_hdr.length); 762 nchunks = param_len - sizeof(sctp_paramhdr_t); 763 if (nchunks == SCTP_NUM_CHUNK_TYPES) 764 return -EINVAL; 765 766 p->chunks[nchunks] = chunk_id; 767 p->param_hdr.length = htons(param_len + 1); 768 return 0; 769 } 770 771 /* Add hmac identifires to the endpoint list of supported hmac ids */ 772 int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep, 773 struct sctp_hmacalgo *hmacs) 774 { 775 int has_sha1 = 0; 776 __u16 id; 777 int i; 778 779 /* Scan the list looking for unsupported id. Also make sure that 780 * SHA1 is specified. 781 */ 782 for (i = 0; i < hmacs->shmac_num_idents; i++) { 783 id = hmacs->shmac_idents[i]; 784 785 if (SCTP_AUTH_HMAC_ID_SHA1 == id) 786 has_sha1 = 1; 787 788 if (!sctp_hmac_list[id].hmac_name) 789 return -EOPNOTSUPP; 790 } 791 792 if (!has_sha1) 793 return -EINVAL; 794 795 memcpy(ep->auth_hmacs_list->hmac_ids, &hmacs->shmac_idents[0], 796 hmacs->shmac_num_idents * sizeof(__u16)); 797 ep->auth_hmacs_list->param_hdr.length = htons(sizeof(sctp_paramhdr_t) + 798 hmacs->shmac_num_idents * sizeof(__u16)); 799 return 0; 800 } 801 802 /* Set a new shared key on either endpoint or association. If the 803 * the key with a same ID already exists, replace the key (remove the 804 * old key and add a new one). 805 */ 806 int sctp_auth_set_key(struct sctp_endpoint *ep, 807 struct sctp_association *asoc, 808 struct sctp_authkey *auth_key) 809 { 810 struct sctp_shared_key *cur_key = NULL; 811 struct sctp_auth_bytes *key; 812 struct list_head *sh_keys; 813 int replace = 0; 814 815 /* Try to find the given key id to see if 816 * we are doing a replace, or adding a new key 817 */ 818 if (asoc) 819 sh_keys = &asoc->endpoint_shared_keys; 820 else 821 sh_keys = &ep->endpoint_shared_keys; 822 823 key_for_each(cur_key, sh_keys) { 824 if (cur_key->key_id == auth_key->sca_keynumber) { 825 replace = 1; 826 break; 827 } 828 } 829 830 /* If we are not replacing a key id, we need to allocate 831 * a shared key. 832 */ 833 if (!replace) { 834 cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber, 835 GFP_KERNEL); 836 if (!cur_key) 837 return -ENOMEM; 838 } 839 840 /* Create a new key data based on the info passed in */ 841 key = sctp_auth_create_key(auth_key->sca_keylength, GFP_KERNEL); 842 if (!key) 843 goto nomem; 844 845 memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylength); 846 847 /* If we are replacing, remove the old keys data from the 848 * key id. If we are adding new key id, add it to the 849 * list. 850 */ 851 if (replace) 852 sctp_auth_key_put(cur_key->key); 853 else 854 list_add(&cur_key->key_list, sh_keys); 855 856 cur_key->key = key; 857 sctp_auth_key_hold(key); 858 859 return 0; 860 nomem: 861 if (!replace) 862 sctp_auth_shkey_free(cur_key); 863 864 return -ENOMEM; 865 } 866 867 int sctp_auth_set_active_key(struct sctp_endpoint *ep, 868 struct sctp_association *asoc, 869 __u16 key_id) 870 { 871 struct sctp_shared_key *key; 872 struct list_head *sh_keys; 873 int found = 0; 874 875 /* The key identifier MUST correst to an existing key */ 876 if (asoc) 877 sh_keys = &asoc->endpoint_shared_keys; 878 else 879 sh_keys = &ep->endpoint_shared_keys; 880 881 key_for_each(key, sh_keys) { 882 if (key->key_id == key_id) { 883 found = 1; 884 break; 885 } 886 } 887 888 if (!found) 889 return -EINVAL; 890 891 if (asoc) { 892 asoc->active_key_id = key_id; 893 sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL); 894 } else 895 ep->active_key_id = key_id; 896 897 return 0; 898 } 899 900 int sctp_auth_del_key_id(struct sctp_endpoint *ep, 901 struct sctp_association *asoc, 902 __u16 key_id) 903 { 904 struct sctp_shared_key *key; 905 struct list_head *sh_keys; 906 int found = 0; 907 908 /* The key identifier MUST NOT be the current active key 909 * The key identifier MUST correst to an existing key 910 */ 911 if (asoc) { 912 if (asoc->active_key_id == key_id) 913 return -EINVAL; 914 915 sh_keys = &asoc->endpoint_shared_keys; 916 } else { 917 if (ep->active_key_id == key_id) 918 return -EINVAL; 919 920 sh_keys = &ep->endpoint_shared_keys; 921 } 922 923 key_for_each(key, sh_keys) { 924 if (key->key_id == key_id) { 925 found = 1; 926 break; 927 } 928 } 929 930 if (!found) 931 return -EINVAL; 932 933 /* Delete the shared key */ 934 list_del_init(&key->key_list); 935 sctp_auth_shkey_free(key); 936 937 return 0; 938 } 939