xref: /openbmc/linux/net/sctp/auth.c (revision a1e58bbd)
1 /* SCTP kernel implementation
2  * (C) Copyright 2007 Hewlett-Packard Development Company, L.P.
3  *
4  * This file is part of the SCTP kernel implementation
5  *
6  * This SCTP implementation is free software;
7  * you can redistribute it and/or modify it under the terms of
8  * the GNU General Public License as published by
9  * the Free Software Foundation; either version 2, or (at your option)
10  * any later version.
11  *
12  * This SCTP implementation is distributed in the hope that it
13  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
14  *                 ************************
15  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
16  * See the GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with GNU CC; see the file COPYING.  If not, write to
20  * the Free Software Foundation, 59 Temple Place - Suite 330,
21  * Boston, MA 02111-1307, USA.
22  *
23  * Please send any bug reports or fixes you make to the
24  * email address(es):
25  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
26  *
27  * Or submit a bug report through the following website:
28  *    http://www.sf.net/projects/lksctp
29  *
30  * Written or modified by:
31  *   Vlad Yasevich     <vladislav.yasevich@hp.com>
32  *
33  * Any bugs reported given to us we will try to fix... any fixes shared will
34  * be incorporated into the next SCTP release.
35  */
36 
37 #include <linux/types.h>
38 #include <linux/crypto.h>
39 #include <linux/scatterlist.h>
40 #include <net/sctp/sctp.h>
41 #include <net/sctp/auth.h>
42 
43 static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = {
44 	{
45 		/* id 0 is reserved.  as all 0 */
46 		.hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0,
47 	},
48 	{
49 		.hmac_id = SCTP_AUTH_HMAC_ID_SHA1,
50 		.hmac_name="hmac(sha1)",
51 		.hmac_len = SCTP_SHA1_SIG_SIZE,
52 	},
53 	{
54 		/* id 2 is reserved as well */
55 		.hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2,
56 	},
57 #if defined (CONFIG_CRYPTO_SHA256) || defined (CONFIG_CRYPTO_SHA256_MODULE)
58 	{
59 		.hmac_id = SCTP_AUTH_HMAC_ID_SHA256,
60 		.hmac_name="hmac(sha256)",
61 		.hmac_len = SCTP_SHA256_SIG_SIZE,
62 	}
63 #endif
64 };
65 
66 
67 void sctp_auth_key_put(struct sctp_auth_bytes *key)
68 {
69 	if (!key)
70 		return;
71 
72 	if (atomic_dec_and_test(&key->refcnt)) {
73 		kfree(key);
74 		SCTP_DBG_OBJCNT_DEC(keys);
75 	}
76 }
77 
78 /* Create a new key structure of a given length */
79 static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp)
80 {
81 	struct sctp_auth_bytes *key;
82 
83 	/* Allocate the shared key */
84 	key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp);
85 	if (!key)
86 		return NULL;
87 
88 	key->len = key_len;
89 	atomic_set(&key->refcnt, 1);
90 	SCTP_DBG_OBJCNT_INC(keys);
91 
92 	return key;
93 }
94 
95 /* Create a new shared key container with a give key id */
96 struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp)
97 {
98 	struct sctp_shared_key *new;
99 
100 	/* Allocate the shared key container */
101 	new = kzalloc(sizeof(struct sctp_shared_key), gfp);
102 	if (!new)
103 		return NULL;
104 
105 	INIT_LIST_HEAD(&new->key_list);
106 	new->key_id = key_id;
107 
108 	return new;
109 }
110 
111 /* Free the shared key stucture */
112 static void sctp_auth_shkey_free(struct sctp_shared_key *sh_key)
113 {
114 	BUG_ON(!list_empty(&sh_key->key_list));
115 	sctp_auth_key_put(sh_key->key);
116 	sh_key->key = NULL;
117 	kfree(sh_key);
118 }
119 
120 /* Destory the entire key list.  This is done during the
121  * associon and endpoint free process.
122  */
123 void sctp_auth_destroy_keys(struct list_head *keys)
124 {
125 	struct sctp_shared_key *ep_key;
126 	struct sctp_shared_key *tmp;
127 
128 	if (list_empty(keys))
129 		return;
130 
131 	key_for_each_safe(ep_key, tmp, keys) {
132 		list_del_init(&ep_key->key_list);
133 		sctp_auth_shkey_free(ep_key);
134 	}
135 }
136 
137 /* Compare two byte vectors as numbers.  Return values
138  * are:
139  * 	  0 - vectors are equal
140  * 	< 0 - vector 1 is smaller then vector2
141  * 	> 0 - vector 1 is greater then vector2
142  *
143  * Algorithm is:
144  * 	This is performed by selecting the numerically smaller key vector...
145  *	If the key vectors are equal as numbers but differ in length ...
146  *	the shorter vector is considered smaller
147  *
148  * Examples (with small values):
149  * 	000123456789 > 123456789 (first number is longer)
150  * 	000123456789 < 234567891 (second number is larger numerically)
151  * 	123456789 > 2345678 	 (first number is both larger & longer)
152  */
153 static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1,
154 			      struct sctp_auth_bytes *vector2)
155 {
156 	int diff;
157 	int i;
158 	const __u8 *longer;
159 
160 	diff = vector1->len - vector2->len;
161 	if (diff) {
162 		longer = (diff > 0) ? vector1->data : vector2->data;
163 
164 		/* Check to see if the longer number is
165 		 * lead-zero padded.  If it is not, it
166 		 * is automatically larger numerically.
167 		 */
168 		for (i = 0; i < abs(diff); i++ ) {
169 			if (longer[i] != 0)
170 				return diff;
171 		}
172 	}
173 
174 	/* lengths are the same, compare numbers */
175 	return memcmp(vector1->data, vector2->data, vector1->len);
176 }
177 
178 /*
179  * Create a key vector as described in SCTP-AUTH, Section 6.1
180  *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
181  *    parameter sent by each endpoint are concatenated as byte vectors.
182  *    These parameters include the parameter type, parameter length, and
183  *    the parameter value, but padding is omitted; all padding MUST be
184  *    removed from this concatenation before proceeding with further
185  *    computation of keys.  Parameters which were not sent are simply
186  *    omitted from the concatenation process.  The resulting two vectors
187  *    are called the two key vectors.
188  */
189 static struct sctp_auth_bytes *sctp_auth_make_key_vector(
190 			sctp_random_param_t *random,
191 			sctp_chunks_param_t *chunks,
192 			sctp_hmac_algo_param_t *hmacs,
193 			gfp_t gfp)
194 {
195 	struct sctp_auth_bytes *new;
196 	__u32	len;
197 	__u32	offset = 0;
198 
199 	len = ntohs(random->param_hdr.length) + ntohs(hmacs->param_hdr.length);
200         if (chunks)
201 		len += ntohs(chunks->param_hdr.length);
202 
203 	new = kmalloc(sizeof(struct sctp_auth_bytes) + len, gfp);
204 	if (!new)
205 		return NULL;
206 
207 	new->len = len;
208 
209 	memcpy(new->data, random, ntohs(random->param_hdr.length));
210 	offset += ntohs(random->param_hdr.length);
211 
212 	if (chunks) {
213 		memcpy(new->data + offset, chunks,
214 			ntohs(chunks->param_hdr.length));
215 		offset += ntohs(chunks->param_hdr.length);
216 	}
217 
218 	memcpy(new->data + offset, hmacs, ntohs(hmacs->param_hdr.length));
219 
220 	return new;
221 }
222 
223 
224 /* Make a key vector based on our local parameters */
225 static struct sctp_auth_bytes *sctp_auth_make_local_vector(
226 				    const struct sctp_association *asoc,
227 				    gfp_t gfp)
228 {
229 	return sctp_auth_make_key_vector(
230 				    (sctp_random_param_t*)asoc->c.auth_random,
231 				    (sctp_chunks_param_t*)asoc->c.auth_chunks,
232 				    (sctp_hmac_algo_param_t*)asoc->c.auth_hmacs,
233 				    gfp);
234 }
235 
236 /* Make a key vector based on peer's parameters */
237 static struct sctp_auth_bytes *sctp_auth_make_peer_vector(
238 				    const struct sctp_association *asoc,
239 				    gfp_t gfp)
240 {
241 	return sctp_auth_make_key_vector(asoc->peer.peer_random,
242 					 asoc->peer.peer_chunks,
243 					 asoc->peer.peer_hmacs,
244 					 gfp);
245 }
246 
247 
248 /* Set the value of the association shared key base on the parameters
249  * given.  The algorithm is:
250  *    From the endpoint pair shared keys and the key vectors the
251  *    association shared keys are computed.  This is performed by selecting
252  *    the numerically smaller key vector and concatenating it to the
253  *    endpoint pair shared key, and then concatenating the numerically
254  *    larger key vector to that.  The result of the concatenation is the
255  *    association shared key.
256  */
257 static struct sctp_auth_bytes *sctp_auth_asoc_set_secret(
258 			struct sctp_shared_key *ep_key,
259 			struct sctp_auth_bytes *first_vector,
260 			struct sctp_auth_bytes *last_vector,
261 			gfp_t gfp)
262 {
263 	struct sctp_auth_bytes *secret;
264 	__u32 offset = 0;
265 	__u32 auth_len;
266 
267 	auth_len = first_vector->len + last_vector->len;
268 	if (ep_key->key)
269 		auth_len += ep_key->key->len;
270 
271 	secret = sctp_auth_create_key(auth_len, gfp);
272 	if (!secret)
273 		return NULL;
274 
275 	if (ep_key->key) {
276 		memcpy(secret->data, ep_key->key->data, ep_key->key->len);
277 		offset += ep_key->key->len;
278 	}
279 
280 	memcpy(secret->data + offset, first_vector->data, first_vector->len);
281 	offset += first_vector->len;
282 
283 	memcpy(secret->data + offset, last_vector->data, last_vector->len);
284 
285 	return secret;
286 }
287 
288 /* Create an association shared key.  Follow the algorithm
289  * described in SCTP-AUTH, Section 6.1
290  */
291 static struct sctp_auth_bytes *sctp_auth_asoc_create_secret(
292 				 const struct sctp_association *asoc,
293 				 struct sctp_shared_key *ep_key,
294 				 gfp_t gfp)
295 {
296 	struct sctp_auth_bytes *local_key_vector;
297 	struct sctp_auth_bytes *peer_key_vector;
298 	struct sctp_auth_bytes	*first_vector,
299 				*last_vector;
300 	struct sctp_auth_bytes	*secret = NULL;
301 	int	cmp;
302 
303 
304 	/* Now we need to build the key vectors
305 	 * SCTP-AUTH , Section 6.1
306 	 *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
307 	 *    parameter sent by each endpoint are concatenated as byte vectors.
308 	 *    These parameters include the parameter type, parameter length, and
309 	 *    the parameter value, but padding is omitted; all padding MUST be
310 	 *    removed from this concatenation before proceeding with further
311 	 *    computation of keys.  Parameters which were not sent are simply
312 	 *    omitted from the concatenation process.  The resulting two vectors
313 	 *    are called the two key vectors.
314 	 */
315 
316 	local_key_vector = sctp_auth_make_local_vector(asoc, gfp);
317 	peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp);
318 
319 	if (!peer_key_vector || !local_key_vector)
320 		goto out;
321 
322 	/* Figure out the order in wich the key_vectors will be
323 	 * added to the endpoint shared key.
324 	 * SCTP-AUTH, Section 6.1:
325 	 *   This is performed by selecting the numerically smaller key
326 	 *   vector and concatenating it to the endpoint pair shared
327 	 *   key, and then concatenating the numerically larger key
328 	 *   vector to that.  If the key vectors are equal as numbers
329 	 *   but differ in length, then the concatenation order is the
330 	 *   endpoint shared key, followed by the shorter key vector,
331 	 *   followed by the longer key vector.  Otherwise, the key
332 	 *   vectors are identical, and may be concatenated to the
333 	 *   endpoint pair key in any order.
334 	 */
335 	cmp = sctp_auth_compare_vectors(local_key_vector,
336 					peer_key_vector);
337 	if (cmp < 0) {
338 		first_vector = local_key_vector;
339 		last_vector = peer_key_vector;
340 	} else {
341 		first_vector = peer_key_vector;
342 		last_vector = local_key_vector;
343 	}
344 
345 	secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector,
346 					    gfp);
347 out:
348 	kfree(local_key_vector);
349 	kfree(peer_key_vector);
350 
351 	return secret;
352 }
353 
354 /*
355  * Populate the association overlay list with the list
356  * from the endpoint.
357  */
358 int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep,
359 				struct sctp_association *asoc,
360 				gfp_t gfp)
361 {
362 	struct sctp_shared_key *sh_key;
363 	struct sctp_shared_key *new;
364 
365 	BUG_ON(!list_empty(&asoc->endpoint_shared_keys));
366 
367 	key_for_each(sh_key, &ep->endpoint_shared_keys) {
368 		new = sctp_auth_shkey_create(sh_key->key_id, gfp);
369 		if (!new)
370 			goto nomem;
371 
372 		new->key = sh_key->key;
373 		sctp_auth_key_hold(new->key);
374 		list_add(&new->key_list, &asoc->endpoint_shared_keys);
375 	}
376 
377 	return 0;
378 
379 nomem:
380 	sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
381 	return -ENOMEM;
382 }
383 
384 
385 /* Public interface to creat the association shared key.
386  * See code above for the algorithm.
387  */
388 int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp)
389 {
390 	struct sctp_auth_bytes	*secret;
391 	struct sctp_shared_key *ep_key;
392 
393 	/* If we don't support AUTH, or peer is not capable
394 	 * we don't need to do anything.
395 	 */
396 	if (!sctp_auth_enable || !asoc->peer.auth_capable)
397 		return 0;
398 
399 	/* If the key_id is non-zero and we couldn't find an
400 	 * endpoint pair shared key, we can't compute the
401 	 * secret.
402 	 * For key_id 0, endpoint pair shared key is a NULL key.
403 	 */
404 	ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id);
405 	BUG_ON(!ep_key);
406 
407 	secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
408 	if (!secret)
409 		return -ENOMEM;
410 
411 	sctp_auth_key_put(asoc->asoc_shared_key);
412 	asoc->asoc_shared_key = secret;
413 
414 	return 0;
415 }
416 
417 
418 /* Find the endpoint pair shared key based on the key_id */
419 struct sctp_shared_key *sctp_auth_get_shkey(
420 				const struct sctp_association *asoc,
421 				__u16 key_id)
422 {
423 	struct sctp_shared_key *key;
424 
425 	/* First search associations set of endpoint pair shared keys */
426 	key_for_each(key, &asoc->endpoint_shared_keys) {
427 		if (key->key_id == key_id)
428 			return key;
429 	}
430 
431 	return NULL;
432 }
433 
434 /*
435  * Initialize all the possible digest transforms that we can use.  Right now
436  * now, the supported digests are SHA1 and SHA256.  We do this here once
437  * because of the restrictiong that transforms may only be allocated in
438  * user context.  This forces us to pre-allocated all possible transforms
439  * at the endpoint init time.
440  */
441 int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp)
442 {
443 	struct crypto_hash *tfm = NULL;
444 	__u16   id;
445 
446 	/* if the transforms are already allocted, we are done */
447 	if (!sctp_auth_enable) {
448 		ep->auth_hmacs = NULL;
449 		return 0;
450 	}
451 
452 	if (ep->auth_hmacs)
453 		return 0;
454 
455 	/* Allocated the array of pointers to transorms */
456 	ep->auth_hmacs = kzalloc(
457 			    sizeof(struct crypto_hash *) * SCTP_AUTH_NUM_HMACS,
458 			    gfp);
459 	if (!ep->auth_hmacs)
460 		return -ENOMEM;
461 
462 	for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) {
463 
464 		/* See is we support the id.  Supported IDs have name and
465 		 * length fields set, so that we can allocated and use
466 		 * them.  We can safely just check for name, for without the
467 		 * name, we can't allocate the TFM.
468 		 */
469 		if (!sctp_hmac_list[id].hmac_name)
470 			continue;
471 
472 		/* If this TFM has been allocated, we are all set */
473 		if (ep->auth_hmacs[id])
474 			continue;
475 
476 		/* Allocate the ID */
477 		tfm = crypto_alloc_hash(sctp_hmac_list[id].hmac_name, 0,
478 					CRYPTO_ALG_ASYNC);
479 		if (IS_ERR(tfm))
480 			goto out_err;
481 
482 		ep->auth_hmacs[id] = tfm;
483 	}
484 
485 	return 0;
486 
487 out_err:
488 	/* Clean up any successfull allocations */
489 	sctp_auth_destroy_hmacs(ep->auth_hmacs);
490 	return -ENOMEM;
491 }
492 
493 /* Destroy the hmac tfm array */
494 void sctp_auth_destroy_hmacs(struct crypto_hash *auth_hmacs[])
495 {
496 	int i;
497 
498 	if (!auth_hmacs)
499 		return;
500 
501 	for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++)
502 	{
503 		if (auth_hmacs[i])
504 			crypto_free_hash(auth_hmacs[i]);
505 	}
506 	kfree(auth_hmacs);
507 }
508 
509 
510 struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id)
511 {
512 	return &sctp_hmac_list[hmac_id];
513 }
514 
515 /* Get an hmac description information that we can use to build
516  * the AUTH chunk
517  */
518 struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc)
519 {
520 	struct sctp_hmac_algo_param *hmacs;
521 	__u16 n_elt;
522 	__u16 id = 0;
523 	int i;
524 
525 	/* If we have a default entry, use it */
526 	if (asoc->default_hmac_id)
527 		return &sctp_hmac_list[asoc->default_hmac_id];
528 
529 	/* Since we do not have a default entry, find the first entry
530 	 * we support and return that.  Do not cache that id.
531 	 */
532 	hmacs = asoc->peer.peer_hmacs;
533 	if (!hmacs)
534 		return NULL;
535 
536 	n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
537 	for (i = 0; i < n_elt; i++) {
538 		id = ntohs(hmacs->hmac_ids[i]);
539 
540 		/* Check the id is in the supported range */
541 		if (id > SCTP_AUTH_HMAC_ID_MAX)
542 			continue;
543 
544 		/* See is we support the id.  Supported IDs have name and
545 		 * length fields set, so that we can allocated and use
546 		 * them.  We can safely just check for name, for without the
547 		 * name, we can't allocate the TFM.
548 		 */
549 		if (!sctp_hmac_list[id].hmac_name)
550 			continue;
551 
552 		break;
553 	}
554 
555 	if (id == 0)
556 		return NULL;
557 
558 	return &sctp_hmac_list[id];
559 }
560 
561 static int __sctp_auth_find_hmacid(__be16 *hmacs, int n_elts, __be16 hmac_id)
562 {
563 	int  found = 0;
564 	int  i;
565 
566 	for (i = 0; i < n_elts; i++) {
567 		if (hmac_id == hmacs[i]) {
568 			found = 1;
569 			break;
570 		}
571 	}
572 
573 	return found;
574 }
575 
576 /* See if the HMAC_ID is one that we claim as supported */
577 int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc,
578 				    __be16 hmac_id)
579 {
580 	struct sctp_hmac_algo_param *hmacs;
581 	__u16 n_elt;
582 
583 	if (!asoc)
584 		return 0;
585 
586 	hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs;
587 	n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
588 
589 	return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id);
590 }
591 
592 
593 /* Cache the default HMAC id.  This to follow this text from SCTP-AUTH:
594  * Section 6.1:
595  *   The receiver of a HMAC-ALGO parameter SHOULD use the first listed
596  *   algorithm it supports.
597  */
598 void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc,
599 				     struct sctp_hmac_algo_param *hmacs)
600 {
601 	struct sctp_endpoint *ep;
602 	__u16   id;
603 	int	i;
604 	int	n_params;
605 
606 	/* if the default id is already set, use it */
607 	if (asoc->default_hmac_id)
608 		return;
609 
610 	n_params = (ntohs(hmacs->param_hdr.length)
611 				- sizeof(sctp_paramhdr_t)) >> 1;
612 	ep = asoc->ep;
613 	for (i = 0; i < n_params; i++) {
614 		id = ntohs(hmacs->hmac_ids[i]);
615 
616 		/* Check the id is in the supported range */
617 		if (id > SCTP_AUTH_HMAC_ID_MAX)
618 			continue;
619 
620 		/* If this TFM has been allocated, use this id */
621 		if (ep->auth_hmacs[id]) {
622 			asoc->default_hmac_id = id;
623 			break;
624 		}
625 	}
626 }
627 
628 
629 /* Check to see if the given chunk is supposed to be authenticated */
630 static int __sctp_auth_cid(sctp_cid_t chunk, struct sctp_chunks_param *param)
631 {
632 	unsigned short len;
633 	int found = 0;
634 	int i;
635 
636 	if (!param || param->param_hdr.length == 0)
637 		return 0;
638 
639 	len = ntohs(param->param_hdr.length) - sizeof(sctp_paramhdr_t);
640 
641 	/* SCTP-AUTH, Section 3.2
642 	 *    The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH
643 	 *    chunks MUST NOT be listed in the CHUNKS parameter.  However, if
644 	 *    a CHUNKS parameter is received then the types for INIT, INIT-ACK,
645 	 *    SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored.
646 	 */
647 	for (i = 0; !found && i < len; i++) {
648 		switch (param->chunks[i]) {
649 		    case SCTP_CID_INIT:
650 		    case SCTP_CID_INIT_ACK:
651 		    case SCTP_CID_SHUTDOWN_COMPLETE:
652 		    case SCTP_CID_AUTH:
653 			break;
654 
655 		    default:
656 			if (param->chunks[i] == chunk)
657 			    found = 1;
658 			break;
659 		}
660 	}
661 
662 	return found;
663 }
664 
665 /* Check if peer requested that this chunk is authenticated */
666 int sctp_auth_send_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
667 {
668 	if (!sctp_auth_enable || !asoc || !asoc->peer.auth_capable)
669 		return 0;
670 
671 	return __sctp_auth_cid(chunk, asoc->peer.peer_chunks);
672 }
673 
674 /* Check if we requested that peer authenticate this chunk. */
675 int sctp_auth_recv_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
676 {
677 	if (!sctp_auth_enable || !asoc)
678 		return 0;
679 
680 	return __sctp_auth_cid(chunk,
681 			      (struct sctp_chunks_param *)asoc->c.auth_chunks);
682 }
683 
684 /* SCTP-AUTH: Section 6.2:
685  *    The sender MUST calculate the MAC as described in RFC2104 [2] using
686  *    the hash function H as described by the MAC Identifier and the shared
687  *    association key K based on the endpoint pair shared key described by
688  *    the shared key identifier.  The 'data' used for the computation of
689  *    the AUTH-chunk is given by the AUTH chunk with its HMAC field set to
690  *    zero (as shown in Figure 6) followed by all chunks that are placed
691  *    after the AUTH chunk in the SCTP packet.
692  */
693 void sctp_auth_calculate_hmac(const struct sctp_association *asoc,
694 			      struct sk_buff *skb,
695 			      struct sctp_auth_chunk *auth,
696 			      gfp_t gfp)
697 {
698 	struct scatterlist sg;
699 	struct hash_desc desc;
700 	struct sctp_auth_bytes *asoc_key;
701 	__u16 key_id, hmac_id;
702 	__u8 *digest;
703 	unsigned char *end;
704 	int free_key = 0;
705 
706 	/* Extract the info we need:
707 	 * - hmac id
708 	 * - key id
709 	 */
710 	key_id = ntohs(auth->auth_hdr.shkey_id);
711 	hmac_id = ntohs(auth->auth_hdr.hmac_id);
712 
713 	if (key_id == asoc->active_key_id)
714 		asoc_key = asoc->asoc_shared_key;
715 	else {
716 		struct sctp_shared_key *ep_key;
717 
718 		ep_key = sctp_auth_get_shkey(asoc, key_id);
719 		if (!ep_key)
720 			return;
721 
722 		asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
723 		if (!asoc_key)
724 			return;
725 
726 		free_key = 1;
727 	}
728 
729 	/* set up scatter list */
730 	end = skb_tail_pointer(skb);
731 	sg_init_one(&sg, auth, end - (unsigned char *)auth);
732 
733 	desc.tfm = asoc->ep->auth_hmacs[hmac_id];
734 	desc.flags = 0;
735 
736 	digest = auth->auth_hdr.hmac;
737 	if (crypto_hash_setkey(desc.tfm, &asoc_key->data[0], asoc_key->len))
738 		goto free;
739 
740 	crypto_hash_digest(&desc, &sg, sg.length, digest);
741 
742 free:
743 	if (free_key)
744 		sctp_auth_key_put(asoc_key);
745 }
746 
747 /* API Helpers */
748 
749 /* Add a chunk to the endpoint authenticated chunk list */
750 int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id)
751 {
752 	struct sctp_chunks_param *p = ep->auth_chunk_list;
753 	__u16 nchunks;
754 	__u16 param_len;
755 
756 	/* If this chunk is already specified, we are done */
757 	if (__sctp_auth_cid(chunk_id, p))
758 		return 0;
759 
760 	/* Check if we can add this chunk to the array */
761 	param_len = ntohs(p->param_hdr.length);
762 	nchunks = param_len - sizeof(sctp_paramhdr_t);
763 	if (nchunks == SCTP_NUM_CHUNK_TYPES)
764 		return -EINVAL;
765 
766 	p->chunks[nchunks] = chunk_id;
767 	p->param_hdr.length = htons(param_len + 1);
768 	return 0;
769 }
770 
771 /* Add hmac identifires to the endpoint list of supported hmac ids */
772 int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep,
773 			   struct sctp_hmacalgo *hmacs)
774 {
775 	int has_sha1 = 0;
776 	__u16 id;
777 	int i;
778 
779 	/* Scan the list looking for unsupported id.  Also make sure that
780 	 * SHA1 is specified.
781 	 */
782 	for (i = 0; i < hmacs->shmac_num_idents; i++) {
783 		id = hmacs->shmac_idents[i];
784 
785 		if (SCTP_AUTH_HMAC_ID_SHA1 == id)
786 			has_sha1 = 1;
787 
788 		if (!sctp_hmac_list[id].hmac_name)
789 			return -EOPNOTSUPP;
790 	}
791 
792 	if (!has_sha1)
793 		return -EINVAL;
794 
795 	memcpy(ep->auth_hmacs_list->hmac_ids, &hmacs->shmac_idents[0],
796 		hmacs->shmac_num_idents * sizeof(__u16));
797 	ep->auth_hmacs_list->param_hdr.length = htons(sizeof(sctp_paramhdr_t) +
798 				hmacs->shmac_num_idents * sizeof(__u16));
799 	return 0;
800 }
801 
802 /* Set a new shared key on either endpoint or association.  If the
803  * the key with a same ID already exists, replace the key (remove the
804  * old key and add a new one).
805  */
806 int sctp_auth_set_key(struct sctp_endpoint *ep,
807 		      struct sctp_association *asoc,
808 		      struct sctp_authkey *auth_key)
809 {
810 	struct sctp_shared_key *cur_key = NULL;
811 	struct sctp_auth_bytes *key;
812 	struct list_head *sh_keys;
813 	int replace = 0;
814 
815 	/* Try to find the given key id to see if
816 	 * we are doing a replace, or adding a new key
817 	 */
818 	if (asoc)
819 		sh_keys = &asoc->endpoint_shared_keys;
820 	else
821 		sh_keys = &ep->endpoint_shared_keys;
822 
823 	key_for_each(cur_key, sh_keys) {
824 		if (cur_key->key_id == auth_key->sca_keynumber) {
825 			replace = 1;
826 			break;
827 		}
828 	}
829 
830 	/* If we are not replacing a key id, we need to allocate
831 	 * a shared key.
832 	 */
833 	if (!replace) {
834 		cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber,
835 						 GFP_KERNEL);
836 		if (!cur_key)
837 			return -ENOMEM;
838 	}
839 
840 	/* Create a new key data based on the info passed in */
841 	key = sctp_auth_create_key(auth_key->sca_keylength, GFP_KERNEL);
842 	if (!key)
843 		goto nomem;
844 
845 	memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylength);
846 
847 	/* If we are replacing, remove the old keys data from the
848 	 * key id.  If we are adding new key id, add it to the
849 	 * list.
850 	 */
851 	if (replace)
852 		sctp_auth_key_put(cur_key->key);
853 	else
854 		list_add(&cur_key->key_list, sh_keys);
855 
856 	cur_key->key = key;
857 	sctp_auth_key_hold(key);
858 
859 	return 0;
860 nomem:
861 	if (!replace)
862 		sctp_auth_shkey_free(cur_key);
863 
864 	return -ENOMEM;
865 }
866 
867 int sctp_auth_set_active_key(struct sctp_endpoint *ep,
868 			     struct sctp_association *asoc,
869 			     __u16  key_id)
870 {
871 	struct sctp_shared_key *key;
872 	struct list_head *sh_keys;
873 	int found = 0;
874 
875 	/* The key identifier MUST correst to an existing key */
876 	if (asoc)
877 		sh_keys = &asoc->endpoint_shared_keys;
878 	else
879 		sh_keys = &ep->endpoint_shared_keys;
880 
881 	key_for_each(key, sh_keys) {
882 		if (key->key_id == key_id) {
883 			found = 1;
884 			break;
885 		}
886 	}
887 
888 	if (!found)
889 		return -EINVAL;
890 
891 	if (asoc) {
892 		asoc->active_key_id = key_id;
893 		sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL);
894 	} else
895 		ep->active_key_id = key_id;
896 
897 	return 0;
898 }
899 
900 int sctp_auth_del_key_id(struct sctp_endpoint *ep,
901 			 struct sctp_association *asoc,
902 			 __u16  key_id)
903 {
904 	struct sctp_shared_key *key;
905 	struct list_head *sh_keys;
906 	int found = 0;
907 
908 	/* The key identifier MUST NOT be the current active key
909 	 * The key identifier MUST correst to an existing key
910 	 */
911 	if (asoc) {
912 		if (asoc->active_key_id == key_id)
913 			return -EINVAL;
914 
915 		sh_keys = &asoc->endpoint_shared_keys;
916 	} else {
917 		if (ep->active_key_id == key_id)
918 			return -EINVAL;
919 
920 		sh_keys = &ep->endpoint_shared_keys;
921 	}
922 
923 	key_for_each(key, sh_keys) {
924 		if (key->key_id == key_id) {
925 			found = 1;
926 			break;
927 		}
928 	}
929 
930 	if (!found)
931 		return -EINVAL;
932 
933 	/* Delete the shared key */
934 	list_del_init(&key->key_list);
935 	sctp_auth_shkey_free(key);
936 
937 	return 0;
938 }
939