1 /* SCTP kernel implementation 2 * (C) Copyright 2007 Hewlett-Packard Development Company, L.P. 3 * 4 * This file is part of the SCTP kernel implementation 5 * 6 * This SCTP implementation is free software; 7 * you can redistribute it and/or modify it under the terms of 8 * the GNU General Public License as published by 9 * the Free Software Foundation; either version 2, or (at your option) 10 * any later version. 11 * 12 * This SCTP implementation is distributed in the hope that it 13 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 14 * ************************ 15 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 16 * See the GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with GNU CC; see the file COPYING. If not, write to 20 * the Free Software Foundation, 59 Temple Place - Suite 330, 21 * Boston, MA 02111-1307, USA. 22 * 23 * Please send any bug reports or fixes you make to the 24 * email address(es): 25 * lksctp developers <lksctp-developers@lists.sourceforge.net> 26 * 27 * Or submit a bug report through the following website: 28 * http://www.sf.net/projects/lksctp 29 * 30 * Written or modified by: 31 * Vlad Yasevich <vladislav.yasevich@hp.com> 32 * 33 * Any bugs reported given to us we will try to fix... any fixes shared will 34 * be incorporated into the next SCTP release. 35 */ 36 37 #include <linux/slab.h> 38 #include <linux/types.h> 39 #include <linux/crypto.h> 40 #include <linux/scatterlist.h> 41 #include <net/sctp/sctp.h> 42 #include <net/sctp/auth.h> 43 44 static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = { 45 { 46 /* id 0 is reserved. as all 0 */ 47 .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0, 48 }, 49 { 50 .hmac_id = SCTP_AUTH_HMAC_ID_SHA1, 51 .hmac_name="hmac(sha1)", 52 .hmac_len = SCTP_SHA1_SIG_SIZE, 53 }, 54 { 55 /* id 2 is reserved as well */ 56 .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2, 57 }, 58 #if defined (CONFIG_CRYPTO_SHA256) || defined (CONFIG_CRYPTO_SHA256_MODULE) 59 { 60 .hmac_id = SCTP_AUTH_HMAC_ID_SHA256, 61 .hmac_name="hmac(sha256)", 62 .hmac_len = SCTP_SHA256_SIG_SIZE, 63 } 64 #endif 65 }; 66 67 68 void sctp_auth_key_put(struct sctp_auth_bytes *key) 69 { 70 if (!key) 71 return; 72 73 if (atomic_dec_and_test(&key->refcnt)) { 74 kfree(key); 75 SCTP_DBG_OBJCNT_DEC(keys); 76 } 77 } 78 79 /* Create a new key structure of a given length */ 80 static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp) 81 { 82 struct sctp_auth_bytes *key; 83 84 /* Verify that we are not going to overflow INT_MAX */ 85 if (key_len > (INT_MAX - sizeof(struct sctp_auth_bytes))) 86 return NULL; 87 88 /* Allocate the shared key */ 89 key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp); 90 if (!key) 91 return NULL; 92 93 key->len = key_len; 94 atomic_set(&key->refcnt, 1); 95 SCTP_DBG_OBJCNT_INC(keys); 96 97 return key; 98 } 99 100 /* Create a new shared key container with a give key id */ 101 struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp) 102 { 103 struct sctp_shared_key *new; 104 105 /* Allocate the shared key container */ 106 new = kzalloc(sizeof(struct sctp_shared_key), gfp); 107 if (!new) 108 return NULL; 109 110 INIT_LIST_HEAD(&new->key_list); 111 new->key_id = key_id; 112 113 return new; 114 } 115 116 /* Free the shared key structure */ 117 static void sctp_auth_shkey_free(struct sctp_shared_key *sh_key) 118 { 119 BUG_ON(!list_empty(&sh_key->key_list)); 120 sctp_auth_key_put(sh_key->key); 121 sh_key->key = NULL; 122 kfree(sh_key); 123 } 124 125 /* Destroy the entire key list. This is done during the 126 * associon and endpoint free process. 127 */ 128 void sctp_auth_destroy_keys(struct list_head *keys) 129 { 130 struct sctp_shared_key *ep_key; 131 struct sctp_shared_key *tmp; 132 133 if (list_empty(keys)) 134 return; 135 136 key_for_each_safe(ep_key, tmp, keys) { 137 list_del_init(&ep_key->key_list); 138 sctp_auth_shkey_free(ep_key); 139 } 140 } 141 142 /* Compare two byte vectors as numbers. Return values 143 * are: 144 * 0 - vectors are equal 145 * < 0 - vector 1 is smaller than vector2 146 * > 0 - vector 1 is greater than vector2 147 * 148 * Algorithm is: 149 * This is performed by selecting the numerically smaller key vector... 150 * If the key vectors are equal as numbers but differ in length ... 151 * the shorter vector is considered smaller 152 * 153 * Examples (with small values): 154 * 000123456789 > 123456789 (first number is longer) 155 * 000123456789 < 234567891 (second number is larger numerically) 156 * 123456789 > 2345678 (first number is both larger & longer) 157 */ 158 static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1, 159 struct sctp_auth_bytes *vector2) 160 { 161 int diff; 162 int i; 163 const __u8 *longer; 164 165 diff = vector1->len - vector2->len; 166 if (diff) { 167 longer = (diff > 0) ? vector1->data : vector2->data; 168 169 /* Check to see if the longer number is 170 * lead-zero padded. If it is not, it 171 * is automatically larger numerically. 172 */ 173 for (i = 0; i < abs(diff); i++ ) { 174 if (longer[i] != 0) 175 return diff; 176 } 177 } 178 179 /* lengths are the same, compare numbers */ 180 return memcmp(vector1->data, vector2->data, vector1->len); 181 } 182 183 /* 184 * Create a key vector as described in SCTP-AUTH, Section 6.1 185 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO 186 * parameter sent by each endpoint are concatenated as byte vectors. 187 * These parameters include the parameter type, parameter length, and 188 * the parameter value, but padding is omitted; all padding MUST be 189 * removed from this concatenation before proceeding with further 190 * computation of keys. Parameters which were not sent are simply 191 * omitted from the concatenation process. The resulting two vectors 192 * are called the two key vectors. 193 */ 194 static struct sctp_auth_bytes *sctp_auth_make_key_vector( 195 sctp_random_param_t *random, 196 sctp_chunks_param_t *chunks, 197 sctp_hmac_algo_param_t *hmacs, 198 gfp_t gfp) 199 { 200 struct sctp_auth_bytes *new; 201 __u32 len; 202 __u32 offset = 0; 203 204 len = ntohs(random->param_hdr.length) + ntohs(hmacs->param_hdr.length); 205 if (chunks) 206 len += ntohs(chunks->param_hdr.length); 207 208 new = kmalloc(sizeof(struct sctp_auth_bytes) + len, gfp); 209 if (!new) 210 return NULL; 211 212 new->len = len; 213 214 memcpy(new->data, random, ntohs(random->param_hdr.length)); 215 offset += ntohs(random->param_hdr.length); 216 217 if (chunks) { 218 memcpy(new->data + offset, chunks, 219 ntohs(chunks->param_hdr.length)); 220 offset += ntohs(chunks->param_hdr.length); 221 } 222 223 memcpy(new->data + offset, hmacs, ntohs(hmacs->param_hdr.length)); 224 225 return new; 226 } 227 228 229 /* Make a key vector based on our local parameters */ 230 static struct sctp_auth_bytes *sctp_auth_make_local_vector( 231 const struct sctp_association *asoc, 232 gfp_t gfp) 233 { 234 return sctp_auth_make_key_vector( 235 (sctp_random_param_t*)asoc->c.auth_random, 236 (sctp_chunks_param_t*)asoc->c.auth_chunks, 237 (sctp_hmac_algo_param_t*)asoc->c.auth_hmacs, 238 gfp); 239 } 240 241 /* Make a key vector based on peer's parameters */ 242 static struct sctp_auth_bytes *sctp_auth_make_peer_vector( 243 const struct sctp_association *asoc, 244 gfp_t gfp) 245 { 246 return sctp_auth_make_key_vector(asoc->peer.peer_random, 247 asoc->peer.peer_chunks, 248 asoc->peer.peer_hmacs, 249 gfp); 250 } 251 252 253 /* Set the value of the association shared key base on the parameters 254 * given. The algorithm is: 255 * From the endpoint pair shared keys and the key vectors the 256 * association shared keys are computed. This is performed by selecting 257 * the numerically smaller key vector and concatenating it to the 258 * endpoint pair shared key, and then concatenating the numerically 259 * larger key vector to that. The result of the concatenation is the 260 * association shared key. 261 */ 262 static struct sctp_auth_bytes *sctp_auth_asoc_set_secret( 263 struct sctp_shared_key *ep_key, 264 struct sctp_auth_bytes *first_vector, 265 struct sctp_auth_bytes *last_vector, 266 gfp_t gfp) 267 { 268 struct sctp_auth_bytes *secret; 269 __u32 offset = 0; 270 __u32 auth_len; 271 272 auth_len = first_vector->len + last_vector->len; 273 if (ep_key->key) 274 auth_len += ep_key->key->len; 275 276 secret = sctp_auth_create_key(auth_len, gfp); 277 if (!secret) 278 return NULL; 279 280 if (ep_key->key) { 281 memcpy(secret->data, ep_key->key->data, ep_key->key->len); 282 offset += ep_key->key->len; 283 } 284 285 memcpy(secret->data + offset, first_vector->data, first_vector->len); 286 offset += first_vector->len; 287 288 memcpy(secret->data + offset, last_vector->data, last_vector->len); 289 290 return secret; 291 } 292 293 /* Create an association shared key. Follow the algorithm 294 * described in SCTP-AUTH, Section 6.1 295 */ 296 static struct sctp_auth_bytes *sctp_auth_asoc_create_secret( 297 const struct sctp_association *asoc, 298 struct sctp_shared_key *ep_key, 299 gfp_t gfp) 300 { 301 struct sctp_auth_bytes *local_key_vector; 302 struct sctp_auth_bytes *peer_key_vector; 303 struct sctp_auth_bytes *first_vector, 304 *last_vector; 305 struct sctp_auth_bytes *secret = NULL; 306 int cmp; 307 308 309 /* Now we need to build the key vectors 310 * SCTP-AUTH , Section 6.1 311 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO 312 * parameter sent by each endpoint are concatenated as byte vectors. 313 * These parameters include the parameter type, parameter length, and 314 * the parameter value, but padding is omitted; all padding MUST be 315 * removed from this concatenation before proceeding with further 316 * computation of keys. Parameters which were not sent are simply 317 * omitted from the concatenation process. The resulting two vectors 318 * are called the two key vectors. 319 */ 320 321 local_key_vector = sctp_auth_make_local_vector(asoc, gfp); 322 peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp); 323 324 if (!peer_key_vector || !local_key_vector) 325 goto out; 326 327 /* Figure out the order in which the key_vectors will be 328 * added to the endpoint shared key. 329 * SCTP-AUTH, Section 6.1: 330 * This is performed by selecting the numerically smaller key 331 * vector and concatenating it to the endpoint pair shared 332 * key, and then concatenating the numerically larger key 333 * vector to that. If the key vectors are equal as numbers 334 * but differ in length, then the concatenation order is the 335 * endpoint shared key, followed by the shorter key vector, 336 * followed by the longer key vector. Otherwise, the key 337 * vectors are identical, and may be concatenated to the 338 * endpoint pair key in any order. 339 */ 340 cmp = sctp_auth_compare_vectors(local_key_vector, 341 peer_key_vector); 342 if (cmp < 0) { 343 first_vector = local_key_vector; 344 last_vector = peer_key_vector; 345 } else { 346 first_vector = peer_key_vector; 347 last_vector = local_key_vector; 348 } 349 350 secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector, 351 gfp); 352 out: 353 kfree(local_key_vector); 354 kfree(peer_key_vector); 355 356 return secret; 357 } 358 359 /* 360 * Populate the association overlay list with the list 361 * from the endpoint. 362 */ 363 int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep, 364 struct sctp_association *asoc, 365 gfp_t gfp) 366 { 367 struct sctp_shared_key *sh_key; 368 struct sctp_shared_key *new; 369 370 BUG_ON(!list_empty(&asoc->endpoint_shared_keys)); 371 372 key_for_each(sh_key, &ep->endpoint_shared_keys) { 373 new = sctp_auth_shkey_create(sh_key->key_id, gfp); 374 if (!new) 375 goto nomem; 376 377 new->key = sh_key->key; 378 sctp_auth_key_hold(new->key); 379 list_add(&new->key_list, &asoc->endpoint_shared_keys); 380 } 381 382 return 0; 383 384 nomem: 385 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys); 386 return -ENOMEM; 387 } 388 389 390 /* Public interface to creat the association shared key. 391 * See code above for the algorithm. 392 */ 393 int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp) 394 { 395 struct net *net = sock_net(asoc->base.sk); 396 struct sctp_auth_bytes *secret; 397 struct sctp_shared_key *ep_key; 398 399 /* If we don't support AUTH, or peer is not capable 400 * we don't need to do anything. 401 */ 402 if (!net->sctp.auth_enable || !asoc->peer.auth_capable) 403 return 0; 404 405 /* If the key_id is non-zero and we couldn't find an 406 * endpoint pair shared key, we can't compute the 407 * secret. 408 * For key_id 0, endpoint pair shared key is a NULL key. 409 */ 410 ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id); 411 BUG_ON(!ep_key); 412 413 secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp); 414 if (!secret) 415 return -ENOMEM; 416 417 sctp_auth_key_put(asoc->asoc_shared_key); 418 asoc->asoc_shared_key = secret; 419 420 return 0; 421 } 422 423 424 /* Find the endpoint pair shared key based on the key_id */ 425 struct sctp_shared_key *sctp_auth_get_shkey( 426 const struct sctp_association *asoc, 427 __u16 key_id) 428 { 429 struct sctp_shared_key *key; 430 431 /* First search associations set of endpoint pair shared keys */ 432 key_for_each(key, &asoc->endpoint_shared_keys) { 433 if (key->key_id == key_id) 434 return key; 435 } 436 437 return NULL; 438 } 439 440 /* 441 * Initialize all the possible digest transforms that we can use. Right now 442 * now, the supported digests are SHA1 and SHA256. We do this here once 443 * because of the restrictiong that transforms may only be allocated in 444 * user context. This forces us to pre-allocated all possible transforms 445 * at the endpoint init time. 446 */ 447 int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp) 448 { 449 struct net *net = sock_net(ep->base.sk); 450 struct crypto_hash *tfm = NULL; 451 __u16 id; 452 453 /* if the transforms are already allocted, we are done */ 454 if (!net->sctp.auth_enable) { 455 ep->auth_hmacs = NULL; 456 return 0; 457 } 458 459 if (ep->auth_hmacs) 460 return 0; 461 462 /* Allocated the array of pointers to transorms */ 463 ep->auth_hmacs = kzalloc( 464 sizeof(struct crypto_hash *) * SCTP_AUTH_NUM_HMACS, 465 gfp); 466 if (!ep->auth_hmacs) 467 return -ENOMEM; 468 469 for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) { 470 471 /* See is we support the id. Supported IDs have name and 472 * length fields set, so that we can allocated and use 473 * them. We can safely just check for name, for without the 474 * name, we can't allocate the TFM. 475 */ 476 if (!sctp_hmac_list[id].hmac_name) 477 continue; 478 479 /* If this TFM has been allocated, we are all set */ 480 if (ep->auth_hmacs[id]) 481 continue; 482 483 /* Allocate the ID */ 484 tfm = crypto_alloc_hash(sctp_hmac_list[id].hmac_name, 0, 485 CRYPTO_ALG_ASYNC); 486 if (IS_ERR(tfm)) 487 goto out_err; 488 489 ep->auth_hmacs[id] = tfm; 490 } 491 492 return 0; 493 494 out_err: 495 /* Clean up any successful allocations */ 496 sctp_auth_destroy_hmacs(ep->auth_hmacs); 497 return -ENOMEM; 498 } 499 500 /* Destroy the hmac tfm array */ 501 void sctp_auth_destroy_hmacs(struct crypto_hash *auth_hmacs[]) 502 { 503 int i; 504 505 if (!auth_hmacs) 506 return; 507 508 for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++) 509 { 510 if (auth_hmacs[i]) 511 crypto_free_hash(auth_hmacs[i]); 512 } 513 kfree(auth_hmacs); 514 } 515 516 517 struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id) 518 { 519 return &sctp_hmac_list[hmac_id]; 520 } 521 522 /* Get an hmac description information that we can use to build 523 * the AUTH chunk 524 */ 525 struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc) 526 { 527 struct sctp_hmac_algo_param *hmacs; 528 __u16 n_elt; 529 __u16 id = 0; 530 int i; 531 532 /* If we have a default entry, use it */ 533 if (asoc->default_hmac_id) 534 return &sctp_hmac_list[asoc->default_hmac_id]; 535 536 /* Since we do not have a default entry, find the first entry 537 * we support and return that. Do not cache that id. 538 */ 539 hmacs = asoc->peer.peer_hmacs; 540 if (!hmacs) 541 return NULL; 542 543 n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1; 544 for (i = 0; i < n_elt; i++) { 545 id = ntohs(hmacs->hmac_ids[i]); 546 547 /* Check the id is in the supported range */ 548 if (id > SCTP_AUTH_HMAC_ID_MAX) { 549 id = 0; 550 continue; 551 } 552 553 /* See is we support the id. Supported IDs have name and 554 * length fields set, so that we can allocated and use 555 * them. We can safely just check for name, for without the 556 * name, we can't allocate the TFM. 557 */ 558 if (!sctp_hmac_list[id].hmac_name) { 559 id = 0; 560 continue; 561 } 562 563 break; 564 } 565 566 if (id == 0) 567 return NULL; 568 569 return &sctp_hmac_list[id]; 570 } 571 572 static int __sctp_auth_find_hmacid(__be16 *hmacs, int n_elts, __be16 hmac_id) 573 { 574 int found = 0; 575 int i; 576 577 for (i = 0; i < n_elts; i++) { 578 if (hmac_id == hmacs[i]) { 579 found = 1; 580 break; 581 } 582 } 583 584 return found; 585 } 586 587 /* See if the HMAC_ID is one that we claim as supported */ 588 int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc, 589 __be16 hmac_id) 590 { 591 struct sctp_hmac_algo_param *hmacs; 592 __u16 n_elt; 593 594 if (!asoc) 595 return 0; 596 597 hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs; 598 n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1; 599 600 return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id); 601 } 602 603 604 /* Cache the default HMAC id. This to follow this text from SCTP-AUTH: 605 * Section 6.1: 606 * The receiver of a HMAC-ALGO parameter SHOULD use the first listed 607 * algorithm it supports. 608 */ 609 void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc, 610 struct sctp_hmac_algo_param *hmacs) 611 { 612 struct sctp_endpoint *ep; 613 __u16 id; 614 int i; 615 int n_params; 616 617 /* if the default id is already set, use it */ 618 if (asoc->default_hmac_id) 619 return; 620 621 n_params = (ntohs(hmacs->param_hdr.length) 622 - sizeof(sctp_paramhdr_t)) >> 1; 623 ep = asoc->ep; 624 for (i = 0; i < n_params; i++) { 625 id = ntohs(hmacs->hmac_ids[i]); 626 627 /* Check the id is in the supported range */ 628 if (id > SCTP_AUTH_HMAC_ID_MAX) 629 continue; 630 631 /* If this TFM has been allocated, use this id */ 632 if (ep->auth_hmacs[id]) { 633 asoc->default_hmac_id = id; 634 break; 635 } 636 } 637 } 638 639 640 /* Check to see if the given chunk is supposed to be authenticated */ 641 static int __sctp_auth_cid(sctp_cid_t chunk, struct sctp_chunks_param *param) 642 { 643 unsigned short len; 644 int found = 0; 645 int i; 646 647 if (!param || param->param_hdr.length == 0) 648 return 0; 649 650 len = ntohs(param->param_hdr.length) - sizeof(sctp_paramhdr_t); 651 652 /* SCTP-AUTH, Section 3.2 653 * The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH 654 * chunks MUST NOT be listed in the CHUNKS parameter. However, if 655 * a CHUNKS parameter is received then the types for INIT, INIT-ACK, 656 * SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored. 657 */ 658 for (i = 0; !found && i < len; i++) { 659 switch (param->chunks[i]) { 660 case SCTP_CID_INIT: 661 case SCTP_CID_INIT_ACK: 662 case SCTP_CID_SHUTDOWN_COMPLETE: 663 case SCTP_CID_AUTH: 664 break; 665 666 default: 667 if (param->chunks[i] == chunk) 668 found = 1; 669 break; 670 } 671 } 672 673 return found; 674 } 675 676 /* Check if peer requested that this chunk is authenticated */ 677 int sctp_auth_send_cid(sctp_cid_t chunk, const struct sctp_association *asoc) 678 { 679 struct net *net; 680 if (!asoc) 681 return 0; 682 683 net = sock_net(asoc->base.sk); 684 if (!net->sctp.auth_enable || !asoc->peer.auth_capable) 685 return 0; 686 687 return __sctp_auth_cid(chunk, asoc->peer.peer_chunks); 688 } 689 690 /* Check if we requested that peer authenticate this chunk. */ 691 int sctp_auth_recv_cid(sctp_cid_t chunk, const struct sctp_association *asoc) 692 { 693 struct net *net; 694 if (!asoc) 695 return 0; 696 697 net = sock_net(asoc->base.sk); 698 if (!net->sctp.auth_enable) 699 return 0; 700 701 return __sctp_auth_cid(chunk, 702 (struct sctp_chunks_param *)asoc->c.auth_chunks); 703 } 704 705 /* SCTP-AUTH: Section 6.2: 706 * The sender MUST calculate the MAC as described in RFC2104 [2] using 707 * the hash function H as described by the MAC Identifier and the shared 708 * association key K based on the endpoint pair shared key described by 709 * the shared key identifier. The 'data' used for the computation of 710 * the AUTH-chunk is given by the AUTH chunk with its HMAC field set to 711 * zero (as shown in Figure 6) followed by all chunks that are placed 712 * after the AUTH chunk in the SCTP packet. 713 */ 714 void sctp_auth_calculate_hmac(const struct sctp_association *asoc, 715 struct sk_buff *skb, 716 struct sctp_auth_chunk *auth, 717 gfp_t gfp) 718 { 719 struct scatterlist sg; 720 struct hash_desc desc; 721 struct sctp_auth_bytes *asoc_key; 722 __u16 key_id, hmac_id; 723 __u8 *digest; 724 unsigned char *end; 725 int free_key = 0; 726 727 /* Extract the info we need: 728 * - hmac id 729 * - key id 730 */ 731 key_id = ntohs(auth->auth_hdr.shkey_id); 732 hmac_id = ntohs(auth->auth_hdr.hmac_id); 733 734 if (key_id == asoc->active_key_id) 735 asoc_key = asoc->asoc_shared_key; 736 else { 737 struct sctp_shared_key *ep_key; 738 739 ep_key = sctp_auth_get_shkey(asoc, key_id); 740 if (!ep_key) 741 return; 742 743 asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp); 744 if (!asoc_key) 745 return; 746 747 free_key = 1; 748 } 749 750 /* set up scatter list */ 751 end = skb_tail_pointer(skb); 752 sg_init_one(&sg, auth, end - (unsigned char *)auth); 753 754 desc.tfm = asoc->ep->auth_hmacs[hmac_id]; 755 desc.flags = 0; 756 757 digest = auth->auth_hdr.hmac; 758 if (crypto_hash_setkey(desc.tfm, &asoc_key->data[0], asoc_key->len)) 759 goto free; 760 761 crypto_hash_digest(&desc, &sg, sg.length, digest); 762 763 free: 764 if (free_key) 765 sctp_auth_key_put(asoc_key); 766 } 767 768 /* API Helpers */ 769 770 /* Add a chunk to the endpoint authenticated chunk list */ 771 int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id) 772 { 773 struct sctp_chunks_param *p = ep->auth_chunk_list; 774 __u16 nchunks; 775 __u16 param_len; 776 777 /* If this chunk is already specified, we are done */ 778 if (__sctp_auth_cid(chunk_id, p)) 779 return 0; 780 781 /* Check if we can add this chunk to the array */ 782 param_len = ntohs(p->param_hdr.length); 783 nchunks = param_len - sizeof(sctp_paramhdr_t); 784 if (nchunks == SCTP_NUM_CHUNK_TYPES) 785 return -EINVAL; 786 787 p->chunks[nchunks] = chunk_id; 788 p->param_hdr.length = htons(param_len + 1); 789 return 0; 790 } 791 792 /* Add hmac identifires to the endpoint list of supported hmac ids */ 793 int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep, 794 struct sctp_hmacalgo *hmacs) 795 { 796 int has_sha1 = 0; 797 __u16 id; 798 int i; 799 800 /* Scan the list looking for unsupported id. Also make sure that 801 * SHA1 is specified. 802 */ 803 for (i = 0; i < hmacs->shmac_num_idents; i++) { 804 id = hmacs->shmac_idents[i]; 805 806 if (id > SCTP_AUTH_HMAC_ID_MAX) 807 return -EOPNOTSUPP; 808 809 if (SCTP_AUTH_HMAC_ID_SHA1 == id) 810 has_sha1 = 1; 811 812 if (!sctp_hmac_list[id].hmac_name) 813 return -EOPNOTSUPP; 814 } 815 816 if (!has_sha1) 817 return -EINVAL; 818 819 memcpy(ep->auth_hmacs_list->hmac_ids, &hmacs->shmac_idents[0], 820 hmacs->shmac_num_idents * sizeof(__u16)); 821 ep->auth_hmacs_list->param_hdr.length = htons(sizeof(sctp_paramhdr_t) + 822 hmacs->shmac_num_idents * sizeof(__u16)); 823 return 0; 824 } 825 826 /* Set a new shared key on either endpoint or association. If the 827 * the key with a same ID already exists, replace the key (remove the 828 * old key and add a new one). 829 */ 830 int sctp_auth_set_key(struct sctp_endpoint *ep, 831 struct sctp_association *asoc, 832 struct sctp_authkey *auth_key) 833 { 834 struct sctp_shared_key *cur_key = NULL; 835 struct sctp_auth_bytes *key; 836 struct list_head *sh_keys; 837 int replace = 0; 838 839 /* Try to find the given key id to see if 840 * we are doing a replace, or adding a new key 841 */ 842 if (asoc) 843 sh_keys = &asoc->endpoint_shared_keys; 844 else 845 sh_keys = &ep->endpoint_shared_keys; 846 847 key_for_each(cur_key, sh_keys) { 848 if (cur_key->key_id == auth_key->sca_keynumber) { 849 replace = 1; 850 break; 851 } 852 } 853 854 /* If we are not replacing a key id, we need to allocate 855 * a shared key. 856 */ 857 if (!replace) { 858 cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber, 859 GFP_KERNEL); 860 if (!cur_key) 861 return -ENOMEM; 862 } 863 864 /* Create a new key data based on the info passed in */ 865 key = sctp_auth_create_key(auth_key->sca_keylength, GFP_KERNEL); 866 if (!key) 867 goto nomem; 868 869 memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylength); 870 871 /* If we are replacing, remove the old keys data from the 872 * key id. If we are adding new key id, add it to the 873 * list. 874 */ 875 if (replace) 876 sctp_auth_key_put(cur_key->key); 877 else 878 list_add(&cur_key->key_list, sh_keys); 879 880 cur_key->key = key; 881 sctp_auth_key_hold(key); 882 883 return 0; 884 nomem: 885 if (!replace) 886 sctp_auth_shkey_free(cur_key); 887 888 return -ENOMEM; 889 } 890 891 int sctp_auth_set_active_key(struct sctp_endpoint *ep, 892 struct sctp_association *asoc, 893 __u16 key_id) 894 { 895 struct sctp_shared_key *key; 896 struct list_head *sh_keys; 897 int found = 0; 898 899 /* The key identifier MUST correst to an existing key */ 900 if (asoc) 901 sh_keys = &asoc->endpoint_shared_keys; 902 else 903 sh_keys = &ep->endpoint_shared_keys; 904 905 key_for_each(key, sh_keys) { 906 if (key->key_id == key_id) { 907 found = 1; 908 break; 909 } 910 } 911 912 if (!found) 913 return -EINVAL; 914 915 if (asoc) { 916 asoc->active_key_id = key_id; 917 sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL); 918 } else 919 ep->active_key_id = key_id; 920 921 return 0; 922 } 923 924 int sctp_auth_del_key_id(struct sctp_endpoint *ep, 925 struct sctp_association *asoc, 926 __u16 key_id) 927 { 928 struct sctp_shared_key *key; 929 struct list_head *sh_keys; 930 int found = 0; 931 932 /* The key identifier MUST NOT be the current active key 933 * The key identifier MUST correst to an existing key 934 */ 935 if (asoc) { 936 if (asoc->active_key_id == key_id) 937 return -EINVAL; 938 939 sh_keys = &asoc->endpoint_shared_keys; 940 } else { 941 if (ep->active_key_id == key_id) 942 return -EINVAL; 943 944 sh_keys = &ep->endpoint_shared_keys; 945 } 946 947 key_for_each(key, sh_keys) { 948 if (key->key_id == key_id) { 949 found = 1; 950 break; 951 } 952 } 953 954 if (!found) 955 return -EINVAL; 956 957 /* Delete the shared key */ 958 list_del_init(&key->key_list); 959 sctp_auth_shkey_free(key); 960 961 return 0; 962 } 963